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Abstract

We present an approach to connect the Real-Time Calculus (RTC) method to the syn-
chronous data-flow language Lustre, and its associated tool-chain, allowing the use of tech-
niques like SMT-solving and abstract interpretation which were not previously available
for use with RTC. The approach is supported by a tool called ac2lus. It allows to model
the system to be analyzed as general Lustre programs with inputs specified by arrival
curves; the tool can compute output arrival curves or evaluate upper and lower bounds
on any variable of the components, like buffer sizes. Compared to existing approaches to
connect RTC to other formalisms, we believe that the use of Lustre, a real programming
language, and the synchronous hypothesis make the task easier to write models, and we
show that it allows a great flexibility of the tool itself, with many variants to fine-tune the
performances.
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1 Introduction

Modern real-time embedded systems are increasingly complex and heterogeneous. Due to real-time
requirements, the timing performances require accurate evaluation that help taking or validating
decisions on the conception of a system as early as possible in the design process. Many modeling
and analysis techniques have been developed among which we can distinguish two families. Com-
putational approaches study fine-grain models of the system to represent its complete behavior.
The validation of the system using such a model may involve simulation, testing and verification.
Simulating precisely an embedded system gives very precise results, but only for one simulation,
and one instance of a system. Formal methods such as model-checking, when possible, quickly
face the state explosion problem if they are not associated to modular techniques. As opposed to
this, analytical techniques, such as Real Time Calculus [1], use purely analytical models, based
on mathematical equations that can be solved efficiently. These models can represent in a simple
way the amount of events to be processed and how fast the processing occurs. Solving these equa-
tions is very fast and may provide, for example, the best and worst cases for performances. The
main drawbacks of those techniques is that they imply rough abstraction of the system, leading
to results that may lack accuracy. For example, Real-Time Calculus cannot handle the notion of
state in the modeling of a system. Recent studies try to compositionally combine the approaches
to take the best of both [2,3,4]. We present in this paper another way of combining Real-Time
Calculus with computational models, in the case of synchronous programs written in Lustre [5].

Real-Time Calculus (RTC) RTC [1] is a framework to model and analyze heterogeneous system
in a compositional manner. It relies on the modeling of timing properties of event streams and
available resources with curves called arrival curves and service curves. A component can be
described with curves for its input stream and available resources and some other curves for the
outputs. For already-modeled components, RTC gives exact bounds on the output stream of a
component as a function of its input stream. This result can then be used as input for the next
component.

An arrival curve is an abstraction to represent the set of event streams that can be input to
(resp. output from) a component; it is expressed as a pair of curves (αl, αu). For k ≥ 0, αl(k) and
αu(k) respectively provide, for any potential stream, the lower and upper bounds on the number
of events that occur during any time interval of size k. Similarly, the processing capacity of a
component is specified by a service curve (βl, βu). The number of events that may be processed
in any time interval of size k is at least βl(k) and at most βu(k).

These curves do not allow to consider sequences of different abstract behaviors, since it is based
on information valid for all intervals of a given length. This also implies that no notion of states is
allowed in RTC components. When using such abstractions for components with several intrinsic
modes, the obtained results are particularly coarse. For example, a component with an initial
mode and then a stationary behavior cannot be described without unreasonable approximation.

Interfacing RTC with other formalisms to overcome these drawbacks, a commonly used approach
is to individually analyze some state-based or new component of an RTC framework with tools
that support it and to re-inject the results into the RTC framework. This implies making the
interfaces between those tools and the RTC analysis compatible, namely, each component inputs
and outputs arrival curves.

This approach has already been used successfully to connect RTC to various other formalisms
in the past: [6] proposed a connection to a simulation model that allows testing models or actual
embedded systems. [7] presents a connection to event-count automata and [3] a connection to
timed automata: they both represent the component and the input arrival curve as event-count
(resp. timed) automata and then use a model checker to compute the output arrival curve. The
connection with timed automata has been further improved to reduce the size of the models by
focusing on a particular shape of curves [2] or by changing the granularity of events [4].
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Overview of the approach in this paper we propose to extend the RTC interfacing the Lustre
synchronous data-flow programming language. When some component is well-suited for modeling
and analysis with Lustre and its toolbox, we propose to individually analyze it and then to use
the results in the RTC framework. Other components can still be analyzed with the usual RTC
toolbox. We develop a method to analyze Lustre programs interfaced with RTC, with many options
that can be tried to obtain some better results. A tool called ac2lus supports the framework.

An RTC component can be seen as an arrival curve transformer: taking some arrival curve as
input, this specifies an output arrival curve for the component (see Figure 1 (a)). We now improve
the expressiveness of the component by writing it in Lustre. This implies to make the interfaces
between the Lustre component and the arrival curves compatible. Indeed, the new component, as
Lustre is dataflow, computes on a given stream of events, whereas arrival curve describes a set of
event streams in a very declarative way using relative time. To be able to come back and forth
between the Lustre component and the arrival curves, we develop adapters and back adapters
between them (see Figure 1 (b)).

We then run the analysis to compute the output arrival curve. It is done with an abstract
interpretation tool (nbac [8]) and a model-checker (kind [9]) doing bounded model-checking and
k-induction via SMT-solving (“Satisfiability Modulo Theory”, i.e. SAT + a numeric solver).

We develop the tool ac2lus. It provides a library of predefined Lustre components (greedy pro-
cessing components, fixed-priority scheduler, simple examples of power-managed components. . . )
that the user can use to model a system. Some other components can easily be programmed. The
user also provides the input arrival curves which ac2lus uses to generate the Lustre code for
adapters and back-adapters. The tool implements some runners for the verification tools, which
allows to compute the output arrival curves automatically.

The first goal of the approach it to extend the RTC framework by the local analysis of some
Lustre component. It can also be used to evaluate some logical or quantitative property on the
component. For example, given some arrival curve for a Lustre component, one can use the tool
to compute the maximum buffer fill-level.

A similar approach was followed by [10]: they compute maximum delays of data-acquisition
modules using Lustre models and abstract interpretation. The main differences with our work
are that ac2lus allows modular analysis through the use of RTC arrival curves and enables the
evaluation of any quantitative measure expressed in the Lustre model whereas [10] is better-suited
to compute maximum delay.

Contributions we propose a new combination of the RTC framework with Lustre components
which is fully automatized by the tool ac2lus. It increases the variety of validation techniques
(abstract interpreters, SMT-solvers) available for analysis: if some system fails to be analyzed
using some tools, one can change his strategy and try another one. With the same idea, the whole
framework contains many variants and is easily configurable and extensible.

Comparing to the classical RTC analysis, those components are more expressive and allows to
design state-based systems which is mandatory while studying e.g. power aware systems; in this
case, the analysis via Lustre leads to much more precise evaluations than RTC.

Comparing to other state-based RTC interfacing frameworks, and in particular with [2] which
is the most recent and the closest of our work :

– the shape of the curves they take into account is a bit less general (since we enable points
between segments) and they strictly focus on discrete events whereas we can also handle fluid
event models by changing to real the typing of event streams (with similar performance);

– we believe that the use of a programming language instead of any other formal models, makes
the modeling of new components more intuitive and easier;

– the efficiency of the analysis and its precision are highly correlated, for both approaches. When
the analysis succeed, the precision is the same since it is optimal. The performances bottleneck,
in both cases, are due to the use of formal validation tools and to the size of the models. As usual,
tools behave differently for various shapes of models and it is good having several strategies to
try. For example, our approach scales nicely with the order of magnitude of numerical constants,
while [2] scales better with respect to the timing constants.
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Fig. 1. From RTC analysis (a) to other analysis (b)

Organization the paper is organized as follows. Section 2 gives some details on the Lustre lan-
guage and shows some RTC components written in Lustre; Section 3 details the adapters and
back-adapters, explains the tool and the analysis; Section 4 shows applications of the framework,
illustrated on an example and Section 5 gives conclusions and future works.

2 Lustre

We use the synchronous data-flow language Lustre [5] to program the component to be analyzed.
This is a simple but formally defined language which is dedicated to program embedded system
or abstractions of it.

The motivation for choosing Lustre is multiple. First it is supported by a wide variety of
validation tools such as model-checkers [11,9], abstract interpreter [8], testers and simulators. By
connecting RTC to the Lustre language, ac2lus opens the door to several other formal methods
and tools that were not previously available within RTC. Second, the execution model of Lustre
fits the RTC model rather well: both are dataflow-oriented. A Lustre program computes directly on
event streams, hence, the constraints expressed by arrival curves correspond directly to properties
of Lustre flows. This allows to program the interface (adapters) with arrival curve using the same
language as the components; we use the technique of the so-called synchronous observers [12] to
express the constraints of the arrival curve as a safety property of an event stream. Finally, an
interesting property of Lustre is its simplicity of use. Lustre is not only a modeling language,
but also an implementation language, that has already been successfully used to implement large
systems. We believe that the use of an actual programming language makes the task of writing
models for components easier than other formalisms.

Lustre programs manipulate infinite streams of values. When one writes x = y + 2; it should
be read as “at each clock tick, the value of x is equal to the value of y plus 2”, so if the stream of
values for y is 1, 5, 12, 42, . . ., then the stream of values for x is 3, 7, 14, 44, . . .. It is also possible to
refer to past values of a variable, by using the operator pre which means “previous value”. Since
“previous value” is meaningless at the first instant, the operator pre has to be used together with
the “initialization operator” ->: x -> y means “x at the first instant, and y afterwards”.

A Lustre function is called a node; it takes and computes streams of values as input and output
parameters. Figure 2 shows a simple node which computes identity on a stream of integers.

node infinite_capacity ( in_seq : int )
returns ( out_seq : int )

l e t
out_seq = in_seq ;

te l

Fig. 2. Simple Lustre Node

Model of a Lustre Component to model a component in Lustre, we naturally represent its in-
put/output event streams with input/output Lustre flows. As Lustre programs computes a value
“at each clock tick”, time is obviously discrete. At each clock tick, a given amount of events arrives
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node gpc ( in_seq : int ; in_res : int )
returns ( out_seq : int ; out_res : int )

var
backlog : int ; work: int ;
empty_queue : bool;

l e t
−− e v e n t s to compute a t t he c u r r e n t
−− i n s t a n t ( accumulated + new work )
work = in_seq -> ( in_seq + pre( backlog ));
−− whether we ’ l l empty the queue a t t he
−− c u r r e n t i n s t a n t
empty_queue = (work <= in_res );
−− amount o f work accumulated in the p a s t
backlog = i f ( empty_queue ) then 0

else work - out_seq ;
−− e v e n t s produced
out_seq = i f ( empty_queue ) then work

else in_res ;
−− r e s ourc e remaining a f t e r running
out_res = in_res - out_seq ;

te l

Fig. 3. Greedy Processing Component in Lustre

to (resp. is output by) the component. We do not consider individual events, but instead consider
the number of events occurrences during a clock tick.

The node in Figure 2 can be seen as the Lustre model of a component with an infinite processing
capacity: it receives events and immediately process them.

We consider the case where event count are integers: this model is usually called the discrete
event model, as opposed to the fluid event model where the amount of data to process and resource
can be continuous. Extension to the fluid model would be straightforward by replacing int Lustre
flows with real.

A Common RTC Component in Lustre to illustrate and validate the approach, we first model
well-known RTC components in Lustre. A typical example of RTC component is the so-called
Greedy Processing Component (GPC). It models a process that enqueues the incoming events in
a buffer and treats the events in a greedy fashion while being restricted by the available resource.
It can be modeled in Lustre by the program in Figure 3, while in_res represents the maximum
number of events that can be processed at this instant, and out_res the unused resource during
this clock tick.

Other examples of Lustre components, that RTC cannot model because of states, will be given
in Section 4.

3 Interfacing Lustre and RTC

In this section, we explain how to interface a Lustre component C with RTC arrival curves. This
means that we have to transform the constraints of the input arrival curve αin into explicit Lustre
flows that complies with those constraints; those flows will then be input into C. On the other
side, we have to express a set of explicit flows coming out of C into constraints for the output
arrival curve αout.

In fact, for the output part, we do not directly infer αout from the outputs of the component.
We build a candidate arrival curve and then check with a verification tool if it conforms to the
output streams. The building for the candidate curve is done with a binary search procedure. This
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method allows to apply the same technique at the input and at the output; this choice is mainly
due to the proof engines we use which are able to verify properties. A valuable extension to our
work would be to try a tool such as aspic [13] which is able to infer numerical invariants on the
program, from which we could deduce αout.

The technique we use is to characterize an arrival curve with an observer encoded by a Lustre
node. Observers do not compute a curve, but they give a yes/no answer to the question “is the
event stream compliant with the curve?”.

The models of observers we propose are restricted to either finite specification of an arrival
curve, namely a finite number of points specifies the curve (individual values αu(1), αu(2), . . . and
αl(1), αl(2), . . .), a piecewise-affine function, which should be convex for lower-curve and concave
for upper-curve (i.e. αu(δ) = min{au1δ+ bu1 , a

u
2δ+ bu2 , ...} and αl(δ) = max{al1δ− bl1, al2δ− bl2, ...}),

or a combination of both. We call the individual αu(i) and αl(i) values points, and the linear
portions of curves αu(δ) = aui δ + bui α

l(δ) = aliδ + bli segments. Figure 4 shows an example with 3
points, two segments for the upper part, 3 points, one segment for the lower part.

10

9

8

segment: (δ + 12)/2

segment: δ + 3 segment: (δ − 2)/2

αl(δ)

αu(δ)

109876543210

7
6
5
4
3
2
1
0

#events

δ

Fig. 4. An example arrival curve

In the rest of the section, we first give a generic modeling of an arrival curve that is available for
input and output adapter, called deterministic observers. Afterwards, we show how to use them
to actually search for the best valid curve and describe the ac2lus tool which performs the overall
computation. We finish with some variants for the node describing either the input adapter or the
output adapter.

3.1 Adapters using Deterministic Observers

In the family of synchronous languages, where the communication between parallel components
is the synchronous broadcast, observers [12] are a powerful and well-understood mechanism: an
observer is a node that observes the inputs and the outputs of another node and computes some
safety property. Here, we model the set of event streams that satisfy an arrival curve with a
deterministic observer (see Figure 5 for the node). The observer inputs a stream of events called
sequence and checks whether it satisfies or not the constraints of a given arrival curve (it outputs
the Boolean stream ok). It exactly characterizes the arrival curve, by the property: an input stream
sequence satisfies the curve iff ok remains true forever. The property to be expressed (and the
code of the node) is divided into subproperties, one for checking compliance with the points of
the curve and one per segment to be satisfied. The last line of the node ensures the property of
permanent failure: as soon as the arrival curve is falsified, ok remains false forever.

Deterministic Observer for Points the part of the arrival curve specified by the points (let us say
N points) expresses N constraints, one per time interval from size 1 to size N . The idea of the
deterministic observer is to use one counter ci per size i of interval and to check its constraint. ci
represents the amount of events that occurred during the i previous instants. At each new instant,
it is updated by the previous value of c(i− 1) (the number of events in the former window of size
(i− 1)) plus the amount of events that occurred at the instant (current value of sequence). The
constraint to be verified is: for each i, ci is between αl(i) and αu(i).
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node curve_det_obs ( sequence : int )
returns (ok: bool)

l e t
ok = ok_points ( sequence ) and

ok_segment_0 ( sequence ) and
ok_segment_1 ( sequence ) and ... and
(true -> pre(ok ));

te l

Fig. 5. Deterministic Observer

The node shown in Figure 6 is the deterministic observer for the points of the example curve of
Figure 4. The additional variables interi are used at the beginning of the execution: for example,
during the first two instants, the constraint on c3 has no sense since it should hold on interval
of size 3. interi expresses the fact that less than i instants elapsed since the beginning of the
execution. It can be computed with bounded integers or Boolean encoding (as shown in the code),
leading to different analysis performances.

node ok_points ( sequence : int )
returns (ok: bool)

var
c1 , c2 , c3: int ;
inter1 , inter2 : bool;

l e t
c1 = sequence ;
c2 = sequence -> pre(c1) + sequence ;
c3 = sequence -> pre(c2) + sequence ;
inter1 = true ->false;
inter2 = true ->pre( inter1 );
ok = (0 <= c1 and c1 <= 2)

and ( inter1 or (0 <= c2 and c2 <= 3))
and ( inter2 or (1 <= c3 and c3 <= 5));

te l

Fig. 6. Deterministic Observer for Points

Deterministic Observer for Segments the parts of the curves expressed by αu(δ) = min{au1δ +
bu1 , a

u
2δ + bu2 , ...} and αl(δ) = max{al1δ − bl1, a

l
2δ − bl2, ...} can be expressed as a conjunction of

observers for affine functions aiδ + bi, where ai and bi are constant. We call each observer a
segment observer. The codes for lower and upper segments are a bit different but both use the
common principle of the leaky bucket. We explain it for the upper segment first.

The constraints from the arrival curve expresses the fact that the cumulated amount of events
must stay below the segment. We model it as a bucket, whose content correspond to the number
of events that can be emitted in burst at the current instant. It initially contains bi events. At each
clock tick, the bucket is refilled by ai events, and the amount of events that occurred is poured off.
After this computation, the bucket’s content must still be within [0, bi]: if the new value is above
bi, the extra events are lost, and if it gets below 0, it means the arrival curve is violated.

Figure 7 shows the generic code for the upper segment. The scale factor is a constant input
which is used to keep the variables integer, while allowing ai to be rational.

The lower segment observer segment_observer_l is slightly different: the bucket is initially
empty, and whenever the bucket’s content crosses bi, the property is violated. The lower segment
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node segment_observer_u
( sequence : int ; init_val : int ;

refill_speed : int ; scale_factor : int )
returns (ok: bool)
var bucket , new_bucket : int ;
l e t

new_bucket = ( init_val -> pre( bucket ))
- ( sequence * scale_factor )
+ refill_speed ;

bucket = min(init_val , new_bucket );
ok = new_bucket >= 0;

te l

Fig. 7. Deterministic Observer for an Upper Segment

does not give upper bound on the number of events, hence, emitting more events than the bucket’s
capacity is allowed, and results in an empty bucket.

In practice, the code is made simpler by considering the value “bucket-content-bi”, which lives
in the interval [−bi, 0]. If this value gets above 0, the property is violated.

In the code, the min operator becomes a max and >=0 becomes <=0, as shown in Figure 8.

node segment_observer_l ( in_seq : int ;
initial_value : int ;
refill_speed : int ;
scale_factor : int )

returns (in_ok: bool)
var

bucket : int ;
new_bucket : int ;

l e t
new_bucket = ( initial_value -> pre( bucket ))

- ( in_seq * scale_factor )
+ refill_speed ;

bucket = max( initial_value , new_bucket );
in_ok = new_bucket <= 0 and

(true -> pre(in_ok ));
te l

Fig. 8. Observer for lower-curve segments

The observer for the first upper segment of the curve in Figure 4 simply instanciates the generic
observer: ok = segment_observer_u(seq, 3, 1, 1);

The leaky bucket idea comes from the ancestor of RTC, namely Network Calculus [14], and was
already applied to the connection of RTC to computational models in [2], which directly inspired
this part. The synchronous hypothesis greatly simplifies the implementation, which becomes just
3 simple Lustre equations including the property itself. Furthermore, the use of synchronous ob-
servers here makes the combination of segments easy: to describe a curve made of multiple segments
(up and/or low), one can simply use an arbitrary Boolean combination of observers. Unlike [2],
we do not have to introduce an additional scheduler automaton which does the combination by
scheduling the “must emit” and “can emit” signals emitted by different automata.
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3.2 The analysis procedure

This paragraph explains the procedure to compute one output arrival curve αout, given an input
arrival curve αin and a Lustre component C. Although, the framework can handle multiple input
and output arrival curves, we explain first the procedure for one input and one output, in this
paragraph, and then extend it to multiple inputs and outputs in the next paragraph 3.3.

We first express the property that the triple (αin, C, αout) is conformant. The building of a
candidate for αout is done using a binary-search procedure.

Checking input and output arrival curves (together) the goal here is to validate that given an input
arrival curve αin, a Lustre component C and an output arrival curve αout, this triple is conformant,
namely: every streams that may be output from C, when it executes with input streams that
satisfies αin, should satisfy αout. For both αin and αout, we instantiate deterministic observer
nodes which respectively output the Boolean streams ok_in and ok_out and we combine them to
obtain a global observer. This observer expresses the simple property: ok = ok_in => ok_out.

Proving that the property is invariant shows that the triple is conformant, if αin has a good
shape. Indeed, Lustre observers in general models safety properties and the above observer ex-
presses that at each instant t, ok_in(t) => ok_out(t). But, the observer for αin (resp. αout) char-
acterizes the constraints expressed by the arrival curve with: ∀t, ok_in(t) (resp. ∀t, ok_out(t)).
We thus need to express: (∀t, ok_in(t) => ( ∀t, ok_out(t)) which is not equivalent to the for-
mer formula in general. However, the two formulations become equivalent if the following three
conditions are verified [12]:

Permanent failure: if the precondition becomes false, it has to remain false forever. This is en-
sured by the last line of the observer node curve_det_obs in Figure 5.

Determinism: the precondition should be deterministic. It comes from the fact that inputs in
the precondition are quantified existentially (since they are on the left part of the implication)
while observers use universally quantified inputs.

Causality: the precondition is causal, that is, for any finite sequence s for which the precondition
is true, there exists an infinite extension of s such that the precondition remains always true.

This last condition is not true in general since it depends on the shape of αin (see [15] for
a characterization of the property on arrival curves and an algorithm to make curves causal). If
αin is causal, the global observer exactly characterizes the fact that (αin, C, αout) is conformant;
otherwise, the analysis is still conservative (the observer may answer false while the property is
true).

Building the output arrival curve the tools we are using for verification of the global model was
designed to prove properties, not to discover invariants, so a little additional work has to be
performed to compute the output analytic description based on the input ones. This step is based
on a binary search, with an algorithm which tries different values until it finds the best ones which
are provably correct.

Let us explain the procedure for building the points of the curve on an example. To compute
αu(4), we start with the hypothesis αu(4) = 0, generate the observer for this particular curve
(assuming αl = 0 and αu(t) = +∞ for t 6= 4). If the curve is incorrect, we try with αu(4) = 1,
and then 3, 7, (after trying value n, we try 2n+ 1) ... until we find one acceptable value. At that
point, we have one provably correct value, and the previously tried one (or just 0) which is not,
and we can proceed with a binary search between these two values. This implies launching the
proof engine log(n) times for each point (where n is the value to be computed), but this has not
been a problem in practice.

The procedure is quite the same for building the segments of the curve. For each segment
aix + bi, the two values ai and bi has to be evaluated. We first fix bi to an arbitrarily big value,
and perform a binary search on ai, and then fix ai to the value just computed to find bi.
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Strictly speaking, ai could be a rational number, and the binary search should not terminate.
Indeed, our implementation uses an equation of the form (aix + bi)/si, with ai, bi, and si being
integers. We fix si to the same value as the input curve (or optionally some other user-supplied
value), and do an integer binary search on ai.

3.3 The ac2lus Tool

The approach is implemented in the toolbox ac2lus. From the user point of view, one provides
a component C to analyze as a Lustre node, having any number of inputs Ii and output Oj . For
each input, one must provide an arrival curve αi. The tool computes the curves (αout)j for each
output. Technically, the user provides a system.sys file to describe the inputs/outputs and to
give the name of the Lustre node to analyze, a file.ac file for each input, and a Lustre file.

The system.sys file allows one to specify the method to use for generating the adapter of each
input/output. It can look like:

input: in_seq;
ac_file: power-aware-in.ac;

output: out_seq;
method: nondet_observer;

main_node: power_aware_1;
lustre_file: power_aware.lus;

The file.ac files specify points and segments of arrival curves, and are of the form:

points_up: 0, 10, 12;
segment_up: (5x + 2)/1;
points_low: 0, 0, 1;
segment_low: (3x - 9)/1;

Internally, the execution is done as follows.
For each Ii, the tool generates the Lustre code for the adapters (as described in section 3.1,

or using one of the variants below)1. Then, it generates the main Lustre node, which instantiates
the input adapters, the component C, and the output adapters. This nodes defines the property
to verify, which is of the form ok = (

∧
i ok_ini) => (

∧
j ok_outj).

An example of generated main program is given in Figure 9.
We then start the binary search. We compute each output independently. To compute the curve

for Oj , we first generate stubs for each Ok, k 6= j for which ok_outj= true, and apply the binary
search algorithm of section 3.2 for Oj to compute each of its points, and optionally a segment to
describe the long-term rate. The search consists in trying values, and asking proof engines whether
the value is a correct bound or not.

We delegate the verification of the model to different tools. The ability to deal with numerical
variables is a must-have, hence plain model-checking (enumerative or symbolic with BDDs) is not
an option. ac2lus can currently use the abstract interpretation tool nbac [8], and the kind [9]
verifier which is based on k-induction and uses SMT-solving. From the user point of view, both
accept Lustre programs as input, and can prove properties of the form “OK is always true”. nbac
works on an abstract domain, and cannot find counter examples, hence its output is either “true”
or “don’t know”. The SMT solver used internally by kind actually provides a set of values when
given a satisfiable problem, hence kind’s output is either “true” or “false with counter example”,
or can sometimes reach a timeout.
1 Historically, this part was the first to be implemented, and was translating an arrival curve to a Lustre
program, hence the name ac2lus for “Arrival Curves to Lustre”
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include "utils.lus"
include " power_aware .lus"
include "generated - in_seq .lus"
include "generated - out_seq .lus"

node binary_search ( in_seq_in_seq : int )
returns ( OK_for_nbac , OK: bool)
var

obs_ok_in_seq : bool;
out_seq_out_seq : int ;
obs_ok_out_seq : bool;

l e t
−− e q u a t i o n s f o r i n p u t s
obs_ok_in_seq = in_seq_det_observer ( in_seq_in_seq );

−− eq ua t i o n f o r system
out_seq_out_seq = power_aware_1 ( in_seq_in_seq );

−− e q u a t i o n s f o r o u t p u t s
obs_ok_out_seq = out_seq_det_observer ( out_seq_out_seq );

−− e q u a t i o n s f o r g l o b a l OK
OK = not ( obs_ok_in_seq ) or ( obs_ok_out_seq );
−− nbac compla ins wi th Fa ta l e r r o r : e x c e p t i o n
−− F a i l u r e ( " Syntax2semant ic . check : f i n a l formula c o n t a i n s c o n d i t i o n s
−− on inpu t v a r i a b l e s i n s t e a d o f s t a t e v a r i a b l e s on ly " )
−− bu t works i f we add a " pre " .
OK_for_nbac = true -> pre(OK);

te l

Fig. 9. Generated Lustre Main Node
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By default, ac2lus launches kind on the generated code. If kind proves the property or finds
a counter-example, we move on to the next value to try. If kind reaches a timeout then nbac is
tried. Optionally, on failure of nbac, we try kind -loop which sometimes give better results.

Internally, ac2lus defines a base class lustre_proof_runner, and classes to handle different
tools inherit from it (doing the job of launching the tool and parsing its output to tell whether
the result is “yes”, “no”, or “don’t know”). We build a list of such objects, and go through the
list, stopping after the first tool concludes. This allows trying multiple tools with various options
on the same program in a flexible and yet automated way.

The binary search algorithm described above is also improved by an optimization. When com-
puting αu(δ+1), we already know the previous values of αu and αl and can use them to bootstrap
the search: simple RTC theorems show that αu(δ + 1) ∈ [αu(δ) + αu(1), αu(δ) + αl(1)], hence, we
can start the binary search from this interval.

For robustness, we actually start from such interval, but do not trust it: we check whether the
upper bound is correct, and if not, increase it (applying n = 2*n + 1;) until we find a provable
value. Likewise, we try decreasing the lower bound until we find a value for which the proof actually
fails. This way, an incorrect heuristic can only impact the performance of the tool, but not its
result.

3.4 Variants for Adapters

The adapter presented above has the advantage of being applicable both for inputs and outputs.
However, this is not the only option. Some variants produce Lustre programs with different number
of variables, some non-determinism, and yield different results in the proofs.

Generator one commonly used approach to implement an adapter for the input of a component
is to write a generator (as done in [2,4,7]), which instead of telling whether an arbitrary event
stream is correct, generates a stream which is correct by construction (using non-determinism to
be able to generate all possible streams). When using a generator (if one input and one output),
the global property to prove is no longer "ok = ok_in => ok_out", but simply "ok = ok_out".

The generator is implemented only for curves without segments (i.e. specified only by a finite
set of points). It reuses the idea of the deterministic observer to compute, at each clock tick, the
interval [a, b] of admissible values for the flow. It then uses an integer oracle O. If O ∈ [a, b], then
the generator emits O, otherwise, it emits b. This way, we cover all the possible values, and never
emit any incorrect one. We perform a causality closure [15] on the curves to ensure that a ≤ b.

The extension of this generator to curves with segments would be straightforward (but is not
implemented): the leaky bucket principle allows saying, for which segment, how many events can
be emitted, which give an upper bound, and how many must be emitted, which give a lower bound.
We would then consider the min of all upper bounds and the max of all lower bounds to get the
interval [a, b].

Non-Deterministic Observer while using observers, another variant is to allow non-determinism
in the observer. In Lustre, non-determinism will be modeled with additional inputs called oracles.
With deterministic observer, the property is false iff the observer outputs “OK = false” at some
point in time. With a non-deterministic observer, the property is false iff there exist an oracle
for which the observer outputs “OK = false” at some point in time. Such observer are obviously
not convenient for testing, since showing a trace incorrect requires choosing an oracle, but are
equivalent to deterministic observers for formal verification when computing the output curve
(but as said above, they cannot be applied to the input).

At time t, the deterministic observer checks the number of events for all windows [t − δ, t].
Instead, the non-deterministic observer can chose non-deterministically a time t0 where it starts
checking, and then at time t > t0, checks only the window of time [t0, t]. For any incorrect stream,
there exists an oracle t0 for which the observer emits “OK = false”. The advantage of this method
is that it requires only one numerical variable to count the number of variables in the interval
[t0, t].
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node ( oracle : int )
returns ( input_stream : int );
var

lower_bound , upper_bound , count0 , count1 : int ;
inter0 , inter1 , inter2 : bool;

l e t
−− s p e c i a l−case the f i r s t i n s t a n t
inter0 = true -> false;
inter1 = false -> pre( inter0 );
count0 = i f inter0 then 0 else pre ( input_stream );
count1 = i f inter0 or inter1 then 0 else pre ( count0 );

−− compute the i n t e r v a l o f p o s s i b i l i t i e s
lower_bound = i f inter0 then 4

else i f inter1 then max (4, 8 - count0 )
else max(max (4, 8 - count0 ), 13 - count1 );

upper_bound = i f inter0 then 10
else i f inter1 then min (10, 15 - count0 )
else min(min (10, 15 - count0 ), 19 - count1 );

−− p i c k a v a l u e between lower_bound and upper_bound .
input_stream = i f ( lower_bound <= oracle ) and ( oracle <= upper_bound )

then oracle else upper_bound ;
te l

Fig. 10. Example of a Generator in Lustre

Since this is the only useful use-case, we implemented this observer only for single-points curves
(i.e. αl(δ) or αu(δ) is specified only for one value of δ). The observer for αu(3) = 19 is given in
Figure 11. In the implementation, the oracle is a Boolean variable, and the observer starts counting
at the first instant when this variable is true. The variables interi are a Boolean encoding of a
bounded integer to count the time.

Introducing non-determinism in the segment observers would not be interesting: segment ob-
servers already use a small, constant number of numerical variables, which we could not reduce.

Other Variants in some cases, the Lustre code generated from arrival curves can be written
differently to get better results in the proof engine. The variants we implemented are based on a
trade-off between numerical and Boolean variables. The details are given below.

The two variants implemented are a periodic event generator (usingN Boolean variables and no
integer to generate events with period N), and a version of the segment observer with leaky bucket
where the bucket refill is modeled with this periodic event generator. When the time granularity
is fine, and the number of events processed per time unit smaller than 1, this gives a considerable
improvement.

Periodic event generator When the arrival curve for an event stream describe a periodic stream,
we can actually get rid of the numerical variables, and encode a cyclic automata with Boolean
variables. Our encoding uses a one-hot encoding, hence N Boolean variables (but a very simple
transition function). An example of generated code is given in Figure 12 for N = 3.

Boolean encoding for segment observers Once we have an optimized encoding for a periodic event
generator, we can use it to optimize the observer for segments, in the case when the curve segment
is of the form (aix + bi)/si, with the scale factor si being a multiple of slope ai. Instead of
considering a leaky bucket refilling at a rate given by an integer variable, we can consider a leaky
bucket refilled by 1 every si/ai units of time. Hence, the refill of the bucket is periodic, and can
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node ( sequence : int ; oracle : bool)
returns ( ok_points : bool)
var

count : int ;
inter0 : bool;
inter1 : bool;
inter2 : bool;
inter3 : bool;

l e t
inter0 = oracle -> oracle or pre ( inter0 );
−− count 3 t ime u n i t s .
inter1 = false -> pre( inter0 );
inter2 = false -> pre( inter1 );
inter3 = false -> pre( inter2 );
−− count t he e v e n t s
count = 0 -> i f inter0 and not inter3

then (pre count) + sequence
else pre(count );

−− t h e p r o p e r t y : 3 t ime u n i t s a f t e r t he o r a c l e
−− became true , count must be <= 19.
ok_points = not inter3 or count <= 19

and (true -> pre( ok_points ));
te l

Fig. 11. Example of a Non-deterministic Observer in Lustre

node period_3 (dummy: bool)
−− dummy j u s t works around a s y n t a c t i c a l l i m i t a t i o n
−− o f Lustre , which r e q u i r e s a t l e a s t one inpu t .
returns (clk: bool)
var

st1: bool;
st2: bool;
st3: bool;

l e t
st1 = not(st2 or st3 );
st2 = false -> pre(st1 );
st3 = false -> pre(st2 );
clk = st3;

te l

Fig. 12. Boolean encoding for a Periodic Event Generator
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be encoded as above (in this case, it is a periodic resource generator). An example of generated
code is given in Figure 13.

The variable reset_resource is used to restart the periodic resource generator, to make sure
that one doesn’t get a resource unit too early after emitting an event. Indeed, the reason are the
same as the clock reset of the UTAs in [2].

node segment_observer_bool_u_1 ( in_seq : int ;
initial_value : int )

returns (in_ok: bool)
var

bucket : int ;
new_bucket : int ;
refill : int ;
reset_resource : bool;

l e t
reset_resource = ( in_seq <> 0) and (pre( bucket ) >= initial_value );
refill = i f period_1 ( reset_resource ) then 1 else 0;
new_bucket = ( initial_value -> pre( bucket )) - in_seq + refill ;
bucket = min( initial_value , new_bucket );
in_ok = new_bucket >= 0 and

(true -> pre(in_ok ));
te l

Fig. 13. Boolean-optimized encoding for segment observers

Our experiments showed that this optimization is efficient in practice, and we decided to
activate it by default in the cases where it is applicable.

4 Applications of the Framework

This section shows applications of the framework and illustrates them on a concrete example. These
applications are: Modular analysis analyzes the components of a complex system one by one,
by using the computed output of the first component as the input for the analysis of the next one;

Global analysis analyzes several components together to get better precision, but sacrificing
performance; Invariant discovery by proving a property: in addition to computing arrival
curves for the output of a system, one can directly prove properties on a component. With a simple
binary search algorithm, one can find the best provable bounds for any variable of the Lustre
program (for example, the buffer fill-level).

We show that ac2lus is able to give results for these 3 applications, in cases where RTC would
not be applicable, or too approximate. When the proof engine is able to conclude, the results
provided by ac2lus are optimal.

The experiments were made on a dual-core, Pentium D CPU running at 3.40GHz, with 2GB
of RAM.

4.1 A Simple power-aware component

Our original motivation for this work was to be able to model power-managed components, which
cannot be modeled and analyzed precisely in pure RTC, because their behavior is state-based.

Figure 14 gives an example of a simple power-managed component. It is not meant to be
realistic, but illustrate a state-based behavior: the component starts in sleep mode, and wakes up
only when its input buffer fill-level (backlog) reaches a certain threshold. When it starts processing,
it does so according to its input resource until the buffer is emptied.
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−− Parametr ized component
node power_aware

(in_seq , resource , threshold : int )
returns ( out_seq : int )
var backlog , work: int ;

serving , empty_queue : bool;
l e t
−− t h i n g s to do a t t he c u r r e n t i n s t a n t
−− ( accumulated work + new work )
work = in_seq -> ( in_seq + pre( backlog ));
−− whether we ’ l l wake up
serving = false -> i f (pre serving )

then (pre( backlog ) > 0)
else (work >= threshold );

−− whether we ’ l l empty the queue a t t he
−− c u r r e n t i n s t a n t .
empty_queue = serving

and (work <= resource );
out_seq = i f serving then

i f ( empty_queue ) then work
else resource

else 0;
backlog = i f serving then

i f ( empty_queue ) then 0
else work - out_seq

else work;
te l
−− I n s t a n t i a t i o n wi th parameters (4 , 5)
node power_aware_1 ( in_seq : int )
returns ( out_seq : int ) l e t

out_seq = power_aware (in_seq , 4, 5);
te l

Fig. 14. Lustre model for a simple power-aware component
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The state of the system is modeled in the equation for serving, which means: initially, the
component is asleep, then, if it used to be serving, it remains so until the backlog is 0, and
otherwise, it goes in service state when the amount of work to do is greater than threshold. The
other equations are a straightforward adaptation of the GPC component presented in Figure 3.
The node power_aware_1 is basically an instantiation of the previous node, setting the threshold
and resource to constant values.

Computing an Output Arrival Curve we perform the analysis on the input curve: αu(δ) =
min{9δ, δ + 15} and αl(δ) = δ. The analysis lasts 46 seconds, and launches kind 76 times. It
gives the following result:

αuout = 0, 4, 8, 12, 16, 20, 24, 26, 27, 28, 29
αlout = 0, 0, 0, 0, 0, 2, 6, 6, 6, 6, 6

Here comes an explanation of the result on αuout: we can see a first linear fragment up to αuout(6) =
24, which corresponds to case where the component empties its buffer, at the speed of 4 events
per time-unit. Starting from αuout(7), the rate decreases because the speed of the component is
greater than the rate of arrival. Hence, the backlog is bounded, and the worst-case corresponds to
the bursts of the input at the instant when the buffer crosses the threshold.

The result computed by the tool is optimal when kind answers (i.e. no time-out), namely,
the obtained value is the tighter one. To explain this, let us consider a precise example: when
trying to prove αuout(10) ?= 23, kind concluded with a counter-example, which exhibits strictly
more than 23 events in 10 time units. This counter-example corresponds to the input sequence
1, 1, 1, 1, 2, 1, 1, 5, 1, 5, 1, 7, 1, 1. Hence, 23 is provably not a valid bound, while αuout(10) = 24 is
valid and thus the optimal value. In the complete example, kind concluded (with either true or
false property) each time it was called, so this optimality result applies to each point of αuout and
αlout, which are therefore optimal.

Notice that examining the counter-examples produced by kind is of great help! It allows the
user to better understand the results and to find non trivial corner-cases leading e.g. to bursts or
low number of emitted events. For example, on αlout, the tool shows that it’s not possible to remain
in sleeping mode for more than 4 time units. The point αlout(5) = 2 corresponds to an execution
where the component emits 2 events to finish emptying its buffer, and then emits nothing for some
4 time units. kind’s counter-example for αlout(5) 6= 3 shows that this lower bound is obtained for
in_seq = 2, 3, 1, 1, 1, 1, 1, which leads to out_seq = 0, 4, 2, 0, 0, 0, 0. Even on a simple system like
this example, the above counter-example and the proof that αlout(5) = 2 could hardly be found
manually.

Comparing with RTC, it would produce very coarse results on the same example. Indeed, it
would not be able to handle the two modes of operation and thus could only consider the best-case
and worst-case for the availability of resources: the worst-case is the sleeping mode, which does
not compute at all, so we would get αlout(δ) = 0,∀δ; in the other side, RTC service curves would
not forbid the scenario where the component remains in sleeping mode, accumulating events in
its buffer, for an arbitrarily long time, and therefore emit 4 events per seconds for an arbitrarily
long time afterwards. Hence,the best we could get is αuout(δ) = 4δ.

Quantitative properties to compute bounds on variables of the system in addition to being able
to compute output arrival curves, we can also prove properties on the component itself, and find
bounds on any of the variable of the system. For example, to compute a bound on the buffer,
we add backlog as an output of the module, and replace the output observer in the main node
with the equation obs_ok_out_seq = backlog <= N; By trying different values of N, we can
find which is the best bound for backlog. On this example, a quick binary search yields N = 13
for which the property is proved, and N = 12 gives the counter example in_seq = 8, 9. Hence, 13
is the best possible bound on the backlog.

The proof do not need to previously compute the output arrival curve and is very quik since
it took 0,4 seconds. Notice also that RTC would not be able to get any bound on the backlog of
this system.
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To sum up on the example, we got the optimal values for αuout(δ) and αlout(δ) up to δ = 10, a
bound for the size of the buffer, and counter-examples showing that any value more precise than
the ones we computed would be incorrect, in less than a minute, in a case where RTC does not
apply.

4.2 Discussion on performance

Non-deterministic Observer for Output The non-deterministic observer can be used as a
replacement for the output observer (but it cannot apply to the input, as explained earlier). Doing
so reduces the number of numerical variables, which can speed up the analysis, but increases the
non-determinism of the model, which can have the opposite effect. In our example, the computation
is considerably slower than the deterministic observer: it takes 8min5” (compared to 50” for the
deterministic version). Also, the proof engine often reaches the timeout, and therefore fails to
prove true properties, resulting in a less precise result:
αuout = 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40
αlout = 0, 0, 0, 0, 0, 2, 6, 6, 6, 6, 6.

When kind reaches the timeout, we fall back to nbac. In this example, it happened 37 times,
out of which nbac was able to conclude 26 times. Indeed, running ac2lus using only nbac as a
back-end gives exactly the same output curves, in only 3min, and inversely, kind alone is not able
to compute any point.

Generator for Input A generator can be used to specify the input. Since the generator for
segment is not implemented, we have to ignore the segment in the input curve, which makes
the output approximate regardless of the algorithm. In our case, it is once again slower than
the deterministic observer (1min26”), and we also get the same (imprecise) results as with the
non-deterministic observer.

Generator for Input, and Non-Deterministic Observer for Output On the other hand,
using a generator to specify the input speeds up the analysis if the output is analyzed with a
non-deterministic observer: it takes 6min11” (instead of 8min5”), but the computed curves are
still suboptimal. But the best configuration is still to use deterministic observers everywhere for
this example.

Boolean Encoding Vs Integer Encoding for Segments On the experiments above, the
optimization of the segment observer with a Boolean encoding (see section 3.4) were enabled. If
we disable them, we get the same output, but it takes 2min18” instead of 46”.

4.3 Composing power-aware components

Approach for Analyzing Complex Systems the way to tackle complexity in RTC is to split a system
into multiple small components, and reduce the analysis of the system to a set of local, simple
analysis. ac2lus inherits from this possibility: a component is modeled with a Lustre node, having
inputs and outputs, and the components can easily be plugged together.

This can obviously be used to model a system with several physical components, and applies
particularly well when the architecture is well pipelined. Actually, this can also be used to model
simple scheduling strategies: the Lustre flows can model event streams, but also resource units
streams (denoted by β). Input flows represent the amount of resource available during a clock
tick (β), and the output flows give the amount of resource remaining after the modeled task has
ran (βout). A fixed-priority scheduling between N tasks can therefore easily be represented by
connecting the output βnout to the input βn+1 of the next one (component n having more priority
than component n + 1). An example of a fixed-priority scheduler, re-using the GPC component
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defined in Figure 3 page 4, with two tasks is written as:
node fp_scheduler ( in_res : int ;

in1 , in2: int )
returns (out1 , out2: int ;

out_res : int )
var remaining : int ;
l e t

out1 , remaining = gpc(in1 , in_res );
out2 , out_res = gpc(in2 , remaining );

te l

The connection from a component to another can be done in two ways. Either we compute
the arrival curves for the output of the first component, and we apply the usual modular analysis
for RTC (using a fix-point computation for circular dependencies [16]), or we actually connect the
Lustre nodes to do a global computation.

An Example of Two-Components System we continue the experiment with a second load-dependent
component: if its backlog is greater than 4, the component computes at the rate of 10 events per
time unit. Otherwise, it computes only 1 event per time unit. The source code for this module is
given in Figure 15 .

node load_depend_gpc
(in_seq , threshold : int ;

res_fast , res_slow : int )
returns ( out_seq : int )
var

backlog : int ;
work: int ;
empty_queue : bool;
run_fast : bool;
amount_computed : int ;

l e t
−− t h i n g s to do a t t he c u r r e n t i n s t a n t
work = in_seq -> ( in_seq + pre( backlog ));

−− load−dependent speed
run_fast = (work >= threshold );
amount_computed =

i f run_fast then res_fast
else res_slow ;

−− whether we ’ l l empty the queue
empty_queue = (work <= amount_computed );

out_seq = i f ( empty_queue ) then work
else amount_computed ;

backlog = i f ( empty_queue ) then 0
else work - out_seq ;

te l

Fig. 15. Load-dependent behavior
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We now consider a system composed of the two components. Assembling the components is
done in a few lines of Lustre code:
node system ( in_seq : int )
returns ( out_seq : int )
var i: int ;
l e t

i = power_aware_1 ( in_seq );
out_seq = load_depend_gpc (i, 4, 10, 1);

te l

Running ac2lus on this system, with the same arrival curve as in the previous section for the
input, we get the output (in 10min44”):

αuout = 0, 5, 9, 13, 17, 21, 24, 25, 27, 28, 30
αlout = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

In this case, the curves are approximate: we run the proof engine with a timeout of 10 seconds, and
the results show only the provable points of the curves, within this timeout. In this experiment,
the timeout has been reached when trying to prove the point αuout(9) ?= 27, hence we know that
αuout(9) = 28 is an upper-bound, but the tool did not prove that αuout(9) = 27 was not (in this
case, 28 is actually the best bound, and kind proves it if we increase the timeout to 20). The
points αlout(δ) = 0 are provably the best points for δ ≤ 4, but the next points are approximate
(and indeed, disappointing since the tool could not prove anything here).

Another option is to run the analysis in a modular way: first, analyze power_aware_1, get the
output arrival curve, and use this arrival curve as input for the local analysis of load_depend_gpc.
This approach gives different results:

αuout = 0, 6, 10, 14, 18, 22, 26, 28, 80
αlout = 0, 0, 0, 0, 0, 1, 4, 5, 0

The results are exact bounds given the input arrival curve up to δ = 7, but the arrival curve
is indeed an abstraction of the real possible behaviors possible as the input of the second module,
which explains the less precise results on αuout. Starting from δ = 8, the models given to the prover
are too big and most of the proofs fail, hence the grossly approximated results αuout(8) = 80 and
αlout(8) = 0.

Performance-wise, the first points of the curves are computed much faster when using the
modular method: computing the first 5 points takes 8 seconds modularly, and 34 seconds when
done with the global approach. The complexity grows linearly with the number of components of
the system. Regarding points of the curves corresponding to a bigger δ, the situation is different:
the complexity of the Lustre program to prove is dominated by the complexity of the observers.

The approach is flexible and allows multiple ways to analyze the same system. Obviously,
since each analysis give a valid bound, the min/max of all analysis is also valid and may give
better bounds. For the example, combining both results, and applying subadditive closure, we get:
αuout= 0, 5, 9, 13, 17, 21, 24, 25, 27, 28, 30

αlout= 0, 0, 0, 0, 0, 1, 4, 5, 5, 5, 5

4.4 Evaluation and Comparison
Apart from obtaining output arrival curves, the above experiments show that: the tool provides
counter-examples which enable subtle understanding of the system; quantitative or logical prop-
erties can easily be expressed and directly analyzed with the tool; many strategies of the tool can
be tried to obtain the tightest results.

Compared to [2], the closest approach to our work, component can be easily written and
extended. For example, the fixed-priority scheduler is just 2 lines of Lustre, while the model
with Timed Automata is far less trivial. Both tools use exact model-checking (we use abstract
interpretation through nbac as a fall-back when kind fails). When the analysis succeeds, they
both give the same result. But on both sides, the proof may be too long, and may have to be
stopped with a timeout, leading to imprecision. The bottleneck is therefore the performance.
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To the best of our knowledge, there exist no comprehensive benchmark for the problem we are
solving, hence, we can compare only with a few examples, usually chosen to perform well with the
tool they benchmark.

We tried the case study of [2] on ac2lus, but it showed bad results: we are able to compute
a few points of the curves, but not enough to get relevant results, and the long-term rate ac2lus
computes is over-approximated by a factor 2. Our interpretation of these bad results is that our
model uses large timing constants (we wrote the model with a timing granularity of 1ms), and
the number of variables we use is proportional to the order of magnitude of numerical constants.
Uppaal, used by [2], uses an efficient symbolic encoding of time (based on zones), and doesn’t
suffer from this.

On the other hand, our experiments with timed automata and RTC [4] showed that the perfor-
mance of the analysis was proportional to the order of magnitude of counters (our understanding is
that counters are managed enumeratively by Uppaal). ac2lus and the underlying model-checkers
are far less sensitive to this. For example, we tried multiplying all the constants of the model (and
arrival curves) of the system of section 4.3 by 20 and re-run the analysis, which took 44min instead
of 6min11 (dividing the result by 20 yields the same result as the initial one). The performance
degradation is here less than linear with respect to the size of counters (this is partly due to the
number of iterations of the binary search). With an enumerative algorithm, we would pay a factor
20 in four places: the generator, each of the two components, and the observer.

5 Conclusion

We presented ac2lus, a new combination of the RTC framework with the Lustre language. It
allows to model the system to be analyzed (or parts of it) as Lustre components with inputs
specified with arrival curves; the tool can compute output arrival curves using modular analysis
or global analysis and it can also evaluate some quantitative property on any variable of the
components. As other RTC interfacing techniques [2,7,3], this results in a considerable increase of
the expressiveness of the framework, essential to model power-managed components, while keeping
the modular aspect of RTC. Nevertheless, compared to them, ac2lus complements the state of
the art by allowing a wider variety of modern methods to be used, namely Abstract Interpretation
and SMT-solving. As a side effet, we believe that the use of a synchronous programming language
makes easy for the user to write models, and allows a lot of variants of the adapters to fine-tune
the performances.

In the future, we plan to try other verification tools as alternatives to kind and nbac. The
tool aspic [13] sounds promising. It adds acceleration techniques to abstract interpretation, which
should apply to the Lustre code we generate for adapters. Also, aspic does not only prove prop-
erties, but it is also able to discover invariants. This could allow us to get rid of the binary search
algorithm, and launch the tool only once to compute a value.

An interesting application of ac2lus would be to consider the counter-examples provided by the
proof engines for the last points which fails during the binary search. These counter-example exhibit
an execution for which the computed bounds (αu, αl) are actually reached. These executions can
be interesting for diagnosis, and could also be used to generate test-cases for the actual system,
since they exhibit corner-case behaviors, hardly reproducible randomly or manually.

Our long term goal is to be able to actually handle energy: handling state-based behavior in
RTC allows proving timing properties on energy-aware systems, but still gives no information on
energy consumption.

Finally, we are looking for alternatives to RTC’s arrival curves to model abstraction of event
streams. After introducing state-based behaviors in the components, we believe the next, logical
step is to introduce the same in the interfaces between components.
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