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Abstract

Designing concurrent or distributed systems with complex architectures while preserving a set of high-
level requirements through all design steps is not a trivial task. An approach which is both composi-
tional and incremental is mandatory to master this complexity. We propose here a contract-based design
and verification framework for safety and progress requirements in component systems with data ex-
change. We build upon a notion of contract framework which relies on a component algebra and two
refinement relations: conformance and refinement under context. We provide a condition under which
circular reasoning can be used for checking dominance, i.e. refinement between contracts. We illustrate
our verification methodology with a case study: a protocol for tree-like networks for which both safety
and progress must be ensured.
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1 Introduction

We aim at the definition of a scalable design and verification methodology for rich specifications of dis-
tributed component systems of arbitrary size expressing safety and progress properties. For expressing such
rich, yet abstract specifications, we propose a formalism similar to symbolic transition systems as introduced
in [10] which we extend in several ways. We define progress constraints generalizing the usual strong and
weak fairness and we decorate control states with invariants on state variables. We also consider an explicit
composition model represented by sets of connectors. Each connector defines a set of interactions and a
transformation on (non persistent) port variables, where ports name transitions of the local components in-
volved in the interaction. For achieving scalability, we base verification on an abstract semantics in which
explicit values of state variables are abstracted by the defined state invariants.

For achieving independent implementation of such specifications, we propose to use contracts. Like in
contract-based design [11], we use contracts to constrain, reuse and replace implementations, and not to
support assume/guarantee based compositional verification — where assumptions are used to deduce global
properties ϕ (see [9]). Contracts are design constraints for implementations which are maintained throughout
the development and life cycle of the system. As we are interested in system rather than program design, we
consider expressive contracts specifying temporal safety and progress properties rather than pre- and post
conditions.

Interfaces [8] have been proposed for this purpose. Here, we consider contracts of the form (A, gl , G)
where gl is a composition operator. The reason is that we are interested in rich exogenous composition
operators which allow to represent abstractions of protocols, middleware components and orchestrations
whereas assumptions and guarantees constrain peers at the same layer. Some formalisms for describing
such rich connectors abstractly have been proposed, e.g., the Kell calculus [4] or the connector calculus
Reo [1]. Kell is, however, mainly concerned with obtaining correctly typed connectors, and Reo supposes
independence amongst connectors and does not take into account constraints imposed by components. We
choose composition operators defined in terms of rich connectors of the BIP component framework [2]
which have the required expressiveness, define interactions with component behaviors and allow handling
conflicting connectors.

As in [12], we promote here a two-phase approach for defining a contract framework which has not
been done before at this level of generality: we first define a general notion of contract framework stating
the necessary ingredients — a component framework, notions of conformance (for ensuring global prop-
erties ϕ), satisfaction (of contracts by implementations), and dominance (refinement between contracts).
We provide interesting rules for establishing dominance and validity conditions for them. In particular, the
loose coupling between satisfaction and conformance may allow a powerful rule based on so-called circular
reasoning. For any particular contract framework, we have then only to establish the required validity con-
ditions. We propose here 2 improvements with respect to [12]: (a) we do not suppose a fixed composition
framework but composition is a parameter required to satisfy a number of general properties — in particular
flattening and structuring — and we extend the framework to take into account port hiding which is a key
ingredient for proving refinement between specifications at different levels of granularity.

1.0.1 Organization.

Section 2.0.3 presents the overall design and verification methodology we are aiming at. We introduce
and extend the relevant features of the contract framework of [12]. Section 3 defines a particular contract
framework for a component framework allowing the expression of safety and liveness also on state and port
variables, and the already mentioned rich exogenous composition. Finally, Section 4 applies the methodol-
ogy to a resource sharing algorithm in a networked system of arbitrary size, where all necessary verification
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Figure 1: Methodology steps ensuring that gl{E, glI{I1, I2, I3}} 4 ϕ

steps are automated in a tool.

2 A contract-based design framework and methodology

We first explain the contract-based design methodology that we target. Then we define a generic notion of
contract framework supporting this methodology.

2.0.2 Design methodology.

We represent our design and verification methodology in a top-down fashion in which high-level properties
are pushed progressively from the overall system into atomic components — which we call implementations.
As usually, this is just a convenient representation; in real life, we will always achieve the final picture in
several iterations alternatively going up and down. We are interested in systems with a complex architecture
which are potentially of arbitrary size. Figure 1 illustrates this methodology.

We suppose given a global property ϕwhich the systemK under construction has to realize together with
an environment on which we may have some knowledge, expressed by a property A. ϕ and A are expressed
w.r.t the interface PK of K. We proceed as follows: (1) define a contract C for PK which conforms to ϕ;
(2) define K as a composition of subcomponents Ki and a contract Ci for each of them; possibly iterate this
step if needed. (3) prove that any set of implementations (components) for Ki satisfying the contracts Ci,
when composed, satisfies the top-level contract C (dominance) — and thus guarantees ϕ; (4) provide such
implementations.
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The global property ϕ appears at the top, while the implementations Ii are at the bottom. An additional
step is represented on the right hand side: it allows the integration of K in an actual environment E while
preserving ϕ. For this, E must satisfy the “mirror” contract1 of C.

The correctness proof for a particular system is split into 3 phases: conformance of the top-level contrat
C to ϕ, dominance between the contracts Ci and C, satisfaction of the Ci by the implementation Ii. Section 2
introduces the notion of contract framework and properties that conformance, dominance and satisfaction
must ensure in order to support this methodology. In section 3, we present an actual contract framework
based on symbolic transition systems and rich connectors, which is expressive enough for the properties we
want to prove and has the properties required by the general framework. Finally, for a given application
presented in section 4, we do the actual conformance, dominance and satisfaction proofs with the help of a
tool developed for this purpose.

A context for an interface P describes how a component with interface P is intended to be connected to
its environment E and provides a property expected from E. In the sequel, we denote composition operators
by gl — standing for “glue” [13]. A context is then of the form (gl , A). A contract for an interfaceP consists
of a context (gl , A) and a propertyG on P that the component under design must ensure in the given context
in order to satisfy this contract. Conformance relates properties of closed systems and dominance relates
contracts.

2.0.3 Contract frameworks.

The methodology we propose relies on a framework supporting hierarchical components as well as some
powerful mechanisms to reason about composition. We therefore introduce next the notions a component
framework must define and the properties it has to satisfy — this is inspired by [13].

Definition 2.1 (Component algebra) A component algebra is a structure of the form (K,GL, ◦,∼=) where:

• K is a set of components — describing their behavior or properties.
Each component K ∈ K has as its interface a set of ports, denoted PK .

• GL is a set of glue (composition) operators.
Operators gl ∈ GL are partial functions 2K −→ K transforming a set of components into a new com-
ponent. Each gl is defined on a set of ports Pgl — of the original set of components, called its support
set — and defines a new interface Pgl — on the new component, called its exported interface. Thus,
K = gl{K1, ... ,Kn}2 is defined if K1, ... ,Kn ∈ K have disjoint interfaces, Pgl =

⋃n
i=1 PKi and the

interface of K is Pgl , the exported interface of gl .

• ◦ is an operation on GL allowing to compose glues. It is such that (GL, ◦) is a commutative monoid.3

• ∼=⊆ K ×K is an equivalence relation4.

Composition operators allow building hierarchical components from atomic ones. As explained in [13],
two types of transformations of components are of interest when dealing with a component algebra (see
Figure 2). A usual one is flattening, which allows to transform an arbitrary hierarchical component into a flat
one consisting of a unique glue composing all the components: consider 3 operators gl1 and gl2 defined on

1or any contract dominating this mirror contract.
2For simplicity of notation, we denote gl({K1, ... ,Kn}) by gl{K1, ... ,Kn}.
3Formally, gl ◦ gl ′ is defined on (Pgl ∩Pgl′ )∪ (Pgl\Pgl′ )∪ (Pgl′\Pgl ) and defines as interface (Pgl ∪Pgl′ )\Pgl◦gl′ . Note that

gl ◦ gl ′ must be defined even if (Pgl ∩ Pgl′ ) 6= ∅.
4In general, this equivalence is derived from equality or equivalence of semantic sets.
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structuring

flattening

gl2gl1
gl ◦ gl1 ◦ gl2

K1 K3K2 K4 K5
K1 K2 K3 K4 K5

gl

Figure 2: Structuring and flattening of a component

respectively P1 and P2, and gl defined on P = Pgl1 ∪Pgl2 . Then, we require that gl{gl1{K1}, gl2{K2}} ∼=
(gl ◦ gl1 ◦ gl2){K1 ∪ K2} for any sets of components Ki such that all terms are defined.

The second transformation is structuring; it goes in the opposite direction and allows to decompose a
component according to any partition of its subcomponents: for any gl defined on P = P1 ∪ P2, there must
exist gl ′, gl1 and gl2 such that gl{K1 ∪ K2} ∼= gl ′{gl1{K1}, gl2{K2}} for any Ki such that all terms are
defined. While most usual component frameworks allow flattening, structuring is more difficult to achieve.
It is needed in order to build the context of a component K in a given system — which is necessary to verify
that the assumption of contract CK is discharged.

We now formally define the notion of context limiting the way in which a component may be further
composed.

Definition 2.2 (Context) A context for an interface P is a pair (E, gl) where E is such that P ∩ PE = ∅
and gl is defined on P ∪ PE .

As promised, we introduce two refinement relations to reason about contracts: conformance has been
mentioned in the methodology; the second one, called refinement under context, is used to define satisfaction
and dominance. Note that refinement under context is usually considered as a derived relation and chosen
as the weakest relation implying conformance ensuring compositionality, i.e. preservation by composition.
We allow a looser coupling between these two refinements so as to obtain stronger reasoning schemata for
dominance.

Definition 2.3 (Contract framework) A contract framework is a tuple (K,GL, ◦,∼=, {vE,gl},4) where:

• (K,GL, ◦,∼=) is a component algebra allowing flattening and structuring

• {vE,gl} is a refinement under context relation parameterized by a context. Given a context (E, gl) for an
interface P , vE,gl is a preorder over the set of components on P which is expected to be compositional.

• 4⊆ K × K is a conformance relation relating components with the same interface. It is a preorder such
that for any K1, K2 on the same interface P and for any context (E, gl) for P , K1 vE,gl K2 =⇒
gl{K1, E} 4 gl{K2, E}.

Definition 2.4 (Contract) A contract C for an interface P consists of:

• a context E = (A, gl) for P where A is called the assumption

• a component G on P called the guarantee

A component K satisfies a contract C, denoted K |= C, iff K vA,gl G.
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We write C = (A, gl , G) rather than C = ((A, gl), G). gl implicitly defines the interface of the environment
while A expresses a constraint on it and G a constraint on the refinements of K. The “mirror” contract C−1

of C is (G, gl , A).
In interface theories [8], a single constraint allows to derive both A and G (gl is predefined), because

each transition is controlled either by the component or the environment. However, in frameworks with
rendez-vous interaction, several pairs (A,G) may be derived. Thus, we keep assumptions and guarantees
separate.

Dominance is the key notion that distinguishes reasoning in a contract or interface framework from
theories based on refinement between components. Contract C is said to dominate contract C′ if every
implementation of C — i.e., every component satisfying C — is also an implementation of C′. Intuitively,
this is achieved by a C′ that has a stronger promise or a weaker assumption than C.

In our general setting — which does not refer to any particular composition or component model — it
is not sufficient to define dominance just on a pair of contracts. A typical situation that we have to handle
is that of a hierarchical component depicted in Figure 1, where a set of contracts {Ci}ni=1 is defined for the
inner components (on disjoint interfaces {Pi}ni=1) and a contract C for the hierarchical component whose
interface is the exported interface of a composition operator glI defined on P =

⋃n
i=1 Pi. It looks attractive

to solve such a dominance problem by defining a contract algebra as in [3], as checking dominance boils then
down to checking whether g̃l{C1, ... , Cn} dominates C for some operator g̃l on contracts. This is, however,
not possible for arbitrary component frameworks. We thus provide a broader dominance defined directly for
a set of contracts {Ci}ni=1 and a contract C to be dominated w.r.t a composition operator glI .

In order to allow hiding ports of the lower-level contracts which do not appear at the interface of the top-
level contract, we relax the constraints on the composition operators by only requiring that they agree on their
common ports. For this, we need a notion of projection of a component K onto a subset P ′ of its interface,
denoted ΠP ′(K), which is quite natural and must preserve some properties detailed in Appendix A. Hence
the following semantic definition of dominance.

Definition 2.5 (Dominance) {Ci}ni=1 dominates C w.r.t. glI iff:

• for every i, there exists a glue glEi s.t. gl ◦ glI = gl i ◦ glEi

• for any components {Ki}ni=1, (∀i,Ki |= Ci) =⇒ ΠP (glI{K1, ... ,Kn}) |= C

A sufficient condition for dominance has been proposed in [12], without the relaxation condition on
composition operators. The generalization of this condition is given below. It relies on the fact that local
assumptions are indeed discharged, that is, implied by the environment defined by the guarantees of the peers
and the global assumption A. It requires a specific property called soundness of circular reasoning, which
ensures that a set of peer contracts can be used to mutually discharge their assumptions, and it is formally
expressed by: K vA,gl G ∧ E vG,gl A =⇒ K vE,gl G. More detail is given in Appendix B.

Theorem 2.6 If circular reasoning is sound and ∀i. ∃glEi . gl ◦ glI = gl i ◦ glEi , then to prove that C
dominates {Ci}i=1..n w.r.t. gl , it is sufficient to prove that:{

ΠP (glI{G1, ... , Gn}) |= C
∀i,ΠPAi (glEi{A,G1, ... , Gi−1, Gi+1, ... , Gn}) |= C−1

i

This shows that the proof of a dominance relation boils down to a set of refinement checks, one for
proving refinement between the guarantees, the second for discharging individual assumptions. A proof is
given in Appendix C.

Verimag Research Report no TR-2010-11 5/25
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2.0.4 Methodology.

We now extend our design and verification methodology to recursively defined systems so that we can handle
systems representing component networks of arbitrary size defined by a component grammar as follows:

• a set of terminal symbols {E, I1, ... , Ik} representing implementations;

• a set of nonterminal symbols {S,K0,K1, ... ,Kn} representing hierarchical components; S, which de-
fines the top-level closed system, is the axiom;

• a set of rules corresponding to design steps which define each non-terminal either as a composition of
subsystems or as an implementation:

– S −→ gl{E,K0}.
– For i ∈ [0, n], at least one rule either of the form Ki −→ Ij (j ∈ [1, k]) or Ki −→ glΣi{Kj}j∈Σi ,

where Σi a set of indices and glΣi a composition operator on the union of the interfaces of the Kj .

Unlike classical network grammars, we use “rich” composition operators and are not limited to flat reg-
ular networks, as for example in [14]. We now instantiate the methodology of Figure 1 for such component
networks. We choose again a top-down presentation, but it is possible to proceed in a different order.

1. formulate a top-level requirement ϕ characterizing the closed system defined by the system and its envi-
ronment

2. define a contract C = (A, gl , G) associated with K0 and prove that gl{A,G} 4 ϕ

3. prove (or justify informally if this is not possible) that the actual environment E satisfies the “mirror”
contract of C: E |= (G, gl , A)

4. define for every non terminal Ki a contract CKi = (AKi , glKi , GKi) such that for every rule Kl −→
glΣl{Kj}j∈Σl having an occurrence of Ki on the right hand side, glKi is compatible with glΣl ◦ glKl

5. for each Ki −→ glΣi{Kj}j∈Σi , show that {CKj}j∈Σi dominates CKi w.r.t glΣi

6. prove that implementations satisfy their contract: Ki −→ Ij =⇒ Ij |= CKi

Theorem 2.7 Let G be a grammar such that all methodology steps have been completed to guarantee a
requirement ϕ. Any component system corresponding to a word accepted by G satisfies ϕ.

The proof is a simple induction on the number of steps required for deriving the component from S,
showing that conformance is preserved from the left-hand side to the right-hand side of a rule. If ϕ can
express progress and if dominance preserves progress, this methodology is sufficient for systems with a
unique requirement but also for multiple requirements decomposed according to the same network grammar.

3 A contract framework with data for safety and progress
In this section, we define a contract framework in order to prove safety and progress properties of distributed
systems. We choose to use composition operators based on the BIP interaction model [13, 5] because of
their expressiveness and their properties making them suitable for structural verification. Our framework
handles variables, guards and data transfer — which are supported by the BIP interaction model [6] — and
furthermore is adequate for loose specifications.

6/25 Verimag Research Report no TR-2010-11
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3.0.5 Components.

A component is defined by a labeled transition system enriched with variables. In order to allow abstract
descriptions of components, we handle predicates on variables rather than concrete values. Except for τ ,
which denotes internal actions, labels are ports of the component interface. For example, a transition t
labeled by port p denotes that the component will perform the action associated with t only if an interaction
in which p is involved happens. Our components also provide some progress properties which are described
below.

A port p is sometimes represented along with its associated variables x1, ... , xn, which is denoted
p[x1, ... , xn]. Without loss of generality, we suppose in the following that a port is associated with exactly
one variable. We suppose given a set of predicates that is closed by ∧ and ∨.

Definition 3.1 (Component) A component is a tuple (TS , X, I, g, f,Prog):

• TS = (Q, q0, P ∪ {τ},−→) is a labeled transition system: Q is a set of states, q0 ∈ Q is the initial state,
P ∪ {τ} is a set of labels. −→⊆ Q× P ∪ {τ} ×Q is a transition relation. Elements of P are ports and
τ labels internal transitions.
As usual, a transition (q, p, q′) ∈−→ is denoted q

p−→ q′;

• X is a set of variables. Some variables are associated with a (unique) port;
Xst ⊆ X contains state variables which are denoted st1, ... , sts. Relation R relates5 variables in X to
variables in Xst ;

• I associates with every q ∈ Q a state invariant Iq that is a predicate on Xst ;

• g associates with every transition t a guard gt, i.e. a predicate on Xst ;

• f associates with every transition t an action ft defined as a predicate on Xst ∪ {xγ} ∪ Xst
new where

xγ is the variable associated with the port labeling t6 and Xst
new = {stnew1 , ... , stnews } represents the

"updated" variables;

• Prog a set of progress properties (see below).

3.0.6 Progress properties.

When considering abstract specifications, progress properties are useful to exclude behaviors staying forever
in some particular states or loops. We adapt usual weak and strong fairness conditions to component systems:
a progress property pr ∈ Prog for a component K is a pair of transition sets (Tc, Tp), where Tc is called the
condition and Tp the promise. We define the set of progress states of Tp, denoted start(Tp), as the set of
initial states of transitions of Tp.

(Tc, Tp) is a valid progress property iff: considering an execution σ of K in some context containing
infinitely many Tc-transitions, in every state of start(Tp) occurring infinitely often, at least one transition of
Tp appears infinitely often in σ, unless the environment forbids it. (>, Tc) denotes unconditional progress,
which means that σ cannot stay forever in start(Tp) without firing infinitely often a transition of Tp.

Note that (Tc, Tp) is trivially satisfied if no Tc-transition can be fired infinitely often. When Tp is empty
or not reachable from any “Tc-loop”, (Tc, Tp) is a progress property only if no Tc-transition can be fired
infinitely often. Monotonicity properties w.r.t. progress which allow inferring new progress properties from
existing ones are given in Appendix D.

5Non-state variables are transient. R produces their value whenever it is necessary.
6If there is no associated variable (t is labeled by pγ with γ ∈ Iobs or by τ ), ft is a predicate on Xst ∪Xst

new .
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3.0.7 Semantics.

The concrete semantics of a component is the usual SOS semantics for labeled transition systems. We do
not need it in the following because we only work with an abstract semantics of components: the latter
is a labeled transition system in which there exists a transition iff there exists a concrete valuation of the
variables for which the transition can be fired. Our semantics is a closed semantics, because we suppose
that the environment of the component does not affect the values of the variables attached to ports labeling
transitions. This strongly motivates a design framework using contracts, that defines closed systems.

Definition 3.2 (Abstract semantics) LetK = (TS , X, g, f, I,Prog) be a component. The abstract seman-

tics of K is the transition system (Q, q0, P, ↪→) where q
p[x]
↪→ q′ iff there exist a transition t = (q

p[x]−→ q′)
such that the predicate (st1, ... , sts)Rx ∧ Semt is satisfiable, where Semt denotes Iq ∧ gt ∧ ft ∧ Iq′ .

Note that a transition t = (q
p−→ q′) is not preserved in the semantics if ft is not consistent with Iq′ —

meaning that firing t leads to a state in which Iq′ cannot hold. Thus, in order to avoid deadlocks in the
semantics, the state invariants must respect some consistency and completeness conditions.

3.0.8 Composition.

We now define the composition operators that allow us to build complex components based on atomic ones.
These composition operators are called interaction models and they are made of connectors.

From the possible synchronizations offered by the BIP framework (see [5]), we keep only two basic types
of connectors: rendez-vous connectors require all ports to be activated in order for the interaction to take
place and involve data transfers; interactions in an observation connector can take place as soon as any port
is activated, and no data is exchanged. Thus, adding observation connectors does not modify the behavior
of the system, hence their name. Two (or more) connectors of the same type can be composed to build a
hierarchical connector simply by using the exported port of one connector as an element of the support set
of the other.

Definition 3.3 (Rendez-vous connector) A rendez-vous connector γ = (p[x], P, δ) is defined by:

• p[x], the exported port and P = {p1[x1], ... , pk[xk]}, the support set of ports

• δ = (G, U , D) where:

– G is the guard, that is, a predicate on X = {x1, ... , xk}
– U is the upward update function defined as a predicate on X ∪ {x}
– For xi ∈ X , Dxi is a downward update function, i.e., a predicate on {x} ∪ {xi}

where Dxi is the function that returns the projection of D corresponding to xi. Note that U and D must be
associative to allow structuring (see figure 2).

As observation connectors do not involve data transfer, they have neither guard nor U nor D predicates.
The variables attached to ports are useless and thus hidden. Hence the following definition.

Definition 3.4 (Observation connector) An observation connector γ = (p, P ) is defined by an exported
port p and a support set P = {p1, ... , pk}.

8/25 Verimag Research Report no TR-2010-11
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To avoid cyclic connectors, we require also that p /∈ P . Two connectors γ1 and γ2 are disjoint if p1 6= p2,
p1 /∈ P2 and p2 /∈ P1. Note that P1 and P2 may have ports in common, as a port may be connected to several
connectors.

We can now define our composition operators as sets of connectors.

Definition 3.5 (Interaction model) An interaction model I defined on a set of ports P is a set of disjoint
connectors γi = (pi[x], Pi, δi) where P =

⋃n
i=1 Pi. We denote by Irdv the set of rendez-vous connectors of

I and Iobs the set of its observation connectors.

We associate with an interaction model I an interface PI consisting of the set of the exported ports of its
connectors. This means that the interface of the component resulting from a composition using I has only
these exported ports as labels. XI denotes the set of variables associated with the ports of PI .

Merge of connectors is the operation that takes two connectors defining together a hierarchical connector
and returns a connector of a basic type. Merge is defined for rendez-vous connectors in [6] (where it is called
flattening). We restrict this definition so as to preserve associativity of the upward and downward functions.
Merge of observation connectors has been described in [5]. These definitions extend naturally to our inter-
action models, where rendez-vous and observation connectors are merged separately (see Appendix E).

We now define composition: given a set of componentsK1, ... ,Kn and an interaction model I, we build
a compound component denoted I{K1, ... ,Kn}, with PI as interface. As we do not allow sets of ports as
labels of transitions, we require that connectors of I have at most one port of the same component in their
support set. Composition is rather technical but straightforward. It does not involve hiding of ports. Besides,
a variable of I{K1, ... ,Kn} is a variable of someKi or a variable associated with the exported port of some
pγ ∈ I.

Definition 3.6 (Composition of components) Let {Pi}ni=1 be a family of pairwise disjoint interfaces and
P =

⋃n
i=1 Pi. Let I be an interaction model on P . For i ∈ [1, n], let Ki = (TS i, Xi, gi, fi, Ii,Prog i) be a

component on Pi. The composition of K1, ... ,Kn with I is a component (TS , X, g, f, I,Prog) such that:

• TS = (Q, q0,PI ∪ {τ},−→) with Q =
∏n
i=1Qi, q

0 = (q0
1 , ... , q

0
n) and where −→ is the least set of

transitions satisfying the following rules7:

(pγ , Pγ , δγ) ∈ Irdv ∀i ∈ [1, n]. qi
Pi∩Pγ−→ i q

′
i

(q1, ... , qn)
pγ−→ (q′1, ... , q′n)

∃i ∈ [1, n]. qi
τ−→i q

′
i

(q1, ... , qn) τ−→ (q1, ... , q′i, ... , qn)

with the convention that qi
∅−→i q

′
i iff qi = q′i. Note that |Pi ∩ Pγ | ≤ 1.

• Xst =
⋃n
i=1X

st
i and X =

⋃n
i=1Xi ∪XI

The relation R between variables in X and state variables is defined as:
Case 1: x ∈ Xi for some i ∈ [1, n]. xR (st1, ... , sts) iff xRi (st i1, ... , st

i
si), where {st i1, ... , st isi} =

Xst
i ⊆ Xst .

Case 2: x ∈ XI . Then x is associated with the exported port pγ of a rendez-vous connector γ =
(pγ , Pγ , δ) ∈ Irdv . Let k = |Pγ |. Uγ is a predicate on {x1, ... , xk} ∪ {x}, where every xi is asso-
ciated with a port of Pγ . Without loss of generality, we suppose each xi is a variable of component Ki.
Then xR (st1, ... , sts) is defined iff:

∃v1, ... , vk. (∀i ∈ [1, k]. viRi (st i1, ... , st
i
si)) ∧ Uγ [x1/v1, ... , xk/vk]

where Uγ [x1/v1, ... , xk/vk] is the predicate on x obtained by replacing the variables x1, ... , xk by values
v1, ... , vk compatible with the local relations Ri between the xi and the local state variables.
7The rule for connectors in Iobs is similar to the one for rendez-vous connectors except that any subset of the support set Pγ may

participate in the interaction.
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• For each q ∈ Q, Iq =
∧n
{i=1} Iqi

• Consider t = (q1, ... , qn)
pγ−→ (q′1, ... , q

′
n) for γ ∈ Irdv 8. W.l.o.g., we suppose Pγ = {x1, ... , xk} with

xi ∈ Pi for every i in [1, k]. For i ∈ [1, k], the local transition (qi
pi[xi]−→ i q

′
i) corresponding to t is denoted

πi(t). Again, {st i1, ... , st isi} = Xst
i ⊆ Xst .

– gt(st1, ... , sts) holds iff the following holds:

∗ ∀i ∈ [1, k]. gti(st
i
1, ... , st

i
si)

∗ ∃v1, ... , vk. (∀i ∈ [1, k]. viRi (st i1, ... , st
i
si)) ∧G[x1/v1, ... , xk/vk]

– ft(st1, ... , sts, xγ , stnew1 , ... , stnew
s ) holds iff ∃v1, ... , vk s.t. it holds that:

∗ D[x1/v1, ... , xk/vk], which is a predicate on xγ
∗ ∀i ∈ [1, k]. fπi(t)[xi/vi], which is a predicate on Xst

i ∪Xst
i,new

• Prog is defined below (see definition 3.7)

We never explicitly construct all (strongest) progress properties for a composition: compositions are
only built as far as needed to prove dominance. Thus, we only give below a condition for checking that a
pair of sets (Tc, Tp) is a progress property of a composition by checking that the projections of (Tc, Tp) onto
individual components are local progress properties.

Definition 3.7 (Progress property in a composition) (Tc, Tp) is a progress property of I(K1, ..., Kn) if
∀i ∈ [1, n]:

• either πi(Tp) never contains more than one joint transition of I from the same state and then
(πi(Tc), πi(Tp)) is a local progress property.

• or it does, and then we split πi(Tp) into a set of promises T i,1p ... , T i,kp containing exactly one joint tran-
sition for each state before checking that all pairs in {(T ic , T i,1p ), ... , (T ic , T

i,k
p )} are local progress prop-

erties9.

3.0.9 Refinement.

Refinement under context ensures that in the given context (E, I) — and in any context refining it — safety
and progress properties are preserved from the abstract component Kabs to the refined component Kconc .
Moreover, refinement under context allows circular reasoning for the considered composition operators (pro-
vided that the assumptions are deterministic), because the enabledness of transitions must be preserved from
Kabs to Kconc in any state reachable in the considered context. To simplify the definition, we suppose that
(a) Kabs has no internal transitions, (b) E has no transitions that it may do alone and (c) progress is refined
without taking into account the context. The first two steps imply no loss of generality. The last simplifica-
tion is sufficient for the considered application. It could be refined by requiring from Kconc only (part of)
the progress conditions of Kconc which are meaningful in (E, I).

Refinement is defined by means of two relations (1) α relating variables of Kconc and Kabs , and (2) R
relating concrete and abstract states. For preserving progress, we project transition sets of Kabs onto Kconc

— for this purpose, we define the following auxiliary notations.
8For a transition labeled by pγ with γ ∈ Iobs , only the conditions on the local guard and function of the components involved in

the interaction are kept. The guard and function of a τ -transition are the corresponding local guard and function.
9This is necessary to avoid that different processes choose a different joint transition in a given initial state.
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Definition 3.8 (Projection) LetR be a relation on (Qconc ×QE)×Qabs . We define the projectionR ofR
onto Qconc ×Qabs by qcR qa iff ∃qE s.t. (qc, qE)R qa. For Qa ⊆ Qabs , we denoteR−1

(Qa) ⊆ Qconc the
inverse image of Qa underR. R−1

({qa
p
↪→abs q

′
a}) denotes the set of p-transitions of Kconc between states

inR−1
({qa}) and inR−1

({q′a}). This notation extends naturally to transition sets.

Definition 3.9 (Refinement under context) Given a relation α onXconc∪Xabs ,Kconc refinesKabs in the
context of (E, I), denoted Kconc vE,I Kabs , iff:

(a) ∃R ⊆ (Qconc ×QE)×Qabs s.t. (q0
c , q

0
E)R q0

a and s.t. (qc, qE)R qa implies:
1. Iqc ∧ α(Xconc , Xabs) =⇒ Iqa

2. ∀p[x] ∈ P , the following holds (Vi denotes a valuation of Xi):

• for any value v of x: ∃tc = qc
p−→c q

′
c and Vc,Vnew

c satisfying Semtc implies ∃q′a, ta = qa
p−→a q

′
a

and Va,Vnew
a consistent with α and satisfying Semta .

• ∃γ. Pγ = {p, e} ∧ (qc, qE)
pγ
↪→ (q′c, q

′
E) =⇒ (q′c, q

′
E)R q′a with q′a as above10.

3. qc
τ
↪→c q

′
c=⇒(q′c, qE)R qa: states related by τ -transitions refine the same state

(b) The inverse image under R of any progress condition Pc = (Tc, Tp) of Kabs , which is
(R−1

(Tc),R
−1

(Tp)), is a progress condition of Kconc .

Condition (a) ensures that refining an abstract component preserves safety properties. Condition (b) ensures
preservation of progress properties.

The last step to obtain a contract framework is to define conformance.

Definition 3.10 (Conformance) Let K⊥ = (TS , X, I,Prog) be defined as: TS = ({q0}, q0, ∅, ∅), X = ∅,
I0 = > and Prog = ∅. We define conformance as refinement in the context of (K⊥, ∅) — i.e., an “empty”
with no connectors.

Theorem 3.11 We have defined a contract framework. Furthermore, if assumptions are deterministic, then
circular reasoning is sound. See Appendix F for a proof.

4 An application to resource sharing in a network
We apply the proposed methodology to an algorithm for sharing resources in a network presented in [7].
The starting point is both a high-level property and an abstract description of the behavior of an individual
node. We represent networks of arbitrary size by a grammar and associating a contract with each node, such
that the correctness proof boils down to a set of small verification steps. We consider networks structured as
binary trees defining a token ring11.

Resources shared between nodes are represented by tokens circulating in packets containing one or more
tokens along the token ring (see figure 3). The value of a packet is the number of tokens it contains. A
particular token is the privilege — denoted P — which allows nodes to accumulate tokens.

10If t is independent of the context, i.e., if Pγ = {p}, we use the convention qE
∅
↪→E qE .

11We restrict ourselves to binary branching for simplifying the presentation.
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Figure 3: The overall structure of the application.

A node may request tokens (Req indicates the numbers of tokens requested). When it has enough tokens
for satisfying its request, it is expected to use them, and relax the privilege if it has it; when it has resources
(tokens) in use, it cannot request additional ones; it may later free them or keep them forever. A node can
rise a request only when it has no resource in use and no pending request.

Tokens (and the privilege) circulate through ports called getT (getP ) and giveT (giveP ), whereas the
request, usage or freeing of tokens is indicated through observation ports req, use, free. Moreover, a Node
has state variables indicating whether it has the privilege (P ), its number of tokens (Tk), requests (Req) and
some port variables used during interactions.

The network is defined by the grammar G, where {E⊥,Node} are terminals and {Sys,Net} nontermi-
nals with axiom Sys . The rules are:

Sys −→ INet(E⊥,Net),Net −→ Node,Net −→ I(Node,Net ,Net)

The connectors of the composition operators I and INet are indicated in Figures 4 and 5. They handle
exchange of tokens and privileges and the observation of requested, used, respectively freed tokens.

We assume that connectivity of the network is guaranteed and tokens are never lost. Here, this as-
sumption is encoded in the composition operator. This allows separating completely design and correctness
proofs from the resource sharing algorithm and the algorithm guaranteeing connectivity, which is typically
implemented in a lower layer of the overall network protocol.

4.0.10 A top-level requirement ϕ.

We consider here one of the top-level requirements of the algorithm, a progress requirement ϕ stating that
“as long as the requests are reasonable, some of the nodes will be served” — use will occur — from time
to time. ϕ is represented in our formalism as depicted in Figure 4, where the second progress property pr2

says that “it is not possible to switch infinitely often between states S1 and S2 (that is, free occurs infinitely
often) without that a use occurs infinitely often as well”. “Reasonable” requests means that 0 < Rx ≤ Tk
where Rx is the maximal request and Tk the number of available tokens in the system.

4.0.11 Methodology.

Our goal is to prove that every network built according to grammar G, together with an environment E⊥ giv-
ing back tokens and privilege immediately, conforms to ϕ. For this purpose, we instantiate the methodology
of Section 2.0.3:

1. We define CNode = (ANode, INode, GNode) and CNet = (ANet, INet, GNet) that are contracts for
component types Net and Node.
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any Rx=0∨Tk<Rx
S1

0<Rx ≤Tk
S2

{req,free}

pr2 = ({S1
free
↪→ S2, S2

req
↪→ S1}, S2

use
↪→ ∗)

pr1 = (>, S2
use
↪→ ∗)

use req

{any\use}

get give

free
GNet

use

giveAgetA

useAreqA

ANet

freeA req

Figure 4: (a) Top-level requirement ϕ (b) Composition INet for contract CNet

2. We show that INet(ANet, GNet) 4 ϕ.

3. We show that {CNode, CNet, CNet} dominates CNet w.r.t. I.

4. We prove that E⊥ satisfies CNet and that Node satisfies CNet.

Note that if we want to further refine the Node component, we may start by a contract CNode =
(ANet, INet, Node). Now, let us give some details.

4.0.12 Interaction models.

Figure 4(b) shows the interaction model INet relating a network — and therefore also a leaf node — to the
rest of the system. We represent by get and give respectively port sets {getT , getP } and {giveT , giveP }
for token and privilege exchange. I consists of 3 observation connectors which export a use inter-
action of either the Net or its environment as a global use interaction, and analogously for the oth-
ers. There are also 4 internal connectors for exchanging tokens and privilege. For example, connector
{giveT [tk] | getTA[tkA], δG : [tk > 0], tkA := tk} pushes a positive number of tokens from the Network
to the environment.

Due to lack of space, we do not present the assumptions and guarantees of the node and network con-
tracts. They are detailed in Appendix F.

Figure 5(a) shows the inner structure of a network component Net. The interaction model I builds a tree
from a (root) node12 and two networks Net1, Net2. Interactions performed by the connectors depicted here
are similar to those of Figure 4(b), except that they also ensure that tokens circulate in the correct order.

4.0.13 Experimental results.

To show that {CNode, CNet, CNet} dominates CNet w.r.t. I, it is sufficient, according to the sufficient condi-
tion of section 2.0.3, to prove the conditions given in Figure 5(b). Dominance, conformance and satisfaction
problems are reduced to refinement under context checked and discharged automatically by a Java tool re-
turning either yes or a trace leading to the violation of refinement.

12which is connected in a slightly more complex manner than the leaf node.
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get2 give2

free2

get1

Net1

give1

use

Node

req1 use1 free1 req2 use2
reqN useN freeN

getN giveN

get0 give0

req free

Net2

Net
1.
ΠPNet(I(GNode, GNet, GNet))

|= CNet

2.
ΠPNode(I1(ANet, GNet, GNet))

|= C−1
Node

3.
ΠPNet(I2(ANet, GNode, GNet))

|= C−1
Net

Figure 5: (a) Inner structure of a network component (b) Sufficient conditions for dominance

5 Discussion and future work

We proposed a design and verification methodology which allows to jointly design and verify safety and
progress properties of distributed systems of arbitrary size. We successfully applied it to an algorithm for
sharing resources in a tree-shaped network by automatically discharging the required conformance, domi-
nance and satisfaction checks with a prototype tool.

There are several interesting directions to be explored. (a) We have excluded the use of contracts for
assume/guarantee reasoning. We may integrate this into the methodology based on the same theory: in
our network application, it would be enough to ensure that assumptions express sufficient progress to show
conformance of a node contract to “node progress”. (b) Extend the methodology to multiple requirements,
possibly by using a different decomposition of the system — i.e. a different grammar. (c) Extend the
component framework to more general connectors and behaviors to express non functional properties. (d)
Build an efficient checker for the different refinement relations, and then, implement tool support for the
methodology. We also consider integration into a system design framework — such as SySML promoted by
OMG.
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Appendix
We expect the paper to be self-contained, and we present in these appendix some material that should allow
to assess the correctness of the framework and the methodology, and to give a bit more insight into the
application. Shortly, we will make available a complete version of the paper including this material.

This appendix contains:

1. properties expected from a well-defined projection

2. formal definitions of compositionality and soundness of circular reasoning

3. a proof of theorem 2.6

4. rules for inferring new progress properties from existing ones

5. definitions of merge of connectors and composition of interaction models.

6. a proof of theorem 3.11

7. assumptions and guarantees for components Node and Net.
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A Properties expected from a well-defined projection
Definition A.1 (Projection) Π is a projection iff for any components Ki and A on disjoint interfaces P and
PA, and any composition operator gl on P ∪ PA:

1. for P ′ ⊆ P and any gl1, gl2 with Pgl1 = P ′ ∪ PA, Pgl2 = P\P ′ s.t. gl = gl1 ◦ gl2:

K1 vA,gl K2 ∧ΠP ′(K2) vA,gl1 G =⇒ ΠP ′(K1) vA,gl1 G

Note that G is defined on P ′.

2. for P ′A ⊆ PA and any gl1, gl2 on Pgl1 = P ∪ P ′A, Pgl2 = PA\P ′A s.t. gl = gl1 ◦ gl2:

K vΠP ′
A

(A),gl1
G =⇒ K vA,gl G

Note that G is defined on P .

These properties state that ports of the component (and symmetrically of the environment) which do not
appear in interactions with the environment (resp. the component) may be abstracted away when checking
refinement under context. Note that we might use an equivalence relation between composition operators
rather than equality. This would be, e.g., in the context of BIP connectors, an equivalence based on equality
of the associated sets of interactions.

B Compositionality and circular reasoning
Definition B.1 (Compositionality) Refinement under context {vE,gl} is compositional w.r.t. composition
iff for any context (E, gl) for an interface P and glE , E1, E2 such that E = glE(E1, E2), the following
holds for any K1, K2 on P:

K1 vglE(E1,E2),gl K2 =⇒ gl1(K1, E1) vE2,gl2 gl1(K2, E1)

where gl1 and gl2 are obtained from gl and glE using flattening and structuring.

Definition B.2 (Sound circular reasoning) Circular reasoning is sound for a refinement under context
{vE,gl} iff it is such that, given an interface P , a component K on P , a context (E, gl) and a contract
C = (A, gl , G) for P , we have:

K vA,gl G ∧ E vG,gl A =⇒ K vE,gl G

For a particular framework, this property can be proved by an induction based on the semantics of com-
position and refinement. For example, in the framework based on I/O automata defined in [12], circular
reasoning is sound because exactly one behavior has control over each interaction.
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C Sufficient condition for dominance (Theorem 2.6)
Theorem 2.6 If circular reasoning is sound and ∀i. ∃glEi . gl ◦ glI = gl i ◦ glEi , then to prove that C
dominates {Ci}i=1..n w.r.t. gl , it is sufficient to prove that:{

ΠP (glI{G1, ... , Gn}) |= C
∀i,ΠPAi (glEi{A,G1, ... , Gi−1, Gi+1, ... , Gn}) |= C−1

i

Proof For all i = 1..n, let Ki be a component on Pi. Suppose the following:

1. ∀i. ∃glEi . gl ◦ glI = gl i ◦ glEi
2. ΠP (glI{G1, ... , Gn}) vA,gl G

3. ∀i,ΠPAi (glEi{A,G1, ... , Gi−1, Gi+1, ... , Gn}) vGi,gli Ai
4. ∀i,Ki vAi,gli Gi
We aim at proving ΠP (glI{K1, ... ,Kn}) |= C, i.e., ΠP (glI{K1, ... ,Kn}) vA,gl G. For this, we show by
induction that for all l in J0, nK, for all partition {J,K} of J1, nK such that |J | = l:{

ΠP (glI{KJ ∪ GK}) vA,gl G
∀i ∈ K,ΠPAi (glEi{A, E

i
J,K}) vGi,gli Ai

with KJ = {Kj}j∈J , GK = {Gk}k∈K and E iJ,K = KJ ∪ (GK\{Gi}).

• l = 0. By (2) and (3) the property holds.

• 0 ≤ l < n. We suppose that our property holds for l. Let {J ′,K ′} be a partition of J1, nK such that
|J ′| = l + 1. Let q be an element of J ′. We fix J = J ′\{q} and K = K ′ ∪ {q}.

Step 1. We first prove that ΠP (glI{KJ′ ∪ GK′}) vA,gl G.{
Kq vAq,glq Gq from (5)
ΠPAq (glEq{A, E

q
J,K}) vGq,glq Aq (recurrence hypothesis, as q ∈ K)

Hence, by applying circular reasoning: Kq vΠPAq
(glEq{A,E

q
J,K}),glq Gq .

By (1) and property 2. of Definition A.1, this implies: Kq vglEq{A,E
q
J,K},gl◦glI Gq .

As refinement is compositional, we get: glI{Kq, EqJ,K} vA,gl glI{Gq, E
q
J,K}.

This is equivalent to glI{KJ′ ∪ GK′} vA,gl glI{KJ ∪ GK}.
Finally, by using property 1. of Definition A.1 and the recurrence hypothesis, we obtain: ΠP (glI{KJ′ ∪
GK′}) vA,gl G.

Step 2. We now prove that ∀i ∈ K ′. ΠPAi (glEi{A, E
i
J′,K′}) vGi,gli Ai.

We fix i ∈ K ′. We have proved in step 1 that Kq vglEq{A,E
q
J,K},gl◦glI Gq .

K = K ′ ∪ {q} so i ∈ K. Thus, by compositionality of refinement under context:
glEi{Kq, A, EqJ,K\{i}} vGi,gli glEi{Gq, A, E

q
J,K\{i}}.

This boils down to glEi{A, E
i
J′,K′} vGi,gli glEi{A, E

i
J,K}.

Hence, using property 1. of projection and the recurrence hypothesis: ΠPAi (glEi{A, E
i
J′,K′}) vGi,gli Ai.

Conclusion By applying our property to l = n: ΠP (glI{K1, ... ,Kn}) vA,gl G. 2
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D Inference of progress properties
The following are monotonicity properties which allow inferring new progress properties from existing ones.

1. If (Tc, Tp) and (Tc, T ′p) are progress properties for K, then so is (Tc, Tp ∪ T ′p); that is, the smaller the set
Tp, the stronger the progress constraint.

2. The opposite implication can only be guaranteed when either T1 or T2 is never enabled in K.

3. If (Tc ∪T ′c, Tp) is a progress property for K, then so is (Tc, Tp); that is, the larger the set Tc, the stronger
the progress constraint.

4. The opposite implication is only guaranteed ifK has no loop in T ′c or if (T ′c, Tp) also a progress transition.

5. If (>, Tp ∪ T ′p) is a progress property and start(Tp) ∩ start(T ′p) = ∅, then (>, Tp) and (>, T ′p) are also
progress properties.

6. If t1 = q
τ−→ q′, t2 = q′

p−→ q′′ are transitions and (>, {t1}), (>, {t2}) are unconditional progress
properties, then so is (>, {q p−→ q′′}).
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E Composition of interaction models
Definition E.1 (Merge of rendez-vous connectors) Let γ1 and γ2 be two rendez-vous connectors such that
P1 ∩ P2 = ∅ and p1 6= p2. The merge of γ1 and γ2, denoted γ1 • γ2, is defined in the following situations:

• if (p1 6∈ P2 and p2 ∈ P1) then γ1 • γ2 = (p[x], P, δ) with:

– p = p1

– P = P1 ∪ P2 \ {p2}
– δ = (G, U , D) is defined as follows:

∗ G = G2 ∧ ∃v2. G1[v2/x2] ∧ U2[v2/x2]
∗ U = ∃v2. U2[v2/x2] ∧ U1[v2/x2]

∗ Dxk =
{
D1,xk if xk ∈ P1\{x2}
∃v2. D1,x2 [v2/x2] ∧ D2,xk [v2/x2] if xk ∈ P2

• if (p1 ∈ P2 and p2 6∈ P1) then γ1 • γ2 = γ2 • γ1.

Definition E.2 (Merge of observation connectors) Let γ1 and γ2 be two observation connectors such that
P1 ∩ P2 = ∅ and p1 6= p2. The merge of γ1 and γ2, denoted γ1 • γ2, is defined in the following situations:

• if (p1 6∈ P2 and p2 ∈ P1) then γ1 • γ2 = (p, P, δ) with:

– p = p1

– P = P1 ∪ P2 \ {p2}

• if (p1 ∈ P2 and p2 6∈ P1) then γ1 • γ2 = γ2 • γ1.

If (p1 ∈ P2 and p2 ∈ P1), then γ1 • γ2 is not defined because this would result in a cyclic connector.
Besides, if (p1 6∈ P2 and p2 6∈ P ), then γ1 and γ2 are disjoint, thus they cannot be merged. Note that merge
of connectors is by definition commutative and it is applied only on connectors with the same type. This
definition extends naturally to interaction models in general.

Definition E.3 (Composition of interaction models) Let I, I ′ be two interaction models defined respec-
tively on P and P ′, where I = {γ} and I ′ = {γ′1, γ′2}. The composition of I and I ′, denoted I ◦ I ′, is an
interaction model defined on P ∪ P ′ \ {p, p′1, p′2} as follows:

• if p 6∈ (P ′1 ∪ P ′2)

– if {p′1, p′2} ∩ P = ∅ then I ◦ I ′ = {γ, γ′1, γ′2};
– if {p′1, p′2} ∩ P = {p′1} then I ◦ I ′ = {γ • γ′1, γ′2};
? if {p′1, p′2} ∩ P = {p′2} then I ◦ I ′ = {γ′1, γ • γ′2};
– if {p′1, p′2} ∩ P = {p′1, p′2} then I ◦ I ′ = {(γ • γ′1) • γ′2};

• if p ∈ P ′1 and p 6∈ P ′2

– if {p′1, p′2} ∩ P = ∅ then I ◦ I ′ = {γ • γ′1, γ′2};
– if {p′1, p′2} ∩ P = {p′2} then I ◦ I ′ = {(γ • γ′1) • γ′2};
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? if p 6∈ P ′1 and p ∈ P ′2

? if {p′1, p′2} ∩ P = ∅ then I ◦ I ′ = {γ′1, γ • γ′2};
? if {p′1, p′2} ∩ P = {p′1} then I ◦ I ′ = {(γ • γ′1) • γ′2}.

• Otherwise, I ◦ I ′ is undefined as it induces cyclic connectors.

Conditions introduced by the symbol ? are redundant since they can be obtained by exchanging γ1 and γ2

in the definition.
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F Well-definedness of the contract framework (Theorem 3.11)

We detail here the proof steps required to show that we have indeed a verification framework in which
circular reasoning is sound. We do not detail all the proofs here, but rather give intuitions. The proof of
circular reasoning, which is the most complicated one, is fully explained.

Component algebra.

• (GL, ◦) is a commutative monoid, i.e. it ensures associativity, identity and of course commutativity:

1. ∀I1, I2, I3 ∈ GL. (I1 ◦ I2) ◦ I3 = I1 ◦ (I2 ◦ I3)

2. ∃Ie ∈ GL. ∀I ∈ GL. Ie ◦ I = I ◦ Ie = I

3. ∀I1, I2 ∈ GL. I1 ◦ I2 = I2 ◦ I1

• Definitions of interfaces are consistent with those of Definition 2.1.

• Flattening and structuring are always possible:

1. I{I1{K1}, I2{K2}} ∼= (I ◦ I1 ◦ I2){K1 ∪ K2}
In other words, composition of behaviors is consistent with composition of composition operators.

2. ∀I. ∃I ′, I1, I2. I{K1 ∪ K2} ∼= I ′{I1{K1}, I2{K2}}
A composition operator I can always be decomposed into I ′ ◦ I1 ◦ I2.

As we use BIP connectors, all these properties are satisfied. We only needed to require associativity of up
and down predicates of rendez-vous connectors.

Contract framework.

• Compositionality: K1 vIE{E1,E2},I K2 =⇒ I1{K1, E1} vE2,I2 I1{K2, E1} where I1 and I2 are the
composition operators obtained from I and IE using flattening and structuring.

• Conformance is consistent with refinement under context:
K1 vE,I K2 =⇒ I{K1, E} 4 I{K2, E}. This is trivial given compositionality.

• Projection is consistent with Definition A.1. This is a classical result.

Circular reasoning.

• Circular reasoning is sound: K vA,I G ∧ E vG,I A =⇒ K vE,I G.

Proof Let K be a component on an interface P , (E, I) a context for P and C = (A, I, G) a contract for
P . We suppose that K vA,I G ∧ E vG,I A. We have to prove that K vE,I G.

Given two relations α1(XK , XG) and α2(XE , XA) and as K vA,I G and E vG,I A, there exist two
relations R1 and R2 on respectively (QK ×QA)×QG and (QE ×QG)×QA verifying the conditions of
Definition 3.9.

We define R ⊆ (QK × QE) × QG as follows: for qK ∈ QK , qE ∈ QE , qG ∈ QG, we define
(qK , qE)R qG iff there exists qA such that (qK , qA)R1 qG and (qE , qG)R2 qA. (Vi denotes a valuation of
Xi)
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Safety part. We have (q0
K , q

0
A)R1 q

0
G and for all qK ∈ QK , qG ∈ QG, qA ∈ QA, (qK , qA)R1 qG implies:

1. IqK (XK) ∧ α1(XK , XG) =⇒ IqG(XG)

2. ∀p[x] ∈ P , the following holds :

(a) for any value v of x: ∃tK = qK
p−→K q′K and VK ,Vnew

K satisfying SemtK implies ∃q′G, tG =
qG

p−→G q′G and VG,Vnew
G consistent with α1 and satisfying SemtG .

(b) ∃γ. Pγ = {p, pA} ∧ (qK , qA)
pγ
↪→ (q′K , q

′
A) =⇒ (q′K , q

′
A)R1 q

′
G with q′G as above.

3. qK
τ
↪→K q′K =⇒ (q′K , qA)R1 qG

Besides, we have (q0
E , q

0
G)R2 q

0
A and for all qE ∈ QE , qA ∈ QA, qG ∈ QG, (qE , qG)R2 qA implies:

1. IqE (XE) ∧ α2(XE , XA) =⇒ IqA(XA)

2. ∀p[x] ∈ P , the following holds :

(a) for any value v of x: ∃tE = qE
p−→E q′E and VE ,Vnew

E satisfying SemtE implies ∃q′A, tA =
qA

p−→A q
′
A and VA,Vnew

A consistent with α2 and satisfying SemtA .

(b) ∃γ. Pγ = {p, pG} ∧ (qE , qG)
pγ
↪→ (q′E , q

′
G) =⇒ (q′E , q

′
G)R2 q

′
A with q′A as above.

3. qE
τ
↪→E q′E =⇒ (q′E , qG)R2 qA

We prove now that R is the relation we are looking for. Let qK ∈ QK , qE ∈ QE , qG ∈ QG be such that
(qK , qE)R qG. Let qA be such that (qK , qA)R1 qG and (qE , qG)R2 qA. We have to prove that:

1. IqK (XK) ∧ α′(XK , XG) =⇒ IqG(XG)

2. ∀p[x] ∈ P , the following holds :

(a) for any value v of x: ∃tK = qK
p−→K q′K and VK ,Vnew

K satisfying SemtK implies ∃q′G, tG =
qG

p−→G q′G and VG,Vnew
G consistent with α and satisfying SemtG .

(b) ∃γ. Pγ = {p, pE} ∧ (qK , qE)
pγ
↪→ (q′K , q

′
E) =⇒ (q′K , q

′
E)R q′G with q′G as above.

3. qK
τ
↪→K q′K =⇒ (q′K , qE)R qG

• Condition 1. Given α′ = α1, condition 1 is the same as condition 1 ofR1

• Condition 2.
Part (a): Deducted from condition 2, part (a) forR1.

Part (b): Let us suppose that qK
p
↪→K q′K ∧ qE

pE
↪→E q′E ∧ (∃γ s.t. Pγ = {p, pE}). Condition 2 for R2

implies that ∃q′A ∈ QA s.t. qA
pE
↪→A q

′
A.

Hence: qK
p
↪→K q′K ∧ qA

pE
↪→A q

′
A ∧ (∃γ s.t. Pγ = {p, pE}).

Thus Condition 2 for R1 implies that there exists a q′′G s.t. (qG
p
↪→G q′′G) and ∀q′A, qA

pE
↪→A q′A =⇒

(q′K , q
′
A)R1 q

′′
G. We now want to prove that ∀q′E , qE

pE
↪→E q′E =⇒ (q′K , q

′
E)R q′′G. Let us fix q′E such

that qE
pE
↪→E q′E . So we have :
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– qE
pE
↪→E q′E

– (∃γ s.t. Pγ = {p, pE}) and qK
p
↪→K q′K ,

Thus condition 2 part (2) for R1 implies that ∃q′′G ∈ QG s.t. qG
p
↪→G q′′G So condition 2 for R2 implies

that it exists a q′′A such that qA
p
↪→A q′′A and ∀q′G, qG

p
↪→G q′G =⇒ (q′E , q

′
G)R2 q

′′
A. We apply this

relation to q′′G and Similarly we apply ∀q′A, qA
pE
↪→A q

′
A =⇒ (q′K , q

′
A)R1 q

′′
G to q′′A, Thus we get:

– (q′E , q
′′
G)R2 q

′′
A

– (q′K , q
′′
A)R1 q

′′
G

Hence (q′K , q
′
E)R q′′G.

• Condition 3. Let us suppose that qK
τ
↪→K q′K . Thus condition 3 of R1 implies that (q′K , qA)R1 qG.

Besides we have (qE , qG)R2 qA. Hence (q′K , qE)R qG

Progress part. As the progress part does not involve the context, the progress part for R is deduced from
the progress properties forR1. 2
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Figure 6: Assumption of the network contract and node behavior
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(>, S2
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Figure 7: Guarantee of the network contract

G Assumptions and guarantees for Node and Net

The contracts for the Net and Node components are depicted in Figures 6 and 7. They define the corre-
sponding local transitions giveT and getTA which decrease, respectively increase, the local state variable
Tk of the network and the environment; transition giveT has a guard to make sure that Tk is never negative.

Assumption ANet represents the environment of an arbitrary network component. It cannot keep tokens
or P indefinitely if it does infinitely many use .

Note that the guarantee of the network contract is slightly more nondeterministic and more complex than
the node guarantee. In particular, it is not enough that a network has a privilege for being able to collect
tokens. The ability of a network to collect tokens is indicated by GReq, a state variable of the hierarchical
network component which — for the dominance proof — is defined in terms of the state variables of the
inner structure of a network (see Figure 5).
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