
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

A Methodology for Construction of
Composable Formal Models from SystemC

in BIP

Ismail Assayad, Joseph Sifakis

Verimag Research Report no TR-2009-9

July 2009

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

A Methodology for Construction of Composable Formal Models from
SystemC in BIP

Ismail Assayad, Joseph Sifakis

July 2009

Abstract

We present an approach that is intended to facilitate the integration of domain-specific languages and het-
erogeneous systems on a semantic level by mapping language constructs to concepts in an asynchronous
formalism capable of describing heterogeneous systems. The approach is centered around the use of ex-
tended automata to model the behaviors, interactions to model the glue between the transitions of these
automata, and finally priorities to choose amongst possible interactions. Using this approach, we present a
methodology for modelling SystemC a widely used language for system-level modelling of heterogeneous
system-on-chip processes. The methodology incrementally produces (a) readable results opening the way for
enhanced verification, (b) models with understandable execution semantics, (c) composable formal models
allowing consistent integration with potential domain-specific sub-systems. We show the feasibility of the
approach through the simulation and verification of assertion and deadlock properties on a realistic complex
system.

Keywords: SystemC, BIP(Behavior-Interaction-Priority), PINAPA

Reviewers:

How to cite this report:

@techreport { ,
title = { A Methodology for Construction of Composable Formal Models from SystemC in BIP},
authors = { Ismail Assayad, Joseph Sifakis },
institution = { Verimag Research Report },
number = {TR-2009-9},
year = { },
note = { }
}

Ismail Assayad, Joseph Sifakis

1 Introduction
There are scenarios where a combination of different sub-systems from different domains is useful. It is believed that
many small, loosely-coupled models are easier to handle and improve readability in comparison with a single, monolithic
model [War07]. Therefore, modelling such complex systems usually necessitates the use of multiple domain specific
languages (eg. SystemC [sys] and Lustre [HLR92]) resulting in several domain-specific models, each describing one
aspect of an application (e.g., sensors, user interfaces, etc) [HCW07]. When designing such multi-domain systems, one
of the main challenges is to guarantee the correctness of the implementation. This raises the need for the analysis of their
integration [KKR+06]. Most designers use a design approach, where one has an informal idea of how the design should
behave, define processes specifications, implement and assemble the processes into a program. Therefore the analysis of
these heterogeneous systems can be especially difficult for designs that are composed of concurrent processes with lot of
interactions.

Integration issues Although many domain-specific languages have exposed APIs through programming libraries, and
can be accessed from other programming languages without breaking the flow of execution, there are many issues for
their integration:

• They are less comprehensive since their execution semantics is not exhibited at the designer’s view.

• It is difficult to understand how their modelling constructs fit into the overall system description.

• Standard programming approaches do not properly support expressing semantic relationships and interdependen-
cies between distinct modelling languages.

For instance, SystemC simulation engine introduces the important notion of delta-cycle as the fundamental simulation
unit. In fact, a simulation procedure is a sequence of delta cycles. Delta cycles interactions are abstracted from the design-
ers modelling view. Such an abstraction is intended to provide more coding simplicity for the designers assuming that all
these interactions should work correctly. However, this is probably the most error-prone part of SystemC modelling, as
analysis are difficult without considering what goes on inside delta-cycle updates. Furthermore, these interactions might
be complicated or not understood by the designers.

Common semantics formalism Our idea is to use a formalism based on extended automata as a common denominator
for the semantics of multiple models. To be useful the model must be composable and must support a set of abstract
modelling concepts that are generic enough to be applicable to a wide range of domains. We claim that this formalism
provides the key semantics concepts for modelling multi-domain and heterogeneous systems description and which can
be leveraged for automatic analysis and verification.

Along this line we can:

• Compile designs in domain-specific languages to an easily understandable behavior and interactions model,

• Model and compose different systems belonging to different domain of applications which are often thought of as
languages with very specific goals in design and implementation.

Unified semantics encompassing heterogeneity in systems design have been proposed in [EJL+03, BGK+06, BWH+03,
Arb05]. Nevertheless, in these works unification is achieved by reduction to a common low-level semantic model. We
need a framework which is not just a disjoint union of submodels, but one which expresses and preserves properties
during model composition and supports meaningful analysis and transformations across multi-domain model boundaries.

This paper In this paper, we show how to brought to light the execution semantics of SystemC simulator using au-
tomata extended with (a) interactions between these automata, (b) priority rules describing scheduling policies for these
interactions.

In a previous works [MMMC05, MMMC06], authors described a complete chain from SystemC to a synchronous
formalism. It is based upon a systematic encoding of SystemC processes into a flavor of synchronous automata. In
such a case, SystemC processes are encoded one by one into automata, communicating with an additional automaton
that explicitly encodes the scheduler specification. The automata corresponding to the user processes are produced
specifically to communicate with this scheduler automaton, using additional synchronous signals and the instantaneous

Verimag Research Report no TR-2009-9 1/16

Ismail Assayad, Joseph Sifakis

dialogue mechanism available in a pure synchronous semantics. However, the encoding into a synchronous formalism
renders manual reading difficult, and requires significant amount of additional synchronizations to reflect the semantics
of SystemC.

Unlike these works, our approach encodes SystemC models into an asynchronous formalism and has the advantage
of producing

• Readable results. The global model is obtained by progressively composing its components while preserving their
structure and data through translation. That is, it is possible to identify in the global model all its components with
their behaviors and interactions, so that designer can easily track counter examples when checking properties for
assertions or deadlocks for instance.

• Composable models. Instead of modelling processes to communicate with a scheduler, signals and other chan-
nels, our approach defines models with an explicit semantics, i.e., where the interplays of schedulings and com-
munication are exhibited at the processes-level.Therefore, independent (generated) models are thus composable.
Moreover, (direct) models translation into BIP [BBS06] allows for compositional verification.

The paper is structured as follows. Section 2 presents the abstract syntax of SystemC. Section 3 describes the mod-
elling methodology of SystemC processes. The model construction is explained in Section 3.1. We present the System-
CBIP tool and experimental results for a complex system in Sections 4 and 5 and conclude in Section 6.

2 SystemC
SystemC becomes nowadays a popular language for modelling complex hardware systems. Compared with other hard-
ware description languages, SystemC is more feasible for designing large-scaled complex systems and modelling high
level behaviors. It comes with many pre-defined constructs in its syntax, like channels, modules, clocks, etc., which make
the compositional system design much easier.

SystemC is a set of C++ classes that allows modelling systems at different levels of abstraction from system behavioral
to register transfer level. The SystemC Class library provides the constructs needed to model system timings, concurrency
and reactivity. This Class library supports Modules, ports, Signals, Processes, data types, Clocks, Waiting and watching.

2.1 Delta cycle
SystemC is equipped with a simulation engine which allows to simulate a model once it is designed. SystemC simulation
engine introduces the important notion of delta-cycle as the fundamental simulation unit. In fact, a simulation procedure
can be seen as a sequence of delta cycles and all the interactions within a delta cycle are abstracted from the modelling
perspective.

SystemC uses two-dimension time model: physical time and delta cycle. Physical time is represented by integer
counters. Delta cycle is used to order the execution within the simulation cycle. The simulation cycles of SystemC
consist of two phases evaluate and update. More than one delta cycle may occur in a particular time. Delta cycle is used
to separate the evaluate phase and the update phase. When no more processes ready for evaluations, the update phase is
performed. Therefore updates are strongly synchronized between processes.

3 SystemC modelling methodology
A simulation can be seen as a sequence of delta cycles whose interactions within the update phases are abstracted from
the programmers modelling view.

To express the semantics of the delta cycles, for each process we distinguish between stable states, i.e., states corre-
sponding to wait statements, and transient states corresponding to the beginning of all other statements. At the end of
each delta cycle, a global synchronization between the processes (figures 2 and 1) allows to perform updates for processes
needing data updates. This is represented by the label S and involves update of the new values computed during the delta
cycle.

Verimag Research Report no TR-2009-9 2/16

Ismail Assayad, Joseph Sifakis

SSSSSS

S

1 1’ 2 2’ 3 3’

process 1 process 3process 2

Figure 1: Global synchronization

Delta cycle

123 1’23 1’2’3 1’2’3’ 1’2’3’

evaluate

processes 1,2 and 3

update

S

Figure 2: Delta cycle

As an example, for each process, two values of each signal s are needed: one is used to store the value calculated
during the delta cycle. The second holds the value of the signal after the update phase. These values are represented by
two variables s.now and s.next for each signal (figure 3).

s.nexts.now

S

S

S

S

s.now=s.next

s.next=exp

s.now=s.next

x

x=new2

s.nexts.now

x=s.read()

s.write(exp)

Figure 3: Updating a signal state

For ease of presentation, we do not consider any predefined channels or signals in presented modelling (eg. fifos,
event queues, etc) but rather taking into account their state updates and event-driven interactions semantics. For instance,
a fifo buffer is defined as a channel with two read and write actions and two internal read and write events, and modules
connected to the fifo are allowed to call the channel methods but they are not aware of the existence of the channel events.

3.1 Modelling the behavior of processes
The idea is to model the behavior of processes by automata extended with data. We show by reasoning on the structure of
the programs describing processes how to obtain compositionally an extended automaton representing the behavior of a
process. That is for each atomic statement we show how to obtain the corresponding extended automaton; then we show
how to compose these extended automata to obtain the global extended automaton.

Extended automata An extended automaton is a tuple (L,X, Q,−→) (figure 4) where:

Verimag Research Report no TR-2009-9 3/16

Ismail Assayad, Joseph Sifakis

• L is the set of labels

• X is the set of variables

• Q is the set of control states

• −→ is a transition relation −→∈ Q× (L,G, F)×Q where

– G is the set of boolean function on X

– F is the set of functions on X

– An element q
l,g,f−−−→ q′ of −→ is defined as follows:

q
l,g,f−−−→ q′ ∧ g(v(X)) = true ⇒

{
(q, v(X)) l−→ (q′, v(X))
v(X) = f(v(X))

x

l,g,f
q q’

Figure 4: Extended automaton used for modelling statements

Hereinafter, we describe how we define the model of the main SystemC processes statements.

Statement For each statement on a set of variables we associate an automaton with an initial and a final control states
(figure 5).

X L

statementbegin end

Figure 5: Statement

Control structure For a sequence of two statements stmt1 and stmt2, the corresponding automaton is obtained by
composition as shown in figure 6.

X1UX2

L2X2L1X1

begin1 begin2end1 end2

stmt1 stmt2

begin1 end2
end1=begin2

stmt1 stmt2

L1UL2

Figure 6: Sequence of two statements

Verimag Research Report no TR-2009-9 4/16

Ismail Assayad, Joseph Sifakis

For a conditional statement if c then stmt1 else stmt2, the corresponding automaton is obtained as shown in
figure 7.

L2X2L1X1

begin1 end1

stmt1

L1UL2X1UX2UVar[c]

c

not c

begin2 end2

stmt2

begin1

stmt1

begin2

begin

stm
t2

end1=end2

Figure 7: if

For a loop statement while c do stmt, the corresponding automaton is obtained as shown in figure 8.

X L

L

cbegin end

not c

XUVar[c]

stmt

stmt

Figure 8: While

A function f(p){stmts} model:

Verimag Research Report no TR-2009-9 5/16

Ismail Assayad, Joseph Sifakis

L1X1

L= L1U{bf,ef}X=X1

bf

ef

begin=end

stmts

stmts

Figure 9: f(p)

Finally, it is worth noticing that when composing statements of a process, we can reduce the automata between two
wait statements to one automata with all the transitions of the intermediate automata are collapsed to one single transition.

3.2 Basic statements model
A process may wait for an event e. The wait(e) statement model is shown in the figure 10.

L={e}

S

e

[e.now]
e.now=false

X={e.now}

Figure 10: wait(e)

An immediate event notification e.notify() statement notifies all the processes which are waiting on that event. This
notification will result in running all the statements in between two continuous wait within these processes. At the
occurrence of this notification all other pending timed or delayed notifications are deactivated e.active = false (see the
corresponding statements models in figures 13 and 12). The e.notify() statement model is shown in figure 13.

L={e}

e
e

e.active=false

Figure 11: e.notify()

Timed notifications on an event e e.notify(t) are used to emit notifications at a later time t which is relative to the
current time. This time is stored by the corresponding time variable: e.time = t. This variable will be decremented
at each tick. The event notification will then be deactivated after the notification of the waiting processes during the
updates of the global synchronization S. That is when e.now and e.event are updated for each process waiting for e.
The e.notify(t) statement model is shown in figure 12.

Verimag Research Report no TR-2009-9 6/16

Ismail Assayad, Joseph Sifakis

X={e.active, e.time, e.next}

e.time=t

e.active=true
e.next=true

Figure 12: e.notify(t)

The delayed notification statement emits the notification in the update phase at the end of the current delta cycle.
Thus a delayed notification occurs after all the immediate notifications. The e.notify(0) statement model is shown in
figure 13.

X={e.active, e.time, e.next}

e.time=0

e.active=true
e.next=true

Figure 13: e.notify(0)

A process may also wait during a time t relative to the current time. The wait(t) statement model is shown in
figure 14.

X={x} L={S,tick}

tick
x++

S

[x=t] x=0

Figure 14: wait(t)

Waiting for a zero time means that the process waits for the next delta cycle. The statement model is depicted in
figure 15.

L={S}

S

Figure 15: wait(0)

Time interaction When all processes are in a stable state and if there are no updates to do, simulation time (tick) is
advanced. There are no updates to do if there is no active time or event variable e.active to update at the current time. If
the simulation time is exceeded, the processes reach the finish states.

Timeouts A process may also wait for an event e with a timeout t. If an immediate notification e or a delayed one
[e.now] is received before time t, the timer is reset along with notification. This reset is done by simply setting to zero
the value of the timer variable x.

The wait(e, t) statement model:

Verimag Research Report no TR-2009-9 7/16

Ismail Assayad, Joseph Sifakis

X={x,e.now} L={S,tick,e}

tick
x++

S
x=0[x=t]

e

e.now=false

[e.now]

Figure 16: wait(e,t)

A SystemC signal s is persistent and is associated to a pair of variables s.next, s.now and to an event s.event to
notify signal value changes. For a signal write statement, if the value exp being written is different than the current value
s.now, the event s.event is emitted in the update phase.

The s.write(exp) statement model:

X={s.next}

s.active=true

s.next=exp

Figure 17: s.write(exp)

The x = s.read() statement model:

x=s.now

X={x,s.now}

Figure 18: x=s.read()

A process may wait for a set of events notifications and timeouts defined by the semantics of the sensitivity of the
process. The wait() statement model is given in figure 19.

tick
x++

[s1.event] s1.event=false

[x=rn*pn] x:=0

[e1.now] e1.now=false

L={tick}X={ei.now,si.event,x}

Figure 19: wait()

A process may change the events which will trigger it. By calling next trigger(e), the process will be triggered by
e. A timeout may also be used to trigger the process after that timeout. The next trigger(e, t) statement model is shown
in figure 20.

Verimag Research Report no TR-2009-9 8/16

Ismail Assayad, Joseph Sifakis

ti.time=t ti.active=true

X={ti.time,ti.active}

Figure 20: next trigger(e,t)

The f(x) statement model:

bf ef

p=x

X={bf,ef,x}

bf ef

Figure 21: f(x)

Interactions During the interactions of process automata, variables are updated as follows.

• (a) For any label e introduce a broadcast connector from the process doing e.notify() to the process doing wait(e),
and deactivate the other subsequent notifications e.active = false

• (b) At each stable state add loops labelled by tick and for all active time variables y.active = true do y.time =
y.time− 1.

• (c) Strong synchronization of all the processes on S with transfer of data 1

1. For any pair of signal variables s.next, s.now test if the signal is active s.active = true, do: s.now = s.next
activate the signal event: s.event = true, transfer s.now, s.event.

2. For any pair of event variables e.next, e.now, test if the event is active e.active = true and do: e.now =
e.next, deactivate the event e.active = false, transfer e.now to all processes.

3. For each active time variable (y.active = true) test y.time = 0 and then update the variable value: y.now =
y.next, deactivate the time variable y.active = false, transfer y.now to all processes.

Ordering of the interactions In case of multiple event notifications on the same event, only the earliest notification to
occur survives. Therefore (c.2) must be done before (c.3) for variables corresponding to delayed notifications.

Priorities When composing statements of a process, additional transitions corresponding to timeouts and events of the
trigger and reset statements are added from each stable state to the end state of the sensitivity automaton or from the begin
state to the end state. These transitions have higher priority than S and tick:

• Trigger timeout. At each stable state the transition

[ti.now] ti.now=false−−−−−−−−−−−−−−→

to the end state of the process sensitivity automaton which has the guard the trigger time variable ti.now, deacti-
vates the trigger event or timeout ti.now = false for the process.

1It allows processes which need updates to transfer data when no more processes are ready to run in the current delta-cycle.

Verimag Research Report no TR-2009-9 9/16

Ismail Assayad, Joseph Sifakis

• Trigger event. At the begin state of the sensitivity automaton, the transition

[e.now] e.now=false−−−−−−−−−−−−−→

whose guard is the trigger event variable e.now has higher priority.

• Synchronous reset with respect to the clock. For each stable state, the transition

[si.event=true,si.now=v,x=r∗n] si.event=false x=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

which has as a guard a reset signal and a clock ticks timer, and deactivates these reset signal and timer has higher
priority.

The priority of transitions advancing time tick−−→ also becomes higher than the one of S transitions when there is no
active event or signal to update.

3.3 Modules
Processes and functions are modelled as components.

To exploit the modularity of hierarchical, modules are defined as components witch contain their own program vari-
ables, components containing extended automata of the functions, processes, and other components corresponding to
other modules.

To avoid usages which result in a breakdown of the semantics of components, we export interactions of child compo-
nents as interactions of the module (eg. figure 22).

Process Process

S

SS

Figure 22: Exporting the interaction of two processes on S

4 Implementation

4.1 Parsing SystemC
The list of process instances of the program and the architecture bindings may be accessed using the SystemC library
after the execution of the elaboration phase of the engine.

The idea is thus to link these processes to their corresponding GCC abstract syntax tree (AST) and parse the processes
statements. For this purpose the PINAPA tool is used as this linking is done for processes and also for some SystemC
primitive trees which are linked to SystemC objects.

While parsing the ASTs of process instances, the rules for constructing formal SystemC models presented before are
applied to incrementally construct the processes models. For instance, when a wait node is recognized its model is built
and added on the fly to the process instance automaton. Like processes, non-recursive functions are also modelled using
one separate model per function instance. Then interactions are used to model the function calls and returns.

4.2 Tool flow overview
The complete tool-flow is depicted in figure 23. Using GCC [St] and PINAPA [MMMC05], we generate the AST trees
of processes, functions and statements of the SystemC program and associate them to SystemC objects.

The exploration of these trees is then achieved to generate the SystemC model in two steps.

Verimag Research Report no TR-2009-9 10/16

Ismail Assayad, Joseph Sifakis

The first step ”Parsing” produces the structure and transitions of the automata of the program. The structure consists
of the control flow of processes and the components hierarchy. Transitions are pairs of annotations: the primitives and
operands of the statements. The operands are either other primitives or program variables which might be local to the
process component or global variables whose declaration are defined in a parent component.

The second step ”Model generation” extends the preceeding model with (a) semantics variables, guards, and functions
on these variables (b) labels (c) broadcast connectors and strong synchronization on these labels with corresponding
transfer of semantics variables data.

process node

SystemC model

BIP program

PINAPA
SystemC

GCC

SystemC objects

AST

SystemC

Model generation

Translation

Parsing

member
functions node write node

Figure 23: SystemCBIP Tool-flow

Finally, a direct translation produces the BIP program.

4.3 Translation to BIP
The BIP language [BBS06] supports a methodology for building components from:

• atomic components, a class of components with behavior specified as a set of transitions and having empty inter-
action and priority layers. Triggers of transitions include ports which are action names used for synchronization.

• connectors used to specify possible interaction patterns between ports of atomic components.

• priority relations used to select amongst possible interactions according to conditions depending on the state of the
integrated atomic components.

outin

in

[x>0]
y=f(x)

out

empty

full

Figure 24: BIP atomic component

Figure 24 shows an atomic reactive component with two ports in, out, variables x, y, and control states empty, full. At
control state empty, the transition labeled in is possible if 0 ¡ x. When an interaction through in takes place, the variable

Verimag Research Report no TR-2009-9 11/16

Ismail Assayad, Joseph Sifakis

x is eventually modified and a new value for y is computed. From control state full, the transition labeled out can occur.
The omission of guard and function for this transition means that the associated guard is true and the internal computation
microstep is empty. The syntax for atomic components in BIP is the following:

atom : : =
component component i d

p o r t p o r t i d +
[d a t a t y p e i d d a t a i d +]
b e h a v i o r
{ s t a t e s t a t e i d

{on p o r t i d [p r o v i d e d guard]
[do s t a t e m e n t] t o s t a t e i d }+}+

end
end

Listing 1: Syntax of BIP component

That is, an atomic component consists of a declaration followed by the definition of its behavior. Declaration consists
of ports and data. Ports are identifiers and for data, basic C types can be used. In the behavior, guard and statement
are C expressions and statements respectively. We assume that these are adequately restricted to respect the atomicity
assumption for transitions e.g. no side effects, guaranteed termination.

Behavior is defined by a set of transitions. The keyword state is followed by a control state and the list of outgoing
transitions from this state. Each transition is labelled by a port identifier followed by its guard, function and a target state.

The BIP description of the reactive component of figure 24 is:

component R e a c t i v e
p o r t in , o u t
d a t a i n t x , y
b e h a v i o r

s t a t e empty
on i n p r o v i d e d 0 < x do y := f (x) t o f u l l

s t a t e f u l l
on o u t t o empty

end
end

Listing 2: Program of the component of figure 24

Once the SystemC model of the program is generated by the tool as shown in figure 23, a straightforward translation
is achieved to obtain the equivalent BIP program by producing for each component its ports, data, automaton states and
transitions guards and functions, and finally producing inter-components connectors and priorities.

4.4 Benchmarks
Our test models consist of a set of 40 SystemC programs that allow for testing various SystemC primitives, different
processes synchronization, useless notification, accessing modules data members, different processes hierarchy, etc.

Since the generated BIP programs are executable, the simple possibility to execute the constructed SystemC models
and compare the resulting traces with the original SystemC program shows a confidence in the validity of the approach.

4.4.1 Simple Transmitter/Receiver example

The example is composed of two modules m emitter name and m receiver name including two thread processes
named emitter process and receiver process respectively. The modules are connected to a boolean signal signal 0
through output SystemC port my ouyput and input port my input respectively.

The transmitter writes a sequence of values 1 and 0 each 10 time units on the signal. The receiver is sensitive on the
event issued by the signal and reads the signal value at each occurrence of this event.

The figure 3 shows the automaton generated for the transmitter: the set of labels of this automaton are indicated by
the list of the BIP ports of the component, the variables are the set of BIP data.

component T O P m e m i t t e r n a m e e m i t t e r p r o c e s s
p o r t c o m p l e t e w r i t e T O P s i g n a l 0
p o r t c o m p l e t e n o t l e
p o r t c o m p l e t e l e

Verimag Research Report no TR-2009-9 12/16

Ismail Assayad, Joseph Sifakis

p o r t c o m p l e t e t r u t h n o t
p o r t c o m p l e t e w a i t t i m e
p o r t i n c o m p l e t e syn
p o r t i n c o m p l e t e t i c k
p o r t c o m p l e t e p l u s e x p r
p o r t c o m p l e t e e n d w h i l e
d a t a boo l v a l
d a t a i n t y
d a t a i n t TO P s ig na l 0 n ow
d a t a i n t T O P s i g n a l 0 n e x t
d a t a boo l T O P s i g n a l 0 e v e n t
d a t a boo l T O P s i g n a l 0 a c t i v e
d a t a do ub l e x
b e h a v i o r i n i t i a l do

v a l = 0 ;
y = 0 ;
T O P s i g n a l 0 e v e n t = f a l s e ;
T O P s i g n a l 0 a c t i v e = f a l s e ;
x = 0 ;
t o s2
s t a t e s2

on w r i t e T O P s i g n a l 0 do
T O P s i g n a l 0 n e x t =1 ;
T O P s i g n a l 0 a c t i v e = t r u e ;

t o s3
s t a t e s3

on n o t l e p r o v i d e d (y > 9) do
t o s9
on l e p r o v i d e d (y <= 9) do
t o s4

s t a t e s4
on t r u t h n o t do

v a l = ! v a l ;
t o s5

s t a t e s5
on w r i t e T O P s i g n a l 0 do

T O P s i g n a l 0 n e x t = v a l ;
T O P s i g n a l 0 a c t i v e = t r u e ;

t o s6
s t a t e s6

on t i c k do
x=x +1;

t o s6
on syn do
t o s6
on w a i t t i m e p r o v i d e d (x =10) do

x =0;
t o s7

s t a t e s7
on p l u s e x p r do

y=y +1;
t o s8

s t a t e s8
on e n d w h i l e do
t o s3

end
end

Listing 3: Transmitter component

The following priorities ensure that time advances through interaction tick by giving it more priority than the syn-
chronization S between emitter process and receiver process whenever there are no variables to update during this
synchronization.

p r i o r i t y
S t i c k 1
i f (e m i t t e r p r o c e s s . T O P s i g n a l 0 a c t i v e)

t i c k : r e c e i v e r p r o c e s s . t i c k ,

Verimag Research Report no TR-2009-9 13/16

Ismail Assayad, Joseph Sifakis

e m i t t e r p r o c e s s . t i c k <
S : r e c e i v e r p r o c e s s . S ,

e m i t t e r p r o c e s s . S
S t i c k 2
i f (! (e m i t t e r p r o c e s s . T O P s i g n a l 0 a c t i v e))

S : r e c e i v e r p r o c e s s . S ,
e m i t t e r p r o c e s s . S <

t i c k : r e c e i v e r p r o c e s s . t i c k ,
e m i t t e r p r o c e s s . t i c k

Listing 4: Priority of interactions S and tick

5 Realistic RISC CPU ISS
This example is an instruction set simulator which demonstrates a RISC CPU design using Synopsys’s SystemC(TM)
class library provided by Synopsys Inc.

The CPU itself is modeled using SystemC. The CPU reads in assembly program and execute it and write the result
back to registers/data memory. The instruction set is defined based on commercial RISC processor together with MMX-
like instruction for DSP program. It consists of a set of more than 39 instructions arithmetic, logical, branch, floating
point and SIMD MMX-like instructions.

The CPU example structure is shown in figure 25. The generation of the BIP program for each of the different cases
takes around 20 seconds on a Xeon 3GHz 2GB bi-proc SMP i686 GNU/Linux machine. The body of the produced C++
code has more than 48 thousands of C++ code lines.

It is possible to check a set of static and run-time properties on the system during either the code generation or during
the exploration of the generated formal model. The static properties concerns the bindings of the architecture while the
run-time ones are either the SystemC model assertions, execution deadlocks or delta-updates anomalies such as multiple
accesses in the same cycle to SystemC signals.

FETCH

ICACHE

DECODE

DCACHE
MMX EXECUTION

FLOAT POINT EXECUTION

INTEGER EXECUTION

ASSEMBLY CODE

PIC

PAGING

Figure 25: CPU architecture

Model properties (a), (b), (c) and (d) have been successfully checked by the verification tool using a depth-first
exploration of model state space as shown in figure 1. Global path traces are given for the counter-examples which
lead to the violation of the properties, so that the user may track the location of the error, the values of the variables
when the error state is reached, and the path to the error state. For instance, for the case (a) the error path is ”as-
sign,decl,decl,decl,ne expr,err” which indicates that the error happens starting from the ICache program after the first
foor instructions, that is in the C assertion on variable j. This assertion is violated and the actual value of variable j

Verimag Research Report no TR-2009-9 14/16

Ismail Assayad, Joseph Sifakis

Property location states number time (s) speed (states/s) Global path size
Assertion (a) ICache 61 1 - 6
Assertion (b) Bios 206356 1092 533 46678
Assertion (c) Fetch 207841 1176 533 47017
Deadlock (d) Fetch 255201 1548 350 229614
No error (e) - - 2 days 66 -
Bindings (f) - - 20 - -

Table 1: Verification results for the example of figure 25 using depth-first exploration

is given in the last ICache state produced by the verification tool. The verification of the model (e) of the CPU which
contains no error and has been stopped after 2 days of exploration.

Finally, the property (f) is a structural property concerning the bindings of the SystemC components. Any incomplete
binding is signaled during code generation with the name of the corresponding component and an enumeration of the
existing partial bindings.

6 Conclusion
We proposed a methodology to automatically create composable models from SystemC models using an asynchronous
formalism. The methodology models SystemC processes using extended automata, interactions between transitions of
these automata and priorities to choose amongst several possible interactions.

These formal models allow designers to verify the correctness of their design through the verification of its properties
and track counter-examples to early ensure the quality of the design.

Our methodology captures delta-step and delta-cycle level behaviors of SystemC processes, and has the advantages
of producing readable and composable models.

The methodology can be applied to building global models of heterogeneous systems, and we believe that it is conve-
nient for the need to compositionally integrating models of multi-domain specific languages. Currently, we are applying
it to Lustre.

We have developed the SystemCBIP compiler which produces BIP components starting from the GCC abstract syntax
tree provided by PINAPA for SystemC programs. We have successfully simulated a benchmark of SystemC programs
using our approach and have shown its scalability through the modelling and verification of a realistic complex CPU.

Acknowledgment
The authors thank M. Moy and A. Basu for constructive remarks.

References
[Arb05] Farhad Arbab. Abstract behavior types: a foundation model for components and their composition. Sci.

Comput. Program., 55(1-3):3–52, 2005. 1

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time components in bip. In
SEFM ’06, pages 3–12, Washington, DC, USA, 2006. IEEE Computer Society. 1, 4.3

[BGK+06] Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai, Janos Sztipanovits, and Sandeep
Neema. Developing applications using model-driven design environments. Computer, 39(2):33, 2006.
1

[BWH+03] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone, and Alberto
Sangiovanni-Vincentelli. Metropolis: An integrated electronic system design environment. Computer,
36(4):45–52, 2003. 1

Verimag Research Report no TR-2009-9 15/16

Ismail Assayad, Joseph Sifakis

[EJL+03] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Stephen Neuendorffer,
Sonia R. Sachs, and Yuhong Xiong. Taming heterogeneity?the ptolemy approach. Proceedings of the
IEEE, Special Issue on Modeling and Design of Embedded Software, 91(1):127–144, January 2003. 1

[HCW07] Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wasowski. Guided Development with Multiple
Domain-Specific Languages. Springer Berlin / Heidelberg, 2007. 1

[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying critical systems by means of the syn-
chronous data-flow programming language LUSTRE. IEEE Transactions on Software Engineering, Special
Issue on the Specification and Analysis of Real-Time Systems, September 1992. 1

[KKR+06] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and W. Schwinger. Towards a se-
mantic infrastructure supporting model-based tool integration. In GaMMa ’06: Proceedings of the 2006
international workshop on Global integrated model management, pages 43–46, New York, NY, USA, 2006.
ACM. 1

[MMMC05] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa: An extraction tool for systemc
descriptions of systems-on-a-chip. In EMSOFT, September 2005. 1, 4.2

[MMMC06] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. LusSy: an open tool for the analysis of
systems-on-a-chip at the transaction level. Design Automation for Embedded Systems, 2006. special issue
on SystemC-based systems. 1

[St] Richard M. Stallman and the GCC developer community. GNU Compiler Collection Internals. Free
Software Fundation. http://gcc.gnu.org/onlinedocs/gccint/. 4.2

[sys] SystemC. http://www.systemc.org. 1

[War07] Jos Warmer. A Model Driven Software Factory Using Domain Specific Languages. Springer Berlin /
Heidelberg, 2007. 1

Verimag Research Report no TR-2009-9 16/16

	Introduction
	SystemC
	Delta cycle

	SystemC modelling methodology
	Modelling the behavior of processes
	Basic statements model
	Modules

	Implementation
	Parsing SystemC
	Tool flow overview
	Translation to BIP
	Benchmarks
	Simple Transmitter/Receiver example

	Realistic RISC CPU ISS
	Conclusion

