
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Compositional Translation
of Simulink Models into Synchronous

BIP

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius
Bozga and Joseph Sifakis

Verimag Research Report no TR-2010-16

June 2010

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Compositional Translation
of Simulink Models into Synchronous BIP

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

June 2010

Abstract

We present a method for the translation of a discrete-time fragment of Simulink into the syn-
chronous subset of the BIP language. The translation is fully compositional, that is, it pre-
serves completely the original structure and reveals the minimal control coordination structure
needed to perform the correct computation within Simulink models. Additionally, this trans-
lation can be seen as providing an alternative operational semantics of Simulink models using
BIP. The advantages are twofold. It allows for integration of Simulink models within heteroge-
neous BIP designs. It enables the use of validation and automatic implementation techniques
already available for BIP on Simulink models. The translation is currently implemented in the
Simulink2BIP tool. We report several experiments, in particular, we show that the executable
code generated from BIP models has comparable runtime performances as the code produced
by the Real-Time Workshop on several MATLAB models.

Keywords: Synchronous BIP, simulink

Reviewers: Marius Bozga

How to cite this report:

@techreport{ ,
title = { Compositional Translation
of Simulink Models into Synchronous BIP},
authors ={ Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph
Sifakis},
institution ={ Verimag Research Report},
number ={TR-2010-16},
year ={ },
note ={ }
}

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

1 Introduction

Simulink [1] is a very popular commercial tool for model-based design and simulation of dynamic embed-
ded systems. Simulink systems are represented graphicallyusing blocks and communication links between
the blocks. Simulink is widely used by engineers since it provides a wide variety of block libraries for im-
plementing and testing discrete and continuous systems occurring in many application domains.

Simulink lacks many desirable features of programming languages. In particular, the Simulink se-
mantics is provided only informally, and moreover, it is only partially documented. Also, the meaning of
models depend significantly on many simulation parameters (e.g. simulation step, solver used, etc).

BIP [2] – Behavior, Interaction, Priority – is a component-based formalism for modeling, analysis and
implementation of heterogeneous real-time systems. It allows the description of systems as the composition
of generic atomic components characterized by their behavior (i.e., extended Petri nets) and their interface
(i.e., a set of ports). In contrast to many other existing frameworks, BIP has formal semantics and is
expressive enough to model directly any coordination mechanism between components using uniformly
interactions and/or priorities [3]. It has been successfully used to model complex systems including mixed
hardware/software systems and complex software applications [4, 5].

Synchronous BIP is a subset of the BIP framework for modelingsynchronous data-flow systems[6].
The behavior of synchronous BIP components is described bymodal flow graphs, that are structures ex-
pressing dependency relations between events (actions) occurring in the same synchronous step. There
are three different modalities characterizing dependencies between events:strong, weakandconditional.
These dependencies allow to represent easily all the coordination constraints needed for the correct execu-
tion of synchronous models. Moreover, for a syntactic subclass of modal flow graphs, deadlock-freedom
and confluence can be decided at low cost.

In this paper we provide a translation for the discrete-timefragment of Simulink into synchronous BIP.
The translation is subject to some restrictions. Globally,we consider only Simulink models that have ex-
plicitly specified sample time and which can be simulated using fixed-step solver in auto mode. Although
similar translations already exist from Simulink to different languages, this new translation confers several
advantages, on both sides. First of all, through this translation, discrete-time Simulink become available
as a programming model for developing synchronous BIP components. That is, Simulink models can be
smoothly integrated in larger heterogeneous BIP systems and composed with other components, either na-
tive BIP or translated from other languages (e.g., Lustre).Furthermore, BIP is supported by an extensible
toolbox which includes functional validation and code generation features. The translation from Simulink
into BIP allows the validation and implementation of Simulink models. In particular, compositional and
incremental generation of invariants can be applied for complex Simulink models. Finally, the BIP toolset
includes a highly parametric and efficient code generation chain, targeting different implementation mod-
els (sequential, multi-threaded, distributed, real-time, etc). These compilation paths are also becoming
available for Simulink models.

From a more technical point of view, the translation is structural and incremental. It associates with
each Simulink block a unique synchronous BIP component. Foratomic blocks (such as operators), the
associated components are predefined into a specific libraryfor Simulink. For structured blocks (such
as subsystems), the associated components are (recursively) obtained by composition of their inner sub-
components. This composition is also defined structurally i.e., dataflow and activation links used within
Simulink blocks are translated into connectors in BIP. Moreover, our translation reveals only the minimal
control coordination structure needed for correct execution of Simulink models, in each step. These prop-
erties confirm that synchronous BIP is actually an appropriate formalism for providing a formal semantics
for discrete-time Simulink. We show structural equivalence between a Simulink model and the correspond-
ing BIP model. That is, there exist a direct correspondence between the architecture of the two models.
Henceforth the generated BIP models can be easily understood and validated by Simulink users.

Finally, all the synchronous BIP models obtained by translation satisfy important structural proper-
ties. According to [6], the modal flow graphs representing behavior of the obtained BIP models are well-
triggered and obey the syntactic conditions for confluence and deadlock-freedom. These results guarantee
predictable behavior of the considered subclass of Simulink models and validate the intuitive simulation
semantics (i.e., single-trace) of Simulink.

The translation is currently implemented in the Simulink2BIP tool. We report several experiments on

Verimag Research Report no TR-2010-16 1/15

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

demonstration models provided by MATLAB/Simulink as well as benchmarks developed by ourselves.
The translation time into synchronous BIP is negligible. Weshow that, moreover, the executable code
generated from synchronous BIP models has comparable runtime performances as the code produced by
the Real-Time Workshop tool provided by MATLAB.

Related Work

The work in [7] presents a translation for a subset of MATLAB/Simulink andStateflow into equivalent
hybrid automata. The translation is specified and implemented using a metamodel-based graph transfor-
mation tool. The translation allows semantics interoperability between the Simulink’s standard tools and
other verification tools.

The work of [8, 9] is probably the closest to our work. These papers present a compositional translation
for discrete-time Simulink and respectively discrete-time Stateflow models into Lustre programs [10]. This
work leverages the use of validation and (certified) code generation techniques available for Lustre to
Simulink models. The translation consists of three steps: type inference, clock inference, and hierarchical
bottom-up translation. It has been implemented by theS2L tool [11].

We can also mention [12] where a restricted subset of MATLAB/Simulink, consistingof both discrete
and continuous blocks, is translated into the COMDES framework (Component-based Design of Software
for Distributed Embedded Systems). However, this work focuses on the relation between control engineer-
ing and software engineering related activities.

Finally, [13] presents a tool which automatically translates discrete-time Simulink models into the input
language of the NuSMV model checker. This translation allows efficient symbolic verification techniques
to Simulink models used in safety-critical systems.

The fragments translated in [7], [12] and [13] are either incomparable or handled differently. For in-
stance, the translation reported in [7] focuses on continuous-time models, and allows for a limited discrete
behavior represented using switches. The work [13] covers an important part of the discrete-time fragment,
and in particular,n-dimension signals and related operators (mux, demux). Nevertheless, it does not con-
sider blocks such as the discrete transfer functions, and moreover, it seems to be restricted to models with
unique sample time. The solution chosen in [12] for handling multiple sample times is also different. Al-
though, the precise translation is not explained thoroughly in the paper, it is claimed that it relaxes the exact
timing constraints of Simulink, since they are fundamentally impossible to implement and unnecessarily
restrictive.

Finally, we cover almost the same discrete-time fragment as[9]. Also, we adapt exactly the same
semantics choices. However, we believe that our translation method provides a much understandable rep-
resentation, which better illustrates the control and datadependencies in the Simulink model. For example,
we are using (generic) explicit components for adaptation of sample times for signals going into/coming
from subsystems. In the Lustre translation, this adaptation is hard-coded using sampling/interpolation op-
erators and gets mixed with other (functional) equations ofthe subsystem. Also, we do not hard-wire the
sample time of signals using absolute clocks. Instead, we merely track all the sample time dependencies
(e.g., equalities) within the model and define them only once, at the upper layer, using a sample-time period
generator.

Organization of the paper

The paper is structured as follows. An introduction to MATLAB/Simulink is presented in Section2. Sec-
tion 3 presents a short description of synchronous BIP. The translation from Simulink to the synchronous
BIP is described in Section4. The implementation and experimental results are presented in section5.
Section6 provides conclusions and directions for future work.

2 MATLAB/Simulink

MATLAB/Simulink is a very popular commercial tool for designing and simulating hybrid dynamical
systems. It is widely used for industrial applications as well as for educational purposes. In this section,

2/15 Verimag Research Report no TR-2010-16

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

we review the major Simulink concepts relevant for our translation.

2.1 Signals

Models described in the discrete-time fragment of Simulink[1] operate on discrete-time signals, that are,
piecewise-constant functions defined on the time domainR≥0 and with values on an arbitrary data domain
(usually, a fixed power setRk).

Simulink models define transformations on discrete-time signals by means of structured block dia-
grams. These diagrams are constructed hierarchically fromatomic blocks, defining elementary transfor-
mations (e.g., delay, sampling, arithmetic, etc.), and dataflow links, expressing instantaneous data commu-
nication.

Every signals in a discrete-time Simulink model is characterized by its sample time, that is, the period
k > 0 of time at which the signal can change its value. Hence, a signal s may change its value only at
integer multiples1 of k, and remains unchanged within every left-closed right-open interval[n·k, (n+1)·k[,
for n ∈ N.

In Simulink models, the sample time of signals can be either explicitly provided by the modeler e.g., as
an annotation to atomic blocks, or left unspecified. In the latter situation, the sample time isinherited, that
means, inferred from the sample times of related signals using Simulink specific inference rules.

2.2 Ports and Atomic Blocks

Data ports Simulink uses inports and outports to define dataflow connection endpoints in subsystems.
They are used to transfer signals between the subsystems andtheir environment. The sample time of the
ports defines the period for which the signal is updated (i.e., read or written). Inports and outports can be
seen in figure1(a).

Control ports Simulink uses control ports to produce triggering events (trigger port) or to provide en-
abling conditions (enable port) for the execution of subsystems. Figure1(b) shows the graphical notation
for the two types of control ports.

A trigger port produces an event that activates the execution of a triggered subsystem depending on
some condition on an incoming signal. In Simulink, this condition can be eitherrising, falling or both. For
example, in case ofrising, the activation event is produced when the input signal rises from a negative or
zero value to a positive value.

An enable port defines a condition for the execution of an enabled subsystem depending on an incoming
signal. In Simulink, the enabling condition holds as long asthe value of the incoming signal is greater than
zero.

Sources and Sinks Source blocks produce signals according to some patterns and with a specified or
inherited sample time. Some examples are the pulse generator and the constant blocks (see figure1(c)).

Conversely, sink blocks read signals. An example is the scope block which is used to display graphically
one or more input signals (see figure1(d)).

Combinatorial blocks Combinatorial blocks combine one or more input signals and produce one (or
more) output signal(s) as the result of an instantaneous operation. The sample times of all input and output
signals are equal. Some examples of combinatorial blocks provided by Simulink are usual arithmetic
operators, relational operators, boolean operators, switches, saturation blocks, lookup tables (see figure
1(e)).

Unit delay A unit-delay block delays the input signal for one period of the (input) sample time. During
the first period, the unit-delay produces a user-specified constant signal value. This block may also perform
a sample time change between the input and output signals as follows: the sample time of the output can
be smaller than (i.e., strict integer divisor of) the sampletime of the input signal (see figure1(f)).

1Simulink allows as well for an offset, however for the sake of simplicity we always consider this offset equal to zero.

Verimag Research Report no TR-2010-16 3/15

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

Zero-order hold A zero-order hold block acts as a sampler. It holds the outputconstant for one period
of the (output) sample time with the latest value of the input. Also, this block may perform a sample time
change between input and output signals, as follows: the sample time of the output can be greater than (i.e.,
strict integer multiple of) the sample time of the input signal (see figure1(f)).

Transfer functions A transfer function block transforms an input signal according to a given discrete-
time transfer function. The sample time of the input and output signals are equal.

1/z
+

+

Scope

3

Constant

Out

Outport

In

Inport
port

Trigger

port
Enable

(b)

Pulse
Generator

Delay

Zero-Order
Hold

Switch

Add

(a) (c) (d) (f)(e)

Figure 1: Ports and basic atomic blocks in Simulink

2.3 Subsystems

Subsystems are user-defined assemblies constructed recursively from atomic blocks and other subsystems.
They are used to encapsulate some reusable functionality, that can be plugged (i.e., called) in a system
model or other subsystems.

The communication between subsystems and their calling environment is realized through data ports.
That is, ports are simply used to convey signals produced outside (resp. inside) towards (resp. outwards)
the subsystem.

In addition, there exists also some support for execution control of subsystems. Simulink offers two
basic mechanisms:trigger conditions, that can be used to activate triggered subsystems for execution and
enabling conditions, that are used to enable/disable the execution of a subsystem.

Triggered Subsystems Triggered subsystems execute instantaneously only when a trigger event occurs.
Trigger events are defined as the rising or falling (or both) of a signal defined outside the subsystem.

Triggered subsystems do not have explicit sample time i.e.,since their execution is triggered by data-
change events and is not directly time dependent. Practically, Simulink requires that all blocks within
triggered subsystems have inherited sample time. Consequently, triggered subsystems contain only atomic
blocks and triggered subsystems but not periodic (nor continuous time) subsystems.

Example 1 Figure 2 (left) shows a triggered subsystem. The signaly activates the execution of the trig-
gered subsystemB. When a trigger event occurs, the subsystem instantaneously updates its input valuea
and writes its outputb.

2
y

1/z

+
+

B

2

1

1

y

u

w
2a b

B

1
x

z

x

3
a

u
b 1

Figure 2: Example of triggered subsystem (left) and enabledsubsystem (right)

4/15 Verimag Research Report no TR-2010-16

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

Periodic and Periodic Enabled Subsystems Periodic and periodic enabled subsystems are time depen-
dent. Their execution i.e., reading/updating of input/output signals is done according to explicit sample
times defined from their inner blocks. Implicitly, all the sample times are observed on a unique global time
defined for the model, that means, execution is synchronizedwith respect to a global time.

In the case of periodic enabled subsystems, execution is constrained by the actual value of an external
signal. That is, the subsystem (i.e., its inner blocks) executes only if the enabling signal has a positive value
and stays unchanged otherwise.

Finally, Simulink does not impose any syntactical restrictions on the inner blocks of periodic sub-
systems. However, type checking and sample time checking rules are applied to ensure consistency of
computations e.g., the GCD-rule for combinatorial operators. For a detailed discussion see [9].

Example 2 Figure 2 (right) shows an enabled subsystem. The execution of the enabled subsystemB
depends on the value of the signalx. As long as the value ofx is positive the subsystem updates its inputa

and producesb.

3 Synchronous BIP

BIP [2] – Behavior, Interaction, Priority – is a component framework for modeling, analysis and implemen-
tation of heterogeneous real-time systems. BIP supports a component construction methodology based on
the assumption that components are obtained as the superposition of three layers: (1) behavior, expressed
in terms of extended automata, (2) interactions, describing the cooperation between actions of the behavior
and (3) priorities, rules specifying scheduling policies for interactions. Layering implies a clear separation
between behavior and architecture (connectors and priority rules).

At the lower level of BIP, atomic components contain behavior described by automata and extended
with arbitrary computations (expressed as C/C++ functions/methods) on arbitrary data structures (instances
of C/C++ data types). Automata transitions are triggered byports, that are, action names used later to
specify interactions. Moreover, ports may be associated with local data of atomic components. These
data are available for use (i.e., reading or writing) when interactions involving that port are executed.
Interactions are specified in connectors as sets of ports andhave also associated an arbitrary computation
involving port’s data (expressed as C/C++ functions/methods). They can be executed when all atomic
components involved are ready to interact i.e., every component reaches some control location enabling
a transition labeled by the required port. Whenever enabled,the execution of an interaction is done in
two steps: first, the interaction code is executed as an atomic step, then all involved components execute
(concurrently) the local computations of the interacting transitions. When several interactions are enabled
for execution, the choice is restricted according to priority rules.

Synchronous BIP [6] is a subset of BIP for modeling synchronous systems. Synchronous systems
are obtained as the composition of synchronous BIP components, defined and interconnected according
to specific restrictions. First, all synchronous BIP components in a system synchronize periodically on
a implicit syncinteraction. This interaction separates thesynchronous stepswithin the system. Second,
behavior of synchronous BIP components is described bymodal flow graphs(MFG). These graphs express
causal dependencies between ports (and their associated actions) within every synchronous step. That is,
in contrast to general BIP components where control flow is represented explicitly using control states and
transitions, control flow of synchronous BIP components is expressed implicitly through dependencies.
This representation is appropriate for synchronous behavior, which is inherently parallel and (loosely)
coordinated by clock and data dependencies.

There are three types of causal dependencies: strong, weak and conditional. For two portsp andq, we
say that:

• q strongly depends onp if the execution ofq must follow p. That meansp, q cannot be executed
independently, only the executionp · q is possible in a step.

• q weakly depends onp if the execution ofp may be followed byq. That is eitherp can be executed
alone or the sequencep · q.

Verimag Research Report no TR-2010-16 5/15

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

• q conditionally depends onp if both p andq can be executed,q must followp. Conditional depen-
dency requires that if bothp andq occur, only the sequencep · q is possible, otherwisep andq can
be executed independently.

Henceforth, we will use a simple graph-based representation for modal flow graphs. Vertices represent
the ports and the edges (arrows) represent dependencies. Weuse solid (resp. thin, resp. dotted) arrows to
denote strong (resp. weak, resp. conditional) dependencies.

Example 3 Figure 3 (left) shows the synchronous BIP component that samples an input value according
to a slower clockq. The incoming and the outgoing events are triggered by different activation eventsactp

and actq respectively. The strong dependencies between data eventsand activation events, enforce the
execution of theinx andouty at each activation ofactp andactq repsectively. The activation eventactq

depends weakly onactp and the outputouty depends conditionally on the input eventinx. Thus an input
v is always read through the eventinx and whenever required, an outputv is produced through the event
outy with the most recent value of the input.

actp

v

v

inx

outy

actq

v

v

inx

outy

actp

actq

actp actq actp actq

inx inx
outy outy

out≺ in

v v

Figure 3: Example

In [6] we have proven that for the subclass ofwell-triggeredmodal flow graphs we can guarantee
deadlock-freedom and confluence of execution using simple syntactic conditions. Consistency between
the three different types of dependencies is defined by the following constraints: (i) every port must have
a unique minimal strong cause and (ii) every port has exclusively either strong or weak causes. A modal
flow graph is calledwell-triggeredif it satisfies the above two properties.

A modal flow graph isdeadlock-freeif every synchronous step eventually terminates, that is, reaches
a configuration where the component can cycle, by synchronizing with all the others (and begin the next
step). For well-triggered modal flow graphs, deadlock-freedom is guaranteed if the guards of ports having
strong causes are trivially true. Intuitively, this means that, once started, every computation can be carried
out successfully up to a global synchronization point.

A modal flow graph isconfluentif the result of a step is deterministic, regardless the order chosen for
execution of ports. For well-triggered modal flow graphs, confluence is guaranteed by the non-interference
of actions attached to independent ports, that are, ports non-causally related. More precisely, non confluent
behavior can occur only if actions of independent ports are accessing the same data: different orders of
execution may lead to different results.

We have defined composition of synchronous components as a partial internal operation parameterized
by a set of interactions. Given a set of synchronous components, we obtain a product component by glueing
together the ports (and associated actions) interconnected by interactions.

Example 4 Figure 4 shows an example of a producer/consumer connected through asampling compo-
nent. Inputs are produced on a faster rate than outputs are consumed. The synchronous components are
composed by synchronizing the activation eventsacti andacto and the data eventsout and in. The sam-
pling component reads inputs each time the producer component produces outputs through the connection

6/15 Verimag Research Report no TR-2010-16

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

�
�
�
�

��
��
��
��

��
��
��
��
�
�
�
�

����

�
�
�
�

��

��

acti

y := x z := y

acti

out

acto

acto

out

out

acti

acto

actoacti

inin

y

out
y

y

x

x

z

in

zin

Figure 4: Example of composition of synchronous BIP components

y := x. When theacto event is triggered, the sampling component provides input values to the consumer
through the interactionz := y.

4 Translation

4.1 Overview

In [6], we provided a modular translation from the synchronous language Lustre [10] into well-triggered
components of Synchronous BIP. The proposed translation exhibits maximal parallelism, that is, it enforces
only the absolutely necessary dependencies between eventsneeded for correct execution. Moreover, we
have shown that the models obtained from Lustre are always deadlock-free and confluent.

The translation is from Simulink to synchronous BIP is also modular
and enjoys the same properties as the translation of Lustre.It associates with each Simulink blockB a

unique synchronous BIP componentMB . Moreover, basic Simulink blocks e.g., operators, are translated
into elementary (explicit) synchronous BIP components. Structured Simulink blocks e.g., subsystems,
are translated recursively as composition of the components associated to their contained blocks. The
composition is also defined structurally i.e., dataflow and activation links used within the subsystem are
translated to connectors.

Synchronous BIP components associated to Simulink blocks involve two categories of events, control
events and data events:

• control events, includingactp, · · · andtrigq, · · · denote respectivelyactivationevents andtriggering
events. These events represent pure input and output control signals. They are used to coordinate the
overall execution of modal flow graph behavior and correspond to control mechanisms provided by
Simulink e.g., sample times, triggering signals, enablingconditions, etc.

• data events, includinginx, · · · and outy, · · · denote respectivelyinput events andoutput events.
These events transport data values into and from the component. They are used to build the dataflow
links provided by Simulink.

Modal flow graphs obtained by translation enjoy important structural properties. First, they are well-
triggered [6].

Second, every data event is strongly dependent on exactly one of the activation events. Intuitively, this
means that input/output of data is explicitly controlled byactivation events. Third, all synchronous BIP
components obey the syntactic conditions for confluence anddeadlock-freedom defined in [6].

Finally, the translation of a Simulink modelB needs an additional synchronous componentClkB ,
which generates all activation eventsactk1 , actk2 , ... corresponding to periodic sample times used within
the model. The final result of the translation will be the composition ofMB andClkB with synchronization
on activation events.

Verimag Research Report no TR-2010-16 7/15

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

Within ClkB , the activation events have are produced using a global timereference and must obey the
corresponding ratio, respectivelyk1, k2, A concrete example of such a synchronous BIP component is
provided in figure??. The same construction can be easily generalized to any number of integer sample
times.

Example 5 Figure 5 shows the synchronous BIP component that produces different clock events for every
3, 4 and 6 units of time. The component uses a variablec to measure time and has five portstick, act3,
act4, act6 andreset. The porttick represents a global clock tick. This port is triggered everysynchronous
step and increases the value ofc by one. A clock event(actk)k=3,4,6 is then produced each time the period
k divides the current timec, denoted byk|c. The portreset is used to resetc every 12 time units, that is, the
least common multiple of all the periods. Let us notice that portsact3 andact4 are weakly dependent on the
tick port, and moreover portact6 is weakly dependent on portact3. The portreset depends conditionally
on the portsact4 and act6. The guards and the causal dependencies ensure that, in every synchronous
step, exactly one of the following sequences is executed:tick, tick · act3, tick · act4, tick · act3 · act6,
tick · ((act3 · act6)|act4) · reset (where| denote the shuffling of two sequences).

Figure 5 (right) shows the equivalent representation of the modal flow graph using a 1-safe Petri (in
every place there is at most one token at every time) net with priorities. The Petri net represents valid
execution for one synchronous step. The tokens already in places define the initial marking, that is, the
initial state of execution. All other places without tokensare final palces. At firing, tokens are removed
from initial places and added to final places. The behavior ofthe Petri net is restricted by the rule which
states thereset event has lower priority than all the other events.

[c = 12]
c = 0

[c = 12]
c = 0

act3 act4 act6act3 act4 act6

act3

act6

[3|c]

[6|c]

act4 [4|c]

reset

c++

c := 0

act3

act6

[3|c]

[6|c]

tick

act4 [4|c]

reset

c++

reset≺ tick act3 act4 act6

tick

tick

c := 0

tick

Figure 5: A multi-period clock generator described using modal flow graphs (left) and its semantics using
priority Petri nets (right)

We note that the translation is subject to several restrictions. Only models simulated by Simulink can
be translated to synchronous BIP. All models are simulated with the method called “solver:fixed stepand
mode: auto”. Moreover, for the sake of simplicity, we consider only sample times with no offset and
explicitly specified for all Simulink blocks.

4.2 Ports and Atomic Blocks

Simulink inports and outports are translated into elementary synchronous BIP components shown in figure
6 (a). These graphs represent a simple identity flow i.e., for aportx, at each activation eventactp one value
v of data comes in and goes out through the eventsinx and respectivelyoutx.

8/15 Verimag Research Report no TR-2010-16

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

op(v1, v2)

v1 v2

v

inx1 inx2

outy

actp

v, v1, v2

τ v :=

actp

voutx

v

actp

outx

inxv

v

v

v inx

actp

v

actp

inxu

outy v

op Tf()

u, v, s[], r[]

(d)(d)(c)(b)(a)

Figure 6: Elementary components for in/outports (a), sources (b), sinks (c) and combinatorial blocks (d)

Simulink sources and sink blocks are translated into elementary modal flow graphs as shown in figure
6 (b). At each activation eventactp, these graphs produce (respectively consume) one data valuev through
the output eventoutx (respectively input eventinx).

Combinatorial blocks are translated as shown in figure6 (c). At each activation eventactp, actual data
valuesv1, v2 are received on all input eventsinx1 , inx2 and then, the output valuev is computed and sent
on the output portouty.

Transfer functions are translated as shown in figure6 (right). For a given transfer function b0z0
+...+bqz−q

1+a1z−1+...+apz−p

the computation is realized by the functionTf() as follows:
r[0] := u

s[0] :=
∑q

j=0
bjr[j] −

∑p
i=1

ais[i]

r[j] := r[j − 1] for all j = q down to1
s[i] := s[i − 1] for all i = p down to1

v := s[0]
wheres andr are buffers for the input/output values.
Figure 7 shows the synchronous BIP components corresponding to unit-delay blocks (a) and zero-

order-hold blocks (b) of Simulink.

actp

inx

outy

v

v

v

actp

inx

outy

v

v

v

v

v

v

inx

outy

actp

actq

v1 inx outy

actp

actq

v1, v2

v2 := v1

(b) Zero-Order Hold

v2

τ

(a) Unit-Delay

Figure 7: Elementary components for unit-delay and zero-order-hold

Since these blocks can be used in Simulink to change the sample time of the incoming signal we
provide two alternative translations. The first corresponds to identical (unchanged) sample time. In this
case, the modal flow graphs are rooted by a unique activation event actp which triggers both the input

Verimag Research Report no TR-2010-16 9/15

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

inx and the outputouty events. The second corresponds to different sample times for the incoming and
outgoing signals. In this case, the inputinx and outputouty events are triggered by different activation
events respectively,actp andactq. Moreover, the two activation events are also weakly dependent in some
order, and this dependency enforces the Simulink restriction that unit-delay (respectively zero-order-hold)
elements can be used to increase (respectively decrease) the sample time of the signal. Furthermore, input
and output events are conditionally dependent on each other, in order to represent the expected behavior
i.e., unit-delay is delaying any input for at least one (input) sample time period.

4.3 Subsystems

4.3.1 Triggered Subsystems

Triggered subsystems are translated into synchronous BIP components with a unique activation eventact⊥

and several input and output events, one for every inport respectively outport defined within the subsystem.
The general interface is illustrated in figure8 (left).

act⊥

inx2

inxi

inx1

inx2

inxi

inx1

actp1 actp2 actpn

outyj

outy1
outy1

outyj

Figure 8: The general interface in components of triggered subsystem (left) and enabled subsystem (right)

We know that, according to Simulink restrictions, all the atomic blocks used within a triggered subsys-
tem have inherited sample time. Moreover, a triggered subsystem can only contain triggered subsystems
but not periodic or enabled subsystems. Hence, the only possible connections within a triggered subsystem
are dataflow connections which relate outports to inports ofdifferent blocks and triggering connections
which activate inner triggered subsystems.

As mentioned earlier, the translation of subsystems is structural. The synchronous BIP component
corresponding to a triggered subsystem is obtained by composition of its constituent components. The
composition i.e, the connectors, reflects the data-flow and activation links used within the subsystem.

More precisely, the translation proceeds as follows.
First, it collects the synchronous BIP components of all of the constituent blocks. We distinguish the

following categories:

• in/outports - ports are translated as shown in the previous section. Components associated with ports
play a particular role in the definition of the interface of the resulting (composed) component. Input
(respectively output) events defined by the components associated to inports (respectively outports)
will not be connected by composition within the subsystem and become part of the interface.

• atomic blocks are translated as shown in the previous section. Let us remark that all these blocks
will lead to components with a unique activation eventact⊥. In particular, this is also the case for
unit-delay and zero-order-hold elements since they are activated by the unique sample time of the
subsystem;

• triggered subsystems - these subsystems are translated recursively, following the same procedure.
We simply rely on their interface to connect them.

Second, the components are composed by synchronization according to dataflow and triggering con-
nections in Simulink. The different types of connections and their translation are illustrated in figure9
(left). We distinguish basically three cases:

10/15 Verimag Research Report no TR-2010-16

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

A x y B

A x y out

A
x

in

STA

TG

B

Simulink Synchronous BIP

B

MA

in
MB

iny
act⊥ act⊥

outx
MA

MB

act⊥ act⊥

outx iny

MB

MA

act⊥

act⊥

outx
act⊥

trig

actoacti

in
STA

EC
trigkn

A x y
B

A
x

B

...

Simulink Synchronous BIP

MA

actko

outx
MB

iny
actki

MA
outx

actko

actiacto

out

actknact actk1
...

...trigk1

MB

actk1 actkn

in

Figure 9: Translation of connections in triggered subsystems (left) and in enabled subsystem (right)

• dataflow connection between blocks operating on the same sample time e.g., outportx of blockA is
connected to inporty of blockB as shown in figure9 (left-top). In this case, the dataflow connection
is translated into a strong synchronization between the output eventoutx of MA and input eventiny

of MB . Moreover, the activation events ofMA andMB are also strongly synchronized.

• dataflow connection between blocks operating on different sample times e.g., outportx of block A

is connected to inporty of block B which is triggered by some other event, as shown in figure9
(left-mid). In this case, the connection is realized by passing through asample-time-adapter(STA)
component. This component is presented in detail in figure10 (left) and allows the correct transfer
of data between a producer and a consumer activated by different events. Let us notice that the two
activation events of the adapter component are indeed synchronized with the activation events of
respectivelyMA andMB .

vout

acti

v in

acto

v

act

inx

actk1

v

trigk1 [v]

actkn

trigkn [v]

v

...

...

v, vpre

trig

v in

[rising]

τ vpre := v

act

Figure 10: Additional components for thesample-time-adapter(left), the trigger-generator(middle) and
theenable-generator(right)

• triggering connection i.e., activation of an inner triggered subsystem e.g., outportx of block A is
used to trigger the blockB as shown in figure9 (left-bottom). In this case, the connection is realized
by passing through atrigger-generator(TG) component. This component is presented in figure10
(middle). It produces a triggering eventtrig whenever some condition on the input signalx holds.
In Simulink this condition can be eitherrising (value changed from a negative to a positive value,
grising ≡ vpre ≤ 0, vpre < v, 0 ≤ v), falling (conversely, value changed from a positive to a
negative value) oreither(rising or falling).

Finally, all theact⊥ events which are not explicitly synchronized with atrig event (i.e., occurring at
top level) are synchronized and exported as theact⊥ event of the composed synchronous BIP component.

Verimag Research Report no TR-2010-16 11/15

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

Example 6 Figure 11 (left) illustrates the complete translation of the triggered subsystem shown in figure
2 (left). The triggered subsystemMB is strongly synchronized with thetrig event produced by the trigger
generator TG. STAs are connected to the inputs and outputs oftheMB and are strongly synchronized with
the activation events,trig andact⊥. The exported activation eventact⊥ triggers all the activation events
which are not synchronized with thetrig event.

MBz

y

x +

w

u

STA STA

TG

MB

ECx

y 1/z u
STASTA

Figure 11: Complete translation of the triggered subsystemshown in figure2 (left) and of the enabled
subsystem of figure2 (right)

4.3.2 Periodic and Enabled Subsystems

Periodic and enabled subsystems are translated to synchronous BIP components with multiple activation
eventsactk1 , · · · , actkn , each such event corresponding to a fixed sample timeki ∈ R used explicitly
within the subsystem (or recursively, in some of its sub-subsystems). Also, as for triggered subsystems,
the associated component has multiple input and output events, one for every inport respectively outport
defined within the subsystem. The general interface is shownin figure8 (right).

The construction of the component associated to a periodic subsystem (or enabled) subsystem is also
structural and incremental. It extends the method defined previously for triggered subsystems. As before,
first it collects the components for all the constituent blocks, then it composes them according to dataflow,
triggering and enabling connections defined in Simulink.

The translation of the new categories of Simulink connections occurring in the context of a periodic
subsystem is illustrated in figure??. We distinguish two new cases, as follows:

• dataflow connection between subsystems having different enabling conditions e.g., outportx of A

connected to inputy of B as illustrated in figure9 (right-top). In this case, the connection is realized
by passing through a sample-time-adapter component in order to accommodate for the possible dif-
ferent activation times for input and output events. Let us remark that only the activation eventsactko

andactki triggering respectively the eventsoutx in MA andiny in MB have to be synchronized with
the adapter, whereas all otheract events remain unconstrained.

• enabling condition i.e., conditional execution of the subsystem depending on some condition e.g.,
outportx of A defines the enabling condition forB as illustrated in figure9 (right-bottom). Such a
connection requires an additionalenabling-condition(EC) component, presented in detail in figure
10 (right).

Intuitively, the EC component filters out any (periodic) activation eventactki occurring when the
input signalx is false (or negative). Otherwise, it propagates the activation event renamed astrigki .

Any other categories of connections are handled as for triggered subsystems.
Finally, all activation eventsactki which correspond to the same sample timeki and which are not

explicitly synchronized with atrigki event (i.e., occurring at top level and not filtered by some enabling
condition) are strongly synchronized and exported as theactki event on the interface of the composed
synchronous BIP component.

Example 7 Figure11(right) illustrates the complete translation of the enabled subsystem shown in figure
2 (right). We consider that the delay (1/z), the outputy and one of the blocks inside the enabled subsystem

12/15 Verimag Research Report no TR-2010-16

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

are executed on different sample times. Activation events are strongly synchronized according to their
sample times and exported on the interface of the global MFG.The enabling condition is producing three
activation events one for each sample time associated to theenabled subsystem.

5 Experimental work

The translation has been implemented in the Simulink2BIP tool illustrated in figure12. The tool Simulink2BIP
parses MATLAB/Simulink model files (.mdl), and produces synchronous BIP models (.bip). The gen-
erated models reuse a (hand-written) predefined component library of atomic components and connectors
(simulink.bip). This library contains the most common atomic blocks (sources, combinatorial opera-
tors, memories, transfer functions, etc) as well as the mostuseful connectors (for in/out data transfer and for
control activation). Synchronous BIP models can be furtherused either to generate standalone C++ code
(using the toolBIP2C) or as parts of larger BIP models. In the first case, the C++ code can be compiled
and executed as such i.e., no middleware is needed for execution.

.c g++ .exe

.mdl

.bip

BIP2C

Simulink.bip
uses

Simulink2BIP

Figure 12: The tool architecture

Table13 summarizes experimental results on several Simulink models. We have discretized and trans-
lated several demo examples available in MATLAB/Simulink including theAnti-lock Brakingsystem,
the Conditionally executed subsystem, the Enabled subsystem demonstrationand theThermal model of
a house. Also, we have translated the examples provided in [9] i.e., theSteering Wheelapplication and the
Big ABC. Finally, we have considered several artificial benchmarks, respectively the16-bit counter, 64-bit
counter. The table provides information about the complexity of these models. #A is the number of atomic
blocks, #P the number of periodic blocks, #T the number of triggered subsystems and #E the number of
enabled subsystems. As illustrated in the table, our translation tool actually covers a significant number of
Simulink concepts.

For all these examples the translation time into synchronous BIP is negligible and therefore it is not
reported. Moreover, in all cases, the simulation traces produced respectively by Simulink in simulation
mode and by BIP are almost identical. We have observed few small differences for some examples, which
are probably due to a different representation of floating-point numbers in Simulink and in BIP.

Finally, for all examples we have produced executable code using respectively the Real-Time Workshop
and the BIP code generator. Table13 reports the execution times measured using the two implementations
(i.e., columnstrtw for Real-Time Workshop,tbip for BIP) for different numbers of iterationsn. We observe
that the BIP generated code slightly outperforms the Real-Time Workshop in almost all the considered ex-
amples. Nevertheless, we do not claim that BIP outperforms the Real-Time Workshop in general, because
our translation and code generation does not yet cover all the models that can be actually handled by the
Real-Time Workshop.

6 Conclusion

We present a translation from the discrete-time fragment ofSimulink into synchronous BIP. The translation
is structural and incremental. Each Simulink block is associated to a unique synchronous BIP component.

Verimag Research Report no TR-2010-16 13/15

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

Ex. #A #P #T #E n trtw tbip

16-bit 97 0 16 0 106 1,190s 0,258s
counter 107 11,760s 2,586s
64-bit 365 0 60 0 106 3,330s 1,863

counter 107 59,283s 25,953s
Anti-lock 39 2 0 0 104 0,017s 0,016s
breaking 106 0,317s 1,273s
Steering 120 15 1 0 106 1,863s 3,330s
Wheel 107 7,221s 31,899s
Big 23 2 0 0 106 0,323 0,151
ABC 107 3,171 1,386
Multi 14 0 0 1 106 0,466s 0,222s
Period 107 4,313s 2,097s

Enabled 24 0 0 2 106 0,382s 0,196s
Subsystem 107 3,201s 1,756s
Thermal 45 3 0 2 106 0,562s 0,751s

model house 107 5,215s 7,565s

Figure 13: Experimental results

Dataflow and activation links are translated to BIP connectors. The synchronous BIP components obtained
by the translation of Simulink models have several properties including confluence and deadlock-freedom.
We provide an implementation of the translation in a tool called Simulink2BIP. Experiments show that the
generated BIP models lead to implementations that are comparable to the generated code by Real-Time
Workshop of MATLAB.

Although we cover a significant part of the discrete-time fragment of Simulink, our translation is not
complete and can be rapidly extended in several directions.First of all, we have considered only uni-
dimensional signals, that is, we do not handle mux/demux operators or any othern-dimensional combina-
torial operators. Second, we have considered only (perfect) periodic sample times i.e., we do not handle
sample times with a non-zero initial offset. Third, for periodic enabled subsystems we have translated only
the held policy, and not yet theresetpolicy. That is, inheld mode, the output values are kept constant
as long as the block is disabled, whereas inresetmode, the outputs as well as the status of some internal
blocks (such as integrators) have to be reset.

On a longer term perspective, we would like to extend our translation to the full discrete-time fragment.
This must include all of the conditionally executed subsystems, like the triggered and enabled subsystems,
the function-call subsystems as well as user defined functions blocks. Finally, we plan to define a similar
translation for discrete-time Stateflow.

14/15 Verimag Research Report no TR-2010-16

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis

References

[1] http://www.mathworks.com/products:simulink/. 1, 2.1

[2] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time systems in BIP,” inProceed-
ings of SEFM’06, pp. 3–12, invited talk.1, 3

[3] S. Bliudze and J. Sifakis, “The algebra of connectors—structuring interaction in BIP,”IEEE Trans-
actions on Computers, vol. 57, no. 10, pp. 1315–1330, 2008.1

[4] A. Basu, L. Mounier, M. Poulhìes, J. Pulou, and J. Sifakis, “Using BIP for Modeling and Verification
of Networked Systems – A Case Study on TinyOS-based Networks,” in Proceedings of NCA’07,
2007, pp. 257–260.1

[5] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and T.-H. Nguyen, “Toward a more dependable
software architecture for autonomous robots,”Special issue on Software Engineering for Robotics of
the IEEE Robotics and Automation Magazine, vol. 16, no. 1, pp. 67–77, March 2009.1

[6] M. D. Bozga, V. Sfyrla, and J. Sifakis, “Modeling synchronous systems in bip,” inEMSOFT ’09:
Proceedings of the seventh ACM international conference onEmbedded software. New York, NY,
USA: ACM, 2009, pp. 77–86.1, 3, 3, 4.1

[7] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation of simulink/stateflow models to hybrid
automata using graph transformations,” inInternational Workshop on Graph Transformation and
Visual Modeling Techniques, 2004, p. 2004.1

[8] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi, “Defining and translating a ”safe”
subset of simulink/stateflow into lustre,” inEMSOFT ’04: Proceedings of the 4th ACM international
conference on Embedded software. New York, NY, USA: ACM, 2004, pp. 259–268.1

[9] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-time simulink to lustre,”ACM
Trans. Embed. Comput. Syst., vol. 4, no. 4, pp. 779–818, 2005.1, 2.3, 5

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous dataflow programming lan-
guage Lustre,”Proceedings of IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.1, 4.1

[11] http://www-verimag.imag.fr/ss2lus.html/. 1

[12] N. Marian and S. Top, “Integration of simulink models with component-based software models,”
Advances in Electrical and Computer Engineering, 2008.1

[13] B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for translating simulink models into input language
of a model checker,” inICFEM, 2006, pp. 606–620.1

Verimag Research Report no TR-2010-16 15/15

	Introduction
	MATLAB/Simulink
	Signals
	Ports and Atomic Blocks
	Subsystems

	Synchronous BIP
	Translation
	Overview
	Ports and Atomic Blocks
	Subsystems
	Triggered Subsystems
	Periodic and Enabled Subsystems

	Experimental work
	Conclusion

