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Abstract

Composition of components by means of multi-party interactions allows specifying intended
global properties in a very abstract manner useful in many application domains. Composition
by multi-party interactions allows guaranteeing most safety properties “by construction”, but
deadlock freedom must generally be checked for. In this paper, we propose an algorithm that
— if necessary — constructs a memoryless orchestrator given by a set of priority rules which
enforce deadlock freedom.

In the context of distributed systems, such as webservices, the resulting prioritized system
must later be executed in a distributed fashion. We present here a new algorithm that allows
executing systems with (binary) interactions and priorities. We argue that this algorithm is ef-
ficient, where efficiency is measured by the mean/maximal number of communications needed
between the enabledness and the execution of an action. We have implemented this algorithm
and compared it to an implementation of an existing algorithm (α-core). Finally, we motivate
the usage of this kind of specification for webservices and compare it to other works.
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1 Introduction

Our aim is to specify web services at a high level of abstraction as a composition of a set of service and
client processes in order to be able to study global properties of such services, and then to generate a
distributed implementation.

Usual specification languages used in that domain are based on (binary) interactions such as (syn-
chronous or asynchronous) messages and method calls — where there may exist predefined exception
mechanisms triggered on timeout or negative acknowledge.

We argue here that such services as well as the clients may alternatively be specified in terms of inter-
actions through high-level multi-party synchronizations and global priorities. Often, using these concepts
leads to much more concise specifications which are more adequate to provide an understanding of the
global behavior, and which are also more adequate for the verification of global properties (see Section 3).
We focus here in particular on deadlock-freedom, which in this application domain can be naturally used
to express compliance [15], that is, whether a given set of services and clients can interact with each other
so that in the end all clients are satisfied. On the down-side, the automatic construction of a fully dis-
tributed implementation from such a high-level specification is more complex than from usual webservice
specifications, expressed in languages such as WSDL.

As an example, suppose some complex web service in which a subset of the involved service compo-
nents Pi have to agree on a value v which should be chosen depending on the set of local variables xi,
such as max{xi} or sum{xi}. In a specification formalism that explicitly distinguishes inputs and outputs
and allows data flow only from the unique sender to possibly a set of receivers, one needs to explicitly
specify some protocol – that is a set of possible sequences of interactions – to determine this value from
n local values and to make it available to all components. The resulting specification is quite close to a
distributed implemention and requires at least a sequence of n interactions to achieve the goal — in the
case that broadcast interactions are allowed. In the case that some processes may be not available, and
finally an alternative interaction must be selected, the protocol to be specified is much more complex.

We propose here to specify this situation by means of a unique synchronization of the required Pi
which realizes the acquisition for the global value by each Pi. If there are possible alternative scenarios
to be considered (due to non availability of some components, ...) we simply specify a set of alternative
synchronizations — which may involve subsets of the Pi. Indeed, such a specification does not naturally
suggest a particular distributed implementation.

Specifying priorities amongst a set of alternative synchronizations is interesting in that context. For
example, it is likely that amongst a set of enabled synchronizations amongst subsets of Pi, one will prefer
those involving larger subsets. Another typical example of the use of priorities are processes which for
different activities require one or more resources amongst a shared pool of resources. Figure 1 shows
the example of a client requesting through a travel agent a combined flight and hotel reservation which
is represented by a rendez-vous between the agency and the set of requested reservations. A client may
envisage several alternative reservation sets — and a preference amongst them in the case that more than
one alternative is actually available. Also, there may be several clients competing for the same reservations
through multiple agencies and there may exist preferences amongst agencies or clients

Again, specifying preferences in the usual formalisms for webservices means integrating the prefer-
ences in the overall (multi-step) protocol. In quite some cases, taking into account priorities will even
simplify (determinise) the protocol, but the ratio behind this simplification (the priorities motivating cer-
tain choices) will not be visible any more.
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Figure 1: A system with multi-party interaction

There exist several abstract frameworks allowing to represent the specifications we have in mind, such
as process algebras with priorities or prioritized Petrinets. We present here our results for BIP [10, 5]
which is explicitly component-based, and even more expressive1. In BIP, clients and services are specified
by components, synchronizations by connectors defining an interaction model and priorities are explicitly
expressed by a set of preference constraints between synchronizations which must define a partial order.
Also, there exist tools for checking deadlock freedom for BIP specifications such as D-Finder [6] and some
algorithms for generating code for centralized and semi-distributed executions.

In this paper, we propose a method for deriving a distributed implementation from high-level spec-
ifications expressed in an abstract version of BIP2 where components interact by exchanging messages
only.

In a first step, in Section 3, instead of systematically asking the user to rework the specification when a
reachable deadlock is detected, we propose to restrict the possible executions to those avoiding deadlock by
means of a priority order. Why do we choose priorities as a means for avoiding deadlocks? One reason is
that we suppose that specifications explicitly specify a (close to) maximal degree of concurrency and may
therefore have a high degree of non-determinism. Adding buffers and reordering messages as proposed
in [21] has the inconvenient of being tied to a lower level of abstraction — at which state explosion is a
big issue for verification — and moreover, it is not adequate when interaction is by synchronization and
each process already exhibits its maximal potential of concurrency. But restricting non determinism may
be very useful, and priorities are an interesting means for doing so.

Another reason is that, when it is guaranteed that prioritized executions are deadlock free, a set of prior-
ity rules can be seen as a memoryless controller, that is, deciding which next transition is possible requires
neither history nor look-ahead. In fact, the construction of the priority rules does eliminate statically the
look-ahead required to avoid deadlocks without additional memory, thus keeping the specification small at
that level of abstraction. Note also that priorities are convenient in the sense that by imposing priorities, it
is guaranteed that no new deadlocks are introduced.

In a second step, in Section 4, we transform such a global specification into a distributed one where
the identified processes communicate with each other by message passing — and we suppose that the
underlying protocol layer ensures reliable and order preserving communication. Several protocols have
been proposed in the past to achieve this goal for Petrinets and other formalisms where interaction is
rendez-vous like. But when there are in addition global priorities to be respected, not many solutions exist.
In [4, 22] solutions for distributing prioritized Petrinets have been proposed, which are both based on the
use of knowledge to guarantee that in every global state at least one process knows that it can initiate some

1Especially when we consider data exchange; in addition BIP has an interesting concept of hierarchical connectors which we
however do not need here

2that is without variables and value exchanges, which, as long as data size is small will not add significant complexity to the
algorithm as it can be easily piggybacked on protocol messages.
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interaction obeying the global priority rules, that is, the methods of these papers propose to construct a
distributed disjunctive controller (see also Section 5).

Note that both solutions rely on an algorithm such α-core [16] for achieving a distributed execution of
the constructed extended Petrinet and both methods may ignore many legal interactions just because in no
state there is a process with enough knowledge to initiate them. And as long as in every reachable global
state there is at least one transition that can be triggered, this is considered as sufficient.

We propose here an alternative method for distributing systems with priorities which consists in merg-
ing the priority and the α-core layer, and we have several reasons for it.

• In the domain of webservices, eliminating alternatives because of lack of knowledge is eliminating
them for bad reasons. Indeed, we still want to be able to consider all alternatives that a client may
envisage. Thus, like in [20, 19], we are interested in a distributed systems that allows executing any
legal transition, not only those for which there happens to preexist sufficient knowledge for taking a
local decision.

• In [22] there is an important redundancy between the messages needed for the “upper layer” to
check the enabledness of the transitions in which the process may participate in the next step, and
the messages of the lower layer, that is, α-core algorithm.

The algorithms and the method presented are not directly tied to their application to webservices. Also
the BIP language — even its full version with data — is not meant to be used by web service designers.
We aim here rather at discussing some concepts for specifying webservices which we consider interesting,
and we provide some relevant algorithms which would allow deploying real languages which include these
concepts. Related approaches and algorithms in the context of webservices are discussed in Section 5.

The paper is organized as follows: Section 2 introduces the concepts of BIP on which we rely in this
paper. Section 3 discusses the use and the construct of priorities as memoryless controllers for avoiding
deadlocks. We discuss there also how we handle “confusion”, a well known obstacle for the distribution
of a global system. Section 4 presents the main algorithm that transforms a system (with binary synchro-
nizations) and its memoryless controller into a distributed protocol. We compare our implementation of
this algorithm to an implementation of α-core and we also propose an extension for arbitrary multi-party
interactions. Section 5 discusses related work and Section 6 concludes and hints at worthwile future devel-
opments.

2 Preliminaries

In [10, 5, 7], BIP, a language and framework for component-based design and verification has been in-
troduced. In BIP, system specification separately defines a set of component behaviors, a composition
structure defined by an interaction model defined by a set of connectors, and a priority given in the form
of a preorder amongst interactions. BIP is close to prioritized Petrinets or to process algebras such as CCS
[13] or CSP [11], but as opposed to them, BIP is explicitly component-based with a strict notion of locality
which allows encapsulation. Also, BIP introduces a notion of hierarchical connector and powerful concepts
for the definition of data transfer.

We introduce here a simplified abstract version of BIP without hierarchical connectors and without data
transfer. Also, we define composition simply by means of a set of interactions, and omit the definition of
connectors which allow grouping interactions, and for which special rules apply.

Definition 2.1 (Atomic component). An atomic component is a Labeled Transition System (LTS) repre-
sented by a tuple (Q, q0,P, δ) where Q is a set of states, q0 ∈ Q is an initial state, P is a set of labels and
δ ⊆ Q× P ×Q is a transition relation.

As usually, q1
a−→ q2 denotes (q1, a, q2) ∈ δ and q1

a−→ denotes ∃q′ ∈ Q, q a−→ q′.
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Interaction Given a set of n atomic components Ki = (Qi, q0i ,Pi, δi) for i ∈ [1, n], in order to build
a component representing their composition, we require their sets of ports to be pairwise disjoint, i.e. for
any two i 6= j from [1, n], Pi ∩ Pj = ∅. The set of ports of the composed system is then defined as
P =

⋃n
i=1 Pi. The composition is defined by a set of interactions where an interaction a ⊆ P is a set of

ports of the composition. It represents how components are allowed to interact with each other. Note that
interactions only specify through which ports components may interact with each other. Without loss of
generality, and for simplifying the notations, we denote interactions in the following by a = {pi}i∈I where
I ⊆ [1, n] and ∀i ∈ I, pi ∈ Pi.

Definition 2.2 (Composition of BIP components). The composition of n components Ki as above with
γ ⊆ 2P is denoted byK = γ(K1, ... ,Kn) and it is defined as an LTS (Q, q0,P, δ) such thatQ =

∏n
i=1Qi,

q0 = (q01 , ... , q
0
n), P =

⋃n
i=1 Pi and δ is the least set of transitions satisfying the rule:

a = {pi}i∈I , ∀i ∈ I. q1i
pi−→ q2i ∧ ∀i 6∈ I. q1i = q2i

(q11 , ... , q1n) a−→ (q21 , ... , q2n)

This rule states that γ(K1, ... ,Kn) may execute an interaction a ∈ γ iff for each port pi ∈ a, the
corresponding atomic componentKi can execute the transition labeled with pi — the states of components
that do not participate in the interaction remain unchanged. In the following, what we call system is an LTS
representing the composition of a set of atomic components.

Priorities A component system may be non-deterministic, that is, several interactions may be enabled
in each (global) state which may be present in individual components or introduced by composition. We
allow restricting non-determinism by means of priorities, specifying which of the interactions should be
preferred over which others if they are enabled.

Definition 2.3 (Priority order). A priority order denoted by < is a strict partial order on the set of interac-
tions I . We denote that an interaction a has lower priority than b by a < b.

Definition 2.4 (System controlled by a priority order). A system S = (Q, q0,P, δ) controlled by a priority
order < defines an LTS (Q, q0,P, δ<) where δ< is defined by the following rule:

q1
a−→ q2 ∧ @b ∈ γ. (a < b ∧ q1

b−→)

q1
a−→< q2

Thus, only interactions that are locally enabled in all concerned components, and furthermore not
inhibited by an interaction with higher priority, may be fired. An interesting property of priorities is the
well-known fact that they allow restricting the behavior of a system by guaranteeing that no new deadlocks
are introduced by this restriction. This is the reason why we want to use priorities to “control” systems.
We denote the resulting controlled system by (S,<).

In the remainder of this paper, we use the term process rather than component. In addition, we explicitly
name interactions rather than ports. That is, as usually, I is a set of names or labels and the alphabet Pi
represents the set of interactions in I in which processesKi may and must participate. This leads sometimes
to a bit more cumbersome specifications, as it requires “duplicating” ports that participate in more than one
interaction, but it simplifies substantially the presentation of the results.

The composition rule above can therefore be simplified to the following one:

∀i s.t. a ∈ Pi. q1i
a−→ q2i ∧ ∀i s.t. a 6∈ Pi. q1i = q2i

(q11 , ... , q1n) a−→ (q21 , ... , q2n)

This rule says that the composition may execute interaction a iff all the processes having a in their alphabet
Pi can execute a transition labeled by a. This defines a strong synchronization.
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σ ‖ ρ =

ba

σ = ρ =

a

c

bba

Figure 2: An example where reducing non-determinism eliminates a deadlock.

3 Controlling systems with priorities
C is controller for a system S and a property ϕ if each global state of S, C may forbid a subset of the
interactions of S and by doing so guarantees ϕ. We propose in this section to use priorities to control
systems in order to avoid deadlocks of the original system.

We distinguish between controllable and non-controllable non-determinism. The fact that in a state
several transitions with different labels may be enabled is considered as controllable non-determinism,
because a controller may choose which one may or may not be taken. However, when in some state
there are two or more transitions enabled with the same label, this corresponds to non-controllable non-
determinism, as an interaction-based controller cannot choose the state after the interaction takes place.
Internal actions τ are another kind of non-controllable non-determinism. For the sake of readability and
without loss of generality, we do not represent them in this paper3.

We propose to use priorities (see Definition 2.3) to arbitrate between simultaneously enabled interac-
tions so as to avoid undesired states. These priorities are static in the sense that they do not depend on the
state of the system. On the other hand, dynamic priorities depending on the state of the system could be
useful. In fact, dynamic priorities always allow controlling S for deadlock freedom. They allow to state
that a < b in state q1 and a > b in another state q2. Nevertheless, handling dynamic priorities may require
much more precise knowledge about the global state of the system, which can only be approximated in a
distributed setting [9], and which could require a too strong degree of control of concurrency to be inter-
esting in practice. Now, the use of some dynamic priorities depending on (almost) local conditions could
be an interesting tradeoff which we do not further explore here.

We consider only static priorities, as a trade-off between the need for some global constraints and the
risk of building a specification for which no useful distributed implementation is derived.

A process may possess some particular states called final states (represented in grey in the figures of
this paper). We consider as problematics only states which are not final and in which the system cannot
continue. Our goal is to avoid these deadlock states by reducing non-determinism.

Definition 3.1 (Final state, deadlock state). Let be a system S = (Q, q0,P, δ) built as a composition of n
processes Pi = (Qi, q0i ,Pi, δi) for i ∈ [1, n]. Let q = (q1, ... , qn) ∈ Q be a state of S.

• q is a final state of S iff ∀ qi, i ∈ {1...n} s.t. q = (q1, ... , qi, ... , qn), qi a final state of Pi

• q is a deadlock state of S iff q is not final and @ q′ ∈ Q, @a ∈ P s.t. q a−→ q′

The system is deadlock free iff it has no deadlock state.

Based on this definition of deadlock freedom, the composition of processes ρ and σ which are both
defined on the set of interactions {a, b, c} and depicted in Figure 2 is not deadlock free. Initially, both
processes can interact either on a or on b, but if they interact on b, then σ expects an interaction on c before

3τ -transitions can be transformed into a set of transitions with the same label, and vice versa.
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terminating in a final state, while ρ has already terminated. However, by reducing the non-determinism of
σ ‖ ρ and by choosing a rather than b it is possible to eliminate this deadlock. We can express this global
choice by defining b to have lower priority than a.

The problem we want to solve is therefore the following one: given a system S, determine whether
there exists a priority order < such that (S,<) is deadlock-free. This priority order defines a memoryless
controller for S.

Lemma 1 (priorities as memoryless controllers). A priority order< is a memoryless controller of a system
S for deadlock freedom if (S,<) is deadlock free.

Indeed, if (S,<) is deadlock free, < defines a controller for S as < defines deadlock free restriction
of S. In addition, the controller defined by < is indeed memoryless, as in each state the set of interactions
that are enabled in (S,<) depend only on (an approximation of) the current global state of the system, and
neither of the past nor the possible futures.

We now introduce notations allowing to distinguish between the enabledness of a transition locally in
some process, in the uncontrolled system S and in the controlled system (S,<)

Definition 3.2 (locally ready, globally ready, enabled interaction). Let be a system S = (Q, q0,P, δ) built
as a composition of n processes Pi = (Qi, q0i ,Pi, δi) with i ∈ [1, n]. Let < be a priority order on P .
Consider a global state q ∈ Q such that q = (q1, ... , qn) and an interaction a ∈ P .

• For i such that a ∈ Pi, a is locally ready in qi iff ∃ q′i ∈ Qi, s.t. qi
a−→ q′i

• a is globally ready in q iff ∃q′ ∈ Q. q a−→S q
′

• a is enabled in q iff a is globally ready in q and no interaction with higher priority is also globally
ready in q, that is, iff q a−→(S,<).

Note that only enabledness is related to priorities, and enabledness of a implies global readiness which
in turn implies local readiness in all processes which have a in their alphabet.

An example based on dining philosophers We consider a variant of the dining philosophers problem
inspired from [15]. Philosophers are seen as processes who provide thoughts if they are given two forks.
These forks represent a shared resource which is represented by a process providing forks and expecting
to get thoughts in return. We consider here two philosophers and a resource with two forks. A deadlock
arises if both philosophers have a fork and wait forever for a second one.

This deadlock can be avoided easily by always giving the highest priority to the request that is the
closest to completion. This is a classic method for managing resources. The priority order that is needed
here is {forkα1 < forkβ2 , forkβ1 < forkα2 }. For readability reasons, in Figure 3, the interaction forkα,β1,2 in
the behavior of the process Forks corresponds to the interactions {forkα1 , forkα2 , forkβ1 , forkβ2} of the
two philosophers.

Let us note here that in this simple example priorities are local, in the sense that for each priority a < b,
there exists a process involved in both a and b — here, the pool of forks. However, in a more complex
setting where resources are distributed, the same methodology is still valid and requires global priorities.

3.1 Synthesis of priorities
We propose in this section an algorithm that computes a priority order on the set of interactions of a system
S that defines a memoryless controller for S. The algorithm first detects deadlocks. Then, if possible, a set
of priority rules is computed which make these deadlock states unreachable by inhibiting some transitions
(a transition is inhibited if it is ready but not enabled) on each path to deadlock. The algorithm provides
a result that is a priority order representing a controller for deadlock freedom if such priority exists. If
priorities fail to be usable, the specification may be revised or a more classical (memoryless or memoryful)
controller may be constructed using classical methods for controller synthesis (such as [18]) which may be
much more expensive, and as for dynamic priorities may lead to specifications that cannot reasonably be
distributed. Before presenting the full algorithm, we illustrate how it works — or fails — on very simple
examples.
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Figure 3: A solution to the dining philosophers problem.

A simple system controllable by priorities Consider the processes σ and ρ depicted in Figure 4 which
are both defined on {a, b, c, d}. A deadlock is reached in system defined by σ and ρ if initially interaction
a is chosen. If interaction b is chosen instead, the deadlock is avoided and a final state is reached. Thus,
the priority order defined by a < b is sufficient to make the deadlock unreachable.

σ = ρ =

a a

ddc d

bb b

2

1

σ ‖ ρ =

a

d

Figure 4: A simple system controllable by priorities.

A simple system not controllable with priorities Figure 5 shows again a system S defined by two
processes on the same alphabet. For S, there exists no priority that allows avoiding both deadlocks. We
sketch below how this is detected by our algorithm.

1. The transition relation of S is (partly) computed and transitions leading to deadlocks are marked as
error transitions, as shown in figure 5.

2. In the initial state 1 of S, b must be preferred to a in order to prevent a deadlock, and we conclude
that any priority order making S deadlock free includes the rule a < b.

3. In state 2, there are two possibilities to avoid the deadlock occurring if b is chosen: either b has lower
priority than a or state 2 is not reachable. The first option is impossible as it would mean that a < b
and b < a which violates the requirement that a priority is a strict partial order. The second option
implies that the transition from 1 to 2 labeled by b should be inhibited by a transition with higher
priority enabled in 1 which leads to exactly the same contradiction.

We conclude that no priority can control the given example to guarantee deadlock freedom. Note that
dynamic priorities can deal with this example, as it is sufficient to define as priorities, a < b in state 1 and
then b < a in state 2.

The general algorithm is given below, and it is quite easy to see how it could be extended for generating
dynamic priorities — if needed.
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σ = ρ =
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Figure 5: A simple system not controllable with priorities.

Algorithm for inferring priorities The main algorithm Priority4Tr is called initially with B, the tran-
sition system representing S the composition of the set of processes. Priority orders are represented by a
set of rules a < b where for simplicity, we suppose also those rules which can be deduced by transitivity
are explicitly represented. Initially, Tr holds the set of error transitions leading to a deadlock in a single
step, and at any time, Tr holds the set of error transitions which are not yet forbidden by some priority; and
Prio contains initially the empty set of priorities, and at the successful termination it contains a desired so-
lution. The main algorithm successively calls Initialize, PotentialOrders and FindOrRefine, which play the
following roles: 1) Initialize computes the priority rules Prio that are necessary to avoid a deadlock from
some state considered as reachable. If Prio contains a contradiction the overall algorithm terminates with
failure, 2) PotentialOrders computes a set of alternative priority rules Pot which may be used to control
the execution, and 3) FindOrRefine picks one such priority order and explores it. If it fails, then another
alternative in Pot is explored until success or failure — if none of them works. In these algorithms, we
also use the following notations.

• For any transition t ∈ Tr , Pot t represents the set of potential priority rules that can inhibit t.
Pot\{p} denotes that rule p is removed from pot and thus from all sets Pot t.

• q0 −→∗! s denotes that s is reachable from q0 by a (possibly empty) sequence of transitions for
which there exists no alternative, that is, transitions of the form (s1, α, s2) such that δ has no other
transition with s1 as origin.

• It is understood that functions manipulating priority orders, like add and union, always include a
normalization that guarantees transitivity.

The correctness of the algorithm is guaranteed by (1) the fact that if Prio does not define strict partial
order, the algorithm terminates unsuccessfully. (2) at any point of time, Prio together with avoiding Tr
guarantees avoidance of deadlocks because initially avoiding Tr obviously guarantees deadlock freedom,
and a transition t is only eliminated from Tr if there is a rule in Prio forbidding it or if t is replaced by some
transition (set) leading to the start state of t. On termination, Tr is empty, thus Prio — which is a priority
— is able to prevent all deadlocks. (3) The fact that the algorithm terminates unsuccessfully implies that
indeed there is no appropriate priority is guaranteed by the fact that the algorithm systematically explores
transition sets allowing to block the access to a deadlock state without introducing a new deadlock, and
such a set is rejected only if avoiding requires contradictory priorities. 2

For readability, we present Initialize in a call-by-reference fashion, while Priority4Tr, PotentialOrders
and FindOrRefine are call-by-value.

3.2 Dealing with confusion
Confusion is a situation occurring in distributed systems. Typically, detecting those situations is important
for designing correct algorithms for partial order reduction. In presence of priorities, confusion situations
may compromise correctness of a distributed implementation of a specification. We first define some
preliminary notions which allow us to characterize different situations of confusion.
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Algorithm 1 Priority4Tr(B = (Q, q0,Σ, δ),Tr ,Prio): priorityOrder or ⊥
if Tr = ∅ then

return Prio � there are no error transitions, so Prio is a solution
else

Pot ←− ∅
Initialize(B,Tr ,Prio,Pot) � initialize sets Prio, Pot; simplify B, Tr accordingly
if Tr = ∅ then

return Prio
else if Pot = ∅ then

return ⊥ � error transitions cannot be avoided, so there is no solution
end if
P ←− PotentialOrders(Tr ,Prio,Pot) � calculate the set of potential priority orders
return FindOrRefine(B,Tr ,Pot ,P) � find P of P being a solution or refine it

end if

Algorithm 2 Initialize(B,Tr ,Prio,Pot)
for all t = (s, a, s′) ∈ Tr do

if q0 −→∗! s and s b−→∈ δ implies (b < a ∈ Prio ∨ b = a) then
Pot ←− ∅ break

else if q0 −→∗! s and ∃b ∈ Σ s.t. {b} = {l| s l−→ ∧ l 6= a ∧ (l < a 6∈ Prio)} then
if b < a ∈ Prio then

Pot ←− ∅ break
end if
add(Prio, a < b) � add a < b to Prio and normalize by adding induced priorities

Tr ′ ←− {t} ∪ {(q, a, q′) ∈ δ | q b−→} � remove from δ transitions inhibited by a < b
simplify(Q, δ) � simplify δ and Q by removing unreachable transitions and states
Tr ←− Tr ∩ δ � simplify Tr in accordance with the new δ

else
Pot t ←− {a < b | s b−→ ∧ b 6= a ∧ (b < a 6∈ Prio)}
if Pot t = ∅ then
δ ←− δ\{t} � since t cannot be inhibited, its origin state must be made unreachable
simplify(Q, δ) � simplify δ and Q
Tr ←− (Tr ∪ {(q, l, s) ∈ δ}) ∩ δ � simplify Tr according to δ

end if
end if

end for

Algorithm 3 PotentialOrders(Tr ,Prio,Pot): Set of priorityOrders
choose t ∈ Tr
P ←− {p ∈ Pot t | add(Prio, p) is defined} � some priorities in Pot t may contradict Prio
for all p ∈ P do

Trpok ←− {t′ | p ∈ Pot t′} � transitions in Tr inhibited by p
end for
Unreachablet ←− PotentialOrders(Tr\{t},Prio,Pot) � suppose t needs not be inhibited
Inhibited t ←−

⋃
p∈P PotentialOrders(Tr\({t} ∪ Trpok), add(Prio, p),Pot\{p}) � t is inhibited

by p
return Unreachablet ∪ Inhibited t
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Algorithm 4 FindOrRefine(B,Tr ,Pot ,P)
if ∃P ∈ P s.t. ∀t, Pot t ∩ P 6= ∅ then

return P �P inhibits all error transitions, thus P is a solution
else

while P 6= ∅ do
choose P ∈ P
P ←− P\{P}
Tr bad ←− {t | Pot t ∩ P = ∅} � transitions not inhibited by P
δ ←− δ\(Tr\Tr bad) � remove inhibited transitions from δ
simplify(Q, δ) � simplify δ and Q
Tr ←− (Tr ∪ pre(Tr bad)) � add predecessors of transitions not inhibited to Tr
Tr ←− Tr ∩ δ � simplify Tr according to δ
Result ←− Priority4Tr(B, Tr , P )
if Result 6=⊥ then

return Result
end if

end while
return ⊥

end if

Throughout this section, consider a system S = (Q, q0,P, δ) built as a composition of n processes
{Pi = (Qi, q0i ,Pi, δi)}ni=1, S = P1 ‖ ... ‖ Pn and a priority order < defining a prioritized system (S,<)

Definition 3.3. Let be an interaction a ∈ P and q = (q1, ... , qn) ∈ Q a global state in which a is
globally ready. We denote indqa the set of indexes of the processes which must participate in a, that is,
indqa = {i1, ...ik} such that {Pj | j ∈ [1..k]} is exactly the set of processes involved in a (and therefore in
which a is locally ready in q).

We can now define the usual notions of concurrency and conflict of interactions, where in a distributed
setting we want to allow the independent execution of concurrent interactions (so as to avoid global se-
quencing). We distinguish explicitly between the usual notion of conflict which we call structural conflict,
and a conflict due to priorities.

Definition 3.4 (Concurrent and conflicting interactions). Let a, b be interactions of P and q ∈ Q a global
state in which a and b are globally ready.

• a and b are called concurrent in q iff indqa∩ind
q
b = ∅ That is, when a is executed then b is still globally

ready afterwards, and vice versa, and if executed, both interleavings lead to the same global state.

• a and b are called in structural conflict in q iff they are not concurrent in q, that is a and b are
alternatives disabling each other.

• a and b are in prioritized conflict in q iff a and b are concurrent in q but a < b or b < a holds.

Note that in case of prioritized conflict, it is known which interaction cannot be executed, whereas in
case of structural conflict, the situation is symmetric. We use the notations Concurrentq(a), Conflictq(a),
PrioConflictq(a) to denote the set of interactions that in state q are concurrent to a, respectively in struc-
tural or prioritized conflict to a.

Figure 6 illustrates a situation of structural conflict: the interactions a1 and a3 are in structural conflict
as they both involve process ρ1. Figure 7 illustrates a prioritized conflict of a1 with a3 as these interactions
are concurrent but a1 < a3 holds.

Confusion is a situation where concurrency and conflict are mixed. More precisely, confusion arises in
a state where two interactions a1 and a2 may fire concurrently, but firing one modifies the set of interactions
in conflict with the other. A symmetric and an asymmetric situation of confusion are shown in Figure 6:
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In the symmetric case, the interactions a1 and a2 of σ1 and ρ1 are concurrent but are both in conflict with
a3 and the execution of a1 (resp. a2) changes the set of interactions in conflict with the other one. In the
asymmetric case, the interactions a1 and a2 of σ2 and ρ2 are concurrent but a1 will enter in conflict with
a3 if a2 fires before a1.

Definition 3.5 (Confusion). Let a1 and a2 be interactions, and q a global state of S. We suppose that a1

and a2 are concurrent — and thus globally ready — in q.

• a1 is in a situation of structural confusion with a2 if ∃q′ ∈ Q s.t. q a2−→ q′ implies Conflictq(a1) 6=
Conflictq′(a1)

• a1 is in a situation of prioritized confusion with a2 if ∃q′ ∈ Q s.t. q a2−→ q′ implies PrioConflictq(a1) 6=
PrioConflictq′(a1)

a3

ρ1 =σ1 =

a3 a2a1

a3

a2

σ2 =

a3

ρ2 =

a1

Figure 6: Symmetric and asymmetric confusion.

Figure 7 illustrates a situation of prioritized confusion: a1 and a2 are concurrent, however firing a2

enables a3 which has higher priority than a1 which means that a1 is no more enabled after the execution
of a2.

The classical notion of confusion is what we call structural confusion. Note that all situations of confu-
sion are important for designing partial order reductions which are very important for making the verifica-
tion of global properties of S feasible. The reason is that eliminating arbitrarily one of the two interleavings
of a1 and a2 may change the set of reachable states, and thus lead to different verification results.

For designing a distributed implementation of (S,<), only the situation of Figure 7 — where executing
a2 disables a1 due to a new priority conflict — is problematic. The reason is that in this case a1 and a2 are
not really “concurrent”, whereas in all other cases, it does still hold that a1 and a2 can be executed in any
order and both orders lead to the same global state.

a2

ρ1 =

a3

a1

a1 < a3

σ1 =
1 1

2

a2

ρ2 =

a3

a1

a1 < a3

σ2 =
1 1

a1 < a2
2

Figure 7: Prioritized confusion.

In Section 4, we propose a distributed implementations of systems (S,<) in which concurrent interac-
tions are executed independently, based on the notion of concurrency of definition 3.4. This means that our
algorithm does not support systems (S,<) with such prioritized conflict situations.

In order to deal with this kind of confusion, we could use a more appropriate notion of concurrency
which however would lead to inefficient implementations. We rather propose to eliminate such confusions
statically by adding a priority a1 < a3 or a2 < a1 such that either a1 and a2 are not anymore considered
concurrent or at least it is guaranteed that executing concurrent interactions does not introduce priority
conflicts which destroy this concurrency. Note that adding priorities between concurrent interactions in a
given system does not add new deadlocks.
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4 Distributing prioritized systems
Given a system (S,<) defined by a set of processes Pi, a set of interactions and a priority order < to
be enforced, our goal is to define a distributed implementation for (S,<). In this section, we define
an algorithm which constructs such a distributed implementation by defining for each process a (local)
controller such that the joint execution of all processes Pi and their corresponding controllers guarantees
the following:

1. all executions are executions of (S,<), that is executions of S respecting <

2. if (S,<) is deadlock free, then no deadlock will ever occur

Controllers are described as protocols, and we want them to decide the next interaction to be taken “as
quickly as possible”, where we measure the complexity by the number of messages required to execute a
given interaction a4.

We rely on (S,<) to guarantee deadlock-freedom — and fairness. That is, any distributed implementa-
tion of (S,<) that does not introduce deadlocks is considered correct. Indeed, we suppose that — if needed
— (S,<) has been obtained using the algorithm of section 3.1 that eliminates deadlocks. For this reason,
we suppose in the following that (S,<) has no deadlock.

4.1 Description of the protocol
The system is supposed to have a fixed number of processes, although it may be arbitrarily large. In
order to simplify the presentation of the algorithm, we suppose here only binary interactions; an extension
to arbitrary multi-party synchronizations is discussed in Section 4.5. We also assume that the internal
activities of processes are terminating and that there exists no prioritized confusion, that is, the notion
of concurrency used by the algorithm is correct5. As quite usually, we assume that the message passing
mechanism ensures the following basic properties:

1. any message is received at the destination within a finite delay;

2. messages sent from location L1 to L2 are received in the order in which they have been sent;

3. there is no duplication nor spontaneous creation of messages.

For each interaction α involved in at least one priority rule, one of the involved processes Pi place
the role of the negotiator for α. If there exists at least one interaction with higher priority, the role of the
negotiator is to check for the enablednes of α, and if there exists at least one interaction with lower priority,
its role is to answer readiness requests. The choice of negotiators is discussed in Section 4.4.

We now describe the controllers of individual processes which enforce correct executions, and in partic-
ular adherence to the global priority order. It is understood that what is called process is in fact a controlled
process.

The Controller associated with each process, maintains a set of data structures shared and maintained by
the different subtasks of the controller: readySet (resp. enabledSet) contains the set of interactions which
are known to be globally ready (resp. enabled) in the current local state q, and involved and possibleSet
maintains the set of interactions that are locally ready. Note that possibleSet contains purely local in-
formation which can be calculated immediately when entering a new local state. The other two sets are
calculated by a series of message exchanges, and the complete information is generally not calculated but
as soon as an interaction is known to be enabled, its triggering will be initiated.

The general structure of the controller for each individual process Pi is shown in Figure 8. The overall
controller — and the process to be controlled — are represented as a set of parallel activities (which we call
threads, and which in our implementation are realized as Java threads) with a shared memory and shared
message buffers.

4it would even be sufficient to count the number of messages between the the first state in which a is globally enabled and the first
state in which a "has been executed".

5Without this last condition, we may observe global executions which are witnesses of a priority violation.
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WaitingForCommit Main
Negotiate Negotiate

TryToCommit

BUSY

NOTPOSSIBLE
REFUSE

POSSIBLE

READY
NOTREADY

READY

COMMIT

Figure 8: Structure of the protocol for one process

Indeed, incoming messages are stored until one of the activities is ready to handle them. We use several
FIFO buffers which are chosen such that the order amongst messages stored in different buffers does not
influence the algorithm; in particular, they are used by concurrent threads. A buffer, which is read only
by the thread Main, stores messages of the form POSSIBLE (a), NOTPOSSIBLE (a), READY (a),
NOTREADY (a), and REFUSE (a). A second buffer stores messages of the form COMMIT (a), this
buffer is read first by thread WaitingForCommit, then by TryToCommit. The role of each message is
described in Table 1. Given that we are handling binary interactions, we do not explicit the recipient or the
sender.

Message Description

POSSIBLE Offer an interaction (which is locally ready)
NOTPOSSIBLE respond that an interaction is not locally ready
READY Ask about the global readiness of an interaction
NOTREADY Respond that an interaction is not globally ready
COMMIT Commit to an interaction (cannot be undone by Pi)
REFUSE Inform that a process cannot commit to an interaction

Table 1: Messages used by the algorithm

Pi is either in stateReady or in stateBusy. In stateBusy, Pi executes the local action of the interaction
that has been chosen. Incoming messages are stored and will not be handled until the controller moves to
state Ready. In state Ready, the controller of Pi looks for a next interaction to fire, proceeding as follows.

• The Main thread starts by checking its locally ready interactions (possibleSet) for interactions that
are globally ready (see Algorithm 5). To check the global readiness of an interaction a, messages
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Algorithm 5 Main
Require: toNegotiate = {a ∈ possibleSet | negotiator(a) = K}

� The set of interactions for which K is a negotiator Input: set of interactions possibleSet 6= ∅
Output: interaction i
prioFree = {a ∈ possibleSet | 6 ∃b . b < a}
waitingSet←− ∅
checking global readiness:
notReadySet←− ∅
readySet←− ∅
lessPrio(a) = {b ∈ readySet| b < a}}
for all a ∈ possibleSet do

send POSSIBLE (a)
end for
create WaitingForCommit(possibleSet)
if receive POSSIBLE (a) and a ∈ toNegotiate then

create Negotiate(a) and readySet←− readySet ∪ {a} and
for all b ∈ lessPrio(a) do

kill Negotiate(b)
end for

end if
WHEN ∃ a s.t. Negotiate(a)= OK or (receive POSSIBLE (a) and a ∈ prioFree)
call TryToCommit(a) and kill WaitingForCommit(possibleSet) and ∀b ∈ readySet kill Negotiate(b)

if TryToCommit(a)= OK then
return a

else
goto checking global readiness

end if
if ∀a ∈ readySet Negotiate(a)= NOK then

goto checking global readiness
end if
if receive REFUSE (b) and b ∈ readySet then

kill Negotiate(b) and readySet←− readySet\{b}
end if
if receive POSSIBLE (b) and b ∈ possibleSet\{toNegotiate ∪ prioFree} then

send POSSIBLE (b) and readySet←− readySet ∪ {b}
end if
if receive NOTPOSSIBLE (b) and b ∈ possibleSet\prioFree then
notReadySet←− notReadySet ∪ {b}

end if
if receive POSSIBLE (b) and b 6∈ possibleSet then

send NOTPOSSIBLE (b)
end if
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of the form POSSIBLE (a) are exchanged, and peers in which a is currently not locally enabled
respond with NOTPOSSIBLE (a) after which the requesting process “abandons” a until it changes
state or the peer enters a state in which a is locally enabled and sends a POSSIBLE(a).
Whenever it is detected that an interaction a for which it plays the role of a negotiator is globally
ready, a thread Negotiate(a) is created which checks whether a is enabled (which corresponds to
transition 1 of Figure 10 and Figure 8). If an interaction with maximal priority is globally ready, it is
immediately known to be enabled.

• Negotiate(a) checks the enabledness of an interaction a (see Algorithm 6). It asks all negotia-
tors of interactions with higher priority than a if their interactions are globally ready by sending a
READY (b) message to all negotiators of interactions b with higher priority than a.
In turn the negotiators of b, if not BUSY , respond positively or negatively as soon as they have the
information available.

Algorithm 6 Negotiate
Require: higherPrio(a) = {c | a < c}

Input: interaction a Output: OK or NOK
toCheck ←− higherPrio(a)
for all b ∈ toCheck do

send READY (b)
end for
while toCheck 6= ∅ do

if receive READY (b) then
return NOK

else if receive NOTREADY (b) then
toCheck ←− toCheck\{b}

end if
end while
return OK

• Main handles local priorities locally. Whenever an interaction b is known to be globally ready,
Main kills all threads Negotiate(a) with a < b.

• Concurrently to Main, WaitingForCommit handles incoming COMMIT messages (see Algo-
rithm 7). Whenever a COMMIT (a) is received — which implies that a is enabled and that the
local process should commit to it — all other negotiation activities are terminated and a response
COMMIT (a) is sent back to the peer (which corresponds to transition 11 in Figure 10).

Algorithm 7 WaitingForCommit
Require: set of interactions waitingSet

Input: set of interactions possibleSet Output: interaction a
if waitingSet 6= ∅ then

choose a ∈ waitingSet and kill main and send COMMIT (a) and send REFUSE (b) for all b in
possibleSet and goto Busy(a)

else if waitingSet = ∅ and receiveCOMMIT (a) and a ∈ possibleSet\toNegotiate then
kill main and send COMMIT (a) and send REFUSE (b) for all b in possibleSet and gotoBusy(a)

end if
if receive COMMIT (a) and a 6∈ possibleSet then

send REFUSE (a)
end if

• Main tries to commit to the first interaction found enabled (as a way to handle local conflicts) by
activating TryToCommit (transitions 4, 5 and 6 in Figure 10). WaitingForCommit is terminated
once TryToCommit is activated, in order to avoid multiple commits at the same time.
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• TryToCommit(a) sends a COMMIT (a) message to the corresponding peer and waits for a re-
sponse (see Algorithm 8). Note that if TryToCommit fails committing to a because it receives a
REFUSE message — in that case the peer has committed to a conflicting interaction — the pro-
cess start again by checking the global readiness of its locally ready interactions. Indeed, as the peer
has committed to another action its state may have changed. For the interactions a for which there
exists at least one interaction with higher priority, the commit procedure is always initiated by the
negotiator of a who is the first one to know about a’s enabledness.

Algorithm 8 TryToCommit
Require: Input: interaction a Output: OK or NOK

send COMMIT (a)
if receive COMMIT (a) then

return OK and send ∀b ∈ readySet\{a} REFUSE (b)
else if receive COMMIT (b) and b 6= a and (b 6∈ cycle(a) or( b ∈ cycle(a) ∧ Pb = Cyclebreaker))
then
waitingSet←− waitingSet ∪ {b}

else if receive COMMIT (b) and b 6= a and b ∈ cycle(a) and Pb 6= Cyclebreaker then
send REFUSE (b) and readySet←− readySet\{b}

else if receive REFUSE (a) then
return NOK

end if

• Finally, AnswerNegotiators is always active if the process Pi is the negotiator for at least one
interaction that dominates some other interaction. It receives messages of the form READY (a) for
interactions a for which Pi is the negotiator. It returns READY (a) if a is currently in the readySet
of Pi, NOTREADY (a) if it is in the notReadySet or if it is not in its possibleSet, and otherwise
defers the answer until the status of a is known.

4.2 Handling deadlocks
In order to avoid deadlocks due to decision cycles amongst interactions in conflict, we introduce the notion
of cycle.

Definition 4.1. We denote by inter(a,P1,P2) the fact that there exists an interaction a involving the two
processes P1 and P2.

A cycle, CA is a set of interactions A = {ai}ni=1 for which the following holds: there exist n processes
{Pi}ni=1, such that

∧n
i=1inter(ai,Pi,Pi+1modn). In addition we require that there exists at least one global

state in which all conflicting interactions are enabled.

A cycle CA bears indeed a risk of deadlock or livelock in a state in which all interactions of CA are
enabled. Indeed, it represents a symmetric situation for all involved processes, where a process could wait
forever for all others (deadlock) or propose a different choice than all others, reject it and start all over
forever. This is a well-known problem in the context of communicating processes, in [3] a total order over
the system interactions is defined, which allows to avoid deadlock by executing the interaction with higher
order. In [16], a similar solution is proposed by imposing a total order over all processes, which breaks the
cycle by executing the interaction proposed by the process with higher order.

The solution we propose is to detect statically the set of (minimal) cycles of the system. Then, in a
second step, we define for each cycle statically a Cyclebreaker, which is one of the processes of the cycle.
This particular process will arbitrate when a blocking situation actually occurs. This approach avoid to a
define a total order of all interactions or processes which is useless if there is no cycle.

Illustrative example Figure 9 depicts an example representing a cycle. The system consists of 4 com-
ponents: 3 processes {P1, P2, P3} forming a cycle CA for the set of interactions A = {a, b, c}, and a
completely independent process P4. The existence of a cycle can be concluded from the structure and the
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Figure 9: An example with cycle and independence

behaviors of the processes (the interactions a, b, c are always enabled). If no priority rules are defined
on the set of interactions A, then CA may lead to a deadlock. A possible deadlock scenario is depicted
on the right side of Figure 9. This occurs when Pi sends a COMMIT message to Pi+1 and waits for it.
Which means that each component is waiting its peer who has made another choice. According to the
proposed solution, let suppose that P2 is chosen as the Cyclebreaker of CA. According to Algorithm 8
(as described in Figure 9), whenever process Pi which is already engaged in committing an interaction
and which receives a COMMIT for a different interaction, will send back a REFUSE message only if the
COMMIT comes from a process which is not the Cyclebreaker. We will show that this breaks the cycle.
Independently, the process P4 can perform whenever it is possible the interaction d.

4.3 Correctness of the algorithm
We now prove that our algorithm guarantees the following properties:

1. Safety (exclusion), i.e., interactions in conflict cannot be committed simultaneously.

2. Liveness (progress), i.e., if an interaction is enabled, it will eventually become disabled either be-
cause it is executed or because a process offering it commits to another interaction.

To provide a proof check, we use the state transition diagram of Figure 10 where for a local controller,
transitions represent steps of the algorithm and states represent the modes of the algorithm. Transitions
may have a guard and an action and are depicted in Table 2.

The action defines the step (set of actions) and the guard represents a condition under which the step
can occur.

Definition 4.2. We denote by waits(P1, a, P2), the predicate which holds when the process P1 has sent a
COMMIT(a) message to its peer P2 involved in the interaction a but has not yet received an answer.

We denote by a ∈ cycle(b) the predicate that holds if it exists a cycle CA such that {a, b} ⊆ A, which
means that there exists a cycle involving the interactions a and b.

Lemma 2. waits(P1, a, P2)∧ waits(P2, b, P3) =⇒ (a 6∈ cycle(b))∨(a ∈ cycle(b)∧P1 = Cyclebreaker)

Proof. waits(P2, b, P3) implies that P2 is in state Committing(b) (see Figure 10). waits(P1, a, P2) means
that P1 has sent a COMMIT(a) message to P2. If P2 does not answer this means that P2 has performed the
transition number 9. Indeed all other transitions in state Committing(b) involve an action replying to P1

by a REFUSE(a) message. Consequently, the guard of transition 9 holds which is according to Table 2:
(a 6∈ cycle(b)) ∨ (a ∈ cycle(b) ∧ P1 = Cyclebreaker).

Lemma 3. If waits(P1, a, P2), then P1 will receive a REFUSE(a) or a COMMIT(a) message within a finite
delay.
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Proof. As we assume that all activities terminate and every message reaches its recipient within a finite
delay, if P1 does not receive a reply, after sending it a COMMIT(a) message, this means that the process
P2 is in the state Committing(a1) in Figure 10 (a 6= a1) an P2 remains in this state forever. We prove that
this is impossible by reductio ad absurdum. If P2 does not answer within a finite delay, then it is in the state
committing(a1) which again means that there must exist an interaction a1 6= a and a process P3 such that
waits(P2, a1, P3). As there exists only n processes in the system, this means that there exists some cycle of
size k of the form: waits(P1, a, P2)∧waits(P2, a1, P3)∧ ... ∧waits(Pk, ak−1, P1). According to Lemma 2,
we can infer the following properties:

(a 6∈ cycle(a1)) ∨ (a ∈ cycle(a1) ∧ P1 = Cyclebreaker)
(a1 6∈ cycle(a2)) ∨ (a1 ∈ cycle(a2) ∧ P2 = Cyclebreaker)

...
(ak−2 6∈ cycle(ak−1)) ∨ (ak−2 ∈ cycle(ak−1) ∧ Pk−1 = Cyclebreaker)

This is a contradiction. Indeed, the first part of each property means that there is no cycle containing these
interactions, which is not true as we have a circular sequence which means a cycle. The second part does
not hold as we assume that each cycle has just one Cyclebreaker.

Lemma 4. Let a be a an interaction of P . We have that the set A = Conflictq(a) is a set of interactions of
P , that means A is in possibleSet in q and if b is in conflict with a in q then either b is an interaction of P
or a is in prioritized conflict with b

This holds because two interactions can only be in structural conflict if they share a common process.

Theorem 4.3 (Safety property). Let be q a state, a an interaction and denote A = {ai}ni=1 the set
Conflictq(a)∪PrioConflictq(a) of interactions that are in conflict with a in state q. Our algorithm guaran-
tees that if a is fired in state q, no interaction in A is fired in q.

Proof. What we have to prove is that if in state q a process commits to interaction a, by executing one of
the transitions 4, 5 or 6 of Figure 10, no interaction in A can be committed before the execution of a is
terminated.

Suppose that a ∈ Pi. According to Lemma 4, for all b ∈ A we have either b ∈ Pi or b ∈
prioConflictq(a), and we prove the theorem separately for these two cases.

1. First case: b ∈ Pi, that is a and b share the same process Pi. First of all, only interactions committed
by both peers are executed. Then, if Pi has sent a COMMIT(a) message executing one of the transi-
tions 4, 5 or 6 of Figure 10, then according to the same table it is impossible to send a COMMIT(b)
message before either a REJECT (a) is received or the BUSY state is entered, then exited and the
next state reached.

2. Second case b ∈prioConflictq(a) holds, that is a and b are concurrent (and thus belong to different
processes) and either a < b or b < a. Suppose that Pj is the negotiator for b.

If b < a, then b should not be executed before the execution of a — which has started — has been
completed and Pi enters READY for the successor state of q. We have now to proof that from that
moment on Pj cannot “believe that a is not ready” which is the condition for committing to b.

Indeed, if Pj does not yet know about the readiness of a, before committing b, it will send a
READY (a) message to Pi, but as a is already engaged for execution, Pi will not send any response
before the execution of a is terminated the next state reached, and the readiness of a evaluated in the
new state; and Pj remains blocked for b during this time.

Now, we must prove that Pj cannot have old, depreciated knowledge that a is not ready. This can
only be the case, if at some point a was not ready and Pi has sent NOTREADY (a) to Pj , and then
transitions concurrent to b have been executed leading to the current state q in which a is ready and
executed, and Pj may use incorrect knowledge and execute b. This corresponds exactly to a situation
of confusion, which we have excluded.

If a < b, the situation is almost symmetric. We must prove that in this case b is not ready. If Pi is the
negotiator for a, asks the negotiator of b whether b is ready, and only if the answer is negative, it will
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consider a to be enabled and may initiate the commitment of a. Again, only if confusions exist Pi
may use old knowledge. If the negotiator of a is the peer, then Pi will only commit to a on reception
of a COMMIT (a) from its peer which uses the same procedure for deciding to commit to a.

Theorem 4.4 (Liveness property). Let a be a enabled interaction. Our algorithm guarantees that a will
eventually become disabled.

Proof. An enabled interaction a may become disabled because it is executed or because a process offering
it commits to another interaction. When a is enabled for a Process Pi, a COMMIT(a) message is sent
to the corresponding peer and Pi goes to state committing(a). a becomes disabled when Pi leaves this
state. In other words what we have to prove is that Pi cannot stay in this state eternally. When Pi is in
state committing(a), there must exists a process Pj such that waits(Pi, a, Pj). Thus the proof follows
directly from Lemma 3. In fact, when receiving message COMMIT(a) or REFUSE(a), Pi will leave state
committing(a) through transition 7 or 8.

3

7

10 9

5

8

11

1

6

12

2

4

Negotiating

READY

Committing(a)

BUSY

Active Waiting

Figure 10: State diagram of the algorithm

4.4 Efficiency of the algorithm

Choosing the negotiators For each interaction a involved in at least one priority rule, we choose one
of the processes involved in a as its negotiator which will send requests to negotiators of interaction with
higher priority and answer request from negotiators for lower priority interactions. A process may be the
negotiator for several interactions. Various strategies may be proposed to allocate negotiators to processes.
The criterion we use is to minimize for each interaction the maximal number of distinct processes to which
its negotiator has to send requests. This is meant to minimize the number of communications added due to
priorities.

As already explained, local priorities — that means when a < b and a and b have negotiators hosted
by the same process Pi — are decided locally. In the dining philosophers example (see figure 3), all the
priority rules involve the process Forks, which will thus be designated as negotiator and it will enforce
priorities locally. The priorities for the travel agency (see Figure 1 in Section 1) may include priorities
amongst interactions between travel agencies and clients which do not necessarily have a common process.
In this case, for each interaction we choose as negotiator the process that is involved in the biggest set of
interactions, as it may have more knowledge about readiness of more interactions.
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Transition Guard Action
1 possibleSet6= ∅ ∀a ∈ possibleSet, send(POSSIBLE(a))

2
receive(POSSIBLE(a))∧
a ∈possibleSet∩toNegotiate call(Negotiate(a)∧readySet:=readySet∪{a}

3
receive(POSSIBLE(a))∧
a ∈possibleSet∩toNegotiate

call(Negotiate(a)∧readySet:=readySet∪{a} ∧
∀b ∈lessPrio(a), kill(Negotiate(b))

4 Negotiate(a)=ok send(COMMIT(a))∧ kill(WaitingForCommit)∧
∀b kill(Negotiate(b))

5 receive(POSSIBLE(a))∧ a ∈prioFree send(COMMIT(a))∧ kill(WaitingForCommit)∧
∀b kill(Negotiate(b))

6 receive(POSSIBLE(a))∧ a ∈prioFree send(COMMIT(a))∧ kill(WaitingForCommit)

7 receive(COMMIT(a))∧Committing(a) goto(BUSY(a))∧ ∀b ∈readySet,
send(REFUSE(b))

8 receive(REFUSE(a))∧Committing(a) goto(Active)∧reset(readySet)∧ keep(possibleSet)

9
receive(COMMIT(b))∧Committing(a)
∧(a 6= b)∧(b 6∈cycle(a) ∨
(b ∈cycle(a)∧Pb=Cyclebreaker))

waitingSet:=waitingSet∪{b}

10
receive(COMMIT(b))∧Committing(a)
∧(a 6= b)∧
(b ∈cycle(a)∧Pb 6=Cyclebreaker)

send(REFUSE(b))∧readySet:=readySet\{b}

11
receive(COMMIT(a))∧a ∈
possibleSet\toNegotiate

send(COMMIT(a))∧ ∀b ∈possibleSet and b 6= a,
send(REFUSE(b))

12 true set(possibleSet)

Table 2: Transitions of the protocol state diagram

Efficiency and experimental results We have implemented our algorithm using Java 1.6 and Message
Passing Interfaces (MPI) in order to experiment the efficiency of the algorithm on examples of different
nature. We are also interested in comparing it to other solutions. The comparison to other solutions is
not easy, as no other algorithm takes into account priorities, and handling priorities is the most costly
part of the algorithm. Letting priorities aside, the comparison to algorithms which provide distributed
implementations in the domain of webservices, such WSDL or BEPL, the comparison is almost impossible,
because we start from truly global specifications and provide a generic solution for distribution, whereas
in those languages the starting point is a much larger specification which is already almost a distributed
solution that has been hand crafted for the problem at hand, and is therefore likely to be more efficient, of
course.

α-core is an algorithm solving almost the same problem — except that it does not handle priorities —
and therefore we found a comparison between our algorithm and α-core on a specification without priorities
the most relevant one, where we compare the number of messages needed to execute given interactions.

We used the example of Section 4.2 and depicted in Figure 9 for our experiments. We have generated
distributed implementations of this example using our algorithm and an implementation of the α-core
algorithm, and then run and compared the implementations generated.

The example consists of three process in which 2 interactions are permanently enabled until each of
them has been executed k times, and then the process reaches a final state. all interaction are in conflict
with all others enabled interactions.

Table 3 gives the number of messages exchange by a complete run of the implementation generated by
each algorithm, for several values of the parameter k.

As shown in Table 3, the number of messages of our algorithm is significantly smaller than the number
of messages in the implementation generated by the α-core algorithm. The reason for that is that α-core
is “connector-centric”, that is it creates an additional process for each interaction whereas our algorithm is
process centric, that is all negotioations are hosted by some process.

[16] for multiparty interactions (note that our algorithm can be easily modified to handle multiparty
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interactions, see Section 4.5).
If we restrict the set of priority rules to local priorities — priorities are defined only on interactions having
at least one process in common — then common processes will enforce priorities locally (and no messages
for negotiation purposes are added). In this case, our algorithm is similar to the one proposed in [3] where
static local priorities are defined to deal with conflicts.

Number of executions 1 10 100
Number of messages for our algorithm 18 199 1850
Number of messages for α-core algorithm 30 510 4969

Table 3: Comparison with α-core algorithm

As we do not assume knowledge about message transmission time, we measure efficiency of our algo-
rithm in terms of the number of messages a process has to exchange to execute a given interaction. Where
we are interested here in only in causal sequences of messages and ignore the messages that are exchanged
concurrently and do not lead to success. When global priorities are introduced and there are chains of
priorities with no common process, then negotiators are necessary to decide enabledness. Additional com-
munication is needed between negotiators (2 messages for each negotiation, see Algorithm 6). In this case
the efficiency (as defined above) of our algorithm depends on the strategy chosen to assign negotiators.
The criterion given previously to choose negotiators intends to minimize the number of processes involved
in the negotiations for an interaction, which is consistent with the usual criteria to measure efficiency of
algorithms. In fact, these criteria state that 1) the number of processes involved in determining whether
any given interaction can be executed should be as small as possible 2) there is a bound on the number of
messages needed for an interaction to be disabled. Choosing negotiators is done with respect to criterion
1). Criterion 2) is ensured by the progress property of our algorithm and the number of messages required,
in the worst-case, for an interaction a to be fired is computed as follows:

Consider two processes P1 and P2 and assume that eventually they commit to a. Let I1 be the number
of locally ready interactions of P1. Without loss of generality, we can assume that P1 is the negotiator of
all its locally ready interactions and let Ngb be the number of negotiators needed to check the enabledness
of b ∈ I1. In the worst case, a will have the lowest priority over the possibleSet. Thus P1 needs 2 × I1
messages to check readiness. It then checks enabledness of all its globally ready interactions, which implies
2× (

∑
(Ngb)b∈I1)× I1 messages. Then, P1 tries to commit to all its interactions and receives a REFUSE

except for a, for which it will receive a COMMIT message. This means that in order to fire a, our
algorithm generates in the worst case (2 × I1) + (2 × (

∑
(Ngb)b∈I1) × I1) + 2 × (I1 − 1) + 2 =

4× I1 + 2× (
∑

(Ngb)b∈I1)× I1.
Notice that if there is no negotiation, the number of messages is reduced to the first term 4× I1 which is as
shown in Table 3 clearly smaller than the algorithm proposed in [16].

4.5 Extension to multiparty interactions
In Section 4.1, we have presented an algorithm for handling binary synchronisations. Extending it to n-ary
synchronisations does not modify how priorities are handled, and extending binary interactions to multi-
party interactions can be done similar as in α-core. In thsi case, every interaction has a negotiator with the
additional task of negotiating global readiness. This corresponds to the role of the entities called coordina-
tors assigned to each interaction in [16] or to interaction managers assigned to a subset of interactions in
[2]. The criterion to assign negotiators could still be the same as proposed in Section 4.4.

Algorithm Negotiate is unchanged as each negotiator has to ask other negotiators about the readiness
of a given interaction, this does not depend on the number of processes involved in an interaction. The rest
of algorithms proposed in Section 4.1 have to be slightly modified to deal with multiparty interactions. For
this purpose we propose that, for each interaction a, the corresponding negotiator collects the responses of
all the processes involved in a and checks that all of them are ready to execute the interaction. This is done
using the exchange of messages POSSIBLE. We propose to add two new messages:

• START (a) message sent by the negotiator of a to inform all other processes involved that a could
be fired;
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• CANCEL(a) message sent by the negotiator of a to the participants to inform them that the interac-
tion cannot be fired.

In the Algorithm 7, WaitingForCommit, whenever the process P receives a COMMIT , it kills
thread Main, sends back a COMMIT and waits for START . If it receives the START message, it
executes the interaction. If it receives a CANCEL message, it restarts the Main thread again. Note that the
operations performed in this algorithm concerns only interactions for which P is not the negotiator.

In the Algorithm 8, TryToCommit, the process sends a COMMIT message to all participants in-
volved in the interaction and waits for a COMMIT answer from all of them. If it receives at least one
REFUSE message, it sends back CANCEL message to all participants. If it receives COMMIT from
all participants, it sends back START to all of them and goes to state Busy to execute the corresponding
interaction. Note that all the operations performed in this algorithm concerns only interactions for which
P is the negotiator.

5 Related work
Concerning the comparison to different approaches, there are two main topics which merit to be discussed.
One concerns synthesis of distributed controllers from global specifications and one to the intended appli-
cation domain, and concerns the comparison to existing approaches in the domain of webservices, both in
terms of expressiveness of the specification framework and the resulting distributed implementation.

First, we discuss in a bit more detail than in Section 1, the originality of the main algorithm presented
in Section 4 and its interest and deficiencies with respect to related algorithms. Several algorithms real-
izing a semantic preserving transformation from Petrinets or process algebra terms into a set of processes
communicating by message passing have been proposed in the past. A classical algorithm is the one of [3]
which handles binary rendez-vous synchronizations like ours. As already mentioned, this algorithm uses a
statically defined order of the interactions of each process, and each process tries to initiate locally ready
interactions by following this order. This may save unnecessary communications if early tries lead often
to success. In our algorithm, we handle all locally ready interactions concurrently, that is we give priority
to the fastest that may lead to success. We will on the average use more communications but be able to
trigger the next interaction in a shorter delay.

A more recent algorithm is α-core which handles multi-party synchronizations and transforms each
synchronization into a process exchanging messages with the set of interacting processes and the set of
"coordinators" of potentially conflicting synchronizations. This means that the synchronization "coordi-
nators" have to acquire all necessary knowledge by message passing. We present in details an algorithm
for binary synchronizations, for which there is no need for an explicit "coordinator" to correctly achieve
synchronizations. In the multi-party version of our algorithm, we also introduce an explicit "coordinator"
for each synchronization as this leads to less communications. But, as a difference to α-core, it is always
the case that one of the processes involved in the synchronization “hosts” this "coordinator", and therefore
the "coordinator" can profit from the knowledge of this process to avoid certain communications: a "coor-
dinator" may for example get “for free” the knowledge that some conflicting transitions are not enabled or
that a transition with higher priority is enabled, which may avoid useless communications.

Both algorithms use a static global order over the set of processes to break decision cycles. We propose
a more flexible solution defining a process that will “break the cycle” for each possible decision cycle. We
are not aware of any algorithm of similar nature which handles global priorities.

Algorithms for distributing prioritized specifications as we consider them here are proposed in [4, 22]
where the main motivation is to select a possibly small subset of executions with the ambition to avoid
— totally or as much as possible — any communication in addition to those of the α-core algorithm used
for executing synchronizations. These approaches propose the use of statically computed knowledge about
the possible global states in each local state of an individual process, and if this set of global states is
sufficiently discriminating, no communication with peers may be needed to know about the enabledness of
some transition. In [22] it is proposed to communicate only when local knowledge is not sufficient. In this
sense, our algorithm is quite similar to this one. We propose to choose the interactions with faster successful
negotiation, and there those for which negotiation is not needed at all. However, with the significant
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difference that there this principle is only applied to handle priorities whereas we handle synchronizations
and priorities in a uniform manner. Here, we do not use any statically pre-calculated knowledge, but
the dynamic knowledge induced by the communications for calculating the readiness of interactions is
exploited in our algorithm. Our algorithm could certainly gain when available static knowledge is exploited.
The nature of the knowledge that is interesting would however be a little bit different as in [22] only
knowledge about priorities is relevant whereas here we are also interested about readiness of interactions.
In fact, we would even be interested knowledge about necessary future enabledness of interactions as our
algorithm is in terms of buffered message exchanges.

We want to use synchronizations and priorities for specifying and verifying webservices. We have al-
ready explained in Section 1 why we think that this is a good idea and why this leads to different challenges
for achieving distribution as those considered generally in the domain of webservices such as, to cite only
a few, [8, 17, 1, 12, 14]. Also this does not only hold for typical webservice specifications which are al-
ready expressed in terms of “oriented” two-party interactions with a well-determined initiator, also holds
for formalisms such BEPL, which may look formally quite similar, as they resemble Petrinets. Neverthe-
less, these Petrinets are generally used in a particular way. They specify set of tasks to be executed, the
order constraints and the potential concurrency amongst them. But the tasks themselves are atomic and not
distributed. .

The challenge that we target with our approach is providing some new emerging service through the
composition of a set of existing services which may execute a set of task on their local memory and they
may impose constraints on the order in which these tasks can be executed. The new service is then defined
by set of service components, and a set of synchronizations and priorities. If such a service specification
contains a component that is involved in all interactions and that imposes order constraints on them, this
component corresponds than typically to what is called an orchestrator in the domain of webservices. This
process would then also interact with the client(s) In absence of such a centralizing process, the emerging
service is given in the form of a choreography.

High-level functional and non-functional correctness properties are to be verified on this composition,
or even on a composition with the expected client(s). This is the reason why we want to keep them as
concise and readable as possible, and whenever appropriate, describe interactions amongst several com-
ponents that should be executed in an atomic fashion by a rendez-vous rather than describing them in the
form of some protocol. In this respect, our approach is more efficient as it allows writing more concise
specifications. On the other hand, an obvious drawback is that a generic protocol implementing systems
with arbitrary multi-party interactions and global priorities is likely to be less efficient than a hand-crafted
protocol for a given purpose and a given set of components. An advantage of our protocol would be —
in the case that the total number of messages exchanged is not a problem — to reach faster a point where
a next interaction can be executed, because any of the interacting components will play the role of the
initiator of the protocol if it is the first one who is ready for it. Another advantage is that we systematically
explore all potentially enabled interactions so as to guarantee quick convergence. A hand-crafted protocol
with the same ambition is likely to not send much less messages. To avoid exchanging of useless messages,
improving the algorithm by adding a first phase of knowledge computation to find out when a locally en-
abled interaction is guaranteed to be (not) enabled might in some cases significantly reduce the number of
message exchanges — without reducing the potential degree of concurrency.

6 Conclusion and future work
In this paper we propose two algorithms useful in the domain of service composition where services are
represented by extended transition systems, where transitions represents tasks or subservices and the transi-
tion system represent constraints on the order in which these tasks can be executed. Services are composed
by multi-party synchronizations — realizing data exchange — and by global priority rules imposing addi-
tional constraints on the order in which interactions, and therefore tasks, have to be executed.

The first algorithm tries to eliminate deadlock from a composed specification by additional priority
constraints, thus eliminating bad non-determinism. This algorithm cannot always succeed, in which case
the user will be required to rework the specification, but may avoid rework in several situations. More
experimentation is needed to assess the actual usefulness of this algorithm.
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The second, main algorithm defines a transformation of such a global service composition into a dis-
tributed composition, in which every component is composed with a local controller exchanging messages
with its peer controllers in order to realize interactions exclusively by message exchange. The algorithms is
proven correct, where by correctness we understand that any sequence of interactions that can be observed
on a distributed execution (obtained by linearization) can also be observed on the global specification, and
vice versa. We have implemented a version of this algorithm handling only binary interactions. We plan
to implement also the protocol for multi-party interactions, to include data transfer and to exploit static
knowledge for reducing the number of messages to be sent. More experimentation could be useful in order
to compare the complexity of our algorithm to one of similar algorithms.

More experimentation and further research is needed in particular for experimenting with this type of
specifications for web services. We expect that these kind of specifications may be useful and accepted
for embedded applications, where webservices are only emergent, and where tasks depending on multiple
resources are an issue to be dealt with at a high level of abstraction. We do not believe that the BIP language
as such would be accepted, as a set of connectors and priorities for a given set of components may now be
considered as a composed service, and therefore needs to be represented and named explicitly, and it will
be required to create (dynamically) multiple instances of both basic and composed services. This requires
new design concepts derived from the basic concepts considered here.
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