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Abstract

Correct and efficient implementation of general real-time applications remains by far an open
problem. A key issue is meeting timing constraints whose satisfaction depends on features of
the execution platform, in particular its speed. Existing rigorous implementation techniques
are applicable to specific classes of systems e.g. with periodic tasks, time deterministic sys-
tems.

We present a general model-based implementation method for real-time systems based on the
use of two models.

• An abstract model representing the behavior of real-time software as a timed automaton.
The latter describes user-defined platform-independent timing constraints. Its transitions
are timeless and correspond to the execution of statements of the real-time software.
• A physical model representing the behavior of the real-time software running on a given

platform. It is obtained by assigning execution times to the transitions of the abstract
model.

A necessary condition for implementability is time-safety, that is, any (timed) execution se-
quence of the physical model is also an execution sequence of the abstract model. Time-safety
simply means that the platform is fast enough to meet the timing requirements. As execution
times of actions are not known exactly, time-safety is checked for worst-case execution times
of actions by making an assumption of time-robustness: time-safety is preserved when speed
of the execution platform increases.

We show that as a rule, physical models are not time-robust and show that time-determinism
is a sufficient condition for time-robustness.

For given real-time software and execution platform corresponding to a time-robust model, we
define an Execution Engine that coordinates the execution of the application software so as to
meet its timing constraints. Furthermore, in case of non-robustness, the Execution Engine can
detect violations of time-safety and stop execution.

We have implemented the Execution Engine for BIP programs with real-time constraints. We
have validated the implementation method for an adaptive MPEG video encoder. Experimental
results reveal the existence of timing anomalies seriously degrading performance for increasing
platform execution speed.
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1 Introduction
Correct and efficient implementation of general real-time applications remains by far an open problem. A
key issue for design methodologies is meeting timing constraints e.g. a system reacts within user-defined
bounds such as deadlines and periodicity. The satisfaction of timing constraints depends on features of the
execution platform, in particular its speed.

Rigorous design methodologies are model-based, that is, they explicitly or implicitly associate with
a real-time application software an abstract model—a platform independent abstraction of the real-time
system—expressing timing constraints to be met by the implementation. The model is based on an abstract
notion of time in particular it assumes that actions are atomic and have zero execution times. Implementa-
tion theory allows deciding if a given application software, i.e. its associated model, can be implemented on
a given platform, that is, for particular execution times of actions. Usually, implementability is checked for
worst-case execution times by making the assumption that timing constraints will also be met for smaller
execution times. This robustness assumption that increasing the speed of the execution platform preserves
satisfaction of timing constraints does not always hold as explained in this paper.

Existing rigorous implementation techniques use specific programming models. Synchronous pro-
grams can be considered as a network of strongly synchronized components. Their execution is a sequence
of non-interruptible steps that define a logical notion of time. In a step each component performs a quantum
of computation. An implementation is correct if the worst-case execution times (WCET) for steps are less
than the requested response time for the system. For asynchronous real-time programs e.g. ADA programs,
there is no notion of execution step. Components are driven by events. Fixed priority scheduling policies
are used for sharing resources between components. Scheduling theory allows to estimate system response
times for components with known period and time budget.

Recent implementation techniques consider more general programming models [11, 12, 4]. The pro-
posed approaches rely on a notion of logical execution time (LET) which corresponds to the difference
between the release time and the due time of an action, defined in the program using an abstract notion of
time. To cope with uncertainty of the underlying platform, a program behaves as if its actions consume
exactly their LET: even if they start after their release time and complete before their due time, their effect
is visible exactly at these times. This is achieved by reading for each action its input exactly at its release
time and its output exactly at its due time. Time-safety is violated if an action takes more than its LET to
execute.

For a given application and a target platform, the paper extends this principle as follows.

• We consider that the application software is represented by an abstract model based on timed au-
tomata [3]. The model takes into account only platform-independent timing constraints expressing
user-dependent requirements. The actions of the model represent statements of the application soft-
ware and are assumed to be timeless. Using timed automata allows more general timing constraints
than LET (e.g. lower bounds, upper bounds, time non-determinism). The abstract model describes
the dynamic behavior of the application software as a set of interacting tasks without restriction on
their type (i.e. periodic, sporadic, etc.).

• We introduce a notion of physical model. This model describes the behavior of the abstract model
(and thus of the application software) when it is executed on a target platform. It is obtained from
the abstract model by assigning to its actions execution times which are upper bounds of the actual
execution times for the target platform.

• We provide a rigorous implementation method which from a given physical model (abstract model
and given WCET for the target platform) leads under some robustness assumption, to a correct
implementation. The method is implemented by a Real-Time Execution Engine which respects the
semantics of the abstract model (see Figure 1). Furthermore, if robustness of models cannot be
guaranteed, it checks online if the execution is correct, that is, if timing constraints of the model are
met. In addition, it checks violation of essential properties of the abstract model such as deadlock-
freedom, consistency of the timing constraints, etc.

More formally, a physical model Mϕ is an abstract model M equipped with a function ϕ assigning
execution times to its actions. It represents the behavior of the application software running on a platform.
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The physical model Mϕ is time-safe if all its timed traces are also timed traces of the abstract model. We
show that a time-safe physical model may not be time-robust: reducing execution times does not preserve
time-safety. A physical model Mϕ is called time-robust if any physical model Mϕ′ is time-safe for all ϕ′

such that ϕ′ ≤ ϕ. We show that non-deterministic models are not time-robust in general.
The rest of the paper deals with safe and correct implementation of an application software on an exe-

cution platform if the WCET for its actions define a time-robust physical model. The application software
consists of a set of components modeled as timed automata and interacting by rendezvous. An interaction
is a set of actions belonging to distinct components that must be synchronized. It can be executed from a
given state only if all the involved actions are enabled. We define a Real-Time Execution Engine which
ensures components coordination by executing interactions. The Real-Time Execution Engine proceeds by
steps. Each step is the sequential composition of three functions:
• Computing time intervals in which each interaction is enabled, by applying semantics of the abstract

model. Time intervals are specified by using a global abstract time variable t.
• Updating the abstract time t by the real time tr provided by the execution platform, if tr does not

exceed the earliest deadline of the enabled interactions. Otherwise, a time-safety violation is detected
and execution stops.

• Scheduling amongst the possible interactions by executing one amongst the most urgent.

Platform Model
(e.g. WCET)

Static Analysis

Model (Timed Automata)

Application Software

Compiler

Platform

time-robustness?
deadlock?

time-safety
violation?

Application

Real-Time Engine

Figure 1: Toolset overview.

We show that our implementation method is correct for time-robust execution time assignments. That
is, for time-robust execution time assignments ϕ, the set of the timed traces computed by the Real-Time
Execution Engine is contained in the set of the timed traces of M if the execution times of the actions are
less than or equal to the execution times defined by ϕ. If time-safety cannot be guaranteed for some ϕ, then
the Real-Time Execution Engine will stop, that is, a deadline is violated by the physical system.

The paper is structured as follows. Section 2 proposes a notion of implementation and associated
properties of time safety and time-robustness. It also presents results about satisfaction of these properties
by classes of systems. Section 3 provides the implementation method. Experimental results illustrating
the application of the method are given in Section 4. Section 5 provides concluding remarks as well as
discussion about future work.

2 A Notion of Implementation and Robustness

2.1 Preliminary Definitions
In order to measure time progress, we use clocks that are variables increasing synchronously. They can be
valued either as integer or as real. We denote by T the set of clock values. T can be the set of non-negative
integers N or the set of non-negative reals R+.

Given a set of clocks X, a valuation of the clocks v : X → T is a function associating with each clock
x its value v(x). Given a subset of clocks X′ ⊆ X and a clock value l ∈ T, we denote by v[X′ 7→ l] the
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valuation defined by:

v[X′ 7→ l](x) =
{
l if x ∈ X′

v(x) otherwise.

Following [7], given a set of clocks X, guards are finite conjunctions of typed intervals. Guards are
used to specify when actions of a system are enabled. They are expressions of the form [l ≤ x ≤ u]τ

where x is a clock, l ∈ T, u ∈ T ∪ {+∞} and τ is an urgency type, that is, τ ∈ { l,d,e }, where l is
used for lazy actions (i.e. non-urgent), d is used for delayable actions (i.e. urgent just before they become
disabled), and e is used for eager actions (i.e. urgent whenever they are enabled). We write [x = l]τ for
[l ≤ x ≤ l]τ . We consider the following simplification rule [7]:

[l1 ≤ x1 ≤ u1]τ1 ∧ [l2 ≤ x2 ≤ u2]τ2

≡ [(l1 ≤ x1 ≤ u1) ∧ (l2 ≤ x2 ≤ u2)]max τ1,τ2 ,

considering that urgency types are ordered as follows: l < d < e. By application of this rule, any guard g

can be put into the following form: g =
[ n∧
i=1

li ≤ xi ≤ ui
]τ
. The predicate of g on clocks is the expression

n∧
i=1

li ≤ v(xi) ≤ ui. The predicate urg[g] that characterizes the valuations of clocks for which g is urgent

is also defined by:

urg
[
g
]
⇐⇒

 false if g is lazy (i.e. τ = l)
g ∧ ¬(g>) if g is delayable (i.e. τ = d)
g if g is eager (i.e. τ = e),

where g> is a notation for the predicate defined by g>(v)⇐⇒ ∃ε > 0 . ∀δ ∈ [0, ε] . g(v + δ). We denote
by G(X) the set of guards over a set of clocks X.

2.2 Abstract Model
DEFINITION 1 (abstract model) An abstract model is a timed automaton M = (A,Q,X,−→) such that:

• A is a finite set of actions,
• Q is a finite set of control locations,
• X is a finite set of clocks,
• and −→⊆ Q × (A × G(X) × 2X) × Q is a finite set of labeled transitions. A transition is a tuple

(q, a, g, r, q′) where a is an action executed by the transition, g is a guard over X and r is a subset of
clocks that are reset by the transition. We write q

a,g,r−→ q′ for (q, a, g, r, q′) ∈−→.

An abstract model describes the abstract behavior of the system. Timing constraints, that is, guards of
transitions, take into account only requirements (e.g. deadlines, periodicity, etc.). The semantics assume
timeless execution of actions.

DEFINITION 2 (abstract model semantics) An abstract model M = (A,Q,X,−→) defines a transition
system TS. States of TS are of the form (q, v), where q is a control location of M and v is a valuation of
the clocks X.

• Actions. We have (q, v) a−→ (q′, v[r 7→ 0]) if q
a,g,r−→ q′ in the abstract model and g(v) is true.

• Time steps. For a waiting time δ ∈ T, δ > 0, we have (q, v) δ−→ (q, v + δ) if for all transitions
q
a,g,r−→ q′ of M and for all δ′ ∈ [0, δ[, ¬urg[g](v + δ′).

Given an abstract model M = (A,Q,X,−→), a finite (resp. an infinite) execution sequence of M from
an initial state (q0, v0) is a sequence of actions and time-steps (qi, vi)

σi−→ (qi+1, vi+1) of M , σi ∈ A ∪ T
and i ∈ { 0, 1, 2, . . . , n } (resp. i ∈ N).
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In contrast to other models of timed automata [2], for abstract models it is always possible to execute a
transition from a state [7]. If no action is possible only time can progress. We call this situation a deadlock.
Henceforth, we consider abstract models M = (A,Q,X,−→) such that any circuit in the graph −→ has at
least a clock that is reset and tested against a positive lower bound, that is, M is structurally non-zeno [6].
This class of abstract models does not have time-locks, that is, time always eventually progresses.

q0

q1

q2

a
[0 ≤ x ≤ +∞]e

∅

[50 ≤ x ≤ 60]d
b

∅ ∅
[0 ≤ x ≤ 50]l
c

i
[100 ≤ x ≤ 120]d

{x}

Figure 2: Example of abstract model.

EXAMPLE 1 Consider an abstract model M = (A, {q0, q1, q2}, {x},−→) with a set of ac-
tions A = {a, b, c, i}, a single clock x and the following set of transitions (see Figure 2):
−→ =

{
(q0, a, [0 ≤ x ≤ +∞]e, ∅, q1),
(q1, b, [51 ≤ x ≤ 60]d, ∅, q2),
(q1, c, [0 ≤ x ≤ 50]l, ∅, q2),
(q2, i, [100 ≤ x ≤ 120]d, {x}, q0)

}
.

Consider execution sequences of M from the initial state (q0, 0). It can be easily shown that M admits
execution sequences that are infinite repetition of sequences of two following forms (see Section B.1):

1. (q0, 0) a−→ (q1, 0) δ1−→ (q1, δ1) b−→ (q2, δ1) δ2−→ (q2, δ1 + δ2) i−→ (q0, 0) where 50 ≤ δ1 ≤ 60 and
100− δ1 ≤ δ2 ≤ 120− δ1, and

2. (q0, 0) a−→ (q1, 0) δ1−→ (q1, δ1) c−→ (q2, δ1) δ2−→ (q2, δ1 + δ2) i−→ (q0, 0) where 0 ≤ δ1 ≤ 50 and
100− δ1 ≤ δ2 ≤ 120− δ1.

2.3 Physical Model
A key issue for a correct implementation from an abstract model is the correspondence between abstract
time and physical time. There are different manners for establishing such a correspondence as discussed as
follows.

Consider an action a that resets a clock x at the global abstract time t, and assume that the reset of x
takes ε > 0 time units in the physical model, meaning that the reset of x starts at t and completes at t+ ε.
A naive approach is to continuously map the physical time on the value of the clock x. Since x is reset at
the actual time t + ε (see Figure 3), using this approach leads to a drift of ε between the abstract model
and the physical model. There exist approaches for analyzing how clock drifts may disable properties of
an abstract model [1, 10, 16].

An alternative approach is to ensure a correct tracking of physical time and completely avoid this kind
of drift between abstract time and physical time. To achieve that, the proposed semantics for physical
models considers that the value of the clocks are frozen during the execution of an action, and the clocks
are updated after that in order to take into account action execution times. That is, the clock x is considered
to be reset at the model time t even if x is reset at the actual time t+ ε. Then abstract time is updated with
respect to actual time at t + ε, that is, the current value of x at the actual time t + ε is ε which complies
with the abstract model (see Figure 3).
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abstract
time

g
t

t+ ε

t t+ ε

a

{x}

physical

time

abstract
time

g

t t+ ε

t

t+ ε

a
ε

{x}

physical
time

Figure 3: Execution based on continuous mapping of the physical time (left) vs frozen clocks (right).

2.3.1 Definition of Physical Models

Physical models are abstract models modified so as to take into account non-null execution times. They
represent the behavior of the application software running on a platform. We consider that a physical model
is time-safe if its execution sequences are execution sequences of the corresponding abstract model, that
is, execution times are compatible with timing constraints. Furthermore, a physical model is time-robust if
reducing the execution times preserves this time-safety property.

q

q′

r

g

a

ϕ(a)−→

q

q′

∅

waita

r ∪ {xa}

a

g

enda

[xa = ϕ(a)]d

Transition in M . Corresponding transitions in Mϕ.

Figure 4: From abstract model to physical model.

Since actions are timeless in abstract models, a timing constraint for an action is applied to both the
time instant corresponding to its beginning and the time instant corresponding to its completion. In physical
models, these instants may not coincide. We consider that timing constraints in physical models apply to
start times of the actions. As explained above, we also consider that clocks are frozen during an action
execution. This mechanism ensures that clock resets associated to each action behave exactly as if they
were done at action start time. This allows considering timing constraints that are equalities for non-
instantaneous actions. Such constraints are useful for modeling exact synchronization with time, e.g. for
describing a periodic execution.

DEFINITION 3 (physical model) Let M = (A,Q,X,−→) be an abstract model and ϕ : A → T be an
execution time function that gives for each action a its execution time ϕ(a).

The physical model Mϕ = (A,Q,X,−→, ϕ) corresponds to the abstract model M modified so that
each transition (q, a, g, r, q′) of M is decomposed into two consecutive transitions (see Figure 4):

1. The first transition (q, a, g, r ∪ {xa}, waita) corresponds to the beginning of the execution of the
action a. It is triggered by guard g and it resets the set of clocks r, exactly as (q, a, g, r, q′) in M . It
also resets an additional clock xa used for measuring the execution time of a.

2. The second transition (waita, enda, gϕ(a), ∅, q′) corresponds to the completion of a. It is constrained

by gϕ(a) ≡ [xa = ϕ(a)]d that enforces waiting time ϕ(a) at control location waita, which is the
time elapsed during the execution of the action a.
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Notice that if (q, v) is a state of the abstract model then (q, v, v′) is a state of the physical model such
that v′ is a valuation of clocks { xa | a ∈ A }. We compare the behavior of Mϕ from initial states of the
form (q0, v0, 0) with the behavior of M from corresponding initial states (q0, v0). In the above definition,
an abstract model M and its corresponding physical model Mϕ coincide if actions are timeless, that is,
if ϕ = 0. In a physical model Mϕ, every execution of an action a is followed by a wait for ϕ(a) time

units which can be abbreviated as (q, v)
a,ϕ(a)−→ (q′, v[r 7→ 0] + ϕ(a)). This is equivalent to the following

execution of the corresponding abstract model M :

(q, v) a−→ (q′, v[r 7→ 0])
ϕ(a)−→ (q′, v[r 7→ 0] + ϕ(a)),

Notice that a time step (q′, v[r 7→ 0])
ϕ(a)−→ (q′, v[r 7→ 0] + ϕ(a)) of Mϕ may not be a time step of M if

there exists a transition q′
a′,g′,r′−→ q′′ such that urg[g′](v[r 7→ 0] + δ) and δ ∈ [0, ϕ(a)[, meaning that the

physical model violates timing constraints defined in the corresponding abstract model.

time
waiting

0
a2

a3a1

guard of a2 guard of a3guard of a1

Figure 5: Minimal waiting time for action execution.

We consider only execution sequences of physical models Mϕ such that the waiting times for the

actions are minimal, that is, (q, v) δ−→ (q, v + δ)
a,ϕ(a)−→ (q′, (v + δ)[r 7→ 0] + ϕ(a)) is an execution

sequence of Mϕ if δ = min { δ′ ≥ 0 | g(v + δ′)} where g is the guard of the action a at control location q
(see Figure 5).

DEFINITION 4 (time-safety and time-robustness) A physical model Mϕ = (A,Q,X,−→, ϕ) is time-
safe if for any initial state (q0, v0) the set of the execution sequences of Mϕ is contained in the set of the
execution sequences of M . A physical model Mϕ is time-robust if Mϕ′ is time-safe for all execution time
functions ϕ′ ≤ ϕ. An abstract model is time-robust if all its time-safe physical models are time-robust.

Most of the techniques for analyzing the schedulability of real-time systems are based on worst-case
estimates of execution times. They rely on the fact that the global worst-case behavior of the system is
achieved by assuming local worst-case behavior. Unfortunately, this assumption is not valid for systems
that are prone to timing anomalies, that is, a faster local execution may lead to a slower global execution
[14]. A time-robust abstract model is a system without such timing anomalies, that is, if it is time-safe for
execution time function ϕ, then it is time-safe for execution time functions less than or equal to ϕ.

EXAMPLE 2 We consider the abstract model M given in Example 1 and a family of execution time func-
tions ϕ such that ϕ(a) = ϕ(b) = K, ϕ(c) = 2K and ϕ(i) = 0. The behavior of the corresponding
physical models Mϕ from initial state (q0, 0) is summarized in Figure 6 (see Section B.2 for details).

α ϕ(α)
a K
b K
c 2K
i 0

0 10 20 30 40 50 60

K

Mϕ is time-safe (only)

Mϕ is time-safe (and time-robust)

Figure 6: Time-safe physical models Mϕ.
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DEFINITION 5 (time-determinism) An abstract model is time-deterministic if all its guards are eager (or
delayable) equalities.

Time-deterministic abstract models are such that if two execution sequences have the same correspond-
ing sequences of actions, then they are identical. That is, time instants for the execution of the actions are
the same. Time-deterministic abstract models are time-robust, as shown below.

PROPOSITION 1 Time-deterministic abstract models are time-robust.
Proof: See Section C.1. 2

Time-deterministic abstract models are a subclass of timed automata in which each action has a logical
execution time (LET), that is, a fixed time budget for its execution. In such systems, the execution of actions
is followed by a synchronization with time, which ensures time-determinism: if two execution sequences
execute the same sequence of actions, they also execute actions at the same time instants.

EXAMPLE 3 Consider the time-deterministic abstract model M given in Figure 7 obtained from the ab-
stract model of Example 1. Execution sequences of M are infinite repetitions of sequences of the following
form: (q0, 0) a−→ (q1, 0) 50−→ (q1, 50) c−→ (q2, 50) 70−→ (q2, 120) i−→ (q0, 0). The physical models Mϕ

corresponding to M are time-safe if and only if ϕ(a) ≤ 50, ϕ(c) ≤ 70 and ϕ(i) = 0. Notice that for
51 ≤ ϕ(a) ≤ 60, ϕ(b) ≤ 60 and ϕ(i) = 0, Mϕ remains deadlock-free but it is not time-safe.

q0

q1

q2

a
[x = 0]d

∅

[x = 60]d
b

∅ ∅
[x = 50]d
c

i
[x = 120]d

{x}

Figure 7: Time-deterministic abstract model M .

DEFINITION 6 (action-determinism) An abstract model is action-deterministic if there is at most one
transition issued from each control location.

If a time-deterministic abstract model is also action-deterministic, it has a single execution sequence
from a given initial state (q0, v0), that is, it is totally deterministic. Such models have been considered
by [11, 12, 4]. Their time-robustness allows checking time-safety only for worst-case execution times.
In addition, for these systems time-safety verification boils down to deadlock-freedom verification, as
explained below.

PROPOSITION 2 IfM is an abstract model which is action-deterministic, deadlock-free and contains only
delayable guards, then the physical models Mϕ are time-safe if and only if they are deadlock-free.
Proof: See Section C.2. 2

EXAMPLE 4 We modify the time-deterministic abstract model given in Example 3 in order to make it also
action-deterministic (see Figure 8). Its execution sequences remain the same, that is, infinite repetitions of
sequences of the following form: (q0, 0) a−→ (q1, 0) 50−→ (q1, 50) c−→ (q2, 50) 70−→ (q2, 120) i−→ (q0, 0).
The corresponding physical model Mϕ is time-safe if and only if ϕ(a) ≤ 50, ϕ(c) ≤ 70 and ϕ(i) = 0, and
deadlocks otherwise.
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q0

q1

q2

a
[x = 0]d

∅
i
[x = 120]d

{x}

∅
[x = 50]d
c

Figure 8: Deterministic abstract model M .

3 Implementation Method
We use the concepts and definitions of the previous section to define an implementation method for a
given physical model. If the model is robust then the implementation is time-safe. Otherwise, the method
detects violations of time-safety and stops execution. We consider that the application software is a set of
interacting components. Each component is represented by an abstract model. Thus the abstract model
M corresponding to the application is the parallel composition of the timed automata representing the
components.

Given a physical modelMϕ corresponding to the abstract modelM , the implementation method defines
a Real-time Execution Engine which executes the interactions of the components by taking into account
their timing constraints. We prove that the method is correct in two steps. We first define an Execution
Engine for the abstract model M and show that it correctly implements its semantics. Then we define a
Real-time Execution Engine and show that it correctly implements the semantics of Mϕ.

3.1 Execution Engine for Abstract Models
DEFINITION 7 (composition of abstract models) Let M i = (Ai,Qi,Xi,−→i), 1 ≤ i ≤ n, be a set of
abstract models with disjoint sets of actions and clocks, that is, for all i 6= j we have Ai ∩ Aj = ∅ and
Xi ∩ Xj = ∅.

A set of interactions γ is a subset of 2A, where A =
⋃n
i=1 Ai, such that any interaction a ∈ γ contains

at most one action of each componentM i, that is, a = { ai | i ∈ I } where ai ∈ Ai and I ⊆ { 1, 2, . . . , n }.
We define the composition of the abstract models M i as the abstract model M = (A,Q,X,−→γ) over the
set of actions γ as follows:

• Q = Q1 ×Q2 × . . .×Qn

• X = X1 ∪ X2 ∪ . . . ∪ Xn
• For a = { ai | i ∈ I } ∈ γ we have (q1, q2, . . . , qn)

a,g,r−→γ (q′1, q
′
2, . . . , q

′
n) in M if and only if

g =
∧
i∈I gi, r =

⋃
i∈I ri, qi

ai,gi,ri−→ q′i in M i for all i ∈ I , and q′i = qi for all i /∈ I .

The composition M = (A,Q,X,−→γ) of abstract models M i, 1 ≤ i ≤ n, corresponds to a general
notion of product for the timed automata M i. We define an Execution Engine which computes sequences
of interactions by applying the above operational semantics rule (see Figure 9). For given states (qi, vi)
of the components M i and corresponding lists of transitions { qi

aj ,gj ,rj−→ q′j }j issued from qi, the Execu-
tion Engine computes the set of enabled interactions, chooses one (enabled) interaction using a real-time
scheduling policy and executes it.

To check enabledness of interactions, the Execution Engine expresses the timing constraints involving
local clocks of components in terms of a single clock t measuring the absolute time elapsed, that is, t is
never reset. For this, we use a valuation w : X → T in order to store the absolute time w(x) of the last
reset of each clock x with respect to the clock t. The valuation v of the clocks X can be computed from the
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current value of t and w by using the equality v = t − w. Thus, the Execution Engine considers states of
the form s = (q, w, t) where q = (q1, q2, . . . , qn) ∈ Q is a control location of M , w : X→ T is valuation
for clocks representing their reset times and t ∈ T is the value of the current (absolute) time.

scheduling policy
apply

Scheduler

Interaction Model γ

. . .

Application Software Model

Component
M1

Component
M2

Component
M3

Component
Mn

component transitions (ai, gi, ri)

stop if

(deadlock)

execute chosen interaction a

enabled interactions γq

compute
Abstract Model

Abstract Model Execution Engine

model inconsistency

at state (q, w, t)

Figure 9: Abstract model Execution Engine.

We rewrite each atomic expression l ≤ x ≤ u involved in a guard by using the global clock t and reset
times w, that is, l ≤ x ≤ u ≡ l + w(x) ≤ t ≤ u+ w(x). This allows reducing the conjunction of guards
from synchronizing components into a guard of the form:∧

j

[
lj ≤ t ≤ uj

]τj =
[
(maxj lj) ≤ t ≤ (minj uj)

]max τj

.

Thus, the guard g associated to an interaction a at control location q can be put in the form g = [l ≤ t ≤ u]τ .
For a given state s = (q, w, t) of M , we associate to the interaction a its next activation time nexts(a) and
its next deadline deadlines(a). Values nexts(a) and deadlines(a) are computed from g = [l ≤ t ≤ u]τ

as follows:

nexts(a) =
{

max { t, l } if l ≤ u and t ≤ u
+∞ otherwise,

deadlines(a) =


u if l ≤ u ∧ t ≤ u ∧ τ = d
l if l ≤ u ∧ t < l ∧ τ = e
t if l ≤ u ∧ t ∈ [l, u] ∧ τ = e
+∞ otherwise.

Notice that we have nexts(a) ≤ deadlines(a).
Given a state s = (q, w, t), q = (q1, . . . , qn), the Engine computes the next interaction to be executed

as follows.

1. It first computes the set of enabled interactions γq ⊆ γ at control location q, from given sets of
transitions issued from qi for each component M i. According to Definition 7, an interaction a =
{ ai | i ∈ I } ∈ γ is enabled at control location q if (q1, . . . , qn)

a,g,r−→γ (q′1, . . . , q
′
n), where g is the

conjunction of the guards gi of actions ai and r is the union of the resets ri of actions ai, that is,
g =

∧
i∈I gi, r =

⋃
i∈I ri, for all i ∈ I we have qi

ai,gi,ri−→ q′i inM i and for all i /∈ I we have q′i = qi.

2. It chooses an interaction a = { ai | i ∈ I } ∈ γq enabled at state s = (q, w, t), that is, such that there
exists a time instant t′ ≥ t at which the guard g of a holds (i.e. nexts(a) < +∞), and no timing
constraint is violated (i.e. nexts(a) ≤ D = mina∈γq deadlines(a)). The choice of a depends on
the considered real-time scheduling policy. For instance, EDF (Earliest Deadline First) scheduling
policy can be used, that is, the chosen interaction a satisfies deadlines(a) = D. It executes a
with minimal waiting time, that is, at time instant nexts(a). The execution of a corresponds to the
execution of all actions ai, i ∈ I , followed by the computation of a new valuation w and the update
of control locations.

Algorithm 1 gives an implementation of the Execution Engine for the composition of abstract models.
It basically consists of an infinite loop that first computes enabled interactions at current state s of the
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composition (line 3). It stops if no interaction is possible from s (i.e. deadlock) at line 5. Otherwise, it
chooses an interaction a (line 7) and executes a with minimal waiting time (lines 9 and 12). Finally, the
state s is updated in order to take into account the execution of a (lines 13 and 14).

Algorithm 1 Abstract Model Execution Engine
Require: abstract models M i = (Qi,Xi,−→i), 1 ≤ i ≤ n, initial control location (q10 , . . . , q

n
0 ), interac-

tions γ
1: s = (q1, . . . , qn, w, t)← (q10 , . . . , q

n
0 , 0, 0) // init.

2: loop
3: γq = EnabledInteractions(q)
4:
5: if ∃a ∈ γq . nexts(a) < +∞ then
6: D← mina∈γq deadlines(a) // next deadline
7: a = { ai | i ∈ I } ← RealT imeScheduler(γq, s)
8:
9: t← nexts(a) // consider minimal waiting time

10:
11: for all i ∈ I do
12: Execute(ai) // execute involved component
13: w← w[ri 7→ t] // reset clocks
14: qi← q′i // update control location
15: end for
16: else
17: exit(DEADLOCK)
18: end if
19: end loop

3.2 Real-Time Execution Engine
DEFINITION 8 (composition of physical models) Consider abstract models M i, 1 ≤ i ≤ n, and corre-
sponding physical models M i

ϕi
= (Ai,Qi,Xi,−→i, ϕi), with disjoint sets of actions and clocks.

Given a set of interactions γ, and an associative and commutative operator ⊕ : T × T → T, the
composition of physical models M i

ϕi
is the physical model Mϕ corresponding to the abstract model M

which is the composition of M i, 1 ≤ i ≤ n, with the execution time function ϕ : γ → T such that
ϕ(a) =

⊕
i∈I ϕi(ai) for interactions a = { ai | i ∈ I } ∈ γ, ai ∈ Ai.

The definition is parameterized by an operator ⊕ used to compute the execution time ϕ(a) of an inter-
action a from execution times ϕ(ai) of the actions ai involved in a. The choice of this operator depends
on the considered execution platform and in particular how components (abstract models) are parallelized.
For instance, for a single processor platform (i.e. sequential execution of actions), ⊕ is addition. If all
components can be executed in parallel, ⊕ is max.

As a rule, it is usually very difficult to obtain execution times for the actions (i.e. block of code) of an
application software. Execution times vary a lot from an execution to another, depending on the contents of
the input data, the dynamic state of the hardware platform (pipeline, caches, etc.). There exists techniques
for computing upper bounds of the execution time of a bloc of code, that is, estimates of the worst-case
execution times [15]. Given abstract modelsM i, and functions ϕi specifying WCET for the actions ofM i,
the abstract composition M can be safely implemented if the physical composition Mϕ (defined above) is
time-robust.

We defined and implemented a Real-Time Execution Engine that does not need an a priori knowledge
of execution time functions ϕi. It ensures the real-time execution of a component-based application on the
target platform, and stops if the implementation is not time-safe (a deadline is missed during the execu-
tion). Algorithm 2 describes an implementation of the Real-Time Execution Engine for a single processor
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Algorithm 2 Real-Time Execution Engine
Require: abstract models M i = (Qi,Xi,−→i), 1 ≤ i ≤ n, initial control location (q10 , . . . , q

n
0 ), interac-

tions γ
1: s = (q1, . . . , qn, w, t)← (q10 , . . . , q

n
0 , 0, 0) // init.

2: loop
3: γs = EnabledInteractions(q)
4:
5: if ∃a ∈ γq . nexts(a) < +∞ then
6: D← mina∈γq

deadlines(a) // next deadline
7: t← tr // update Engine clock w.r.t. actual time
8: if t ≤ D then
9: a = { ai | i ∈ I } ← RealT imeScheduler(γq, s)

10:
11: t← nexts(a) // update Engine clock
12: wait tr ≥ t // real-time wait
13:
14: for all i ∈ I do
15: Execute(ai) // execute involved component
16: w← w[ri 7→ t] // reset clocks
17: qi ← q′i // update control location
18: end for
19: else
20: exit(DEADLINE MISS)
21: end if
22: else
23: exit(DEADLOCK)
24: end if
25: end loop
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Figure 10: Real-time Execution Engine.

platform. It differs from Algorithm 1 at lines 7, 8 and 12. It updates the current value of abstract time twith
respect to the current value of physical time tr (line 7) in order to take into account execution time of inter-
actions for the considered execution platform. It stops if time-safety is violated, that is, if t is greater than
the next deadline D (line 8). It also waits for the physical time to reach the next activation time (nexts(a))
of the chosen interactions a (line 12).

4 Experimental Results
We developed a Real-time Execution Engine for the execution of BIP real-time programs. BIP (Behavior
Interaction Priority) [5] is framework for building real-time systems consisting of heterogeneous compo-
nents. A component has only private data. Its interface is given by a set of communication ports associated
with data. The behavior of a component is given by a timed automaton (the abstract model of a component)
whose transitions can be labelled by ports and can execute C++ code (i.e. private data transformations).
Connectors between communication ports of components define the set of enabled interactions (i.e. syn-
chronizations between components with possible transfer of data). Priority is a control mechanism for
conflict resolution which can be used to reduce non-determinism and allows direct expression of schedul-
ing policies.

We studied time-safety and time-robustness for a non-trivial multimedia application—an adaptive
MPEG video encoder modeled in BIP. We show that the application is not time-robust. We also explain
how its time-robustness can be enforced using two different methods.

4.1 Description of the Application
We consider an adaptive MPEG video encoder componentized in BIP [8] and running on a STm8010 board
from STMicroelectronics. It takes a stream of frames of 320 × 144 pixels as an input, and computes the
corresponding encoded frames (see Figure 11). Since input frames are produced by a camera at a rate of
10 frames/s (i.e. every 100 ms), encoding each frame must be done in D = 100 ms.

The adaptive MPEG video encoder consists of two main components.

Encoder corresponds to the functional part of the video encoder, that is, it involves no time constraint. In-
put frames are treated by GrabFrame. Each frame is split intoN = 180 macroblocks of 16×16 pix-
els which are individually encoded by EncodeMB for given quality levels qi ∈ Q = { 0, 1, . . . , 8 }.
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Figure 11: Adaptive video encoder architecture.
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Figure 12: Controller component.

The higher the quality levels are, the better the video quality is. A bitstream corresponding to the
encoded frames is produced by OutputFrame.

Controller is a controller for Encoder. It chooses quality levels qi for encoding macroblocks so as not
to exceed the time budget of D = 100 ms for encoding a frame. To keep low the overhead due to the
computation of Controller, quality levels are only computed every 20 macroblocks, that is, there are
9 control points in a frame.

Components Encoder and Controller interact as follows. At each control point i ∈ { 0, . . . , 8 }
Controller triggers Encoder for encoding the next 20 macroblocks at a quality level qi. The computation
of qi is based on the time t elapsed since the beginning of the encoding of the current frame, and estimates
of execution times Cq for encoding 20 macroblocks at quality level q. Execution times have been obtained
by profiling techniques using different input streams of frames (see Table 1). Cq is increasing with quality
level q. A quality level q is enabled at control point i only if t + (9 − i)Cq ≤ D, where (9 − i)Cq is an
estimate of the execution time for encoding the remaining macroblocks of the current frame. This condition
is equivalent to the guard gq(i) ≡ t ≤ D − (9− i)Cq . In order to maximize video quality, we give higher
priority for higher quality levels, that is, for all q ∈ {0, . . . , 7}we have Enc(q+1) ¿ Enc(q) (see Figure 12).
The chosen quality level qi is transmitted by Controller to Encoder through the port Enc. After encoding
the last 20 macroblocks (i.e. i = 9), Controller waits for the next frame, that is, for t = D.

q 0 1 2 3 4 5 6 7 8
Cq 4 4.6 5.4 6 8.2 10 12 14.4 16

Table 1: Estimates of execution times (ms).
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4.2 Time-Safety

As execution times of the video encoder may vary a lot from a frame to another [13], we studied time-
safety for a family of execution time functions Kϕ, where the parameter K ranges in [0.001, 2], and where
ϕ denotes an execution time function corresponding to the actual execution of the video encoder on the
target platform for a particular frame.
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Figure 13: Video encoder execution for execution time functions Kϕ.

Figure 13 shows average quality levels chosen for different values of the parameter K. They are
increasing as K is decreasing, but time-safety is violated for K = 1.7 and K = 1.4, even if time-safety is
guaranteed for K ∈ [0.9, 1.3] (i.e. lower execution times). That is, the application is not time-robust. This
is due to the fact that the controller is based on estimates of execution times which can be different from
the actual execution times. This difference depends on the chosen quality levels, that is, on the value of K.
Therefore, increasing the platform speed (i.e. reducing K) is not a guarantee for time-safety: time-safety
violations still occur at K = 0.7 and K = 0.8 (see Figure 13).

When time-safety is violated by the video encoder, the current frame is skipped which is equivalent to
encoding all its macroblocks at quality level 0. This leads to a drastic degradation of the video quality.

4.3 Enforcing Time-Robustness

Time-robustness is a desirable property of an application since it allows better predictability of its behavior,
that is, a time-robust application is time-safe for any execution times provided that it is time-safe for worst-
case execution times. We studied two methods for enforcing time-robustness of the adaptive video encoder.

As explained by Proposition 1 of Section 2.3.1, time-robustness can be guaranteed by enforcing time-
determinism. This can be achieved by modifying all inequalities involved in guards of Controller into
delayable equalities. The time-deterministic video encoder chooses the same quality levels for all consid-
ered values of K, that is, there is no adaptation of the quality levels with respect to actual execution times
Kϕ. Time-robustness is obtained by a severe reduction of the quality of the video (see Figure 13).

Time-robustness can also be achieved by enforcing time-safety for the component Controller using
worst-case execution times (WCET), as explained in [9]. The principle is to compute restricted guards for
transitions based on a WCET analysis of the system. As shown in Figure 13, this conservative approach
guarantees time-robustness by a slight reduction of the chosen quality levels with respect to the ones chosen
by the initial video encoder.

5 Conclusion

We have presented an implementation method for real-time applications. The method is new and innovates
in several aspects:
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• It does not suffer limitations of existing methods regarding the behavior of the components or the
type of timing constraints. Considered real-time applications include not only periodic components
with deadlines but also components with non-deterministic behavior and actions subject to interval
timing constraints.

• It is based on a formally defined relation between application software written in high level languages
with atomic and timeless actions and its execution on a given platform. The relation if formalized
by using two models: 1) abstract models which describe the behavior of the application software
as well as timing constraints on its actions; 2) physical models which are abstract models equipped
with an execution time function specifying WCET for the actions of the abstract model running
on a given platform. Time-safety is the property of physical models guaranteeing that they respect
timing constraints. Time-robust physical models have the property to remain time-safe for decreasing
execution times of their actions. Non-robustness is a timing anomaly that appears in time non-
deterministic systems.

• It proposes a concrete implementation method using a Real-time Execution Engine which faithfully
implements physical models. That is, if a physical model defined from an abstract model and a target
platform is time-robust then the Engine coordinates the execution of the application software so as
to meet the real-time constraints. The Real-time Execution Engine is correct-by-construction. It
executes an algorithm which directly implements the operational semantics of the physical model.

The method generalizes existing techniques in particular those based on LET. These techniques con-
sider fixed LET for actions, that is, time-deterministic abstract models. In addition, their models are action-
deterministic, that is, only one action is enabled at a given state. For these models time-robustness boils
down to deadlock-freedom for WCET as shown in Proposition 2.

To the best of our knowledge, the concept of time-robustness seems to be new. It can be used to
characterize timing anomalies due to time non-determinism. These timing anomalies have in principle
different causes from timing anomalies observed for WCET.

Results on time-safety and time-robustness allow a deeper understanding of causes of anomalies. They
advocate for time-determinism as a means for achieving time-robustness. An interesting question is loss in
performance when in a model interval constraints are replaced by equalities on their upper bound. Time-
robustness is then achieved through time-determinization at some performance penalty. We are currently
studying the loss of performance induced by this transformation.
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A Notations
Given an abstract model M = (A,Q,X,−→) (see Definition 1) and a control location q of M , we denote
by guard[q] the predicate on clocks, that is, true if a guard of a transition issued from q is true, that is:

guard[q] ⇐⇒
∨

q
ai,gi,ri−→ qi

gi.

We also denote by wait(q, v) the maximal waiting time allowed at state (q, v), defined by:

wait(q, v) = min
({
δ ≥ 0

∣∣∣ ∨
q

ai,gi,ri−→ qi

urg[gi](v + δ)
}
∪ {+∞}

)
.

Notice that we have for all δ ∈ [0,wait(q, v)] we have:

wait(q, v + δ) = wait(q, v)− δ. (1)

B Proofs for Examples

B.1 Example 1
Consider the abstract model of Example 1 (see Figure 2). Since the only transition issued from initial
control location q0 of M is eager and its guard is always true, only action a is possible from the initial state
(q0, 0), that is, (q0, 0) a−→ (q1, 0). At state (q1, 0), the system waits for δ1 time units before executing b
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or c, such that 0 ≤ δ1 ≤ wait(q1, 0) = 60. Due to the guards of action b and c, we have 50 ≤ δ1 ≤ 60
for executing b and 0 ≤ δ1 ≤ 50 for executing c. The execution of b or c leads to state (q2, δ1). At state
(q2, δ1), time must progress by δ2 time units before executing i, such that 100 ≤ δ1 + δ2 ≤ 120, that is,
100− δ1 ≤ δ2 ≤ 120− δ1. Then, action i is executed leading back to the initial state (q0, 0).

This demonstrates that execution sequences of M are infinite repetitions of sequences of two following
forms:

1. (q0, 0) a−→ (q1, 0) δ1−→ (q1, δ1) b−→ (q2, δ1) δ2−→ (q2, δ1 + δ2) i−→ (q0, 0) where 50 ≤ δ1 ≤ 60 and
100− δ1 ≤ δ2 ≤ 120− δ1, and

2. (q0, 0) a−→ (q1, 0) δ1−→ (q1, δ1) c−→ (q2, δ1) δ2−→ (q2, δ1 + δ2) i−→ (q0, 0) where 0 ≤ δ1 ≤ 50 and
100− δ1 ≤ δ2 ≤ 120− δ1.

B.2 Example 2

Consider the abstract model of Example 1 (see Figure 2) and a family of execution time functions ϕ such
that ϕ(a) = ϕ(b) = K, ϕ(c) = 2K and ϕ(i) = 0.

B.2.1 Execution sequences of Mϕ for K ≤ 40

ForK ≤ 40,Mϕ has execution sequences that are infinite repetitions of the following execution sequences:

1. (q0, 0)
a,K−→ (q1,K)

c,2K−→ (q2, 3K)
i,0−→ (q0, 0), and

2. (q0, 0)
a,K−→ (q1,K) 50−K−→ (q1, 50)

b,K−→ (q2, 50 +K) 50−K−→ (q2, 100)
i,0−→ (q0, 0).

These are execution sequences of M (see Section B.1), that is, Mϕ is time-safe for K ≤ 40.

B.2.2 Execution sequences of Mϕ for K ∈ [41, 50]

For K ∈ [41, 50], Mϕ has execution sequences that are repetitions of the following execution sequences:

1. (q0, 0)
a,K−→ (q1,K)

c,2K−→ (q2, 3K) leading to a deadlock, and

2. (q0, 0)
a,K−→ (q1,K) 50−K−→ (q1, 50)

b,K−→ (q2, 50 +K) 50−K−→ (q2, 100)
i,0−→ (q0, 0).

Infinite repetitions of the sequence 2 is also execution sequence of M . Other execution sequences of Mϕ

are finite and lead to a deadlock. They are not execution sequences of M since M is deadlock-free, that is,
Mϕ is not time-safe K ∈ [41, 50].

B.2.3 Execution sequences of Mϕ for K ∈ [51, 60]

For K ∈ [51, 60], Mϕ has a single execution sequence that is an infinite repetitions of the following
execution sequence:

(q0, 0)
a,K−→ (q1,K)

b,K−→ (q2, 2K)
i,0−→ (q0, 0).

This is an execution sequences of M (see Section B.1), that is, Mϕ is time-safe M for K ∈ [50, 60].
However, Mϕ is not time-robust since Mϕ is not time-safe for K ∈ [41, 50].

B.2.4 Execution sequences of Mϕ for K > 60

For K > 60, Mϕ has a single execution sequence (q0, 0)
a,K−→ (q1,K) leading to a deadlock. This is not an

execution sequence of M since M is deadlock-free, that is, Mϕ is not time-safe K > 60.
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C Proofs for Propositions

C.1 Proposition 1
To prove that time-deterministic abstract models are time-robust (i.e. Proposition 1), we need the following
lemma.

LEMMA 1 Given a time-deterministic abstract model M = (A,Q,X,−→) and a state (q, v) of M , the
only waiting time allowed at (q, v) is wait(q, v), that is, for all δ ∈ [0,wait(q, v)[ no action is enabled at
(q, v + δ), that is ¬guard[q](v + δ).

ProofL:et (q, v) be a state of a time-deterministic abstract model M = (A,Q,X,−→). Since M contains
only guards that are eager (or delayable) equalities, transitions q

ai,gi,ri−→ qi, 1 ≤ i ≤ n, issued from q are
such that the guard gi is of the form gi ≡ [xi = li]e. We have:∨

1≤i≤n

gi(v + δ) ⇐⇒
∨

1≤i≤n

urg[gi](v + δ)

⇐⇒ δ ∈ ∆ = { δi ≥ 0 | 1 ≤ i ≤ n },

where δi = li − v(xi). By application of the definitions of wait(q, v) and guard[q], we have wait(q, v) =
min ∆ and ¬guard[q](v + δ) for δ ∈ [0,wait(q, v)[. 2

Let M = (A,Q,X,−→) be a time-deterministic abstract model that is time-safe for an execution time
function ϕ. Consider an execution time function ϕ′ such that ϕ′ ≤ ϕ. We show by induction that each
execution sequence of Mϕ′ is also an execution sequence of Mϕ. By induction hypothesis, we consider a
state (q, v) of both Mϕ′ and Mϕ, and a transition q

a,g,r−→ q′ executed at (q, v) in Mϕ′ , that is:

Mϕ′ : (q, v)
a,ϕ′(a)−→ (q′, v′ + ϕ′(a)) δ′−→ (q′, v′ + ϕ′(a) + δ′).

where v′ = v[r 7→ 0] and δ′ is the waiting time for the execution of the next action. As g(v) = true, action
a can be executed in Mϕ at (q, v):

Mϕ : (q, v)
a,ϕ(a)−→ (q′, v′ + ϕ(a)) δ−→ (q′, v′ + ϕ(a) + δ),

where δ is the waiting time for the execution of the next action in Mϕ. As Mϕ is time-safe and ϕ′(a) ≤
ϕ(a), we have ϕ′(a) ≤ ϕ(a) ≤ wait(q′, v′). Using (1) (see Section A), we have wait(q′, v′ + ϕ(a)) =
wait(q′, v′)−ϕ(a) and wait(q′, v′ +ϕ′(a)) = wait(q′, v′)−ϕ′(a). By application of Lemma 1 we obtain
δ = wait(q′, v′)− ϕ(a) and δ′ = wait(q′, v′)− ϕ′(a), that is, ϕ(a) + δ = ϕ′(a) + δ′. This demonstrates
that the execution of a at state (q, v) leads to the same state in Mϕ and Mϕ′ . By induction, execution
sequences of Mϕ′ are execution sequences of Mϕ.

C.2 Proposition 2
Let M = (A,Q,X,−→) be a deadlock-free action-deterministic abstract model containing only delayable
guards. We demonstrate that Mϕ is time-safe if and only if Mϕ is deadlock-free.

Mϕ is time-safe⇒Mϕ is deadlock-free

If the physical model Mϕ is time-safe, then its execution sequences are execution sequences of the
deadlock-free abstract model M , that is, they are deadlock-free.

Mϕ is deadlock-free⇒Mϕ is time-safe

We prove by contradiction thatMϕ is time-safe ifMϕ is deadlock-free. Assume that time-safety is violated
for an action a at a state (q, v) of an execution sequence of Mϕ, that is:

(q, v)
a,ϕ(a)−→ (q′, v[r 7→ 0] + ϕ(a))
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such that ϕ(a) > wait(q′, v[r 7→ 0]). Since M is action-deterministic, there exists only one transition

q′
a′,g′,r′−→ q′′ issued from q′, meaning that

wait(q′, v[r 7→ 0]) = min
({

δ ≥ 0
∣∣∣ urg[g′](v + δ)

}
∪ { +∞ }

)
,

where g′ is a guard of the form

g′ ≡
[ ∧

1≤i≤n

[li ≤ xi ≤ ui]
]d

Since g′ is a delayable conjunction of intervals, we have urg[g′](v + δ) ⇒ ∀δ′ > δ . ¬g′(v + δ′). As a
consequence, no action can be executed from (q′, v[r 7→ 0] + ϕ(a)), that is, Mϕ has a deadlock.
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