
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Modeling Synchronous Systems in

BIP

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

Verimag Research Report no TR-2009-8

May 2009

Reports are downloadable at the following address

http://www-verimag.imag.fr

http://www-verimag.imag.fr

Modeling Synchronous Systems in BIP

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

May 2009

Abstract

We present a general approach for modeling synchronous component-based systems. These

are systems of synchronous components strongly synchronized by a common action that initi-

ates steps of each component. We propose a general model for synchronous systems. Steps are

described by acyclic Petri nets equipped with data and priorities. Petri nets are used to model

concurrent flow of computation. Priorities are instrumental for enforcing run-to-completion

in the execution of a step. We study a class of well-triggered synchronous systems which

are by construction deadlock-free and their computation within a step is confluent. For this

class, the behavior of components is modeled by modal flow graphs. These are acyclic graphs

representing three different types of dependency between two events p and q: strong depen-

dency (p must follow q), weak dependency (p may follow q), conditional dependency (if both

p and q occur then p must follow q). We propose a translation of Lustre into well-triggered

synchronous systems. This translation is modular and exhibits not only data-flow connections

between nodes but also their synchronization by using clocks.

Keywords: synchronous systems, priority Petri nets, modal flow graphs, Lustre, BIP (Behavior-Interaction-

Priority)

Reviewers: Joseph Sifakis

Notes:

How to cite this report:

@techreport { ,

title = { Modeling Synchronous Systems in BIP},

authors = { Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis},

institution = { Verimag Research Report },

number = {TR-2009-8},

year = { },

note = {}
}

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

1 Introduction

Synchronous systems are composed of strongly synchronized parallel components. Their global behavior

is characterized by runs consisting of successive computation steps. In each step, all components perform

some quantum of computation. This ensures a built-in fairness between components in sharing resources,

usually enforced by using static scheduling policies. Synchronous computation models are particularly

adequate for hardware, real-time systems and streaming systems. Their main advantage over asynchronous

computation models is efficiency and predictability (determinacy), in particular thanks to lightweight anal-

ysis techniques for deciding deadlock-freedom and timeliness. Nonetheless, for general applications an

adequate mix of synchronous and asynchronous computation is necessary for optimal use of resources e.g.

GALS models [2].

A non trivial open problem is the design of systems consistently integrating synchronous and asyn-

chronous subsystems e.g. one in Simulink and another in ADA. This requires in principle, the use of a

common semantic model encompassing both the synchronous and the asynchronous formalism.

The BIP (Behavior, Interaction, Priority) component framework is a formalism for the description of

component-based systems consisting of heterogeneous components [1]. It allows the description of systems

as the composition of generic atomic components characterized by their behavior and their interfaces. It

supports a system construction methodology based on the use of two families of composition operators:

interactions and priorities. Interactions are used to specify multiparty synchronization between components

as the combination of two protocols: rendezvous (strong symmetric synchronization) and broadcast (weak

asymmetric synchronizations). Priorities between interactions are used to restrict non determinism inherent

to parallel systems. They are particularly useful to model scheduling polices.

In contrast to existing formal frameworks, BIP is expressive enough to directly model any coordination

mechanism between components [3]. It has been successfully used to model complex systems including

mixed hardware/software systems and complex software applications.

In this paper, we show how the basic execution mechanisms underlying synchronous data-flow systems

can be modeled in BIP. We define a notion of synchronous BIP component which differs from general

components in that its behavior is described by a step. Steps of components are delimited by a specific

transition labeled by a port sync and executed synchronously by all components. The behavior of a compo-

nent in a step is described by a safe extended priority Petri net. This is a safe Petri-net whose transitions are

labeled with elements of a set of ports P and a priority order, a strict partial order ≺⊂ P ×P . Furthermore,

transitions may be labeled with guards and functions representing data transformations. The Petri net has a

set of initial and a set of final places. When only final places are marked, a step can terminate by executing

the specific transition labeled by sync. Termination of a step consists in removing the tokens from final

places and putting a token in each initial place. Implicitely, the priority order requires that sync has lower

priority than any other port to ensure maximal computation in a step.

read

answer

send2

write

close

send1

forward

open

[cond2]

[cond1]

close ≺ forward, answer

Figure 1: Email treatment

Figure 1 shows a priority Petri net describing the treatment of an email in one computation step. The

sync transition is not explicitly represented. Initial places are marked with a token; final places are grayed.

Verimag Research Report no TR-2009-8 1/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

Transitions are enabled when their input transitions are marked and the associated condition is true. The

priority order restricts choices amongst enabled transitions (ports). That is if both forward and close are

enabled then forward is executed. Therefore, depending on the conditions [cond1] and [cond2], the possible

execution sequences are : open read close, open read forward send1 close, open read answer write send2

close, open read (forward send1 || answer write send2) close where || is the interleaving of sequences.

We define composition of synchronous components as a partial internal operation parameterized by a

set of interactions. Given a set of synchronous components, we get a product component by composing

their Petri nets and their priority orders.

An essential property of synchronous systems is termination of steps, in particular steps must be

deadlock-free. Another requirement is confluence of computation within a step which means that the

overall behavior is deterministic when system states are observed only at the end of each step. For some

synchronous languages e.g. Lustre, these properties can be ensured by checking very simple sufficient

conditions [11].

We provide results guaranteeing deadlock-freedom and confluence for a class of synchronous systems

encompassing most of the existing executable synchronous formalisms. We define the class of modal flow

components. They are a sub-class of synchronous components where priority Petri nets are replaced by

modal flow graphs. These correspond to a subclass of priority Petri nets for which deadlock-freedom and

confluence can be decided at low cost. Modal flow graphs are structures expressing dependency relations

between events. Similar structures such as [12, 15, 16] have been proposed and used in different contexts.

An important difference between modal flow graphs and related formalisms is the use of three different

modalities characterizing dependency between events. For a given set of ports P , a modal flow graph is

a directed acyclic graph with nodes P and edges representing the union of three binary relations. Each

relation expresses a different kind of causal dependency (modality) between pairs of ports p and q:

• q strongly depends on p if the execution of p must be followed by the execution of q. That is, p and

q cannot be executed independently, only the sequence pq is possible.

• q weakly depends on p if the execution of p may be followed by q. That is either p can be executed

alone or the sequence pq.

• q conditionally depends on p if when both p and q are executed, then q must follow p. Conditional

dependency requires that if p and q occur then only the sequence pq is possible; otherwise p or q may

be independently executed.

In Figure 2, we show the modal flow graph corresponding to the Petri net of Figure 1. Bold, simple and

dashed arrows represent respectively strong, weak and conditional dependency relations.

open

read

close

send1

forward answer

write

send2

[cond1] [cond2]

Figure 2: Modal flow graph for email treatment

The semantics of a modal flow graph is a priority Petri net. It associates with each port a transition of

the Petri net. The associated priority order is the inverse of the causality order, that is causes have higher

priority than consequences.

We show that modal flow graphs are deadlock-free if they are well-triggered. This property expresses

consistency between the three types of dependency. It also guarantees confluence under some conditions

of non interference of concurrent computations.

2/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

To illustrate the results, we translate the Lustre language into synchronous BIP. The translation method

follows the BIP system construction methodology and involves:

• Definition of the set of atomic components. We need atomic components for modeling flows (vari-

ables) and clocks as well as for modeling combinatorial, delay, sampling and interpolation Lustre

operators. As in [14], atomic components have two kinds of ports: 1) data ports associated with

data variables and used to input and output data between components and 2) control ports, used to

enforce (partially) the control flow of computation within a step.

• Definition of the interactions between atomic components. We use two classes of interactions: 1)

interactions which implement the data flow relation between data ports and 2) interactions realizing

strong synchronization between control ports of components.

The translation is modular and makes explicit all the interactions needed to perform a synchronous

computation in a inherently parallel (component-based) system.

The paper is structured as follows. Synchronous components and their composition are presented in

section 2. Section 3 is the main section of the paper. It presents the sub-class of synchronous components

defined by using modal flow graphs as well as sufficient conditions for deadlock-freedom and confluence.

Section 4 presents the concrete application of modal flow graphs for modeling of synchronous systems.

Related work is presented in Section 5 and in Section 6, we conclude and present future work directions.

2 Synchronous Components

We present synchronous components and their semantics. The behavior of a synchronous component

within a synchronous computation step is a safe extended priority Petri net with given sets of initial and

final places. When only final places are marked, termination may terminate by removing tokens from final

places and putting tokens to initial places.

Definition 1 (synchronous component: syntax) A synchronous component B is a tuple (X, P, N,≺)
where:

• X is a set of data variables,

• P is a set of ports p, each one labelled with a subset of variables Xp ⊆ X , the ones exported on

interactions through p,

• N = (L, T, F, L0, Lf) is an extended 1-safe Petri net:

– L is a finite set of places,

– T is a finite set of transitions τ labelled by (pτ , gτ , fτ) where pτ ∈ P is the port triggered by

the transition τ , gτ is the guard of τ , that is a predicate on X and fτ is the update function

associated with τ , that is a state transformer defined on X ,

– F ⊆ L × T ∪ T × L is the token flow relation,

– L0 ⊆ L is the set of initial places,

– Lf ⊆ L is the set of final places,

• ≺⊆ P × P is a priority order on ports, that is a strict partial order on the set of ports.

Example 1 Figure 3 shows a synchronous BIP component that produces a tock every P ticks. At every

step, it executes the tick transition and then, during the same step, it increases the local variable x by

executing the update transition. Whenever x reaches the value P , the component can also execute the tock

transition and reset x to 0. In this situation, the tock and update transitions are conflicting, however, the

associated priorities enforce the execution of tock before update if both transitions are possible.

Verimag Research Report no TR-2009-8 3/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

update

tick tock

x:=x+1

[x=P]

x:=0

update

tick tock

x:int

update ≺ tock ≺ tick

Figure 3: Tick-tock synchronous component

In order to define the operational semantics for synchronous components, let us first introduce some

notations. Given a Petri net N = (L, T, F, L0, Lf) we define the set of 1-safe markings M as the set

of functions m : L → {0, 1}. Given two markings m1, m2, we define inclusion m1 ≤ m2 iff for all

l ∈ L, m1(l) ≤ m2(l). Also, we define addition m1 + m2 as the marking m12 such that, for all l ∈ L,

m12(l) = m1(l) + m2(l). Given a set of places K ⊆ L, we define its characteristic marking mK by

mK(l) = 1 for all l ∈ K and mK(l) = 0 for all l ∈ L \K . Moreover, when no confusion is possible from

the context, we will simply use K to denote its characteristic marking mK . Finally, for a given transition

τ , we define its pre-set •τ (resp. post-set τ•) as the set of places flowing to (resp. from) that transition
•τ = {l | (l, τ) ∈ F} (resp. τ• = {l | (τ, l) ∈ F}).

Definition 2 (synchronous component: semantics) The semantics of a synchronous component B =
(X, P, N,≺) with N = (L, T, F, L0, Lf) is defined as the labelled transition system S = (Q, Σ,−→)
where

• Q = M×V is the set of states defined by:

– M = {m : L → {0, 1}} the set of 1-safe markings,

– V = {v : X → D} the set of valuations of variables,

• Σ = P ∪ {sync} is the set of labels,

• −→⊆ Q × Σ × Q is the set of transitions defined by the rules in Figure 4

τ ∈ T •τ ≤ m

m′ = m − •τ + τ•

1) gτ (v) = true v′ = fτ (v) 2) m ≤ mLf

(m, v)
pτ
−→0 (m′, v′) (m, v)

sync
−−−→0 (mL0

, v)

(m, v)
p
−→0 (m′, v′) (m, v)

sync
−−−→0 (m′, v′)

3) ¬(∃p′.p ≺ p′ ∧ (m, v)
p′

−→0) 4) ¬(∃p.(m, v)
p
−→0)

(m, v)
p
−→ (m′, v′) (m, v)

sync
−−−→ (m′, v′)

Figure 4: Operational Semantics Rules

Rules (1) and (2) define moves −→0 of the behavior without priorities. Rule (1) is the usual firing rule

of transitions in Petri nets extended with global data. Rule (2) defines sync transitions which denote the end

of a step and the beginning of the next one. Sync transitions can be executed whenever the current marking

4/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

does not contain tokens in non-final places, and their effect is to restore the initial marking, while keeping

the data unchanged. Rules (3) and (4) define the moves −→ of a synchronous component, by restricting

−→0 with respect to priorities. Rule (3) is simply the application of the priority rule specified by the priority

order ≺. Rule (4) enforces highest priority of all the transitions ports of the component with respect to sync

transitions, denoting step termination.

Definition 3 (interaction) An interaction a is a triple (Pa, Ga, Fa) where

• Pa, is a set of ports, the support set of the interaction,

• Ga is the interaction guard, that is a boolean predicate defined on variables (Xp)p∈Pa
exported

through ports belonging to the interaction,

• Fa is an update (or transfer) function, that is a state transformer on variables (Xp)p∈Pa

We define composition parameterized by interactions as an internal operation of synchronous compo-

nents. This operation is partial: the result of the composition is defined as a synchronous component only

if the priority order associated to it is acyclic.

Definition 4 (synchronous component: composition) Let {Bi = (Xi, Pi, Ni,≺i)}i=1,n be a set of syn-

chronous components defined on disjoint sets of variables and ports. Let γ be a set of interactions on ports

∪n
i=1Pi such that each interaction uses at most one port of every component, that is for all a ∈ γ, for all

i ∈ 1, n, |Pa ∩ Pi| ≤ 1. The composition γ(B1, ..., Bn) is a partial operation defining the synchronous

component B = (X, P, N,≺) where

• the set of variables X = ∪n
i=1Xi,

• the set of ports P is the set of interactions γ. Moreover, for each interaction a ∈ γ, we define its set

of exported variables Xa = ∪p∈Pa
Xp,

• the Petri net N = (L, T, F, L0, Lf) is obtained from the set of the Petri nets {Ni = (Li, Ti, Fi, L0i, Lfi
)}i=1,n

as follows:

– the set of places L = ∪n
i=1Li,

– the set of transitions T corresponds to sets of interacting transitions

T =

{

〈a, {τi}i∈I〉 |
a ∈ γ, I ⊆ 1, n such that

∀i ∈ I.τi ∈ Ti and Pa = {pτi
}i∈I

}

Moreover, for any transition τ = 〈a, {τi}i∈I〉 the associated port pτ is the interaction a, the

guard gτ = ∧n
i=1gτi

∧Ga, and the update function fτ = (⊔n
i=1fτi

)◦Fa, where ⊔ is the function

consisting in computing each function fτi
- the order of computation is irrelevant as the data

of the components are disjoint,

– the token flow relation F of the net is defined as

F =
{(l, 〈a, {τi}i∈I〉) | ∃j ∈ I.l ∈ •τj}∪
{

(〈a, {τi}i∈I〉, l) | ∃j ∈ I.l ∈ τ•

j

}

– the set of initial places L0 is ∪n
i=1L0i,

– the set of final places Lf is ∪n
i=1Lfi

,

• the relation ≺ is the strict transitive closure of the relation ≺0 defined as the extension of indi-

vidual priority orders ≺i to interactions: a1 ≺0 a2 iff ∃i = 1, n. ∃pi1 ∈ Pa1
∩ Pi. ∃pi2 ∈

Pa2
∩ Pi such that pi1 ≺i pi2 . The composition is defined only if this relation is a strict partial

order.

Example 2 Composition of synchronous components is illustrated in Figure 5. Two tick-tock components

are composed by synchronizing the tock of the first component and the tick of the second one. The resulting

component produces a tock2 every P 2 ticks.

Verimag Research Report no TR-2009-8 5/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

update1

x1 := x1 + 1

[x1 = P]

x1 := 0

tick1 tock1tick1

update1

tock1

x1:int

update1

x1 := x1 + 1

[x1 = P]

x1 := 0

tick1tick1

update1

update1 ≺ tock1tick2 ≺ tick1

tock1tick2

update2

x2 := x2 + 1

[x2 = P]

x2 := 0

tock2

update2

tock1tick2 tock2

x1:int

update2 ≺ tock2 ≺ tock1tick2

x2:int

update2 ≺2 tock2 ≺2 tick2update1 ≺1 tock1 ≺1 tick1

update2

x2 := x2 + 1

[x2 = P]

x2 := 0

tick2 tock2tick2

update2

tock2

x2:int

Figure 5: Example of composition

3 Modal Flow Components

Modal flow components are synchronous components defined by modal flow graphs, which correspond to

a particular class of priority Petri nets. We define the semantics of atomic flow components as well as their

composition.

Definition 5 (modal flow component: syntax) A modal flow component Bf is defined as a tuple (X, P, D)
where

• X is a set of data variables,

• P is a set of ports p, each one being associated with a triple (Xp, gp, fp) where

– Xp ⊆ X , the set of variables exported through p,

– gp, the triggering condition of p, that is a predicate defined on X ,

– fp, an update function, that is a state transformer function on X

• D = (Ds, Dw, Dc) is a triple of causal dependency relations between ports. The relations Ds, Dw, Dc ⊆
P × P denote respectively strong, weak and conditional dependency and are such that their union

Ds ∪ Dw ∪ Dc is acyclic.

Example 3 In Figure 6, the tick-tock synchronous component of Figure 3, is represented as a modal flow

component. The tock transition is weakly dependent on tick transition. Also, the update transition is

strongly dependent on tick and conditionally dependent on tock. The only possible executions within a step

are therefore tick update or tick tock update.

We use the following notations. For fixed x = s, w, c, we write p
x
; q to denote (p, q) ∈ Dx. We write

x

;
∗ to denote the reflexive and transitive closure of

x
;. We write p ; q to denote (p, q) ∈ Ds ∪ Dw ∪ Dc

and ;
∗ for its reflexive and transitive closure. Two ports p and q are called independent (noted p♯q) iff

neither p ;
∗ q nor q ;

∗ p.

6/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

tick tock

update

x:=x+1

[x=P]

x:=0

tick

update

tock

x:int

Figure 6: Tick-tock modal flow component

For fixed x = s, w, c, we denote by minx P the set of minimal ports with respect to Dx, that is

minx P = {q | ¬∃p.p
x
; q}. We write min P to denote the set of minimal ports with respect to Ds∪Dw ∪

Dc, that is min P = {q | ¬∃p.p ; q}.

We call a modal flow component well triggered iff:

1. each port p has a unique minimal strong cause

|{q ∈ mins P | q
s

;
∗ p}| = 1

2. each port p has exclusively either strong or weak causes.

For a port p, we denote its minimal strong cause by root(p).
Notice that, well-triggered modal flow graphs can be decomposed as shown in Figure 7. The strong de-

pendency relation defines a set of connected subgraphs involving all the ports of the component. Each one

of these subgraphs has a single root which is the common cause for its ports. Weak dependencies express

triggering of the root of a subgraph by some port of another subgraph. Finally, conditional dependencies

may relate ports of different subgraphs provided the acyclicity property is not violated.

Figure 7: Well-triggered components.

We define the semantics of modal flow components which are well-triggered in terms of synchronous

components.

Definition 6 (modal flow component: semantics) The semantics of a well-triggered modal flow compo-

nent Bf = (X, P, D) is the synchronous component B = (X, P, N,≺) where

• the set of variables is X ,

• the set of ports is P ; moreover, for each port p the associated set of exported variables is Xp,

• the Petri net N = (L, T, F, L0, Lf) is defined by:

– the set of places L is isomorphic to the set Ds ∪ Dw ∪ Dc augmented with the set of minimal

ports. That is L = {lxp,q | p
x
; q} ∪ {lp | p ∈ min P},

– the set of transitions T is isomorphic to the set of ports P , that is T = {tp |p ∈ P}. Moreover,

for any transition tp we associate its port p, the guard gp, and the update function fp,

– the token flow relation F ⊆ L × T ∪ T × L, is constructed as follows:

Verimag Research Report no TR-2009-8 7/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

∗ for each p ∈ min P add (lp, tp) to F ,

∗ for each dependency p
x
; q add (tp, l

x
p,q), (l

x
p,q, tq) to F ,

∗ for each conditional dependency p
c
; q add (lcp,q, troot(p)) to F ,

– the set of initial places L0 corresponds to minimal ports and conditional dependencies that is

L0 = {lp | p ∈ min P} ∪ {lcp,q | p
c
; q},

– the set of final places Lf consists of all places corresponding to all but strong dependencies

Lf = L \ {lsp,q | p
s
; q}.

• the priority order ≺= (;∗)−1 \ Id, that is p ≺ q iff q ;
∗ p and q 6= p, for all p, q ∈ P .

Example 4 The tick-tock modal flow component shown in Figure 6 is well-triggered. Its semantics is

defined by the tick-tock synchronous component in Figure 3.

The Petri nets representing modal flow components satisfy the following trivial properties: 1) every

place has at most one incoming transition, 2) every place lcp,q corresponding to a conditional dependency

belongs to a cycle, 3) initially, there is precisely one token in every cycle of the net.

Notice that the above contruction rules of the Petri net enforce the three kinds of dependencies between

ports. Strong and weak dependencies are obviously enforced by the net. An initial empty place lp,q between

tp and tq will prevent the execution of tq before tp. Moreover, if the place is not final, the execution of tp

will require the execution of tq before the end of the step. Concerning conditional dependencies p
c
; q,

the Petri net ensures that the execution of tq disables any further execution of troot(p) and consequently of

tp.

The following proposition gives additional properties.

Proposition 1 Priority Petri nets representing modal flow graphs meet the following properties

1. Every reachable marking has at most one token in every cycle of the net.

2. Each transition is executed at most once in every step.

3. Are 1-safe.

Proof. 1) This property is an inductive invariant on the set of reachable markings and holds because

each place in a cycle has a unique incoming transition – that is any attempt to put a token into a cycle will

first remove a token from the same cycle.

2) We prove this property by induction over the set of ports P , with respect to the dependency order

;. Base step: minimal ports p can only be executed at most once since they will remove the token in the

corresponding initial place lp. Induction step: consider a port p such that all his direct preceeding ports q

are executed at most once. If q is related to p through a strong or weak dependency, it follows that the place

lq,p, initially empty, will get a token at most once and therefore p is executed at most once. If q is related

to p through a conditional dependency, the place lq,p has initially a token, and belongs to a cycle of the net.

From the property above, we know that there is at most one token in the cycle containing lq,p, and hence

in lq,p. Moreover, by executing p, the cycle containing lq,p becomes empty and will remain empty in any

further execution of the net. Therefore, after executing p, the place lq,p does not contain tokens anymore,

so again, p is executed at most once;

3) Given the previous result, it follows that every place will receive a token at most once. So every place

may have at most one token, if it is initially empty, or two tokens, if it contains initially a token. However,

places that contain initially tokens belong to cycles and cycles contain at most one token globally. So the

net is 1-safe. 2

Definition 7 (modal flow components: composition) Let {Bf
i = (Xi, Pi, Di)}i=1,n be a set of modal

flow components defined on disjoint sets of variables and ports. Let γ be a set of interactions on ports

∪n
i=1Pi such that

• each interaction uses at most one port of every component, that is for all a ∈ γ, for all i ∈ 1, n

|Pa ∩ Pi| ≤ 1,

8/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

tick1 tock1

update1

x1 := x1 + 1

[x1 = P]

x1 := 0

tick1

update1

tock1 tick2 tock2

update2

x2 := x2 + 1

[x2 = P]

x2 := 0

tick2

update2

tock2 tick3 tock3

update3

x3 := x3 + 1

[x3 = P]

x3 := 0

tick3

update3

tock3

tick1

update1

tock3

update3update2

tock1tick2 tock2tick3

x1 := x1 + 1 x2 := x2 + 1 x3 := x3 + 1

[x1 = P1]

x1 := 0

[x2 = P2]

x2 := 0

[x3 = P3]

x3 := 0

update1

tock3tick1

update2 update3

tock2tick3tock1tick2

Figure 8: Example of composition

• each port belongs to at most one interaction, that is for all p ∈ ∪n
i=1Pi |{a | p ∈ Pa}| ≤ 1,

We define the composition γ(Bf
1 , ..., Bf

n) as the modal flow component Bf = (X, P, D) where

• the set of variables X is ∪n
i=1Xi,

• the set of ports P is the set of interactions γ. Moreover, for every interaction a of γ, we define the

guard ga = (∧p∈Pa
gp) ∧ Ga, the exported variables Xa = ∪p∈Pa

Xp and the transfer function

fa = (⊔p∈Pa
fp) ◦ Fa

• the set of dependencies D = (Ds, Dw, Dc) are inherited from atomic components, that is for every

x = s, w, c we have Dx = {(a1, a2) | ∃i ∈ 1, n.∃p1 ∈ Pa1
∩ Pi, p2 ∈ Pa2

∩ Pi such that (p1, p2) ∈
Dxi}

Notice that composition amounts to merging nodes belonging to the same interaction without changing

the dependency relations. Composition is a partial operation because, its result is a valid modal flow

component only if the set of derived dependencies is acyclic.

Example 5 The composition of modal flow components is illustrated in Figure 8. Three tick-tock modal

flow components are composed sequentially by synchronizing the tock of each component with the tick of

its left neighbour and by keeping all the other transitions unchanged.

Moreover, let us observe that composition of modal flow graphs is not the same operation as compo-

sition of Petri nets. These differ because conditional dependencies do not have a local interpretation e.g.,

p
c
; q implies that execution of tq disables further execution of troot(p). But, the minimal strong cause

root(p) of p can denote different actions within the modal flow graph of p and within the composed graph.

The following theorems give sufficient conditions for deadlock-freedom and confluence of computation

(i.e, determinism) for synchronous steps of modal flow components.

Theorem 1 (deadlock-freedom) A well-triggered modal flow component Bf = (X, P, D) is deadlock-

free if every port p with strong causes has its guard true: gp = true

Proof. First situation, if no strong dependencies exist, all places in the Petri net are final and therefore

the sync transition is always enabled. Consequently, no deadlock is possible.

Second situation, if there exist strong dependencies, a deadlock potentially occurs only when the sync

transition is not enabled. This happens only when there are non-final places containing tokens or equiva-

lently when the set

Verimag Research Report no TR-2009-8 9/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

P0 = {q | ∃p.p
s
; q and lsp,q has a token}

is not empty. Let now define the set P1 to be

P1 = {r | ∃q ∈ P0. q
s

;
∗ r}

the set of ports that are transitively strongly dependent on ports in P0. Obviously, we have P0 ⊆ P1. Intu-

itively, the set P1 contains all the ports which have strong dependencies and which remain to be executed

in the current step.

Choose r0 ∈ min P1, an arbitrary minimal element of P1. We will show that r0 is enabled and therefore,

there is no deadlock. First, r0 is a port with strong dependencies. From the hypothesis of the threom, we

know that its guard is true, therefore its enabledness depends only on the control (i.e, the marking of the

net) and not on data. By contradiction, assume that there are missing tokens in one of the preset places

lxu,r0
of r0. Since the component is well-triggered, we distinguish two cases, depending on the dependency

x:

a) x = s, the place lsu,r0
comes from a strong dependency. First, if there is no token in lsu,r0

it follows

that u has not been executed within the step. Second, since the component is well-triggered, we have

root(u) = root(r0). Third, r0 ∈ P1 implies that root(r0) has been already executed within the step.

Consequently, we have also u ∈ P1, that is u remains to be executed in the current step. Since we have

u
s
; r0, this contradicts the minimality of r0 in P1.

b) x = c, the place lcu,r0
comes from a conditional dependency. If there is no token in lcu,r0

, it means

that the token has been consumed for the firing of root(u) and not yet produced by u. Hence, u belongs to

the set P1 and we have u
c
; r0. Again, this contradicts the minimality of r0 in P1. 2

Theorem 2 (confluence) A well-triggered modal flow component Bf = (X, P, D) is confluent if for every

independent ports p1♯p2, their associated guarded actions are independent, that is:

• Xp1
∩ Xp2

= ∅

• use(gp1
) ∩ (Xp2

∪ def(fp2
)) = ∅

• use(gp2
) ∩ (Xp1

∪ def(fp1
)) = ∅

Proof. Whenever there is a choice between executing two ports p1 and p2 after applying priorities,

it follows that p1 and p2 are independent. That is, by definition, priorities select enabled ports which

are minimal with respect to ;
∗ to be executed – if two or more such ports exist, it follows that they are

incomparable with respect to ;
∗ and hence independent.

(m, v)

(m′

1
, v′

1
) (m′

2
, v′

2
)

(m′

12
, v′

12
)

p2 p1

p1 p2

Moreover, the hypothesis ensures that execution of such independent ports

commute. We will show that the execution within a whole step is confluent. By

contradiction, and without loss of generality assume that there exist two distinct

terminal states (m1, v1), (m2, v2) reachable from the same initial state (m0, v0).
By terminal state we mean either a deadlock configuration or a state from which

only the sync transition is possible.

Consider the graph of all possible executions from (m0, v0) within one step.

Let us remark that this graph is finite and acyclic – since by construction we know

that every port can be executed at most once within one step. On this graph, let us

define the following subsets of states:

X1 = {(m, v) | (m, v) −→∗ (m1, v1) and ¬(m, v) −→∗ (m2, v2)}
X2 = {(m, v) | (m, v) −→∗ (m2, v2) and ¬(m, v) −→∗ (m1, v1)}

Intuitively, X1 (resp. X2) contains the states that lead eventually to the terminal state (m1, v1) (resp.

(m2, v2)). Obviously, we have X1 ∩ X2 = ∅. Moreover, we can prove that X1 and X2 are a partition of

all the reachable states from (m0, v0). By contradiction, assume there are states which are neither in X1

or X2. Among them, we can choose one state (m, v) which has all successors in X1 union X2 – because

we consider that there are precisely two terminal states. Now, if (m, v) has all successors in X1 then it will

eventually lead to (m1, v1), so it belongs to X1 – contradiction. The dual reasoning applies when (m, v)
has all successors in X2. The only remaining possibility is that (m, v) has distinct successors into X1 and

X2 respectively. So, let assume that (m, v)
p1

−→ (m′

1, v
′

1) such that (m′

1, v
′

1) ∈ X1 and (m, v)
p2

−→ (m′

2, v
′

2)
such that (m′

2, v
′

2) ∈ X2. But, transitions p1 and p2 interleave - hence there exists (m′

12, v
′

12) such that

10/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

(m′

1, v
′

1)
p2

−→ (m′

12, v
′

12) and (m′

2, v
′

2)
p1

−→ (m′

12, v
′

12). This implies (m′

12, v
′

12) belongs to both X1 and

X2, which is impossible because X1 ∩ X2 = ∅.

Finally, since X1 and X2 define a partition of the reachable states from (m0, v0) in one step, we obtain

the contradiction: the state (m0, v0) belongs to either X1 or X2 so, it cannot lead to both terminal states

(m1, v1) and (m2, v2). 2

4 Applications

To illustrate the use of modal flow graphs for modeling synchronous systems, we provide a modular trans-

lation of Lustre [11] into modal flow graphs. Similar translations can be made for other synchronous

languages or graphical formalisms [9, 5].

Lustre [11] is a dataflow synchronous language for programming reactive systems. Lustre programs

operate on flows of values, that are infinite sequences (x0, x1, · · · , xn, · · ·) of values at logical time instants

0, 1, · · · , n. An abstract syntax for Lustre programs is shown below. In (resp. Out) denotes the set of

input (resp. output) flows of a program node. Symbols N , E, x, v, b denote respectively node names,

expressions, flows, boolean flows and constant values.

program ::= node+

node ::= node N (In) (Out) equation+

equation ::= x = E —

x, · · · , x = N(E, · · · , E)
E ::= x — v — op(E, · · · , E) — pre(E, v) —

E when b — current E

A Lustre program is structured as a set of nodes. Each node computes output flows from input flows.

Output flows are defined either directly by means of equations of the form x = E, meaning xn = En for

any time instant n ≥ 0 or, as the output of other (already defined) nodes instantiated with particular inputs

x, ... = N(E, ...).

The basic operators used in expressions E, are combinatorial operator (op), unit delay (pre), sampling

(when) and interpolation (current). Combinatorial (memory-less) operators include usual boolean, arith-

metic and relational operators. The unit delay pre operator gives access to the value of its argument at the

previous time instant. For example, the expression E′ = pre(E, v) means E′

0 = v and E′

i = Ei−1, for all

i ≥ 1.

In Lustre each flow (and expression) is associated with a logical clock. Implicitely, there always exists

a unique, fastest, basic clock which defines the step (or basic clock cycle) of a synchronous program.

Depending on this clock, other slower clocks can be defined as the sequences of time instants where boolean

flow variables take the value true. In order to define and manipulate flows operating on slower clocks,

Lustre provides two additional operators. The sampling operator when, samples a flow depending on a

boolean flow. The expression E′ = E when b, is the sequence of values E when the boolean flow b is

true. The expression E and the boolean flow b have the same clock, while the expression E′, operates on a

slower clock defined by the instants at which b is true. The interpolation operator current, interpolates an

expression on the clock which is immediately faster than its own clock. The expression E′ = current E,

takes the value of E at the last instant when b was true, where b is the boolean flow defining the slower

clock of E.

We consider statically correct programs which satisfy the static semantics rules of Lustre [10]. These

rules exclude programs containing cyclic, dependent equations, recursive calls of nodes as well as combi-

natorial operators applied to expressions having different clocks.

We define modular operational semantics for Lustre, first for single-clock programs and then for multi-

clock programs.

4.1 Single-clock synchronous programs

The single-clock subset of Lustre is generated by using only combinatorial and unit delay operators. All

flows are sampled (indexed) by the basic clock.

Verimag Research Report no TR-2009-8 11/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

The translation from Lustre to modal flow graphs is modular. Each node is represented by a well-

triggered modal flow component with two kinds of ports: act control ports and input (in) or output (out)

data ports. An act port is triggered by the basic clock and initiates the step of the node. The in (resp.

out) data ports carry data input (resp. output) read (resp. produced) by the node. Additionally, modal flow

graphs may contain internal ports and variables, depending on the specific computation carried by the node.

in outx x

act

in

out

act

in outx x

act

out

in

act

flow pre

combinatorial

act

out

in1 in2

in1

in2

x1

x2

act

op

outy

y=op(x1, x2)

Figure 9: Single-clock operators

The modal flow components shown in Figure 9 correspond to basic Lustre elements: flow, pre operator

and combinatorial operator. The flow component whenever activated through the act port, reads a value

through the in port and outputs this value through the out port in the same step. The pre component has

a local variable x. Whenever it is activated through act, it outputs the current value x, then it inputs and

assigns a new value to x to be used in the next step. The combinatorial component starts a step when it

is triggered through the act port. Then it reads input values in some arbitrary order, performs its specific

computation, and finally, produces an output value.

The modal flow component representing a single-clock Lustre node is obtained by composing a set of

components by using a set of interactions defined as follow.

• components: For each input and output flow declared in the node we add a flow component. For each

pre (resp. combinatorial) expression occuring within the equations, we add a pre (resp. combinatorial)

component. Moreover, for each subnode called within equations we add its corresponding modal flow

component.

• interactions: Interactions are of two types: control flow and data flow. A single control flow inter-

action realizes strong synchronization between all the act ports of all components. Data flow interactions

synchronize one out port to one or more in ports. They are used to propagate data from input flow com-

ponents to expression components and from expression components to output flow components or other

expression components according to the syntactic structure of expressions and equations.

Example 6 Figure 10 shows a discrete integrator written in Lustre and its corresponding synchronous

network of operators.

node Integrator(i: int)

returns o: int;

let o = i + pre(o,0); tel;

i o
+

pre

Figure 10: Integrator

The representation of this node as a composition of modal flow components is shown in Figure 11 (top).

The atomic modal flow components correspond to the pre operator, the combinatorial + operator, the input

flow and the output flow. In addition to the act interaction, there are three interactions for data transfer

from outputs to inputs: 1) from the input flow component to the + component, 2) from the pre component to

the + component and 3) from the + operator to the output flow component and back to the pre component.

The result of the composition is shown in Figure 11 (bottom).

12/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

+

p

act2

in2

pin2

act2

p := 0

out2

act1

out1

in1
iiin1

act1

act4

out4

in4
ooin4

out4

act4

o out4

act1act2act3act4

+ out3in2in4 out4

in1 i

p := 0

z out3

in3a in3b

out3

act3

y

x

in3b

in3a

act3

x := i

out1

out2

p := z

p := z, o := z

z = x + y

out2in3bout1in3a

act1act2act3act4

in1

y := px := i

y := p, o := z

Figure 11: The Integrator modal flow component

The following theorem is a consequence of modularity of translation and of the following facts: 1)

the modal flow graphs corresponding to the basic constructs of Lustre are well-triggered; 2) for statically

correct Lustre programs [11], composition of the basic modal flow graphs preserves well-triggeredness.

Theorem 3 Every statically correct single-clock Lustre node N is represented by a well-triggered modal

flow component B
f
N such that:

1. it has a unique root which is an act port;

2. all its dependencies are strong;

3. it is deadlock-free and confluent;

4. simulates the micro-step Lustre semantics [10] of N .

Proof. 1) Each atomic single-clock component has a unique root, the act port. By composition, all act

ports are strongly synchronized that leads to a component with a unique root.

2) Following definition 7, dependencies are inherited by composition. Since all dependencies in atomic

single-clock components are strong the conclusion follows.

3) Deadlock-freedom. Following theorem 1, BN
f is deadlock-free, if each port with strong dependencies

has its guard true. By definition 7 for each interaction, guards are obtained as conjunction of guards of sub-

components. Given that in atomic components all guards are true, then the compound component has all

its guards true and therefore is deadlock-free. Confluence. For every two independent ports p1 and p2 in

the composed model B
f
N one of the following two situations may happen: 1) p1 (resp. p2) is port of the

atomic component B
f
1 (resp. B

f
2) or 2) both p1 and p2 are ports of the same atomic component Bf . In both

cases, the actions associated to the ports are independent. First case, actions are defined on disjoint sets of

variables. Second case, p1 and p2 can only be in ports of a combinatorial component and have associated

different variables by construction.

Verimag Research Report no TR-2009-8 13/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

4) The possible executions of BN
f are determined by dependencies and interactions between atomic

single-clock components. Initially, all components are triggered by the control act interaction and they

all complete a step till the next activation. The order of execution of data ports is constrained by strong

dependencies within atomic components and by data interactions. The former enforce local constraints e.g.,

a) flow components update their values, then deliver them, b) pre components deliver their values, then they

are updated, c) combinatorial operator components update all their inputs, then compute and deliver the

results. Data interactions enforce overall data-flow constraints e.g., a) the result of sub-expressions are

required to evaluate expressions, b) the right-hand expression in equations are required to update output

flows, etc. These constraints restrict as little as possible the order of actions while ensuring the correct

synchronous operation within a step. 2

4.2 Multi-clock synchronous programs

In Figure 12, we provide two components modeling respectively the sampling and interpolation operators

of Lustre. Both components have two control ports, acti and acto triggering respectively the input in and

the output out data ports. For a sampling component, acto depends weakly on acti, and moreover, the

output out dependends conditionally on the input in. Thus an input is always read and whenever required,

an output is produced with the most recent value of the input – which is precisely the interpretation of

sampling. For the interpolation component, we have the opposite: acti depends weakly on acto but out

conditionally depends on in. Thus the output is always produced with the most recent value of the input.

The last modal flow graph in Figure 12 describes an additional component, the derived clock component

corresponding to a boolean flow b. This component is used to initiate all the computations carried on the

clock b. Intuitively, it triggers the slower clock port only after its base clock act has been triggered and if

the value obtained through the data input in port is true.

sampling interpolating

acti

in

acto

out

x

x

in

out

acti acto

acto

out

acti

in

x

x

in

acto acti

out

derived clock

clock

act

in

act

in

clock[b]

b

Figure 12: Multi-clock operators

We apply a similar modular construction method for building modal flow components for multi-clock

nodes.

• components: First, we add a derived clock component for each clock (i.e, when b). Second, we add

a sampling (resp. interpolation) component for each sampling (resp. interpolation) expression occuring

within the equations of the node.

• interactions: The data flow interactions are the same as for the single-clock case, with the addition

that data is also propagated to the input port of derived clocks. Regarding control flow interactions, we add

one interaction which synchronizes all the act ports of flows and expressions sampled on the basic clock.

In addition, for each derived clock component, we add an interaction which synchronizes its clock port

with all act ports of flows and expressions sampled by that clock.

Example 7 Consider the following Lustre program:

node input handler(a: bool, x: int when a)

returns y: int;

let y = if a then current x else pre(y, 0); tel ;

14/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

node output handler(c: bool, y: int) returns z: int when c;

var yc: int when c;

let yc = y when c; z = yc * yc ; tel ;

node input output(a,c: bool, x: int when a)

returns z: int when c;

var y: int;

let y = input handler(a, x); z = output handler(c, y); tel;

Depending on an input value x triggered by an input clock a, the input output node produces a

corresponding output value z triggered by an output clock c, by using the most recent available value of

the input.

The main node is the input output node which interconnects the two nodes, input handler

and output handler. The input handler node receives at every moment the boolean value a. An

integer value x is received only when a is true. The output value y is an integer produced at every moment

by interpolating the value of x. The output handler node receives at every moment a boolean c and

an integer variable y. It produces an output z by sampling y when c is true. Finally, the input output

top node connects the output of the input handler to the input of the output handler.

Figure 13 shows the modal flow component representing the system. Its modal flow graph is obtained

after composition and static simplification of the modal flow graphs of the input output node. It can be

decomposed into three subgraphs with activation ports act, acta and actc corresponding respectively to the

basic, when a, and when c clocks.

if a
y := x

a, c : bool

x, z, y, yc : int

inc

outz

yc := y

z := yc2

cinc

xinx

act acta actc

aina
z outz

acta

inx

ina[a = T]

act

actc [c = T]

Figure 13: The input/output handler

The following theorem establishes the correctness of our translation.

Theorem 4 Every statically correct multi-clock Lustre node N is represented by a well-triggered modal

flow component B
f
N which:

1. has multiple (control) root act ports, one for each clock in the Lustre program, and multiple data

in/out ports;

2. the subgraphs defined by strong dependencies are connected through weak dependencies into a tree;

3. is deadlock-free and confluent;

4. simulates the micro-step Lustre semantics [10] of N

Verimag Research Report no TR-2009-8 15/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

Proof. 1) Each atomic multi-clock component, except the derived clock component, has two roots, the

acti port and the acto port. By composition, act ports sampled by the same clock are synchronized. That

leads to a component with multiple act ports, one for each clock.

2) At each atomic single or multi-clock component, data ports are strongly dependent on act ports. The

composition by synchronization of act ports, leads to components with subgraphs rooted by act interac-

tions. By definition 7, the subgraphs inherit the strong dependencies. In addition, they are interconnected

through weak dependencies inherited from derived clock components: clock ports depend weakly on data

ports triggered on faster clocks. That leads to an overall acyclic structure, that is, a set of trees. But, since

the act interaction sampled on the basic clock does not have any dependencies, the structure reduces to a

unique tree.

3) Similar to theorem 3, point 3.

4) Similar to theorem 3, point 4. All additional constraints on execution are faithfully represented by

the dependencies of the multi-clock components. 2

4.3 Experimental work

We have studied and implemented a translator from Lustre to BIP synchronous components which directly

generates Petri nets without using modal flow graphs. The translator is currently fully operational. It takes

as input Lustre programs and produces full-fledged BIP systems, that can be simulated and analyzed using

the BIP toolset [1].

This first approach has several important drawbacks. For the generated BIP programs it is not easy to

verify properties guaranteed by construction for some synchronous programs e.g. deadlock-freedom and

confluence. Moreover, the BIP compilation chain cannot easily recover the information that the system is

indeed synchronous and consequently, it cannot produce optimized code. For example, experiments with

concrete Lustre programs show an 600 : 1 overhead of execution time between the C code produced by

the BIP compiler and executed by the BIP engine, and the flat C code produced by the Lustre compiler.

Although, this overhead can be diminished to 20 : 1 by applying static composition of components in

BIP [4], it still remains high.

Modal flow graphs allow coping with these drawbacks. We are now investigating the possibility to

integrate directly modal flow components in BIP. Our results about confluence and deadlock-freedom of

modal flow components provide syntactic conditions, easily implementable in an automatic tool. More-

over, modal flow components keep all the data-flow explicit and can be used to generate efficient code,

monolithic or not, as synchronous language compilers do.

5 Related work

Our work as a tentative to bridge the gap between synchronous and asynchronous computation, is related

to approaches with similar objectives.

In [14], a model for synchronous components is proposed where steps are described by using automata

with final states. Another similarity is the distinction between data ports and control ports. Nonetheless,

the latter are activated by controllers which are specific components. The synchronous/reactive domain

of the Ptolemy system-level design framework [8] allows component-based description of synchronous

systems where synchronous execution is orchestrated by a director. Finally, our work has the same general

objectives as [2] which studies a compositional framework heterogeneous reactive systems. In contrast to

BIP, the framework is denotational and is based on the concept of tags marking the events of the signals of

a system.

There are several differences between our work and existing results. Our work is based on operational

semantics. It considers synchronous component-based systems as a particular case of the BIP framework

which also encompasses general asynchronous computation. Furthermore, we believe that our framework

is expressive enough to allow modular translation of synchronous languages into BIP by preserving the

structure of the source, as shown for Lustre.

Modal flow graphs without data and only strong dependencies are acyclic partial orders on events.

They correspond to acyclic marked graphs which are Petri nets without forward and backward conflicts.

16/18 Verimag Research Report no TR-2009-8

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

Theorem 2 generalizes well-known results for marked graphs [7].

Modal flow graphs with strong dependencies and their composition operation are also similar to syn-

chronous structures used in a study of the synchronous model of computation [15]. This model has also

some similarities with models such as modal automata [13] which distinguish between must and may tran-

sitions or live sequence charts [6] which distinguish between hot and cold events. Nonetheless, modal

flow graphs encompass three independent modalities which are all necessary for modular description of

synchronous systems, as shown in the paper. Furthermore, for a reasonably general class of modal flow

graphs we proposed sufficient conditions for deadlock-freedom and confluence.

6 Conclusions

We present a general approach for modeling synchronous component-based systems. These are systems of

synchronous components strongly synchronized by a common action sync that initiates execution steps of

each component. Steps can be described by priority Petri nets. Priorities are instrumental for enforcing run-

to-completion in the execution of a step. Modal flow graphs are used to define a particular class of Petri

nets for which deadlock-freedom and confluence are met by construction provided some easy-to-check

conditions hold. This result is the generalization of existing results for classes of Petri nets without conflicts.

It allows more general behavior for components given that the semantics of conditional dependencies lead

to Petri nets with backward conflicts and priorities.

The definition of synchronous components as a subset of the BIP framework allows their combination

with other asynchronous languages that can be translated into BIP. The proposed semantics has maximal

parallelism, that is it shows only the absolutely necessary dependencies between events. Execution in a

step is non deterministic. However, if the behavior is confluent and the order of execution is irrelevant. The

translation of Lustre shows the interplay between data flow and control flow and allows understanding how

strict synchrony can be weakened to get more less synchronous computation models.

This work opens the way for exploring problems regarding relations between synchronous and asyn-

chronous systems. It allows integration of synchronous systems theory in an all encompassing component

framework [3] without losing advantages such as correctness-by-construction and efficient code generation.

This makes possible modeling mixed synchronous/asynchronous systems without artefacts. In Figure 14,

we show the principle for modeling GALS. A synchronous system sending data to another synchronous

system through a FIFO queue. The input of the queue is triggered by the clock of the sender while its out-

put is triggered by the clock of the receiver. The meaningful integration of synchronous and asynchronous

models in this framework is the object of future work.

... outy2y1in

act2

in z

out

act2

act2

act1 act1

x out

in act1

Figure 14: A GALS system in BIP

Verimag Research Report no TR-2009-8 17/18

Marius Bozga, Vassiliki Sfyrla, Joseph Sifakis

References

[1] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time systems in BIP. In Proceedings

of SEFM’06, pages 3–12. invited talk. 1, 4.3

[2] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli. Composing

heterogeneous reactive systems. ACM-TECS, 7(4), 2008. 1, 5

[3] S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based systems. In Proceed-

ings of CONCUR’08, LNCS 5201, pages 508–522, 2008. 1, 6

[4] M. Bozga, M. Jaber, and J. Sifakis. Source-to-source architecture transformation for performance

optimization in BIP. Technical Report TR-2009-3, Verimag. 4.3

[5] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah. Modeling and Simulation in Scilab/Scicos.

Springer. 4

[6] P. Combes, D. Harel, and H. Kugler. Modeling and verification of a telecommunication application

using live sequence charts and the play-engine tool. In Proceedings of ATVA’05, LNCS 3707, pages

414–428. 5

[7] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs. Computer System

Sciences, 5(5):511–523, 1971. 5

[8] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.

Taming heterogeneity - the Ptolemy approach. Proceedings of IEEE, 91(1):127–144, 2003. 5

[9] P. L. Guernic, T. Gautier, M. L. Borgne, and C. L. Maire. Programming real time applications with

Signal. Proceedings of IEEE, 79(9):1321–1336, 1991. 4

[10] N. Halbwachs. About synchronous programming and abstract interpretation. SCP, 31(1):75–89,

1998. 4, 4, 4

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming lan-

guage lustre. Proceedings of IEEE, 79(9):1305–1320, 1991. 1, 4, 4.1

[12] D. Harel and S. Maoz. Assert and negate revisited: Modal semantics for UML sequence diagrams.

Software and System Modeling, 7(2):237–252, 2008. 1

[13] K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o automata for interface and product line

theories. In Proceedings of ESOP’07, LNCS 4421, pages 64–79. 5

[14] F. Maraninchi and T. Bouhadiba. 42: Programmable models of computation for a component-based

approach to heterogeneous embedded systems. In Proceedings of ACM-GPCE’07. 1, 5

[15] D. Nowak. Synchronous structures. Information and Computation, 204(8):1295–1324, 2006. 1, 5

[16] Y. Zhou and E. A. Lee. Causality interfaces for actor networks. ACM-TECS, 7(3), 2008. 1

18/18 Verimag Research Report no TR-2009-8

	Introduction
	Synchronous Components
	Modal Flow Components
	Applications
	Single-clock synchronous programs
	Multi-clock synchronous programs
	Experimental work

	Related work
	Conclusions

