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Abstract

Virtual prototypes are simulators used in the consumer electronics industry. They enable the
development of embedded software before the real, physical hardware is available, hence pro-
viding important gains in speed of development and time-to-market. Transaction-level Mod-
eling (TLM) is a widely used technique for designing such virtual prototypes. Its main insight
is that many micro-architectural details (i.e. caches, fifos and pipelines) can be omitted from
the model as they should not impact the behavior perceived from a software programmer’s
point-of-view. In this paper, we shall see that this assumption is not always true, specially for
low-level software (e.g. drivers). As a result, there may be bugs in the software which are not
observable on a TLM virtual prototype, designed according to the current modeling practices.
We call this a faithfulness issue. Our experience shows that many engineers are not aware
of this issue. Therefore, we provide an in-depth and intuitive explanation of the sort of bugs
that may be missed. We claim that, to a certain extent, modified TLM models can be faithful
without losing the benefits in terms of time-to-market and ease of modeling. However, further
investigation is required to understand how this could be done in a more general framework.
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1 Introduction
Developing today’s high-tech consumer electronic devices is a real challenge, mainly because of the com-
plexity and the time-to-market pressure. Most of the functionality of these devices is often grouped into a
single integrated circuit, which is then called a system-on-chip (SoC).

The design of such systems is a joint development of custom hardware (the SoC itself) and software
(drivers, etc). In this context, a virtual prototype is a model of the hardware intended for simulation. It
allows the development of software before the real, physical hardware is available.

1.1 Virtual prototypes and the design flow
Register-transfer level (RTL) models are the traditional entry point in the SoC design flow. They specify
precisely the hardware logic needed for manufacturing the physical chip. RTL models are also executable.
They can simulate the behavior of the hardware very precisely.

Nevertheless, the simulation of complex, system-level RTL models is very slow, and they become avail-
able too late in the design flow. Using them for software development becomes not feasible in practice [1].

1.2 Transaction-Level Modeling
Transaction-Level Modeling (TLM) is a widely used technique for designing virtual prototypes [2].

Conceptually, a virtual prototype in TLM is a set of components, which represent hardware blocks
(typically: CPUs, DMAs, memories, timers) connected through interconnections. An interconnection
transports transactions, which are abstractions of data.

The TLM approach relies on the assumption that many micro-architectural details (like caches, fifos,
and pipelines) are only optimizations; in other words, they should not impact the behavior of the hardware
as perceived from a software programmer’s point-of-view. Consequently, these details are dropped from
the virtual prototype, which is expected to remain precise in what concerns the functionality.

Because they are less detailed, TLM virtual prototypes are able to achieve very high simulation speed
while requiring far less modeling effort with respect to RTL. Thus, they effectively address the aforemen-
tioned complexity and time-to-market issues.

1.3 Motivation and faithfulness issues
As we shall see in details in Section 3, there is a wide variety of modern architectures that implement
aggressive optimizations which may change the memory accesses’ semantics (what we call the memory
model [3]).

Because the TLM virtual prototypes do not include such architectural details, some behaviors of the
software on the real system (and the bugs in particular) may not be reproducible when running on the
virtual prototype. We call this a faithfulness issue.

1.4 The importance of faithfulness
Ensuring that a model is faithful is essential so that software bugs can be found in simulation. Indeed, de-
bugging and reproducibility are some of the major selling points of the TLM virtual prototyping approach.

Many other techniques also require faithfulness. For instance, formal verification [4] and stateless
model checking [5] can be used to prove properties of a SoC by analyzing a model composed of the virtual
prototype and the embedded software. Of course, if the virtual prototype is not faithful, any property that
has been proven through these techniques cannot be guaranteed to be valid on the real system.

1.5 Who should be concerned?
Most high-level applications will not suffer from this as they should use APIs that hide the interaction
with the hardware. However, when implementing device drivers, low-level synchronization primitives or
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operating system supporting software, one should be aware of the memory model of the system. It is also
the case when implementing lockless data-structures.

Finally, note that the TLM virtual prototyping approach targets low-level software development (there
are better techniques to help developing high-level software, like the simulators included in the iPhone [6]
and Android [7] SDKs). Hence, the faithfulness of TLM with respect to the memory model concerns the
large majority of TLM users.

1.6 Coping with the issue
At first sight, it could seem that including the relevant micro-architectural details in the virtual prototype is
the only way to guarantee its faithfulness. However, this goes against the very principle of Transaction-level
Modeling, because it would imply a much higher modeling effort, and lower simulation speed. Moreover,
the absence of details in a TLM virtual prototype is also beneficial for software robustness: a piece of
software that has been validated on a less-detailed virtual prototype is more likely to run correctly on any
real hardware that constitutes a particular implementation of it.

We are currently working on the definition of a methodology that would ensure faithfulness without
losing the benefits of TLM in terms of speed of development and time-to-market. We also wish to avoid
seriously breaking the way people understand and write transaction-level models by incorporating this
methodology within the existing modeling approach.

In this context, we have an initial prototype that we will present briefly later on. However, as a first
step, this paper focuses on providing a detailed understanding of the aforementioned faithfulness issues.

1.7 Contributions and structure of the paper
The main contribution of this paper is related to the study of the faithfulness issues in the current TLM
modeling practices. We give precise and simple examples for which a TLM virtual prototype may hide
software bugs and we explain why straightforward approaches do not lead to practical solutions. Based on
these examples, we sketch the method we are considering to build faithful TLM models.

The rest of this paper is organized into four parts.

• Section 2 presents some technical background on the implementation of virtual prototypes and the
current modeling practices.

• Section 3 introduces some common architecture optimizations that are usually not captured in current
virtual prototypes.

• Section 4 shows how this may lead to software bugs being missed.

• Section 5 gives some hints on a promising technique to modify TLM models so that they are faithful
with respect to some sorts of architectural details.

2 Some background on modeling

2.1 The SystemC standard
In this section, we will briefly present SystemC [8], the current industry standard language for developing
virtual prototypes. Strictly speaking, SystemC is a C++ library and a discrete-event simulation engine.

In a discrete-event simulation, the state of the model changes only at a discrete set of points in simulated
time. Models are composed of processes and events. During simulation, each process can only be running,
ready or waiting. A scheduler puts ready processes to run, checks whether waiting processes are ready, and
advances the simulated time when all processes are waiting.

There are two kinds of processes in SystemC, SC_THREADs and SC_METHODs. They differ only on the
type of stack management and have exactly the same expressiveness [9]. Therefore, and to avoid confusing
the term SystemC processes with operating system processes, we will restrict ourselves to SC_THREADs.
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SystemC implements cooperative multitasking, i.e. a running SC_THREAD only yields control to oth-
ers at well-defined points in its execution. This is opposed to preemptive multitasking wherein execution
of tasks interleaves on a non-user controlled fashion on uniprocessors and may overlap on multiproces-
sors [10]. SC_THREADs yield control exactly at the points where they call wait(e) to wait for an event e
to be notified by another SC_THREAD; or wait(t) to wait for t units of simulated time.

2.2 The TLM-2.0.1 library

OSCI TLM-2.0.1 [11] is a set of interfaces designed for writing Transaction-level models on top of Sys-
temC and ultimately intended for IEEE standardization.

TLM-2.0.1 itself does not include any modeling guidelines. Instead, it defines an “interoperability
layer” which is intended to reduce the engineering effort needed to achieve interoperability. This interop-
erability layer defines a base protocol, and a generic payload.

The base protocol introduces a communication mechanism called transaction. A transaction transports
data between connection points bound to SystemC modules (the sockets). A socket can be either initiator
or target depending on whether it initiates the transfers.

The generic payload contains an address, the data, a response status and a command which can be either
a read, a write or an ignore (the later is intended for extensions). Additional primitives can be added using
an extension mechanism. Interoperability is only guaranteed if these extensions can be ignored by the rest
of the components in the virtual prototype.

Transactions are implemented as method calls, which can be of two kinds:

• Blocking: the method call returns when the transaction is complete. The code that actually imple-
ments the transaction is executed in the context of the calling SC_THREAD.

• Nonblocking: the method call returns immediately. The code that actually implements the transac-
tion is executed in a different SC_THREAD. The caller receives a notification when the transaction is
finished.

In this paper, we only consider blocking transactions. The TLM-2.0.1 sockets can automatically convert
one type of method call into another, spawning extra SC_THREADs when needed.

2.3 Integrating embedded software

There are several techniques to integrate software within a virtual prototype. Instruction Set Simulators
(ISS) read instructions one-by-one from the binary code (compiled to the target processor) and simulate
their execution. Variants may use dynamic translation [12] techniques. Native wrappers may either wrap
the source directly into the virtual prototype, link with a binary compiled into native code [2], or use virtual
machines [13].

Broadly speaking, all these techniques will:

• transform reads and writes from the software into read() and write() transactions that are per-
formed by a SC_THREAD in a component that corresponds to the processor;

• add calls to wait() in order to avoid starvation due to the cooperative nature of the SystemC simu-
lator.

2.4 Modeling practices

In this paper, we will focus on virtual prototypes intended for software development. These models, also
known as Programmer’s View (TLM-PV) [14], allow a fast and accurate execution of embedded software
and are widespread in the virtual prototyping community. The main idea is that the embedded software
should run, unmodified (or with minimal modifications, depending on the technique), both on the TLM-PV
model and on the real chip.
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Interconnection

Embedded
software

Wrapper/ISS

Hardware
block

...

...
write();
...

write_impl() {
   ...
}

{

{
write_impl(addr, data) {

wait(42);
memory[addr] = data;
wait(23);

}

Figure 1: A typical virtual prototype

In the sequel, the term TLM will be always referring to TLM-PV. We consider multi-core, bus-mapped,
shared-memory systems and we take into account TLM prototypes written in SystemC, with the TLM-2.0.1
library.

A typical virtual prototype is shown on Figure 1. In this figure, the software calls write() using one
of the techniques highlighted on the previous section. The data and address are packaged into a transaction
which is forwarded through the interconnection and to the corresponding implementation in the target
component. wait() statements may be placed to model the time taken before and after the code that
implements the effect of the method call. No details such as arbitration, caches, fifos are part of the virtual
prototype, favoring simplicity and simulation speed.

3 Modern architectures and relaxed consistency
Branch prediction [15], out-of-order execution [16], the pipeline [17] and compiler optimizations [18, 19]
are all designed to improve performance of each individual thread by reordering reads and writes to the
memory. Such reorderings are invisible to the issuing thread by construction, but can lead to undefined
behavior in a multi-threaded system.

On multi-core architectures, when a processor issues a write, the value is usually first kept in a cache.
The cache provides a notion of locality, saving time in situations such as when the processor writes to the
same address more than once.

The requests are then collected in a hardware write buffer, and pushed to memory at a later time. This
is often designed to be very efficient, and to exploit the parallelism, but there is a drawback: the order in
which requests are issued is not necessarily the order in which they are performed.

Different architectures provide different guarantees on what can be reordered. The next section will
illustrate these ideas through an example.

3.1 Example 1
Figure 2 presents part of the code from the implementation of a lock algorithm (Dekker) for critical sec-
tions [3]. It involves two processors (P1 and P2) and three variables in the memory (x, y and z). P2’s
assertion will be violated if P1 writes to the variable z, that is, if both processors enter the critical section.

Before entering critical section, P1 writes 1 to x and reads y. The code of P1 relies on the assumption
that, if the read of y returns 0, then P2 has not yet tried to enter the critical section. P2 operates in a similar
way. While this is code works in a sequentially consistent [20] system, implementing systems that provide
this view involves serious compromises in performance [3].
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Initially x = y = z = 0

P1 P2

write(x, 1);
if(read(y) == 0) {

// Crit. section
write(z, 1);

}

write(y, 1);
if(read(x) == 0) {

// Crit. section
assert(read(z) == 0);

}

Figure 2: A (bugged) sketch from Dekker’s algorithm

P1 P2

write(x, 1);
mfence();
if(read(y) == 0) {

// Crit. section
write(z, 1);

}

write(y, 1);
mfence();
if(read(x) == 0) {

// Crit. section
assert(read(z) == 0);

}

Figure 3: A possible fix of Figure 2 using mfence()

A more realistic architecture is depicted in Figure 4. This hardware platform includes a very common
micro-architectural feature known as write buffers, which is present in most of today’s processors. In this
system, writes are allowed to be delayed in such a way that both reads by processors P1 and P2 will return
0. Consider for instance the execution shown in the same figure.

3.2 A possible fix to Example 1

Fortunately, when hardware designers introduce such optimizations, they also provide special operations
that allow to avoid this bug. This can be done, for instance, by enforcing that the write buffers are flushed
so that a value of 0 returned by P2’s read of x effectively implies that P2’s write to y happens before P1’s
respective read.

Take for instance the mfence() operation, which is present in architectures like amd64 and x86 (with
the SSE instruction set extension) [21]. Its semantics guarantees that, upon completion, all previous (in
the program order) operations are visible to all other processors. Then, Figure 3 shows a possible fix of the
code of Figure 2 using mfence(). Actual implementations of mutual exclusion algorithms make heavy
use of this kind of special operations.

4 Discussion on the Example 1

In this section, we discuss what happens when the software from the Example 1 is embedded on a Sys-
temC/TLM virtual prototype. We show that, with the current modeling practices, this virtual prototype
will hide the bug that we had exposed in this software in Section 3.1. We also argue that straightforward
modifications that could be proposed to solve the problem do not lead to practical solutions.

4.1 Constructing a virtual prototype for Example 1

First, we will show how a typical virtual prototype for the Example 1 is constructed: Using a simple
wrapper technique (described in Section 2.3), the software from the Example 1 is embedded into two
SC_THREADs, respectively T1 and T2, as shown in Figure 5. Then, these SC_THREADs are put into two
SystemC components that represent the processors.
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P1 P2

1) y
2) x
6) z

3) x
5) z

4) y

1) P2 writes to y (delayed in a write buffer)
2) P2 reads x == 0;

3,4,5) P1 writes to x, reads y == 0 and writes to z;
6) P2 reads z == 1, which violates the assertion.

Figure 4: Real system: write buffers

A third component, representing the memory, is modeled following the guidelines presented in Sec-
tion 2.3. It has an array storage which effectively stores the data. Calls to wait() in the implementation
are used to model the time that it takes to read and store data in the memory.

For brevity, we have omitted from Figure 5 the implementation of the base classes Initiator and
Target. The Initiator class should declare a TLM initiator socket; transform read()s and write()s,
performed by the software, into transactions; and forward these transactions through the aforementioned
socket. The class Target should declare a TLM target socket; receive transactions from this socket; and
forward reads to read_impl() and writes to write_impl().

The last step is to instantiate and connect the components using a bus model that routes transaction at
addresses x, y and z to the memory.

4.2 Possible executions of the virtual prototype
Now, we need to understand what happens during the simulation of this virtual prototype.

We call a step the sequence of instructions executed by a SC_THREAD from the point the scheduler
puts it to execute to the point where it finishes execution or yields control back to the scheduler by calling
wait().

The set of all possible executions of the virtual prototype is obtained by interleaving the steps of T1 and
T2. The Figure 6 respectively the steps of T1 and T2 with dashed and solid lines. In this figure, there are
paths that lead to either 1) P1, or 2) P2, or 3) none of them deciding to enter the critical section. However,

SC_MODULE(P_1):
public Initiator {

SC_CTOR(P_1) {
SC_THREAD(T_1);

}
void T_1() {

write(x, 1);
if(read(y) == 0) {

// Crit. section
write(z, 1);

}
}

};

SC_MODULE(P_2):
public Initiator {

SC_CTOR(P_2) {
SC_THREAD(T_2);

}
void T_2() {

write(y, 1);
if(read(x) == 0) {

// Crit. section
assert(read(z) == 0);

}
}

};

SC_MODULE(Mem): public Target {
data[SIZE] storage;
data read_impl(addr a) {

wait(42);
data d = storage[a]; // effect
wait(23);
return d;

}
void write_impl(addr a, data d) {

wait(42);
storage[a] = d; // effect
wait(23);

}
};

Figure 5: Pseudo-code of a typical virtual prototype implementation of the Example 1
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read(x) == 0

write(y, 1)wri
te(

x, 
1)

read(y)
 == 0

write(y, 1) wri
te(

x, 
1)

rea
d(y

) !
= 0read(x) != 0

read(x) != 0

read(z) == 0wri
te(

z, 
1)

rea
d(y

) !
= 0 read(x) != 0

write(y, 1) wri
te(

x, 
1)

read(z) == 0rea
d(y

) !
= 0

read(x) != 0 rea
d(y

) !
= 0

wri
te(

z, 
1)

read(z) == 0
No one enters the

critical section

write(y, 1) wri
te(

x, 
1)

wri
te(

z, 
1)

Initial state a step of T1 during which the
instruction foo of P1 is executed

foo

a step of T2 during which the
instruction bar of P2 is executed

bar

P1 enters the critical section P2 enters the critical section

Figure 6: Possible executions of Example 1

there is no possible execution that leads to both P1 and P2 deciding to enter the critical section.
The conclusion is that, when executing the software on this virtual prototype, the mutual exclusion

property appears correct. Nevertheless, we have shown in Section 3.1 that such software has a bug that
shows up on the real system. This demonstrates that the current TLM modeling practice may hide software
bugs.

Let us have a look at the bug again. We have shown in Section 3.1 that in some architectures, P2’s write
to y could be delayed by a write buffer in such a way that P1 will read the previous value (y == 0).

The key to understand why the virtual prototype cannot reproduce this behavior is in what we call the
effect of a transaction: the portion of code that effectively implements its behavior. The lines that implement
the effect of transactions in Figure 5 are marked as such. These lines will be executed somewhere between
the call and the return of each transaction. Because of the way we have implemented the memory, the effect
of transactions will become visible for all the components at the same time. There is no way to have one
component observe a value, and another component observe another (previous) value, which is a necessary
condition to reproduce the bug.

5 Writing faithful models
The first (non-)solution that we would like to mention is to include all the relevant micro-architectural
details in the virtual prototype. This alternative increases complexity, requires a very big modeling effort,
and leads to poor performance, contradicting the advantages of using a TLM model in the first place.

A much more reasonable approach is to model the actual semantics of the underlying architecture not
in terms of implementation (what a particular cache does), but in terms of specification (what caches may
be expected to do). There is a large literature on memory consistency models, a field of research that
tries to understand and specify formally how software threads interact with memory on complex architec-
tures. Some of these models have operational semantics which describe the meaning of the program as a
non-deterministic sequence of steps, much easier to understand and implement than hundreds of pages of
documentation.

Therefore, a practical way to write a faithful model is to have writes and reads implement the opera-
tional semantics of a memory model that is equivalent (or weaker) than that of the real system.

We have done some experiments aiming at the implementation of such operational semantics in TLM
models. The idea is to enrich the structure of a TLM model by inserting additional components that play
the role of write buffers. Their behavior is non-deterministic: they either delay the write() operations, or
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Initially x = y = 0

P1 P2

write(x, 1); while(read(x) != 1);
write(y, 1);

P3

while(read(y) != 1);
assert(read(x) == 1);

Figure 7: Example 2

push them to memory immediately.
These additional components can be organized in many ways: flat or hierarchic, static or dynamic. This

is very important for characterizing memory models, because some of these structural organizations will
result in more global behaviors being exposed than others. We have a working prototype in which we can:
(i) experiment with different ways of plugging the additional components into a real TLM model; (ii) or
use exhaustive search or simulation for finding bugs.

With this prototype, we were able to design a model whose set of behaviors includes some execution
that exposes the bug in Example 1. Therefore, an exhaustive search eventually finds the bug, since the
search space is small in this example. However, in its current form, this framework is not general enough
to capture all possible architectural features present in modern systems.

For instance, consider the ARM test taken from [22] §6.4 in Figure 7. In this example, P1 writes to
x; P2 waits for the write to x, then writes to y; and P3 waits for the write to y, then reads x. On an
ARM architecture, P3 may read x == 0, which means that P3 may perceive the write from P2 before the
write of P1. This type of behavior cannot be captured by the kind of structure that our current prototype
implements.

6 Conclusion and further work

We have shown that the current TLM modeling practices can lead to virtual prototypes that are not faithful
with respect to common, modern micro-architectural features. In other words, there exist behaviors of the
real chip that matter for the embedded software, and that cannot be reproduced on the virtual prototype.

This is an issue for low-level software development, which means that a large part of the TLM commu-
nity should be concerned. Yet our experience shows that many engineers in the industry are not aware of
it.

To find a practical solution to this faithfulness problem, without sacrificing simplicity and performance,
we have proposed a technique that exploits non-determinism. We have a prototype that is able to detect
some software bugs, but is still far from being general. In addition, it may not be always possible to
perform exhaustive exploration of the non-determinism if the state space is too big. We intend to tackle
both problems in our future work.

We are also currently exploring alternative techniques that would benefit from existing work on memory
consistency models, and we intend to adapt the results on this field to our case, where systems have not
only memory, but also hardware blocks that contain registers with a varied range of different behaviors.
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