Unité Mixte de Recherche 5104 CNRS - INPG - UJF

Centre Equation

2, avenue de VIGNATE
F-38610 GIERES

tel : +33 456 52 03 40

Ll
EI‘ImaG fax : +33 456 52 03 50

http://www-verimag.imag.fr

Compositional Translation
of Simulink M odelsinto Synchronous
BIP

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius
Bozga and Joseph Sifakis

Verimag Research Report n° TR-2010-16

June 2010

Reports are downloadable at the following address
http://ww-verimg.img. fr

http://www-verimag.imag.fr

Compositional Translation
of Simulink Modelsinto Synchronous BIP

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Nlas Bozga and Joseph Sifakis

June 2010

Abstract

We present a method for the translation of a discrete-timgnfient of Simulink into the syn-
chronous subset of the BIP language. The translation ig &dimpositional, that is, it pre-
serves completely the original structure and reveals timénnail control coordination structure
needed to perform the correct computation within Simulinddels. Additionally, this trans-
lation can be seen as providing an alternative operati@mastics of Simulink models using
BIP. The advantages are twofold. It allows for integratib&ionulink models within heteroge-
neous BIP designs. It enables the use of validation and afioimplementation techniques
already available for BIP on Simulink models. The transiais currently implemented in the
Simulink2BIP tool. We report several experiments, in gantr, we show that the executable

code generated from BIP models has comparable runtimerpafaes as the code produced
by the Real-Time Workshop on several MATLAB models.

Keywords: Synchronous BIP, simulink

Reviewers. Marius Bozga

How to citethisreport:

@techreporf ,
title = { Compositional Translation
of Simulink Models into Synchronous B}P

authors ={ Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph
Sifakis},

institution ={ Verimag Research Repadyt

number ={TR-2010-1§,

year={ },

note ={ }

}

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

1 Introduction

Simulink [1] is a very popular commercial tool for model-based desigthsaimulation of dynamic embed-
ded systems. Simulink systems are represented graphisafig blocks and communication links between
the blocks. Simulink is widely used by engineers since ivjates a wide variety of block libraries for im-
plementing and testing discrete and continuous systemsrireg in many application domains.

Simulink lacks many desirable features of programming laggs. In particular, the Simulink se-
mantics is provided only informally, and moreover, it isyphrtially documented. Also, the meaning of
models depend significantly on many simulation paramegegs §imulation step, solver used, etc).

BIP [2] — Behavior, Interaction, Priority — is a component-basaunialism for modeling, analysis and
implementation of heterogeneous real-time systems.olvalthe description of systems as the composition
of generic atomic components characterized by their beh&ve., extended Petri nets) and their interface
(i.e., a set of ports). In contrast to many other existingniaorks, BIP has formal semantics and is
expressive enough to model directly any coordination meisha between components using uniformly
interactions and/or prioritiess]. It has been successfully used to model complex systerhgdimg mixed
hardware/software systems and complex software apmitafi, 5].

Synchronous BIP is a subset of the BIP framework for modediynchronous data-flow systerfig[
The behavior of synchronous BIP components is describetidnjal flow graphsthat are structures ex-
pressing dependency relations between events (actiongjrog in the same synchronous step. There
are three different modalities characterizing dependsnisetween eventstrong weakand conditional
These dependencies allow to represent easily all the gmirdh constraints needed for the correct execu-
tion of synchronous models. Moreover, for a syntactic sadgxbf modal flow graphs, deadlock-freedom
and confluence can be decided at low cost.

In this paper we provide a translation for the discrete-tirmgment of Simulink into synchronous BIP.
The translation is subject to some restrictions. Globally,consider only Simulink models that have ex-
plicitly specified sample time and which can be simulatedgi$ixed-step solver in auto mode. Although
similar translations already exist from Simulink to diffet languages, this new translation confers several
advantages, on both sides. First of all, through this tediwsi, discrete-time Simulink become available
as a programming model for developing synchronous BIP compts. That is, Simulink models can be
smoothly integrated in larger heterogeneous BIP systesis@mposed with other components, either na-
tive BIP or translated from other languages (e.g., Lusteythermore, BIP is supported by an extensible
toolbox which includes functional validation and code gatien features. The translation from Simulink
into BIP allows the validation and implementation of Simidimodels. In particular, compositional and
incremental generation of invariants can be applied formemSimulink models. Finally, the BIP toolset
includes a highly parametric and efficient code generati@irg targeting different implementation mod-
els (sequential, multi-threaded, distributed, real-tirte). These compilation paths are also becoming
available for Simulink models.

From a more technical point of view, the translation is dtied and incremental. It associates with
each Simulink block a unique synchronous BIP component. ak@mic blocks (such as operators), the
associated components are predefined into a specific lifoargimulink. For structured blocks (such
as subsystems), the associated components are (recyysiedined by composition of their inner sub-
components. This composition is also defined structuratly dataflow and activation links used within
Simulink blocks are translated into connectors in BIP. Meeg, our translation reveals only the minimal
control coordination structure needed for correct exeoutif Simulink models, in each step. These prop-
erties confirm that synchronous BIP is actually an appregfiamalism for providing a formal semantics
for discrete-time Simulink. We show structural equivalebetween a Simulink model and the correspond-
ing BIP model. That is, there exist a direct correspondemte/den the architecture of the two models.
Henceforth the generated BIP models can be easily undératubvalidated by Simulink users.

Finally, all the synchronous BIP models obtained by traimtasatisfy important structural proper-
ties. According to §], the modal flow graphs representing behavior of the obthBI® models are well-
triggered and obey the syntactic conditions for confluemzbdeadlock-freedom. These results guarantee
predictable behavior of the considered subclass of Sitkulindels and validate the intuitive simulation
semantics (i.e., single-trace) of Simulink.

The translation is currently implemented in the Simulink2Bool. We report several experiments on

\arimaoan Racaarcrh RPann daR_201 N1~ 1M1 E

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

demonstration models provided by MATLAB/Simulink as wedl benchmarks developed by ourselves.
The translation time into synchronous BIP is negligible. $W®w that, moreover, the executable code
generated from synchronous BIP models has comparableneipérformances as the code produced by
the Real-Time Workshop tool provided by MATLAB.

Related Wor k

The work in [7] presents a translation for a subset of MATLAB/Simulink a®idteflow into equivalent
hybrid automata. The translation is specified and impleatwensing a metamodel-based graph transfor-
mation tool. The translation allows semantics interopiitalbetween the Simulink’s standard tools and
other verification tools.

The work of B, 9] is probably the closest to our work. These papers presamngasitional translation
for discrete-time Simulink and respectively discretedi8tateflow models into Lustre programs]. This
work leverages the use of validation and (certified) codeegaion techniques available for Lustre to
Simulink models. The translation consists of three stepyge tnference, clock inference, and hierarchical
bottom-up translation. It has been implemented bySBE tool [11].

We can also mentionL}] where a restricted subset of MATLAB/Simulink, consistiofgooth discrete
and continuous blocks, is translated into the COMDES fraomkeWComponent-based Design of Software
for Distributed Embedded Systemklowever, this work focuses on the relation between coetigineer-
ing and software engineering related activities.

Finally, [13] presents a tool which automatically translates disctiete-Simulink models into the input
language of the NuSMV model checker. This translation alefficient symbolic verification techniques
to Simulink models used in safety-critical systems.

The fragments translated ir][[17] and [L3] are either incomparable or handled differently. For in-
stance, the translation reported if} focuses on continuous-time models, and allows for a lichdscrete
behavior represented using switches. The waf ¢overs an important part of the discrete-time fragment,
and in particularnp-dimension signals and related operators (mux, demux)eftle®iess, it does not con-
sider blocks such as the discrete transfer functions, anméawer, it seems to be restricted to models with
unique sample time. The solution chosen’ig][for handling multiple sample times is also different. Al-
though, the precise translation is not explained thoroughthe paper, it is claimed that it relaxes the exact
timing constraints of Simulink, since they are fundameéntahpossible to implement and unnecessarily
restrictive.

Finally, we cover almost the same discrete-time fragmerfths Also, we adapt exactly the same
semantics choices. However, we believe that our translatiethod provides a much understandable rep-
resentation, which better illustrates the control and defgendencies in the Simulink model. For example,
we are using (generic) explicit components for adaptatfosample times for signals going into/coming
from subsystems. In the Lustre translation, this adaptasidvard-coded using sampling/interpolation op-
erators and gets mixed with other (functional) equationhefsubsystem. Also, we do not hard-wire the
sample time of signals using absolute clocks. Instead, welyngack all the sample time dependencies
(e.g., equalities) within the model and define them only patthe upper layer, using a sample-time period
generator.

Organization of the paper

The paper is structured as follows. An introduction to MATR/Simulink is presented in Sectich Sec-
tion 3 presents a short description of synchronous BIP. The &#aslfrom Simulink to the synchronous
BIP is described in SectioA. The implementation and experimental results are predenteection5.
Section6 provides conclusions and directions for future work.

2 MATLAB/SIimulink

MATLAB/Simulink is a very popular commercial tool for desigg and simulating hybrid dynamical
systems. It is widely used for industrial applications a#l we for educational purposes. In this section,

"¢ME \ariman RDacaarcrh Rannr aR_201N.1R~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

we review the major Simulink concepts relevant for our ttatisn.

2.1 Signals

Models described in the discrete-time fragment of Simufifkoperate on discrete-time signals, that are,
piecewise-constant functions defined on the time dorRain and with values on an arbitrary data domain
(usually, a fixed power sé&t”).

Simulink models define transformations on discrete-tingmals by means of structured block dia-
grams. These diagrams are constructed hierarchically &wmmic blocks, defining elementary transfor-
mations (e.g., delay, sampling, arithmetic, etc.), andfttav links, expressing instantaneous data commu-
nication.

Every signals in a discrete-time Simulink model is characterized by itagke time, that is, the period
k > 0 of time at which the signal can change its value. Hence, aasigmay change its value only at
integer multiple$ of &, and remains unchanged within every left-closed rightadpterval|n-k, (n+1)-k|,
forn € N.

In Simulink models, the sample time of signals can be eitkpligtly provided by the modeler e.g., as
an annotation to atomic blocks, or left unspecified. In tlietasituation, the sample timeiisherited that
means, inferred from the sample times of related signaiguSimulink specific inference rules.

2.2 Portsand Atomic Blocks

Data ports Simulink uses inports and outports to define dataflow commeendpoints in subsystems.

They are used to transfer signals between the subsystentbeinénvironment. The sample time of the
ports defines the period for which the signal is updated (ead or written). Inports and outports can be
seen in figurel(a).

Control ports Simulink uses control ports to produce triggering evenigder port) or to provide en-
abling conditions (enable port) for the execution of submys. Figurel(b) shows the graphical notation
for the two types of control ports.

A trigger port produces an event that activates the exetwtia triggered subsystem depending on
some condition on an incoming signal. In Simulink, this dtind can be eitherising, falling or both. For
example, in case afsing, the activation event is produced when the input signakrismm a negative or
zero value to a positive value.

An enable port defines a condition for the execution of an kekgubsystem depending on an incoming
signal. In Simulink, the enabling condition holds as longresvalue of the incoming signal is greater than
zero.

Sources and Sinks Source blocks produce signals according to some pattechsvdh a specified or
inherited sample time. Some examples are the pulse genaratdhe constant blocks (see figuse)).

Conversely, sink blocks read signals. An example is theesbbgrk which is used to display graphically
one or more input signals (see figirgl)).

Combinatorial blocks Combinatorial blocks combine one or more input signals amdlyce one (or
more) output signal(s) as the result of an instantaneoumtipe. The sample times of all input and output
signals are equal. Some examples of combinatorial blockgiged by Simulink are usual arithmetic
operators, relational operators, boolean operatorsclsest saturation blocks, lookup tables (see figure

1(e)).

Unit delay A unit-delay block delays the input signal for one periodia# {input) sample time. During
the first period, the unit-delay produces a user-specifiadtant signal value. This block may also perform
a sample time change between the input and output signatdlass: the sample time of the output can
be smaller than (i.e., strict integer divisor of) the santjte of the input signal (see figudgf)).

1Simulink allows as well for an offset, however for the sakeinficity we always consider this offset equal to zero.

\arimaoan Racaarcrh RPann daR_201 N1~ 29M1KE

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

Zero-order hold A zero-order hold block acts as a sampler. It holds the outpnstant for one period
of the (output) sample time with the latest value of the inglso, this block may perform a sample time
change between input and output signals, as follows: theleatime of the output can be greater than (i.e.,
strict integer multiple of) the sample time of the input sifj(see figurel(f)).

Transfer functions A transfer function block transforms an input signal acaogdo a given discrete-
time transfer function. The sample time of the input and ougignals are equal.

: » » » RN | '
' b | TR S C ! 1z |
: Cin)~ % Dl] s ! '
. Inport 1, Tr'g?te" '\ Pulse Ly ! Add Ly Delay |
: | P | !Generator | ! D ! |

I I I (I \ |
| ¥ ¥ L N R .
I Out ' ' 3 ' 1! b !
| [Enable [[I :_b_ : | |
i Outport P port | | Constant | ! Scope | Switch , I Zero-Order
I I I I ! Hold |

Figure 1: Ports and basic atomic blocks in Simulink

2.3 Subsystems

Subsystems are user-defined assemblies constructedivebyufiom atomic blocks and other subsystems.
They are used to encapsulate some reusable functionalitycan be plugged (i.e., called) in a system
model or other subsystems.

The communication between subsystems and their callingcgmaent is realized through data ports.
That is, ports are simply used to convey signals producesidri{resp. inside) towards (resp. outwards)
the subsystem.

In addition, there exists also some support for executiontrobof subsystems. Simulink offers two
basic mechanismdrigger conditions, that can be used to activate triggered subsgster execution and
enabling conditionsthat are used to enable/disable the execution of a sulbsyste

Triggered Subsystems Triggered subsystems execute instantaneously only whegget event occurs.
Trigger events are defined as the rising or falling (or boflg signal defined outside the subsystem.

Triggered subsystems do not have explicit sample timesiece their execution is triggered by data-
change events and is not directly time dependent. Prdgti&imulink requires that all blocks within
triggered subsystems have inherited sample time. Cons#gueiggered subsystems contain only atomic
blocks and triggered subsystems but not periodic (nor roatis time) subsystems.

Example 1 Figure 2 (left) shows a triggered subsystem. The signattivates the execution of the trig-
gered subsyster®. When a trigger event occurs, the subsystem instantaneopdhtes its input value
and writes its outpub.

: ; D]
+ (D) z
&> , u
v 1/ b ——CD
3 a
D D || ¥ . v
z w

Figure 2: Example of triggered subsystem (left) and enabldxdystem (right)

N \ariman RDacaarcrh Rannr aR_201N.1R~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

Periodic and Periodic Enabled Subsystems Periodic and periodic enabled subsystems are time depen-
dent. Their execution i.e., reading/updating of inputpotitsignals is done according to explicit sample
times defined from their inner blocks. Implicitly, all thensgle times are observed on a unique global time
defined for the model, that means, execution is synchromizébdrespect to a global time.

In the case of periodic enabled subsystems, execution &redmed by the actual value of an external
signal. That is, the subsystem (i.e., its inner blocks) etesconly if the enabling signal has a positive value
and stays unchanged otherwise.

Finally, Simulink does not impose any syntactical redtit$ on the inner blocks of periodic sub-
systems. However, type checking and sample time checkileg are applied to ensure consistency of
computations e.g., the GCD-rule for combinatorial opesatBor a detailed discussion sé€g [

Example 2 Figure 2 (right) shows an enabled subsystem. The execution of tHaleshaubsysteni
depends on the value of the signalAs long as the value afis positive the subsystem updates its input
and produce$.

3 SynchronousBIP

BIP [2] — Behavior, Interaction, Priority — is a component framekior modeling, analysis and implemen-
tation of heterogeneous real-time systems. BIP supporsngpanent construction methodology based on
the assumption that components are obtained as the sujienpo$ three layers: (1) behavior, expressed
in terms of extended automata, (2) interactions, desgithia cooperation between actions of the behavior
and (3) priorities, rules specifying scheduling policiesihteractions. Layering implies a clear separation
between behavior and architecture (connectors and priaiies).

At the lower level of BIP, atomic components contain behadiescribed by automata and extended
with arbitrary computations (expressed as C/C++ functioeghods) on arbitrary data structures (instances
of C/C++ data types). Automata transitions are triggeregbnts, that are, action names used later to
specify interactions. Moreover, ports may be associatéll lecal data of atomic components. These
data are available for use (i.e., reading or writing) wheterictions involving that port are executed.
Interactions are specified in connectors as sets of porthavelalso associated an arbitrary computation
involving port's data (expressed as C/C++ functions/més$io They can be executed when all atomic
components involved are ready to interact i.e., every carapbreaches some control location enabling
a transition labeled by the required port. Whenever enableexecution of an interaction is done in
two steps: first, the interaction code is executed as an atstep, then all involved components execute
(concurrently) the local computations of the interactirapsitions. When several interactions are enabled
for execution, the choice is restricted according to ptyaniles.

Synchronous BIP{] is a subset of BIP for modeling synchronous systems. Symgus systems
are obtained as the composition of synchronous BIP compsndafined and interconnected according
to specific restrictions. First, all synchronous BIP comgus in a system synchronize periodically on
a implicit syncinteraction. This interaction separates gymchronous stepwithin the system. Second,
behavior of synchronous BIP components is describemidgal flow graphgMFG). These graphs express
causal dependencies between ports (and their associadteasaevithin every synchronous step. That is,
in contrast to general BIP components where control flowpsagented explicitly using control states and
transitions, control flow of synchronous BIP componentsxigressed implicitly through dependencies.
This representation is appropriate for synchronous behawihich is inherently parallel and (loosely)
coordinated by clock and data dependencies.

There are three types of causal dependencies: strong, wdatoaditional. For two portg andg, we
say that:

e ¢ strongly depends op if the execution ofy must follow p. That mean®, ¢ cannot be executed
independently, only the executign ¢ is possible in a step.

e ¢ weakly depends onif the execution ofp may be followed by;. That is eithep can be executed
alone or the sequenge gq.

\arimaoan Racaarcrh RPann daR_201 N1~ [yl =~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

e ¢ conditionally depends op if both p andq can be executed, must followp. Conditional depen-
dency requires that if both andq occur, only the sequenge: ¢ is possible, otherwisg andq can
be executed independently.

Henceforth, we will use a simple graph-based representédiomodal flow graphs. Vertices represent
the ports and the edges (arrows) represent dependenciasse/dlid (resp. thin, resp. dotted) arrows to
denote strong (resp. weak, resp. conditional) depend&ncie

Example 3 Figure 3 (left) shows the synchronous BIP component that samplespar value according
to a slower clock;. The incoming and the outgoing events are triggered byrdifteactivation eventgct?
and act? respectively. The strong dependencies between data emeditactivation events, enforce the
execution of thén® andout? at each activation ofict? and act? repsectively. The activation eventt?
depends weakly omct? and the outpubut? depends conditionally on the input evént. Thus an input
v is always read through the event” and whenever required, an outpuis produced through the event
out¥ with the most recent value of the input.

actP lact?

actP

act?

'VLT‘ ’outy

=
A

out<in

Figure 3: Example

In [6] we have proven that for the subclassweéll-triggered modal flow graphs we can guarantee
deadlock-freedom and confluence of execution using simpi&astic conditions. Consistency between
the three different types of dependencies is defined by tlerMiog constraints: (i) every port must have
a unique minimal strong cause and (ii) every port has exahlysieither strong or weak causes. A modal
flow graph is calledvell-triggeredif it satisfies the above two properties.

A modal flow graph isdleadlock-fredf every synchronous step eventually terminates, thaesches
a configuration where the component can cycle, by synchranizith all the others (and begin the next
step). For well-triggered modal flow graphs, deadlockdwee is guaranteed if the guards of ports having
strong causes are trivially true. Intuitively, this meamstf once started, every computation can be carried
out successfully up to a global synchronization point.

A modal flow graph ionfluentf the result of a step is deterministic, regardless the roctiesen for
execution of ports. For well-triggered modal flow graphs)fagence is guaranteed by the non-interference
of actions attached to independent ports, that are, portsaasally related. More precisely, non confluent
behavior can occur only if actions of independent ports apessing the same data: different orders of
execution may lead to different results.

We have defined composition of synchronous components asial paernal operation parameterized
by a set of interactions. Given a set of synchronous comgsner obtain a product component by glueing
together the ports (and associated actions) intercormhegtsteractions.

Example 4 Figure 4 shows an example of a producer/consumer connected throsgimaling compo-
nent. Inputs are produced on a faster rate than outputs aresemed. The synchronous components are
composed by synchronizing the activation evants and act® and the data eventsut andin. The sam-
pling component reads inputs each time the producer compgmeduces outputs through the connection

AlE \ariman RDacaarcrh Rannr aR_201N.1R~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

. i Py

-

act’ oet'_| fct”_| acts
act®
out act®
ot yi=z in Iy E;‘ y |out LS Win |z
| y_ o

Figure 4: Example of composition of synchronous BIP comptse

y := x. When theict® event is triggered, the sampling component provides inglutes to the consumer
through the interaction := y.

4 Trandation

4.1 Overview

In [6], we provided a modular translation from the synchronouglege Lustrell(] into well-triggered
components of Synchronous BIP. The proposed translatioibiesxmaximal parallelism, that is, it enforces
only the absolutely necessary dependencies between exexded for correct execution. Moreover, we
have shown that the models obtained from Lustre are alwagdldek-free and confluent.

The translation is from Simulink to synchronous BIP is alswdoiar

and enjoys the same properties as the translation of Lustaissociates with each Simulink bloéka
unique synchronous BIP componéWiiz. Moreover, basic Simulink blocks e.g., operators, arestedad
into elementary (explicit) synchronous BIP componentstu@tired Simulink blocks e.g., subsystems,
are translated recursively as composition of the compenassociated to their contained blocks. The
composition is also defined structurally i.e., dataflow aativation links used within the subsystem are
translated to connectors.

Synchronous BIP components associated to Simulink blatksve two categories of events, control
events and data events:

e control events, includingct?, - - - andtrig?, - - - denote respectivelgctivationevents andriggering
events. These events represent pure input and output tsiginals. They are used to coordinate the
overall execution of modal flow graph behavior and correggorcontrol mechanisms provided by
Simulink e.g., sample times, triggering signals, enabtiagditions, etc.

e data events, includingn®,--- andout?,--- denote respectivelinput events andutput events.
These events transport data values into and from the compoHeey are used to build the dataflow
links provided by Simulink.

Modal flow graphs obtained by translation enjoy importanicitiral properties. First, they are well-
triggered [].

Second, every data event is strongly dependent on exactlpfthe activation events. Intuitively, this
means that input/output of data is explicitly controlleddmtivation events. Third, all synchronous BIP
components obey the syntactic conditions for confluencedaadlock-freedom defined iG]

Finally, the translation of a Simulink modé? needs an additional synchronous componrgétitz,
which generates all activation eventst®, act*2, ... corresponding to periodic sample times used within
the model. The final result of the translation will be the cosifon of M g andC'lk g with synchronization
on activation events.

\arimaoan Racaarcrh RPann daR_201 N1~ 7TME

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

Within Clkpg, the activation events have are produced using a globalrgfieeence and must obey the
corresponding ratio, respectively, ko, A concrete example of such a synchronous BIP component is
provided in figure??. The same construction can be easily generalized to any ewaflinteger sample
times.

Example5 Figure 5 shows the synchronous BIP component that produces diffel@rk events for every
3, 4 and 6 units of time. The component uses a varialdtemeasure time and has five potisk, acts,
acty, actg andreset. The porttick represents a global clock tick. This port is triggered ev&ygchronous
step and increases the valueafy one. A clock everiticty) =3 4.6 is then produced each time the period
k divides the current time, denoted byt|c. The portreset is used to resetevery 12 time units, that is, the
least common multiple of all the periods. Let us notice tloatgacts andact, are weakly dependent on the
tick port, and moreover polictg is weakly dependent on partts. The portreset depends conditionally
on the portsacty and actg. The guards and the causal dependencies ensure that, iy syechronous
step, exactly one of the following sequences is execuiet; tick - acts, tick - acty, tick - acts - actg,
tick - ((acts - actg)|acty) - reset (where| denote the shuffling of two sequences).

Figure 5 (right) shows the equivalent representation of the modal fioaph using a 1-safe Petri (in
every place there is at most one token at every time) net widhites. The Petri net represents valid
execution for one synchronous step. The tokens alreadyagegldefine the initial marking, that is, the
initial state of execution. All other places without tokems final palces. At firing, tokens are removed
from initial places and added to final places. The behaviathefPetri net is restricted by the rule which
states thereset event has lower priority than all the other events.

tick | k] @

}c::()ﬁ }c:zO%

’actg ‘ ’act4 ‘ ’actg ‘ beoioeme ’actg ‘ ’act4 ‘ ’acta ‘ ;
reset=< tick act3 act4 act6

Figure 5: A multi-period clock generator described usinglaidlow graphs (left) and its semantics using
priority Petri nets (right)

We note that the translation is subject to several regtristi Only models simulated by Simulink can
be translated to synchronous BIP. All models are simulati#ul tve method called “solveffixed stepand
mode: autd’. Moreover, for the sake of simplicity, we consider only gaentimes with no offset and
explicitly specified for all Simulink blocks.

4.2 Portsand Atomic Blocks

Simulink inports and outports are translated into elemgrggnchronous BIP components shown in figure
6 (a). These graphs represent a simple identity flow i.e., fmrée, at each activation eventt? one value
v of data comes in and goes out through the evéritsaand respectivelyut®.

onng \ariman RDacaarcrh Rannr aR_201N.1R~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

lout [o] || [v] in”] e Lop |70
op(v1, v2
o | e L0s 1, vy sllor)
(b) (©) (d) (d)

Figure 6: Elementary components for in/outports (a), sesi(b), sinks (c) and combinatorial blocks (d)

Simulink sources and sink blocks are translated into eleéangmodal flow graphs as shown in figure
6 (b). At each activation evenict?, these graphs produce (respectively consume) one daeuvtitough
the output evendut® (respectively input event®).

Combinatorial blocks are translated as shown in figuf€). At each activation eveni:t?, actual data
valuesvy, vy are received on all input events® , in™2 and then, the output valueis computed and sent
on the output porbut?.

0 _
Transfer functions are translated as shown in figurégght). For a given transfer functi(}ﬂ::jfz s J'r'“:zz :_p
P
the computation is realized by the functidif () as follows:

rl0] = w

s[0] = i byrli] = 221 aisli]

r[j] = r[j—1]forall j = ¢qdowntol

sli] := s[i —1]foralli=pdowntol
v = s[0]

wheres andr are buffers for the input/output values.
Figure 7 shows the synchronous BIP components corresponding tedalay blocks (a) and zero-
order-hold blocks (b) of Simulink.

act?

act?

(a) Unit-Delay (b) Zero-Order Hold
Figure 7: Elementary components for unit-delay and zedsshold
Since these blocks can be used in Simulink to change the satinpd of the incoming signal we

provide two alternative translations. The first corresgotdidentical (unchanged) sample time. In this
case, the modal flow graphs are rooted by a unique activatientect? which triggers both the input

\arimaoan Racaarcrh RPann daR_201 N1~ oe

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

n® and the outpubut? events. The second corresponds to different sample timebdancoming and
outgoing signals. In this case, the ingut’ and outpubut? events are triggered by different activation
events respectively,ct? andact?. Moreover, the two activation events are also weakly depenith some
order, and this dependency enforces the Simulink restri¢hiat unit-delay (respectively zero-order-hold)
elements can be used to increase (respectively decreassgriple time of the signal. Furthermore, input
and output events are conditionally dependent on each,atherder to represent the expected behavior
i.e., unit-delay is delaying any input for at least one (if)ample time period.

4.3 Subsystems
4.3.1 Triggered Subsystems

Triggered subsystems are translated into synchronous@ifpenents with a unique activation event
and several input and output events, one for every inpopeaely outport defined within the subsystem.
The general interface is illustrated in figus€left).

act lactP] lactPd [actPn]
in®1 in®1
] o
in®2 in®2
- outYi

Figure 8: The general interface in components of triggevisgstem (left) and enabled subsystem (right)

We know that, according to Simulink restrictions, all theraic blocks used within a triggered subsys-
tem have inherited sample time. Moreover, a triggered sibry can only contain triggered subsystems
but not periodic or enabled subsystems. Hence, the onlylges®nnections within a triggered subsystem
are dataflow connections which relate outports to inportdifbérent blocks and triggering connections
which activate inner triggered subsystems.

As mentioned earlier, the translation of subsystems icttral. The synchronous BIP component
corresponding to a triggered subsystem is obtained by csitio of its constituent components. The
composition i.e, the connectors, reflects the data-flow atidadion links used within the subsystem.

More precisely, the translation proceeds as follows.

First, it collects the synchronous BIP components of allhef tonstituent blocks. We distinguish the
following categories:

e in/outports - ports are translated as shown in the previecsm. Components associated with ports
play a particular role in the definition of the interface of tlesulting (composed) component. Input
(respectively output) events defined by the componentsided to inports (respectively outports)
will not be connected by composition within the subsysteh la@come part of the interface.

e atomic blocks are translated as shown in the previous sectiet us remark that all these blocks
will lead to components with a unique activation eveat*. In particular, this is also the case for
unit-delay and zero-order-hold elements since they afeadetl by the unique sample time of the
subsystem;

e triggered subsystems - these subsystems are translategivety, following the same procedure.
We simply rely on their interface to connect them.

Second, the components are composed by synchronizationdémg to dataflow and triggering con-
nections in Simulink. The different types of connectionsl émeir translation are illustrated in figuge
(left). We distinguish basically three cases:

1NN E \ariman RDacaarcrh Rannr aR_201N.1R~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

Simulink Synchronous BIP

Simulink Synchronous BIP

i

Figure 9: Translation of connections in triggered subsyst@eft) and in enabled subsystem (right)

e dataflow connection between blocks operating on the samplsadime e.g., outport of block A is
connected to inporg of block B as shown in figur® (left-top). In this case, the dataflow connection
is translated into a strong synchronization between theut@venbut® of M4 and input eventn?
of M. Moreover, the activation events 8f 4 and M are also strongly synchronized.

e dataflow connection between blocks operating on differante times e.g., outpost of block A
is connected to inpory of block B which is triggered by some other event, as shown in figure
(left-mid). In this case, the connection is realized by pasthrough asample-time-adapteiSTA)
component. This component is presented in detail in figlr@eft) and allows the correct transfer
of data between a producer and a consumer activated byatiffevents. Let us notice that the two
activation events of the adapter component are indeed symized with the activation events of
respectivelyM 4 and M p.

[rising] [trigh|]
| S — r——-=- r——-=-
o 'V, Upre, I

Figure 10: Additional components for tlsample-time-adaptgiieft), thetrigger-generator(middle) and
the enable-generatofright)

e triggering connection i.e., activation of an inner trigggisubsystem e.g., outpartof block A is
used to trigger the block as shown in figuré (left-bottom). In this case, the connection is realized
by passing through &igger-generator(TG) component. This component is presented in figure
(middle). It produces a triggering eventig whenever some condition on the input sigmdiolds.

In Simulink this condition can be eitheising (value changed from a negative to a positive value,
Grising = Upre < 0,upre < v,0 < v), falling (conversely, value changed from a positive to a
negative value) oeither (rising or falling).

Finally, all theact™ events which are not explicitly synchronized witlrdg event (i.e., occurring at
top level) are synchronized and exported asdtte event of the composed synchronous BIP component.

\arimaoan Racaarcrh RPann daR_201 N1~ 1M1 E

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

Example 6 Figure 11 (left) illustrates the complete translation of the triggdrsubsystem shown in figure
2 (left). The triggered subsystehig is strongly synchronized with theig event produced by the trigger

generator TG. STAs are connected to the inputs and outptie 8f 5 and are strongly synchronized with
the activation eventgyig andact | . The exported activation evemtt ; triggers all the activation events

which are not synchronized with theig event.

T

IF--

Y

S

STA B STA

Figure 11: Complete translation of the triggered subsysthown in figure2 (left) and of the enabled
subsystem of figuré (right)

4.3.2 Periodic and Enabled Subsystems

Periodic and enabled subsystems are translated to symetgd@iP components with multiple activation
eventsact®', --- , act®», each such event corresponding to a fixed sample time R used explicitly
within the subsystem (or recursively, in some of its subsystems). Also, as for triggered subsystems,
the associated component has multiple input and output®vene for every inport respectively outport
defined within the subsystem. The general interface is shiofigure 8 (right).

The construction of the component associated to a periattisystem (or enabled) subsystem is also
structural and incremental. It extends the method definedqusly for triggered subsystems. As before,
first it collects the components for all the constituent kiychen it composes them according to dataflow,
triggering and enabling connections defined in Simulink.

The translation of the new categories of Simulink connestioccurring in the context of a periodic
subsystem is illustrated in figuR?. We distinguish two new cases, as follows:

e dataflow connection between subsystems having differeathlgry conditions e.g., outpoit of A
connected to inpug of B as illustrated in figur® (right-top). In this case, the connection is realized
by passing through a sample-time-adapter component im tsdecommodate for the possible dif-
ferent activation times for input and output events. Letamsark that only the activation eventa*-
andact® triggering respectively the evenist® in M4 andin? in Mg have to be synchronized with
the adapter, whereas all othett events remain unconstrained.

e enabling condition i.e., conditional execution of the sigbsm depending on some condition e.g.,
outportz of A defines the enabling condition f@t as illustrated in figuré® (right-bottom). Such a
connection requires an additiorehabling-conditioEC) component, presented in detail in figure
10 (right).

Intuitively, the EC component filters out any (periodic)igation eventact® occurring when the
input signalx is false (or negative). Otherwise, it propagates the aina@vent renamed asig": .

Any other categories of connections are handled as foraregtysubsystems.

Finally, all activation eventsct®: which correspond to the same sample tilgeand which are not
explicitly synchronized with arig event (i.e., occurring at top level and not filtered by somabding
condition) are strongly synchronized and exported asatlt& event on the interface of the composed
synchronous BIP component.

Example 7 Figure 11 (right) illustrates the complete translation of the enabgibsystem shown in figure
2 (right). We consider that the delay (1/z), the outpand one of the blocks inside the enabled subsystem

191 E \ariman RDacaarcrh Rannr aR_201N.1R~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

are executed on different sample times. Activation evemrtstmongly synchronized according to their
sample times and exported on the interface of the global MH®.enabling condition is producing three
activation events one for each sample time associated tertabled subsystem.

5 Experimental work

The translation has been implemented in the Simulink2BdPilastrated in figurel2. The tool Simulink2BIP
parses MATLAB/Simulink model files. (mdl), and produces synchronous BIP modelsi(p). The gen-
erated models reuse a (hand-written) predefined compaibeaityl of atomic components and connectors
(si mul i nk. bi p). This library contains the most common atomic blocks (sesy combinatorial opera-
tors, memories, transfer functions, etc) as well as the oseful connectors (for in/out data transfer and for
control activation). Synchronous BIP models can be furtleed either to generate standalone C++ code
(using the tooBI P2C) or as parts of larger BIP models. In the first case, the C++ @ach be compiled
and executed as such i.e., no middleware is needed for éxecut

Si nul i nk2BI P
|

v
Sl i nk. bi p >-Cbi p)
¢ O—fg+r

Figure 12: The tool architecture

Table13 summarizes experimental results on several Simulink nsodf&é have discretized and trans-
lated several demo examples available in MATLAB/Simulimkluding theAnti-lock Brakingsystem,
the Conditionally executed subsystethe Enabled subsystem demonstratiamd theThermal model of
a house Also, we have translated the examples providedjm.¢., theSteering Wheepplication and the
Big ABC Finally, we have considered several artificial benchmadspectively thd 6-bit countey 64-bit
counter The table provides information about the complexity osthenodels. #A is the number of atomic
blocks, #P the number of periodic blocks, #T the number ghgred subsystems and #E the number of
enabled subsystems. As illustrated in the table, our @#iosl tool actually covers a significant number of
Simulink concepts.

For all these examples the translation time into synchrerl& is negligible and therefore it is not
reported. Moreover, in all cases, the simulation traceslyred respectively by Simulink in simulation
mode and by BIP are almost identical. We have observed feWl diffarences for some examples, which
are probably due to a different representation of floatiogHpnumbers in Simulink and in BIP.

Finally, for all examples we have produced executable cetdguespectively the Real-Time Workshop
and the BIP code generator. Tahlgreports the execution times measured using the two impletiens
(i.e., columng,,, for Real-Time Workshop,,;,, for BIP) for different numbers of iterations We observe
that the BIP generated code slightly outperforms the R@akWorkshop in almost all the considered ex-
amples. Nevertheless, we do not claim that BIP outperfoha$fteal-Time Workshop in general, because
our translation and code generation does not yet coveralinthdels that can be actually handled by the
Real-Time Workshop.

6 Conclusion

We present a translation from the discrete-time fragmeS8imiilink into synchronous BIP. The translation
is structural and incremental. Each Simulink block is asged to a unique synchronous BIP component.

\arimaoan Racaarcrh RPann daR_201 N1~ 121 E

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

Ex. | #A | #P|#T[#E| n | tww | tois
16-bit 97 0 16 0 10° 1,190s | 0,258s
counter 107 | 11,760s| 2,586s
64-bit 365| 0 | 60| O 10° 3,330s 1,863
counter 107 | 59,283s| 25,953s
Anti-lock 39 [2] 0] o0 [10"] 0,017s| 0,016s
breaking 10 | 0,317s | 1,273s
Steering [120 15[1 | 0 | 10° [1,863s | 3,330s
Wheel 107 7,221s | 31,899s

Big 23 [2] 0] o0 [10°] 0,323 [0,151
ABC 107 3,171 1,386
Multi 14 1 0 [0| 1 |10°| 0/466s| 0,222s
Period 107 | 4,313s | 2,097s
Enabled 24 1 0] o] 2]10°| 0,382s | 0,196s

Subsystem 107 | 3,201s | 1,756s
Thermal 45 1 31 0] 2]10°] 0562s| 0,751s
model house 107 | 5,215s | 7,565s

Figure 13: Experimental results

Dataflow and activation links are translated to BIP connact®he synchronous BIP components obtained
by the translation of Simulink models have several propsiiticluding confluence and deadlock-freedom.
We provide an implementation of the translation in a toolezh&imulink2BIP Experiments show that the
generated BIP models lead to implementations that are c@bleato the generated code by Real-Time
Workshop of MATLAB.

Although we cover a significant part of the discrete-timgyfnent of Simulink, our translation is not
complete and can be rapidly extended in several directidist of all, we have considered only uni-
dimensional signals, that is, we do not handle mux/demuxatpes or any other-dimensional combina-
torial operators. Second, we have considered only (pgnfectodic sample times i.e., we do not handle
sample times with a non-zero initial offset. Third, for petic enabled subsystems we have translated only
the held policy, and not yet theesetpolicy. That is, inheld mode, the output values are kept constant
as long as the block is disabled, whereaseisetmode, the outputs as well as the status of some internal
blocks (such as integrators) have to be reset.

On alonger term perspective, we would like to extend oursietion to the full discrete-time fragment.
This must include all of the conditionally executed subsys, like the triggered and enabled subsystems,
the function-call subsystems as well as user defined fumetidocks. Finally, we plan to define a similar
translation for discrete-time Stateflow.

1AM B \ariman RDacaarcrh Rannr aR_201N.1R~

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Mas Bozga and Joseph Sifakis

References

[1] http://ww. mat hwor ks. cont product s: si mulink/. 1,2.1

[2] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogameceal-time systems in BIP,” iRroceed-
ings of SEFM'06pp. 3—-12, invited talkl, 3

[3] S. Bliudze and J. Sifakis, “The algebra of connectors-dedtrring interaction in BIP,IEEE Trans-
actions on Computersol. 57, no. 10, pp. 1315-1330, 200B.

[4] A.Basu, L. Mounier, M. Poullgs, J. Pulou, and J. Sifakis, “Using BIP for Modeling and fieaition
of Networked Systems — A Case Study on TinyOS-based Netwarks$Proceedings of NCA'Q7
2007, pp. 257-2601

[5] S. Bensalem, M. Gallien, F. Ingrand, |. Kahloul, and T.dMiguyen, “Toward a more dependable
software architecture for autonomous robo&gecial issue on Software Engineering for Robotics of
the IEEE Robotics and Automation Magaziwel. 16, no. 1, pp. 67—77, March 20089.

[6] M. D. Bozga, V. Sfyrla, and J. Sifakis, “Modeling syncimaus systems in bip,” iEMSOFT ’09:
Proceedings of the seventh ACM international conferencEmabedded software New York, NY,
USA: ACM, 2009, pp. 77-861, 3, 3,4.1

[7] A. Agrawal, G. Simon, and G. Karsai, “Semantic trangatbdf simulink/stateflow models to hybrid
automata using graph transformations,’limernational Workshop on Graph Transformation and
Visual Modeling Technique2004, p. 20041

[8] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Marehi, “Defining and translating a "safe”
subset of simulink/stateflow into lustre,” BMSOFT '04: Proceedings of the 4th ACM international
conference on Embedded softwardNew York, NY, USA: ACM, 2004, pp. 259-268.

[9] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Tratslg discrete-time simulink to lustreRCM
Trans. Embed. Comput. Systol. 4, no. 4, pp. 779-818, 2005, 2.3 5

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “ymelsronous dataflow programming lan-
guage Lustre,Proceedings of IEEEvol. 79, no. 9, pp. 1305-1320, 1991,.4.1

[11] http://www«+ verimag. i mag. fr/ss2lus.htm /.1

”

[12] N. Marian and S. Top, “Integration of simulink modelstivicomponent-based software models,
Advances in Electrical and Computer Engineeriag08. 1

[13] B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for tratislg simulink models into input language
of a model checker,” inCFEM, 2006, pp. 606—-620L

\arimaoan Racaarcrh RPann daR_201 N1~ 1E1E

	Introduction
	MATLAB/Simulink
	Signals
	Ports and Atomic Blocks
	Subsystems

	Synchronous BIP
	Translation
	Overview
	Ports and Atomic Blocks
	Subsystems
	Triggered Subsystems
	Periodic and Enabled Subsystems

	Experimental work
	Conclusion

