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Abstract

Transaction-Level Modeling (TLM) for systems-on-a-chip (SoCs) has become a standard in
the industry, using SystemC. With SystemC/TLM, it is possible to develop an executable vir-
tual prototype of a hardware platform, so that software developers can start writing code long
before the actual chip is available. A hardware model in SystemC/TLM is very abstract, com-
pared to the detailed RTL model. It is clearly component-based, with guidelines defining how
components should be designed for use in any TLM context. However, these guidelines are
quite informal for the moment. In this paper, we establish a structural correspondence between
SystemC/TLM and a formal component-model for embedded systems called 42, for which we
have defined a notion of control contract, and an execution mode for systems made of com-
ponents’ contracts. This is a way of formalizating SystemC/TLM principles. Moreover, it
allows the combined use of SystemC/TLM components with 42 components. Demonstrating
that such a combined use is possible is key to the adoption of formal components’ definitions
in the community of TLM users.
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1 Introduction

The Register Transfer Level (RTL) used to be the entry point of the design flow of hardware systems,
including systems-on-a-chip (SoCs). However, the simulation environments for such models do not scale
up well. Developing and debugging embedded software for these low level models before getting the
physical chip from the factory is no longer possible at a reasonable cost. New abstraction levels, such
as the Transaction Level Model (TLM) [7], have emerged. The TLM approach uses a component-based
approach, in which hardware blocks are described by modules communicating with so-called transactions.
The TLM models are used for early development of the embedded software, because the high level of
abstraction allows a fast simulation. This new abstraction level requires that SoCs be described in some
non-deterministic asynchronous way, with new synchronization mechanisms, quite different from the im-
plicit synchronization of synchronous circuit descriptions.

SystemC is a C++ library used for the description of SoCs at different levels of abstraction, from
cycle accurate to purely functional models. It comes with a simulation environment, and has become a
de facto standard. SystemC offers a set of primitives for the description of parallel activities representing
the physical parallelism of the hardware blocks. The TLM level of abstraction is implemented in SystemC
by defining specific TLM libraries and templates. TLM 2.0 has been standardized by the Open SystemC
Initiative (OSCI).

The success of SystemC comes from its C/C++ part: it is widely known, it is a general-purpose pro-
gramming language, so there are no restrictions on what the designer can write, and it makes it possible to
build tools for the co-simulation of SystemC code with C, assembly code, RTL models, etc. The dark side
of the picture is that SystemC models are quite hard to analyze formally (SystemC being based on C++
has no formal semantics, and SystemC models may implement relatively simple things by complex integer
manipulations, which make simple properties undecidable in the general case). Therefore the main activity
with a SystemC model is simulation.

On the other hand, in the embedded systems community, there is a lot of work on formal models
of components, some of them equipped with contracts, and amenable to formal verification or enhanced
simulation techniques like run-time verification. But these models rely on dedicated formal languages
(to ease the connection to verification tools) and ignore the quite dirty parts of real-life SystemC models
(like the interface with RTL models, the wrappers that are needed for the embedded software to execute
exactly the same on the virtual prototype of the hardware, or on the final chip, the low-level code needed
for Hardware-in-the-Loop simulations, etc.). Therefore they are far from being usable in practice for
industrial-size SoC descriptions (which can be 100 SystemC kLoc, and require the power of a general-
purpose language).

1.1 Related Work

There has been a lot of work on the formalization of SystemC, as a parallel programming language. The
idea is to extract formal models from SystemC programs, so that tools like model-checkers can be applied.
In [8], the formalization uses timed automata, with a connection to Uppaal [10]. In [16, 13] we describe
several formalizations and connections to SMV [14], SPIN [9], etc. However, all these formalizations
include some form of a global model for the SystemC scheduler, and the TLM principles in SystemC are
not formalized, in the sense that there is no clear definition of what a TLM component is. There only exist
guidelines for the developers of TL models.

Related work should also be searched for in TLM design for SoCs, not necessarily in SystemC. This
could help in identifying the principles of TLM, independently of SystemC. Unfortunately, the SystemJava
attempt seems to have disappeared; SystemVerilog is a modeling language for heterogeneous systems, at
various levels of abstraction, but it does not come with a methodology for TLM design. Tools like Ptolemy
or Metropolis can be used to describe SoCs, at the same level of abstraction than TLM, but do not help in
reusing SystemC existing modules, which is our primary goal.
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1.2 Contributions and Structure of the Paper

In this paper, we investigate the combined use of: (i) standard SystemC/TLM models; (ii) a formal com-
ponent model for embedded systems called 42 [11], inspired a lot by Ptolemy [4]. The idea is to take
advantage of the formal aspects of 42, while retaining the advantages of existing SystemC components.

Both SystemC/TLM and 42 describe systems of components representing parallel entities, and ani-
mated by a scheduler (in SystemC) or a so-called controller (in 42). The SystemC scheduler is specific,
while the 42 notion of a controller is generic; consequently, the effect of the SystemC scheduler can be
mimicked by a dedicated 42 controller. The core of the paper is the description of the structural correspon-
dence between a SystemC/TLM model, and a 42 model that has two properties: (i) it has exactly the same
component structure; (ii) animating it with a dedicated 42 controller produces the same observations as the
SystemC standard executions. For the latter point, we will recall and extend the control contract execution
mode of 42 as defined in [2]. To our knowledge, this is the first formalization of standard SystemC/TLM
components, i.e., we do not only formalize the SystemC language, we also formalize what a TLM com-
ponent is (interface, contract, and the model of computation and communication corresponding to TLM).
Moreover the formalization can be used without leaving the SystemC world, which is key to the adoption
of formal models in the SystemC/TLM community.

This structural correspondence has several applications. First, we can extract 42 control contracts from
the components of a SystemC/TLM model, and animate them by a 42 controller; this produces a super-
set of the SystemC observations, because extracting control contracts abstracts away the behavior of all
the data; this allows to reason on the synchronizations only. Second, we can extract the contracts from
some of the components of a SystemC/TLM model, and provide hand-written 42 contracts for the other
components; all of them can then be animated, and the synchronization validated before the entire SystemC
code is available. Finally, once the SystemC/TLM code is provided for the missing components, the set of
contracts can still be animated in 42, and executed together with the actual SystemC code; this allows to
check dynamically the conformance between a component and its contract, and to observe more errors.

The contributions of this paper are: (i) A structural correspondence between a SystemC/TLM model
and a 42 model; (ii) A generalized execution mode for systems of 42 components given by their contracts
only (in [2] we had only one level of hierarchy); (iii) A method for executing the 42 model together with
the real SystemC code (the SystemC code for threads and functions is unchanged, but it is animated by the
42 controllers instead of the SystemC scheduler).

Section 2 presents the principles of transaction-level-modeling (TLM) in SystemC; Section 3 is an
overview of the component model 42; Section 4 establishes the correspondence between a SystemC/TLM
model and a 42 model; Section 5 presents typical uses of our approach, on a case-study; Section 6 is the
conclusion.

2 TLM in SystemC

We explain briefly the notion of transaction-level modeling, and the way it is implemented in SystemC.
SystemC [17] is a C++ library, plus a simulation environment based on a non-preemptive scheduler. A TL
model is based on an architecture, i.e., a set of components that expose ports, and connections between
them, as shown on Fig. 1. The components, also called modules, represent some physical entities that
behave in parallel in the real system to be modeled (typically: a bus, a CPU, a memory, etc.). The direction
of the arrow shown on a port determines the role of the port. On Figure 1, p2 in module1, and p1 in
module2, are initiator ports; p1 in module1, and p2 in module2, are target ports.

T2T1 R1

p2 p1 p2

f1 f2

module1 module2

p1

Figure 1: Example of SystemC/TLM (architecture)
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The behavior of a component is given by a set of threads (represented by circles with “steps” on Fig. 1),
and a set of functions (represented by straight lines with steps), both programmed in full C++ (see Figure 2).
module1 has two threads T1 and R1, and one function f1, while module2 has a single thread T2 and
a function f2. The threads are active code, to be scheduled by the global scheduler; the functions are
passive code, offered to the other components, and that will be called from a thread of another component;
the functions are attached to the target ports of the module (f1 is attached to p1 in module1). Inside such
a module, the processes and the functions may share events in order to synchronize with each other. Events
can be notified, or waited for. In module1 (Fig. 2) there are three events e1, e2, e3.

All the threads are managed globally. The SystemC scheduler is non-preemptive: a running thread has
to yield, by performing a wait on an event (or on time, see comments in the conclusion, but we will use
untimed models throughout this paper, for sake of simplicity). For instance, for the thread T1 of module1,
the only point where the thread yields is wait(e1). The execution of a++; e2.notify(); a++;
e3.notify(); is therefore atomic.

1 : void module1 : : T1 ( ) {
2 : i n t a = 0 ;
3 : whi le ( t rue ){
4 : w a i t ( e1 ) ;
5 : a ++; e2 . n o t i f y ( ) ;
6 : a ++; e3 . n o t i f y ( ) ;
7 : }}
8 : void module1 : : R1 ( ) {
9 : i n t b = 0 ;

1 0 : whi le ( t rue ){
1 1 : b ++; w a i t ( e2 ) ;
1 2 : b ++; p2 . f2 ( b ) ;
1 3 : }}
1 4 : void module1 : :
1 5 : f1 ( i n t x ){
1 6 : c o u t << x ;
1 7 : e1 . n o t i f y ( ) ;
1 8 : w a i t ( e3 ) ;
1 9 : } / / ** module1 **

3 0 : void module2 : : T2 ( ) {
3 1 : i n t c ;
3 2 : whi le ( t rue ){
3 3 : c ++; p1 . f1 ( c ) ;
3 4 : c ++; w a i t ( e4 ) ;
3 5 : }
36 :}
3 7 :
3 8 : void module2 : :
3 9 : f2 ( i n t x ){
4 0 : cout<< x ;
4 1 : e4 . n o t i f y ( ) ;
4 2 : } / / ** module2 **

Figure 2: Example of SystemC/TLM (code)

According to the TLM guidelines, communications between modules cannot use the event mechanism,
because this would be meaningless w.r.t. the physical parallelism to be modeled. The only possible com-
munications are called transactions, implemented by blocking function calls; the link between a caller
and the callee is established through the architecture. On Figure 2, the thread T2 of module2 initiates a
transaction on its port p1 (written p1.f1(c)). This is a call to the function f1 in module1 (which is
attached to the target port p1 of module1), because the initiator port p1 of module2 is connected to the
target port p1 of module1. When the call is executed (T2 being running), the control flow is transferred
to module1, until f1 terminates; then the control flow returns to module2, and the execution continues
until the next yielding point (wait(e4) in the example). Since function f1 in module1 waits for the
event e3, it yields if e3 is not present; this means that thread T2 in module2 may yield because of a
wait statement in the function it has called in another module. An example atomic sequence is the fol-
lowing: the scheduler elects thread R1, which is at line 12; it executes b++ and then calls f2 via the port
p2; the body of f2 in module2 is executed entirely, and the control returns to module1; the thread R1
loops, executes b++ at line 11, and stops on wait(e2) at line 11.

3 The Component Model 42
The original definition of 42, and various examples (synchronous, asynchronous, GALS), can be found
in [11, 12]. 42 enriched by control contracts, used to simulate a system of components given by their
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contracts, can be found in [2].

3.1 Basic and Assembled Components

Figure 3 shows a 42 component. It is a black-box that has input and output data ports, and input and output
control ports. The input control ports are used to ask it to perform a computation step. A step corresponds
to a terminating (non-necessarily deterministic) piece of code. A component has some internal memory.
The input and output data ports are used to communicate data between the components. The output control
ports will be used by the components to send information to the controller (see below). The output control
ports have enumerated types, indicated on the side of the picture.

atomic
step

internal memory

Input Control Ports

oc1oc2

ic2 ic1

Output Control Ports

od1

od2

od3

oc1:{a, b}
oc2:{ok, ko}

O
ut

pu
tD

at
a

Po
rt

s

In
pu

tD
at

a
Po

rt
s

id1

id2

id3

Figure 3: A Basic 42 Component

Components are connected by directed wires (see Figure 4). An input data port can be connected to an
output data port of the same type (we will assume this is always true in the sequel). When the input and
output ports connected together have the same name, we write the name on the wire. The control ports are
connected to the controller, not directly to each other. In the sense of Ptolemy [4], a 42 system (see Fig. 4) is
made of components connected by wires (the architecture) plus a controller that activates the components
and decides what happens on the wires. The model is hierarchic: an architecture plus a controller form a
new component. It exposes new input and output data and control ports. The global output data ports (e.g.,
O) are connected to output data ports of sub-components (e.g., B.o), and the global input data ports (e.g.,
I) are connected to input data ports of the sub-components (e.g., A.i).

A B

ic ic
a

b

O
i o

I

oc oc
OC

IC
controller

main

A.oc:{ok, ko}
B.oc:{x, y, z}
main.oc:{yes, no}

Figure 4: Assembling Components

3.2 Controllers

Figure 5 is an example controller for the system of Figure 4, given in some simple imperative style. The
controller defines how the components behave together. It is in charge of translating an activation request
on one global control input port (e.g., IC, also referred to as a macro-step in the sequel), into a sequence of
activations of the sub-components, and data exchanges between them (also called micro-steps). It defines
what the Model of Computation and Communication (MoCC) is, at this level. To achieve this, the controller
may use some temporary variables explicitly associated with the wires (e.g., m a), whose lifetime is limited
to the macro-step. It uses simple primitives of two forms: activation of sub-components (e.g., A.ic) and
data management: a.put moves the value from the port A.a to the memory associated with the wire a,
whereas a.get moves the value stored from the wire to the right port B.a. The controller also reports on
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the activity of sub-components through global output control ports (e.g., OC). As in Ptolemy, heterogeneous
systems are build by using a hierarchy of controllers that implement different MoCCs.

1 Controller is
2 x : int := 1; alpha: { ok, ko }
3 for IC do { //Global IC
4 m_a, m_b, m_i, m_o : int;
5 if (x==2){
6 i.put; i.get; //Global ID
7 A.ic; alpha:=A.oc; //Read A.oc
8 if(alpha==ok){ a.put; a.get; B.ic;} //Activate B
9 x:=1;
10 }else{
11 B.ic; o.put; o.get; //Global OD
12 b.put; b.get; A.ic; x:=2;}
13 main.OC := "yes"; //Global OC
14 }

Figure 5: Example 42 Controller

3.3 Control Contracts
The distinction between control and data ports makes it easy to define rich control contracts for the 42
components. Such contracts specify two things: (i) the language of correct sequences of activations (input
control ports) for the component; this is given as an explicit automaton in the sequel; (ii) for each activation,
which data inputs are required, and which control and data outputs are produced. Figure 6 shows a contract
for the component C of Figure 3. Each transition has a label of the form:
{data req} control input / control outputs {data prod}

n0

n4

n1

n2

{id2;id3} ic2/oc1{od2;od3=false}

a3

{id2} ic2/oc2
{od2;od3=true}

{id1}ic1/oc1{od1}

{} ic2 {}

{} ic2 {}

{} ic2/oc2 {}

Figure 6: Contract for the Component of Fig. 3

part expresses data dependencies; for instance {id2;id3} means that the transition needs id2 and
id3. The part {data prod} is built similarly, and expresses which outputs are indeed produced. For
some of the data ports, which are used for synchronizations (e.g., an interrupt) the contract may also
specify which value is indeed produced (e.g., od3 = true). The control input part is a single
control input. The control outputs part gives the control outputs that are indeed produced. Initially,
the contract is in its initial state (n0), and then it evolves according to the sequence of activations produced
by the controller in response to a sequence of macro-steps. Each macro-step is considered to start in the
state where the contract was, at the end of the previous macro-step. In [2] we presented a more general
version of contracts, with internal variables and conditional data dependencies, but this simple version is
sufficient here.

3.4 Executing Contracts
Observe Figure 7. It is a 42 model of an asynchronous system for which we want to perform simulations.
The control ports op are introduced in order to define an asynchronous simulation controller. Each com-
ponent has a single control input op, corresponding to the execution of a piece of behavior that can be
considered as atomic with respect to the other components.

The asynchronous simulation consists in repeatedly activating the global system via its control input
op, which is then non-deterministically translated into A.op or B.op, respecting the data dependencies (a
component whose contract specifies that input data id is needed, cannot be activated if id is not available,
i.e., has not been produced by another component). We could write this controller directly, but in [2], we

Verimag Research Report no TR-2009-7 5/20



Tayeb Bouhadiba,Florence Maraninchi, Giovanni Funchal Contracts for SystemC/TLM

���� ��
A a A.end:{true, false}

B.end:{true, false}
B

op op

end end

bcontroller
op

Figure 7: Asynchronous simulation

described how to obtain it automatically from the components’ contracts. Figure 8 gives possible contracts
for the two components. The controller is simply a contract interpreter, which produces one trace in the
asynchronous product of the components’ contracts. Figure 9 describes part of this asynchronous product.

a2

a3

a1 b2

b3

b1

{}op{}

{b}op{} {}
op

/{
a}

{}
op

/{
b}

{}op/end{}{}op/end{}

{a}op{}
Figure 8: Contracts for the components of Fig. 7

A.op
a2 b1

A.op
available={}

a2 b1
available={}

a3 b3 A.op

B.op

B.op

available={b, a}

A.op
a2 b2

A.op
available={}

a2 b2
available={}

B.op

a2 b3
available={b}

a1 b1

A.opB.op
available={}

a1 b2
available={}

a1 b3 A.op

A.op

available={a}

Figure 9: Example Executions

Each location shows: the states of the components’ contracts, and the availability of the data exchanged
between components. For each global op, the controller is in a particular location of this graph, chooses
randomly one of the outgoing transitions (say, t), executes it, updates the set of available data (removing
what t needs, and adding what t provides), and reaches a new location.

4 The Correspondence Between 42 and SystemC/TLM

In this section, we use a toy example to establish the structural correspondence between the TLM com-
ponents, as defined informally by the TLM guidelines, and the 42 components. The interesting uses of
this approach are explained in section 5, together with the case-study. The SystemC example (denoted by
SCTLM in the sequel) is that of Figures 1 and 2. The corresponding 42 model will be denoted by 42M in the
sequel. Its architecture is given by Figure 10; example contracts for its components are given by Figure 11.
For sake of clarity, we will suppose that we cannot have simultaneously two active calls of a given function.
Our full encoding of SystemC into 42 forbids recursion and relies on code duplication when a function may
have several parallel callers.
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e4
fd2

fd1

op

f2C
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module2
R1

module1

f2 T2

T1

CTRL1

CTRL2’
callf2 op

endf2 f1C

CTRL2

e2

f1

resp respendf2f2C f1Cendf1

callf1 contf2 enq enqcallf2 contf1

opcontf1

opcontf2

op(n)

main

Figure 10: 42 Architecture for the system of Figs. 1 and 2

4.1 Architecture and Ports

The SystemC model SCTLM is made of several modules that have ports; each module contains threads and
functions. The 42 model 42M is hierarchic; at each level of the hierarchy, it is made of a set of components,
and a controller. The architecture of 42M (Fig. 10) is built by using one 42 component per module in
SCTLM, at the highest level of hierarchy; moreover each 42 component corresponding to a module M is
itself built as a 42 system, with one component per thread of M , and one component per function of M ;
The main component only has a control input op for asynchronous simulation.

4.1.1 Highest Level

The module ports in SCTLM are used to route function calls. At the highest level of the 42 hierarchy, these
function calls of SCTLM are encoded by separating the control effect, and the data exchanged. For instance,
the fact that thread T2 in module2 may call f1 of module1 via the ports p1 (Fig. 2), corresponds to: (i)
the data wire fd1 from module2 to module1 on Figure 10; (ii) the output control port f1C (for “f1 is
called”) of module2; (iii) the input control port callf1 of module1 (to activate the code of f1); (iv)
the output control port endf1 (for “f1 has finished”) of module1; (v) the input control port contf1 of
module2 (to continue the execution of the thread that has called f1, when f1 is finished).

Each module has output data ports corresponding to the parameters of the functions that can be called
from inside the module, and input data ports corresponding to the parameters of the functions it provides
(we assume a union type for these ports, representing all the functions parameters). It also has one input
control callfi for each function it provides, and one control input contfi for each function that may
be called from it. Each module also has a control input enq (for “enquire”) and a control output resp
(for “response”). The use of all these ports by CTRL1 is further detailed below. Finally each module
has a parametrized control input op for asynchronous simulation; the integer parameter will be used, in
conjunction with the enq/resp mechanism, in order for CTRL1 to choose a transition in a module.

4.1.2 Deepest Level

At the deepest level, the 42 components represent threads and functions that may communicate through
events. The events are encoded as data wires1. A thread or function that may notify (resp. wait for) the
event e has an output (resp. input) data port e. The controllers CTRL2 and CTRL2’ ensure the connection
between the control ports of the modules, and the control ports of the functions and threads.

Each component associated with a function has an input data port for the parameters (connected to the
corresponding input data port of the module); it also has a control input callfi (used to start the function),
an a control output endfi (produced when the function terminates); finally the control input op is used

1This produces the effect of persistent events, in the sense that an event is memorized until “consumed” by another thread executing
a wait); in SystemC, standard events are not persistent: they are lost if no eligible process waits for them. We could encode non-
persistent events in 42 as well.
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to re-activate the function code, when it had stopped on a wait, and still has something to do before it
terminates. If the function calls another function, the component also has the ports related to functions,
explained below for threads.

Each component associated with a thread has a control input op to perform one execution step, from
where it had stopped last time it was activated, until the next wait or function call. For each function f
the thread may call, the component has an output control port fC to signal that the function is called, and
an output data port to send the actual parameters; this data port is connected to the output data port of the
module. A thread that can call a function f also has a contf control input, to resume its execution when
the function terminates.

4.2 Contracts
Figure 11 gives example contracts for the threads and functions T1, R1, T2, f1, f2. The contract of
a function f always starts with a transition triggered by callf, and needing the data input corresponding
to the parameters; it is always a loop (to allow for successive executions of the function). If the body
of the function does not wait, nor call other functions, the contract is simply a loop on the initial state,
producing endf. In the example, this is the case for f2. If the body of the function has wait statements,
the contract has additional states, with outgoing op transitions, which need the data input corresponding
to the event which is waited for (this is the case for f1). The contract of a thread is made of transitions
triggered by op or the contfi corresponding to the functions fi it may call. Each transition that produces
fiC also provides the data output corresponding to the parameters, and reaches a state whose only outgoing
transition is triggered by contfi.

tb tctat1t0

fa {fd2}callf2/endf2{e4}f2

f0 f1 r1 r2r0

T1

{}contf1{}

T2

{}op{}
{e1}op{e2; e3}

{e3}op/endf1{}
f1

{}op{}

R1

{e2}op/f2C{fd2}{fd1}callf1{e1}

{}contf2{}

{}op/f1C{fd1}

{e4}op/f1C{fd1}

Figure 11: Example 42 Contracts for the Components of Fig. 10

To better understand the relation between 42 contracts and SystemC code, notice that contracts can
be extracted automatically from SystemC code (see section 4.5). Figures 12 and 13 give an example
SystemC thread, and the corresponding contract. The states of the contract correspond to points where the
SystemC code waits for events, or calls functions (the notation a© is added for the example, it is not part
of SystemC). A transition op corresponds to a piece of code that stops on a wait, or on a function call.
Events are translated into data dependencies. The tests on data produce non-determinism. For instance,
from state b©, there are three possible paths, depending on (x < 42) and (y<5), leading to states b©,
c© or e©.

a©whi le ( t rue ){
x ++; e3 . n o t i f y ( ) ; e4 . n o t i f y ( ) ; b©w a i t ( e1 ) ;
i f ( x < 42){ c©p . f ( x ) ; d©p . g ( x ) ; }
y =0;
whi le ( y<5){ y ++; e©w a i t ( e2 ) ; }

}
Figure 12: A SystemC thread
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a b dc

e

{}contg{e3;e4}
{e1}op{e3;e4}

{e1}op{}
{}contg{}

{e2}op{}
{e2}op{e3;e4}

{e1}op/fC{fd} {}contf/gC{gd}{}op{e3;e4}

Figure 13: Non-Deterministic Contract for Fig. 12

4.3 Controllers

The control ports op in 42M are introduced for asynchronous simulation: a simulation is a sequence of
activations of main with input op; CTRL1 translates each of these into an activation of module1 or
module2, through its parametrized input op(n). CTRL1 is very similar to the contract interpreter of [2],
as recalled in section 3.4. However, in [2], we had only one level of hierarchy, and the controller could
simply interpret a set of explicit contracts, while module1 and module2 have no explicit contracts.
Another difference with [2] is that CTRL1 also produces the effect of function calls.

Only the leaf components, corresponding to threads and functions, have explicit contracts (Fig. 11). We
could first compute statically the contract of a module from the contracts of its threads and transitions, and
then apply the method of section 3.4. But this product could be quite big.

The solution we adopted for SystemC in 42 is to build the contracts of the modules dynamically. The
idea is as follows: CTRL1 asks the components module1 and module2 to expose the transitions that
are possible in the current state of their contracts, before choosing which of them to activate through the
parametrized op. For this, we add two control ports to module1 and module2: the input enq (for
”enquire”) is used CTRL1 to ask the components to reveal their possible transitions; the output resp
is used by the component to answer this question. At the deepest level, CTRL2 and CTRL2’ know the
explicit contracts of the threads and transitions, and are in charge of answering the question enq with an
output resp. The data type for this exchange between CTRL1 and CTRL2 or CTRL2’ is a set of indexed
transitions of the form <n ∈ N, t ∈ Trans >; Trans is a contract transition, i.e., a structure {req ∈
2ID, ic ∈ IC, ocs ∈ 2OC , prod ∈ 2OD}, where ID, OD, IC, OC are respectively the sets of data input,
data output, control input and control output ports.

4.3.1 The controller CTRL1

Figure 14 is a sketch of the code for CTRL1. It produces the effect of function calls, passing the
control flow from the caller to the callee and back. arch describes the relation between an out-
put control fiC (resp. endfi) of a component C, and the corresponding input control Callfi (resp.
contfi) of a component C′. For instance, arch(<module1,f2C>)=<module2,Callf2> and
arch(<module2,endf2>)=<module1,contf2> describe the function call from module1 to
module2.

CTRL1 translates a global op into a sequence of activations of the modules. First (line 7), it asks
all the modules for the possible transitions in the current states of their contracts (with the control input
enq). Each module answers with a set of indexed transitions, which are stored in TT. Then CTRL1 selects
randomly a transition t whose control input is "op" (line 8). Then it activates the component C to which
t belongs (lines 9, 10). The activation uses the control input op(n) where n is the index of the chosen
transition. The transitions in TT with the control input ‘‘op’’ come from the contracts of threads and
functions; all the data they need because of events are provided locally in modules. This is why the
execution of such an ‘‘op’’ by CTRL1 does not need data inputs.

The while loop of CTRL1 implements the general effect of calling, and returning from, a function.
As long as the activation of the current component (C.op(n) (line 10) or C.(t.ic) (line 22))
produces a control output oc, CTRL1 selects from arch, the corresponding component C′ (and its transition
t′) (line 14) and activates it immediately (line 17). Notice that, during the execution of the loop, the global
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1 c o n t r o l l e r 1 i s {
2 TT ⊂ N× Trans / / s e t o f i n d e x e d t r a n s i t i o n s
3CC ⊂

S
Component / / h i g h e s t l e v e l components

4 a r c h : (CC × OC)→ (CC × IC )
5

6 f o r op do{
7 f o r a l l C ∈ CC do { C . enq ; TT := TT ∪ C . r e s p }
8 s e l e c t t | ∃ n . <n , t> ∈ TT ∧ t . i c =” op ”
9 l e t C ∈ CC | t ∈ C . r e s p

10 C . op ( n ) ;
11 whi le ( t . ocs != ∅ ){ / / |ocs | ≤ 1
12 l e t oc ∈ t . ocs
13 l e t t ′ , C′ ∈ CC |
14 ∃ n′ .<n′ , t ′> ∈ TT ∧ a r c h (<C , oc>)=<C′ , t ′ . i c>
15 t := t ′ ; C := C′ ;
16 f o r a l l i d ∈ t . r e q { i d . p u t ; i d . g e t ;}
17 C . ( t . i c ) ;
18 } }

Figure 14: Sketch of the code for controller 1

op is not terminated, which means the execution is atomic, as it should be w.r.t. to SystemC.

4.3.2 The Controllers CTRL2 and CTRL2’

The controllers at the deepest level (CTRL2 and CTRL2’) perform an on-the-fly production of the contract
of a module, from the contracts of its threads and functions. They compute an asynchronous product,
restricted by the effect of event-based communication between the threads and functions. Figure 15 is a
sketch of the code for CTRL2 and CTRL2’. It contains code for the control input enq, for the parametrized
op, and for the callfis and the contfis.

For enq, consider a state of module1 in which the available inputs are AA={e1,e2}, the contracts’
states of T1, R1 and F1 are SS=<t1, r1, f0>. When module1 is activated with enq, it outputs
on its port resp the set RET={<0,{}op{}>, <1,{}op/f2C{fd2}>, <2,{fd1}callf1{}>}. The indexed
transitions in RET are obtained from transitions in the contracts of threads and functions, whose local
required inputs (i.e., t.req \ P) are available (line 12). Only the global inputs/outputs (t.req ∩ P,
t.prod ∩ P and t.ocs ∩ P) are still visible in t′ stored in RET (line 14). When returning a set of
indexed contract transitions, CTRL2 and CTRL2’ also recall in variable WHO (line 15) that the transition t′

number n corresponds to the original transition t and belongs to the contract of the component C. Several
transitions may come from the contract of the same thread or function.

CTRL2 and CTRL2’ also translate an input op (n) (line 20) into the appropriate activation of a thread
or function with input op (line 23) after providing it with the required inputs (line 22). The component is
selected according to the information stored in WHO (line 21).

Finally, CTRL2 and CTRL2’ route the activations callfi (line 29) and contfi (line 31) to the appro-
priate component. Conversely, they copy the control outputs endfi and fiC of the threads and functions
into the corresponding outputs of the module (for instance at line 26, but possibly also in the code of lines
29, 31). It is similar for the data ports in P.

After each activation of a thread or function (lines 23, 29, 31) the set of available data AA is updated
(as in line 24). The consumed ones (t.req) are removed and the newly produced (t.prod) are added.

4.4 Comments
The correspondence between SystemC/TLM and 42 may seem complex. In particular, there are more ports
and connections between components in the 42 version, and mimicking the effect of the SystemC scheduler
with two levels of controllers is more complex than flattening the structure and relying on function calls,
as in SystemC. However, we think 42 should not be blamed for that; it only makes explicit the complex
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1 c o n t r o l l e r 2 i s {
2WHO⊂ (N ×

S
Component × Trans )

3CR ⊂ (
S

Component ×
S

C o n t r a c t )
4AA ⊂

S
ID / / s e t o f a v a i l a b l e i n p u t da ta

5 P ⊂ ID ∪ OD ∪ OC ∪ IC / / module ’ s p o r t s
6 SS ∈ Π C o n t r a c t s S t a t e s
7

8 f o r enq do{
9 n : i n t := 0 ;

10 f o r a l l t : T rans |
11 ∃ <C , R> ∈ CR ∧ <s , t , s ′> ∈ R ∧ s ∈ SS
12 ∧ t . r e q \P ⊂ AA do{
13 l e t t ′ : T rans |
14 t ′={ t . r e q∩P , t . i c , t . ocs∩P , t . p rod∩P}
15 WHO := WHO ∪ <n , C , t>
16 RET := RET ∪ <n ++ , t ′>
17 } r e s p :=RET ;
18 }
19

20 f o r op ( n ) do{
21 l e t C , t | <n , C , t> ∈ WHO
22 ∀ i d ∈ t . r e q { i d . p u t ; i d . g e t ;}
23 C . op ;
24 AA := (AA\ t . r e q )∪ ( t . p rod )
25 ∀ i d ∈ ( t . p rod ∩ P ) { i d . p u t ; i d . g e t ;}
26 l e t oc ∈ ( t . ocs ∩ P ) oc := C . oc ;
27 }
28

29 f o r c a l l f i do{ . . . C . c a l l f i . . . }
30

31 f o r c o n t f i do{ . . . C . c o n t f i . . . }

Figure 15: Sketch of the code for CTRL2 and CTRL2’
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synchronization patterns of TLM components that are hidden in the SystemC execution engine. In other
words, the complexity of a component in its 42 version is a better representation of its intrinsic complexity,
than the SystemC/TLM version.

The 42 version exposes exactly the information that a user should have in mind when trying to reuse
a TLM component. If we want to use SystemC/TLM modules in other contexts (42 or another one), we
need to expose functions offered to the other modules, including the control dependencies they imply.
Conversely, the two levels of controllers allow to make the effect of events as locally hidden as it should
be; this makes it possible to use TLM modules written in other languages, with a local managing of internal
synchronization, with events or another mechanism.

The equivalence between an original SystemC model and its 42 version cannot be proved formally,
unless SystemC is given a formal semantics first. In fact the 42 hierarchy of controllers, as an encoding
of the SystemC execution engine, is a formalization of SystemC, not far from what was used in [16] with
synchronous automata or in [8] with timed-graphs. As in [16] the correctness of the translation can be
assessed by intensive simulation of SCTLM and 42M for the same inputs. The advantage of the 42 version
is the componentization of the semantics: a TLM module can be given a meaning in isolation.

4.5 Implementation

42 is implemented in Java. It provides an architecture description language (ADL) for building systems
from components, a simple imperative language for controllers, and its interpreter. The basic components
can be written directly in Java (implementing a predefined interface) or be defined as Java wrappers on
existing code compiled from other languages, and respecting a given set of functions (entry points in the
object code). For instance, the modular code produced by the compilers of synchronous languages like
Lustre [1] can be wrapped into 42 components, and executed by a dedicated synchronous 42 controller.
The contract execution mode is a particular case of an asynchronous controller, which is not written by
hand, but results from the interpretation of the contracts.

For this paper we defined a method for extracting 42 contracts automatically from SystemC code (sec-
tion 4.2), using the SystemC front-end Pinapa [15]. Pinapa can also be used to generate automatically the
architecture of the 42 model from the architecture of the SystemC model, and from an analysis of its code,
to determine which events are waited for, and which functions are called (this is very similar to what we
did for building the architecture of TLM timed models from untimed models in [6]).

Finally we developed an execution mode for 42 contracts together with SystemC code. First, we had
to solve the general problem that appears when executing non-deterministic contracts together with de-
terministic code: how to establish the correspondence between the states of the contracts, and the control
point in the actual execution? A solution to this intrinsic problem exists when the implementation (here,
the SystemC code) is written by somebody who knows the contract; the programmer has to relate explicitly
the code he/she writes to the states of the contract. This can be done by using a special annotation function
state. Figure 16 is an example implementation of the contract of Fig. 13, where the correspondence is
made (the initial state does not need to be specified with a state annotation).

whi le ( t rue ){
x ++; e3 . n o t i f y ( ) ; e4 . n o t i f y ( ) ;
s t a t e ( b ) ; w a i t ( e1 ) ;
i f ( x < 42){

s t a t e ( c ) ; p . f ( x ) ; s t a t e ( d ) ; p . g ( x ) ; }
y =0;
whi le ( y<5){y ++; s t a t e ( e ) ; w a i t ( e2 ) ; }

}
Figure 16: Annotations in SystemC code implementing the contract of Fig. 13

If we cannot rely on these annotations, there is no way to extract the correspondence automatically, even
with sophisticated program analysis techniques. The points corresponding to states are easy to discover,
but we cannot decide which of the contract states they correspond to.
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The complete implementation of the mixed execution mode, with wrappers, can be found in [3]. We
explain the principles below. A SystemC module can be compiled separately, yielding an object code with
entry points for threads and functions. Each 42 component corresponding to a thread or function is a Java
wrapper for the corresponding entry point in this object code, connected to it via a JNI interface.

We provide re-implementations of the event class, and of the wait and notify methods. Each
time a piece of SystemC code calls a wait (e), or a e.notify() this is intercepted by the wrapper, so
that the 42 world knows about the events exchanged. We also have to intercept the function calls. This is
done by reimplementing the class port of SystemC. The special function state we have just introduced
is intercepted by the wrapper, which can inform the 42 controllers that interpret contracts. When CTRL1
executes an op (one simulation step), the wrapper lets a SystemC thread or function executes, until it
reaches a wait of function call. The control will not return to the SystemC code until the effect of the
wait or function call, which has been intercepted by the wrapper, is terminated.

The general effect of the execution with wrappers is that the original SystemC code of the threads and
functions is now animated by the 42 controllers. The events are dealt with by CTRL2 and CTRL2’. The
function calls and the scheduling are dealt with by CTRL1.

5 Example Use of the Approach

5.1 The System Under Study
The system of Figure 17 is made of: a DMA (Direct-Memory-Access) component, a CPU, a memory, and
a bus. The behavior is as follows: the embedded software running on the CPU first writes something to the
memory from address a1 to address a2; then it programs the DMA to perform a transfer of this portion
of the memory to another place (say, between addresses a3 and a4). The advantage of using a DMA is
that the CPU can then do something else while the memory transfer is performed. When it it finished, the
DMA sends an interrupt to the CPU, which can repeat the same behavior.

B
U

S MEM
CPU

DMA
Interrupt

Figure 17: An Example System-On-a-Chip

In SystemC/TLM, the model is that of Figure 18. The four hardware elements are components, com-
municating via transactions. The communications from the CPU to the memory or the DMA, and the
communications between the DMA and the memory, are transactions through the bus. The interrupt is a
direct transaction from the DMA to the CPU. When the CPU writes to the memory, this is modeled as
follows: the thread of the CPU calls a function of the bus, which itself calls the function write of the
memory. The 42 model of Figure 19 is built as explained in section 4. We do not give all the details.

����

����
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MEMDMACPU

BUSread
write

thread

Figure 18: SystemC/TLM Model of the Figure 17

5.2 Uses of the Approach
When developing such systems in SystemC/TLM, it is often the case that there exist models for usual
components like the DMA, the bus, and the memory. The model of a memory is simple, but the model of
a real DMA can be quite complex, because it can allow several transfers at the same time, and/or it can
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Figure 19: 42 model for the system of Figure 18

offer support for suspending/resuming a transfer, etc. The developer has to build a system by connecting
those existing components, and then to write embedded code to be executed by the CPU (with native
simulations, or by using an instruction-set-simulator, or ISS). Then he/she can simulate the whole system,
and debug the embedded software. This may be complex because the debugging session deals with all the
information of the components like the DMA. Even if we only want to check the synchronization effects
between the embedded software and the DMA, we have to observe the full simulation through carefully
chosen breakpoints. The correspondence we have defined allows the following alternative approach.

First, we extract a detailed architecture and control contracts from the SystemC code of the existing
components. For instance, for a real DMA model written in SystemC, we would extract a detailed archi-
tecture like that of Figure 20 (showing that the DMA is made of a function write and a thread), and the
contracts of Figure 21. This DMA is quite simple (only one transfer at a time, no suspension), but the
SystemC code is already 50 to 100 lines.

In the contract of the thread, non-determinism comes from the abstraction of data in conditionals. State
t3 corresponds to the state of the DMA where it either terminates the whole transfer, or starts the transfer
of a new word.

In the contract of the function write, we see conditions on specific values of a data input (e.g.,
adW=08). The DMA has three local registers at offsets 00, 04, 08, where the CPU should write the
start and end addresses of the memory transfer, and the transfer command, respectively. The first two ones
are data registers; the last one is a control register, in the sense that writing to it triggers some behavior.
This is visible in the contract of the function write: if the input address is 08, the transition produces
the event e that triggers the thread to start the transfer. One may wonder how such a contract may be
extracted automatically from a piece of SystemC code. In most of the cases, the function is written as
a switch statement with explicit constants for the cases, which makes the extraction feasible. In other
cases, we could try to exploit the information on which registers are control ones, as specified in semi-
formal interface definitions like IPXact [5].

��
��
��
��

�
�
�
� abR

dbR
abW
dbW

it

endW IC WC RC resp

CTRL2

adW

ddW
write

endW

thread

contWcontRcallW contI
callW contI contR opcontW

e

op(n) enq

RCIC WC

Figure 20: 42 model of the DMA component

Second, we write from scratch a non-deterministic contract for the CPU component (it is in fact a
contract of the CPU, plus the embedded software that will run on it); we execute this CPU+SW contract
together with the extracted contracts, in the 42 world; we see only the synchronization effects, not the
general complexity of the SystemC code. Moreover, since the 42 model exposes clearly the control effects
hidden in function calls, the points where the system has to be observed to debug the synchronization effects
are already built in the model. The simulation speed can be quite good, also, because of the simplicity of
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w0 {adW =00; ddW }callW /endW {}
{adW =04; ddW }callW /endW {}
{adW =08; ddW }callW /endW {e}

t0 t1 t2

t3t4

write

{}contW /RC{abR;dbR}

{}op{}

thread

{}contR/WC{abW
;dbW

}

{}c
ont I{
}

{}contW /IC{it}

{e}op/RC{abR;dbR}

Figure 21: 42 contracts of the DMA component

the model.
Once we are happy with the contract of the CPU+SW, having played with it in the context of a complete

SoC, we start developing the real embedded software (that will be executed by a SystemC component which
is an instruction-set-simulator of the CPU). At the end, we may still execute the set of 42 contracts, but
now, together with the actual SystemC code of the CPU (which, itself, executes the embedded software).
This is a way of checking, dynamically, that the embedded software, together with the ISS, conform to the
abstract CPU+SW contract. Notice that, in order to match the states of the contracts with the control points
of the SW, we need to apply the mechanism explained in section 4.5 with the state keyword.

6 Conclusion
We have presented a method for combining standard SystemC/TLM components, as used in the industry,
with 42 components. It is based on a structural correspondence between SystemC and 42. This provides
a formalization of SystemC/TLM components, in the sense that it identifies the data and control interface
of TLM components, and the TLM MoCC (encoded by the controllers of the 42 version). The effort of
expressing in 42 the way SystemC/TLM components behave together, clearly separates the TLM semantics
from the execution mechanics, which is not the case in SystemC. We are also able to animate a set of
SystemC/TLM components using 42 controllers instead of the SystemC scheduler. The real SystemC code
is executed by 42, thanks to wrappers.

Further work will be devoted to the following aspects. First, we will generalize our correspondence
scheme and the associated implementation of the SystemC wrappers, to allow shared variables in a module,
and timed models. This is a bit more complex than the version presented here, but follows the same
lines (the global time keeper is at the highest level of the hierarchy). Second, we will investigate the
idea of translating a 42 contract into a SystemC/TLM component, so that the contract can be “executed”
together with ordinary SystemC/TLM components, in the SystemC world (for the moment, 42 contracts
and SystemC/TLM components can be executed together, being animated by a 42 machinery, not by the
regular SystemC scheduler). This is a way of improving simulation speed. Third, we will investigate
formal verification for contracts extracted from SystemC/TLM designs (we have to build a model which
is the product of all the extracted contracts; this model will be much smaller than the ones we use in [16],
which contain all the details of the SystemC code). Finally, in the context of the OpenTLM project of the
Minalogic competitiveness pole in Grenoble, we will apply the full approach on a large case-study provided
by STMicroelectronics, in order to quantify the benefits of debugging simple control contracts first, either
before having to deal with full SystemC code, or together with the full SystemC code of some components,
but not all.
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A.1 Code of module1

This is the unmodified version of the SystemC mod-
ule which is being wrapped. This module has two
ports (a target P1 and an initiator P2) and three
events and two threads. The boolean variables b1,
b2, b3 are used to implement persistent events.

A.1.1 module1.h

# i f n d e f MODULE1 H
# d e f i n e MODULE1 H

# i n c l u d e ” p o r t s . h ”
# i n c l u d e ” sys t emc . h ”
u s i n g namespace s t d ;

SC MODULE( module1 ) , p u b l i c P 1 i f{
P 2 p o r t i n i t i a t o r p2 ;
P 1 p o r t t a r g e t P1 ;

SC HAS PROCESS ( module1 ) ;
e x p l i c i t module1

( s c c o r e : : sc module name name ) : sc modu le ( name ) , P1(∗ t h i s ) ,
b1 ( f a l s e ) , b2 ( f a l s e ) , b3 ( f a l s e ){

SC THREAD( T1 ) ;
SC THREAD( R1 ) ;

}
p u b l i c :

module1 ( ) ;
vo id T1 ( ) ;
vo id R1 ( ) ;
vo id f1 ( i n t x ) ;
s c c o r e : : s c e v e n t e1 ;
s c c o r e : : s c e v e n t e2 ;
s c c o r e : : s c e v e n t e3 ;
boo l b1 , b2 , b3 ;

};

# e n d i f

A.1.2 module1.cpp

# i n c l u d e ” module1 . h ”
# i n c l u d e ” sys t emc . h ”
# i n c l u d e <i o s t r e a m>

vo id module1 : : T1 (){
i n t a = 0 ;
w h i l e ( t r u e ){

i f ( b1== f a l s e ) w a i t ( e1 ) ; b1= f a l s e ;
a ++; e2 . n o t i f y ( ) ; b2= t r u e ;
a ++; e3 . n o t i f y ( ) ; b3= t r u e ;
}
}

vo id module1 : : R1 ( ) {
i n t b = 0 ;
w h i l e ( t r u e ){

b ++; i f ( b2== f a l s e ) w a i t ( e2 ) ; b2= f a l s e ;
b ++; p2 . f2 ( b ) ;
}
}

vo id module1 : : f1 ( i n t x ) {
c o u t << x ;
e1 . n o t i f y ( ) ; b1= t r u e ;
i f ( b3== f a l s e ) w a i t ( e3 ) ; b3= f a l s e ;

}

A.2 SystemC classes

To be able to load a SystemC module in isolation,
we redefine SystemC classes needed by the mod-
ule. Some of the classes are redefined only because
the module may reference them, and others are re-
implemented to log module’s activity and report it
to the Java part through the wrapper methods.

A.2.1 systemc.h

# i f n d e f SYSTEMCX H
# d e f i n e SYSTEMCX H

# d e f i n e SC MODULE( name ) \
s t r u c t name : s c c o r e : : s c modu le

# d e f i n e SC HAS PROCESS ( name ) \
t y p e d e f name THIS MODULE

# d e f i n e SC THREAD( name ) \
s c 4 2 : : c r e a t e b e h a v i o r< THIS MODULE >(#name , \

t h i s , & THIS MODULE : : name )

namespace s c c o r e {

c l a s s s c o b j e c t {
p r o t e c t e d :
s c o b j e c t ( ) ;
s c o b j e c t ( c o n s t c h a r ∗ ) ;
v i r t u a l ˜ s c o b j e c t ( ) ;

};

c l a s s sc module name {
p u b l i c :
sc module name ( c o n s t c h a r ∗ ) ;
sc module name ( c o n s t sc module name &);
˜ sc module name ( ) ;
o p e r a t o r c o n s t c h a r ∗() c o n s t ;
p r i v a t e :
sc module name ( ) ;
sc module name& o p e r a t o r =( c o n s t sc module name &);

};

c l a s s s c e v e n t {
p u b l i c :
s c e v e n t ( ) ;
˜ s c e v e n t ( ) ;
vo id n o t i f y ( ) ;
p r i v a t e :
s c e v e n t ( c o n s t s c e v e n t &);
s c e v e n t& o p e r a t o r =( c o n s t s c e v e n t &);

};

vo id w a i t ( c o n s t s c e v e n t &);

c l a s s sc modu le : p u b l i c s c o b j e c t {
p u b l i c :
v i r t u a l ˜ sc modu le ( ) ;
p r o t e c t e d :
e x p l i c i t s c modu le ( c o n s t sc module name& n ) ;
sc modu le ( ) ;
vo id w a i t ( c o n s t s c e v e n t &);
p r i v a t e :
sc modu le ( c o n s t sc modu le &);

};

t y p e d e f sc modu le s c b e h a v i o r ;

}

namespace s c 4 2 {
c l a s s s c h e d u l e r {

p u b l i c :
s t a t i c vo id c r e a t e b e h a v i o r ( c o n s t c h a r ∗name , s c c o r e : : s c modu le ∗hos t ,

vo id ( s c c o r e : : s c modu le : :∗method ) ( ) ) ;
};

t e m p l a t e<typename T>
i n l i n e vo id c r e a t e b e h a v i o r ( c o n s t c h a r ∗name ,

s c c o r e : : s c modu le ∗hos t , vo id ( T : :∗method ) ( ) ) {
s c h e d u l e r : : c r e a t e b e h a v i o r ( name , hos t ,

s t a t i c c a s t <vo id ( s c c o r e : : s c modu le : :∗ ) ( ) > ( method ) ) ;
};

}
# e n d i f

A.2.2 systemc.cpp

# i n c l u d e ” sys t emc . h ”
# i n c l u d e ” wrapperx . h ”
# i n c l u d e <i o s t r e a m>

namespace s c c o r e {
/ / s c o b j e c t

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s c o b j e c t : : s c o b j e c t ( ) {}
s c o b j e c t : : s c o b j e c t ( c o n s t c h a r∗) {}
s c o b j e c t : : ˜ s c o b j e c t ( ) {}

/ / sc module name
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / c r e a t i o n o f a module
sc module name : : sc module name ( c o n s t c h a r∗ name1 ) {

}
sc module name : : sc module name ( c o n s t sc module name &) {}
sc module name : : ˜ sc module name ( ) {}
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sc module name : : o p e r a t o r c o n s t c h a r ∗( ) c o n s t {
r e t u r n ” ” ;

}

/ / s c e v e n t
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / D e c l a r t i o n o f a new e v e n t
/ / w r a p p e r n e w e v e n t i s implmenented i n s c 4 2 . cpp
s c e v e n t : : s c e v e n t ( ) {

w r a p p e r n e w e v e n t ( t h i s ) ;
}
s c e v e n t : : ˜ s c e v e n t ( ) {}

/ / The n o t i f i c t i o n o f an e v e n t i s r o o t e d t o t h e j a v a p a r t
/ / w r a p p e r n o t i f y e v e n t i s implemented i n s c 4 2 . cpp
vo id s c e v e n t : : n o t i f y ( ) {

w r a p p e r n o t i f y ( t h i s ) ;
}

/ / Wa i t i ng and e v e n t i s r o o t e d t o t h e j a v a p a r t
/ / w r a p p e r w a i t i s implemented i n s c 4 2 . cpp
vo id w a i t ( c o n s t s c e v e n t& e ) {

w r a p p e r w a i t (&e ) ;
}

/ / s c modu le
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sc modu le : : s c modu le ( c o n s t sc module name& n ) {}
sc modu le : : ˜ s c modu le ( ) {}

vo id sc modu le : : w a i t ( c o n s t s c c o r e : : s c e v e n t& e ) {
}

/ / s c s t a r t
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
vo id s c s t a r t ( ) {}

}

namespace s c 4 2 {

vo id s c h e d u l e r : : c r e a t e b e h a v i o r ( c o n s t c h a r ∗name ,
s c c o r e : : s c modu le ∗hos t , vo id ( s c c o r e : : s c modu le : :∗method ) ( ) ) {

d e c l a r e t h r e a d ( name , hos t , method ) ;
}

}

A.3 Re-definition of ports
The SystemC part presented above catches the ac-
tivity of a module with regard to synchronization
with events. Function calls are directly routed to
the corresponding module. Function calls are per-
formed by the module through its initiator ports.
Re-implementing the ports is necessary to redirect
the calls to the 42 Java part through the wrapper
methods.

A.3.1 P1 port headers file

# i f n d e f PORTS H
# d e f i n e PORTS H
# i n c l u d e <c s t d l i b>

c l a s s P 2 i f {
f r i e n d c l a s s P 2 p o r t i n i t i a t o r ;
p u b l i c :
v i r t u a l ˜ P 2 i f ( ) ;
p r i v a t e :
v i r t u a l vo id f2 ( i n t x )= 0 ;

};

c l a s s P 2 p o r t t a r g e t {
f r i e n d c l a s s P 2 p o r t i n i t i a t o r ;
p u b l i c :
e x p l i c i t P 2 p o r t t a r g e t ( P 2 i f& h o s t ) ;
p r i v a t e :
P 2 p o r t t a r g e t ( ) ;
P 2 i f& h o s t ;

};

c l a s s P 2 p o r t i n i t i a t o r{
p u b l i c :
P 2 p o r t i n i t i a t o r ( ) : t a r g e t (NULL) {}
vo id o p e r a t o r ( ) ( P 2 p o r t t a r g e t & t a r g e t ) ;
vo id f2 ( i n t x ) ;
p r i v a t e :
P 2 i f ∗ t a r g e t ;

};

# e n d i f

A.3.2 Initial implementation of P1

# i n c l u d e ” p o r t s . h ”

P 2 i f : : ˜ P 2 i f (){}
P 2 p o r t t a r g e t : : P 2 p o r t t a r g e t ( P 2 i f& h o s t ) : h o s t ( h o s t ) {}
vo id P 2 p o r t i n i t i a t o r : : o p e r a t o r ( ) ( P 2 p o r t t a r g e t& t a r g e t ) {

t a r g e t = &t a r g e t . h o s t ;
}
vo id P 2 p o r t i n i t i a t o r : : f2 ( i n t x ) {

t a r g e t−>f2 ( x ) ;
}

A.3.3 modified implementation of P1

# i n c l u d e ” p o r t s . h ”
# i n c l u d e ” s c 4 2 . h ”

P 2 i f : : ˜ P 2 i f (){}
P 2 p o r t t a r g e t : : P 2 p o r t t a r g e t ( P 2 i f& h o s t ) : h o s t ( h o s t ) {}
vo id P 2 p o r t i n i t i a t o r : : o p e r a t o r ( ) ( P 2 p o r t t a r g e t& t a r g e t ) {

t a r g e t = &t a r g e t . h o s t ;
}
vo id P 2 p o r t i n i t i a t o r : : f2 ( i n t x ) {

w r a p p e r c a l l j a v a m e t h o d e ( ” f2 ” ) ;
}

B SystemC Wrapper
The SystemC/42 interface is implemented by the
wrapper. This wrapper is composed of two parts.
A C++ part and a Java part. The two parts com-
municate with function calls using the Java Native
Interface (JNI).

B.1 C++ side of the wrapper
It allows to load the specified module, retrieve func-
tion pointers (SystemC threads and modules func-
tions) so that it is possible to call them from the
42 components (written in Java). Conversely, the
execution of a thread or function may wait for an
event, notify it or call a function. This is reported
to the Java side by the classes redefined above us-
ing the wrapper functions. The C++ side of teh
wrapper implements two headers files. A header
(wrapperx.h) for the methods called from the
C++ side, and header for the native methods called
from the Java side, directly obtained with JNI
tools.

B.1.1 C++ Header

# i f n d e f WRAPPERX H
# d e f i n e WRAPPERX H
# i n c l u d e ” sys t emc . h ”

vo id w r a p p e r w a i t ( c o n s t s c c o r e : : s c e v e n t ∗ ) ;
vo id w r a p p e r n o t i f y ( c o n s t s c c o r e : : s c e v e n t ∗ ) ;
vo id w r a p p e r n e w e v e n t ( c o n s t s c c o r e : : s c e v e n t ∗ ) ;
vo id w r a p p e r c a l l j a v a m e t h o d e ( c o n s t c h a r ∗ ) ;
vo id d e c l a r e t h r e a d ( c o n s t c h a r ∗name ,

s c c o r e : : s c modu le ∗hos t ,
vo id ( s c c o r e : : s c modu le : :∗method ) ( ) ) ;

# e n d i f

. .
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B.1.2 JNI Header

/∗ DO NOT EDIT THIS FILE − i t i s machine g e n e r a t e d ∗/
# i n c l u d e <j n i . h>
/∗ Header f o r c l a s s wrapper ∗/

# i f n d e f I n c l u d e d w r a p p e r
# d e f i n e I n c l u d e d w r a p p e r
# i f d e f c p l u s p l u s
e x t e r n ”C” {
# e n d i f
/∗
∗ C l a s s : wrapper
∗ Method : w r a p p e r l o a d m o d u l e
∗ S i g n a t u r e : ( )V
∗/

JNIEXPORT vo id JNICALL J a v a w r a p p e r w r a p p e r 1 l o a d 1 m o d u l e
( JNIEnv ∗ , j o b j e c t ) ;

/∗
∗ C l a s s : wrapper
∗ Method : w r a p p e r c a l l m e t h o d e
∗ S i g n a t u r e : ( L java / l a n g / S t r i n g ; ) V
∗/

JNIEXPORT vo id JNICALL J a v a w r a p p e r w r a p p e r 1 c a l l 1 m e t h o d e
( JNIEnv ∗ , j o b j e c t , j s t r i n g ) ;

/∗
∗ C l a s s : wrapper
∗ Method : a t t a c h t o m e
∗ S i g n a t u r e : ( L java / l a n g / S t r i n g ; L java / l a n g / O b j e c t ; ) V
∗/

JNIEXPORT vo id JNICALL J a v a w r a p p e r a t t a c h 1 t o 1 m e
( JNIEnv ∗ , j o b j e c t , j s t r i n g , j o b j e c t ) ;

# i f d e f c p l u s p l u s
}
# e n d i f
# e n d i f

B.1.3 Implementation

# i n c l u d e <j n i . h>
# i n c l u d e <map>
# i n c l u d e ” module1 . h ”
# i n c l u d e <c s t r i n g>
# i n c l u d e ” wrapper . h ”
# i n c l u d e ” wrapperx . h ”
module1 ∗ module ;

JavaVM ∗jvm = NULL;
j o b j e c t w r a p p e r j a v a ;

jmethodID addEvent ;
jmethodID w a i t E v e n t ;
jmethodID n o t i f y E v e n t ;
jmethodID c a l l a F u n c t i o n ;
JNIEnv ∗ myJniEnv ;
boo l f i r s t c a l l = t r u e ;

map<s t d : : s t r i n g , JNIEnv∗> envMap ;
map<s t d : : s t r i n g , j o b j e c t> objMap ;

vo id w r a p p e r w a i t ( c o n s t s c c o r e : : s c e v e n t ∗e ){
l ong i n t r e f = ( long i n t ) e ;
(∗myJniEnv ) . Cal lVoidMethod ( w r a p p e r j a v a , wa i tEven t , r e f ) ;

}

vo id w r a p p e r n o t i f y ( c o n s t s c c o r e : : s c e v e n t ∗e ){
l ong i n t r e f = ( long i n t ) e ;
(∗myJniEnv ) . Cal lVoidMethod ( w r a p p e r j a v a , n o t i f y E v e n t , r e f ) ;

}

vo id w r a p p e r n e w e v e n t ( c o n s t s c c o r e : : s c e v e n t ∗e ){
l ong i n t r e f = ( long i n t ) e ;
(∗myJniEnv ) . Cal lVoidMethod ( w r a p p e r j a v a , addEvent , r e f ) ;

}

vo id w r a p p e r l o a d m o d u l e (){
module=new module1 ( ” module1Y ” ) ;
}

vo id w r a p p e r c a l l m e t h o d e ( c o n s t c h a r∗ fun ){
i f ( ! module ){

r e t u r n ;
}
/ / s t d : : cou t<<”wrapper . cpp : c a l l i n g t h e methode : ”<<fun<<”\n ” ;
i f ( s t r c mp ( fun , ” T1 ” )==0)

module−>T1 ( ) ; e l s e
i f ( s t r c mp ( fun , ” R1 ” )==0)

module−>R1 ( ) ; e l s e
i f ( s t r c mp ( fun , ” f1 ” )==0)

module−>f1 ( 4 2 ) ;
}

vo id w r a p p e r c a l l j a v a m e t h o d e ( c o n s t c h a r∗ fun ){

i n t r e f = 4242 ;
(∗myJniEnv ) . Cal lVoidMethod ( w r a p p e r j a v a , c a l l a F u n c t i o n , r e f ) ;

}

//∗∗∗∗ i m p l e m e n t a t o k n f o r t h e j a v a s i d e
JNIEXPORT vo id JNICALL J a v a w r a p p e r w r a p p e r 1 l o a d 1 m o d u l e
( JNIEnv ∗ env , j o b j e c t o b j ){

myJniEnv = env ;
i f ( jvm == NULL) myJniEnv−>GetJavaVM(&jvm ) ;
i n t r e s ;

# i f d e f JNI VERSION 1 2
r e s = (∗ jvm ) . A t t a c h C u r r e n t T h r e a d ( ( vo id∗∗)&myJniEnv , NULL ) ;

# e l s e
r e s = (∗ jvm ) . A t t a c h C u r r e n t T h r e a d ( jvm , &myJniEnv , NULL ) ;

# e n d i f
i f ( r e s < 0) {

f p r i n t f ( s t d e r r , ” A t t a c h f a i l e d\n ” ) ;
r e t u r n ;}

w r a p p e r j a v a = o b j ;
j c l a s s c l s = (∗myJniEnv ) . G e t O b j e c t C l a s s ( w r a p p e r j a v a ) ;
addEvent =(∗myJniEnv ) . GetMethodID ( c l s , ” d e c l a r e e v e n t ” , ” ( I )V” ) ;
w a i t E v e n t =(∗myJniEnv ) . GetMethodID ( c l s , ” w a i t e v e n t ” , ” ( I )V” ) ;
n o t i f y E v e n t =(∗myJniEnv ) . GetMethodID ( c l s , ” n o t i f y e v e n t ” , ” ( I )V” ) ;
c a l l a F u n c t i o n =(∗myJniEnv ) . GetMethodID ( c l s , ” c a l l a F u n c t i o n ” , ” ( I )V” ) ;

w r a p p e r l o a d m o d u l e ( ) ;
}

JNIEXPORT vo id JNICALL J a v a w r a p p e r w r a p p e r 1 c a l l 1 m e t h o d e
( JNIEnv ∗ env , j o b j e c t obj , j s t r i n g fun ){

c o n s t c h a r ∗ funC =(∗env ) . Ge tS t r ingUTFChars ( fun , 0 ) ;
s t d : : s t r i n g f u n s =(∗env ) . Ge tS t r ingUTFChars ( fun , 0 ) ;

myJniEnv = env ;

envMap . e r a s e ( f u n s ) ;
objMap . e r a s e ( f u n s ) ;
envMap . i n s e r t ( p a i r<s t r i n g , JNIEnv∗>(funs , myJniEnv ) ) ;
objMap . i n s e r t ( p a i r<s t r i n g , j o b j e c t >(funs , o b j ) ) ;

w r a p p e r j a v a = o b j ;
j c l a s s c l s = (∗myJniEnv ) . G e t O b j e c t C l a s s ( w r a p p e r j a v a ) ;
addEvent =(∗myJniEnv ) . GetMethodID ( c l s , ” d e c l a r e e v e n t ” , ” ( I )V” ) ;
w a i t E v e n t =(∗myJniEnv ) . GetMethodID ( c l s , ” w a i t e v e n t ” , ” ( I )V” ) ;
n o t i f y E v e n t =(∗myJniEnv ) . GetMethodID ( c l s , ” n o t i f y e v e n t ” , ” ( I )V” ) ;
c a l l a F u n c t i o n =(∗myJniEnv ) . GetMethodID ( c l s , ” c a l l a F u n c t i o n ” , ” ( I )V” ) ;
w r a p p e r c a l l m e t h o d e ( funC ) ;

}

JNIEXPORT vo id JNICALL J a v a w r a p p e r a t t a c h 1 t o 1 m e
( JNIEnv ∗env , j o b j e c t obj , j s t r i n g fun , j o b j e c t ob j1 ){

c o n s t c h a r ∗ funC =(∗env ) . Ge tS t r ingUTFChars ( fun , 0 ) ;
s t d : : s t r i n g f u n s =funC ;
myJniEnv = envMap [ f u n s ] ;
w r a p p e r j a v a = objMap [ f u n s ] ;
j c l a s s c l s = (∗myJniEnv ) . G e t O b j e c t C l a s s ( w r a p p e r j a v a ) ;
addEvent =(∗myJniEnv ) . GetMethodID ( c l s , ” d e c l a r e e v e n t ” , ” ( I )V” ) ;
w a i t E v e n t =(∗myJniEnv ) . GetMethodID ( c l s , ” w a i t e v e n t ” , ” ( I )V” ) ;
n o t i f y E v e n t =(∗myJniEnv ) . GetMethodID ( c l s , ” n o t i f y e v e n t ” , ” ( I )V” ) ;
c a l l a F u n c t i o n =(∗myJniEnv ) . GetMethodID ( c l s , ” c a l l a F u n c t i o n ” , ” ( I )V” ) ;

/ / s t d : : cou t<<”w a r p e r r . cpp : a t t a c h i n g j e n v t o t h r e a d ”<<funs<<e n d l ;
}

B.2 Java Side of the wrapper

The C++ side of the wrapper is responsible for load-
ing modules, storing their function pointers, and
intercepting the event manipulations and function
calls. The Java side of the wrapper is responsi-
ble for executing the code of modules step by step.
A step of a SystemC thread or function, is the ex-
ecution of a piece of code of it between two wait-
s/function calls. After executing a step, the thread
(or function) should stop execution. The Java wrap-
per knows about the ending of a step, when the C++
wrapper reports to it that the function or thread be-
ing executed has made a wait on event, or a func-
tion call. Next time this thread/function is reacti-
vated, the wrapper should start from the point where
it stopped. The solution adopted is that each thread
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or function is run on a Java thread, which is stopped
when the module calls a function or waits for an
event.

The Java wrapper is implemented as a Singleton,
a unique instance is used by 42 components to call
the corresponding piece of C++ code corresponding
to it.
i m p o r t j a v a . u t i l . Map ;
i m p o r t j a v a . u t i l . TreeMap ;

p u b l i c c l a s s wrapper {
p r i v a t e s t a t i c wrapper i n s t a n c e ;
p r i v a t e n a t i v e vo id w r a p p e r l o a d m o d u l e ( ) ;
p r i v a t e n a t i v e vo id w r a p p e r c a l l m e t h o d e ( S t r i n g s t r ) ;
p r i v a t e n a t i v e vo id a t t a c h t o m e ( S t r i n g s , O b j e c t o ) ;
p r i v a t e O b j e c t f i n i s h e d ;
Map threadsMap = new TreeMap ( ) ;
Map componentsMap = new TreeMap ( ) ;
Map eventsMap = new TreeMap ( ) ;

p r i v a t e wrappe rThread c u r r e n t ;

s t a t i c{
System . l o a d L i b r a r y ( ” m o d u l e l o a d e r ” ) ;

}

p r i v a t e wrapper (){
f i n i s h e d =new O b j e c t ( ) ;
w r a p p e r l o a d m o d u l e ( ) ;

}

p u b l i c s t a t i c wrapper g e t I n s a n c e (){
i f ( i n s t a n c e == n u l l ) i n s t a n c e = new wrapper ( ) ;
r e t u r n i n s t a n c e ;

}

p u b l i c vo id e n d E x e c u t i o n (){
s y n c h r o n i z e d ( f i n i s h e d ){

f i n i s h e d . n o t i f y ( ) ;
}
th readsMap . remove ( c u r r e n t . name ) ;
c u r r e n t = n u l l ;

}

p u b l i c vo id suspend (){
s y n c h r o n i z e d ( f i n i s h e d ){

f i n i s h e d . n o t i f y ( ) ;
}
s y n c h r o n i z e d ( c u r r e n t . m o n i t o r ){

t r y{
c u r r e n t . m o n i t o r . w a i t ( ) ;
a t t a c h t o m e ( c u r r e n t . name , c u r r e n t ) ;

}
c a t c h ( Throwable t ){ t . p r i n t S t a c k T r a c e ( ) ;}}

}

p u b l i c vo id op (){
n e x t s t e p ( ) ;

}

p u b l i c vo id w a i t e v e n t ( i n t e v e n t ){
suspend ( ) ;

}

p u b l i c vo id n o t i f y e v e n t ( i n t e ){
}

p u b l i c vo id c a l l a F u n c t i o n ( i n t f ){
suspend ( ) ;

}

p u b l i c vo id d e c l a r e e v e n t ( i n t e ){
}

p u b l i c vo id c a l l ( S t r i n g s ){
t h i s . w r a p p e r c a l l m e t h o d e ( s ) ;

}

/ / METHODE TO BE CALLED FROM COMPONENTS
p u b l i c vo id c r e a t e n e w t h r e a d ( S t r i n g name , BasicComponent42 c p t ){

componentsMap . p u t ( name , c p t ) ;
th readsMap . p u t ( name , new wrappe rThread ( name , f a l s e , n u l l ) ) ;

}

p u b l i c vo id c r e a t e n e w f u n c t i o n ( S t r i n g name , BasicComponent42 c p t ){
th readsMap . p u t ( name , new wrappe rThread ( name , t r u e , n u l l ) ) ;
componentsMap . p u t ( name , c p t ) ;
n e x t s t e p ( name ) ;

}

p u b l i c vo id n e x t s t e p ( S t r i n g cptName){
c u r r e n t = ( wrappe rThread ) th readsMap . g e t ( cptName ) ;
s y n c h r o n i z e d ( f i n i s h e d ){

i f ( ! c u r r e n t . i s A l i v e ( ) ){
c u r r e n t . s t a r t ( ) ;

}
e l s e{

s y n c h r o n i z e d ( c u r r e n t . m o n i t o r ){
c u r r e n t . m o n i t o r . n o t i f y ( ) ;

}
}
t r y{ f i n i s h e d . w a i t ( ) ;} c a t c h ( I n t e r r u p t e d E x c e p t i o n e){}

}
}

p u b l i c c l a s s BasicComponent42{

}

p u b l i c c l a s s wrappe rThread e x t e n d s Thread {
p r i v a t e S t r i n g name ;
p r i v a t e S t r i n g m o n i t o r ;
p r i v a t e b o o l e a n f u n c t i o n ;
p r i v a t e i n t [ ] params ;
p r i v a t e b o o l e a n r u n n i n g = f a l s e ;

p u b l i c wrappe rThread ( S t r i n g threadName , b o o l e a n i s F u n c t i o n , i n t [ ] param ){
name = threadName ;
m o n i t o r = new S t r i n g ( name+” m o n i t o r ” ) ;
f u n c t i o n = i s F u n c t i o n ;
params = param ;

}

p u b l i c vo id run ( ) {
c a l l ( name ) ;
e n d E x e c u t i o n ( ) ;

}

}

}
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