
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Extending the Safety-Progress
Classification of Properties in a
Runtime Verification Context

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez,
Jean-Luc Richier

Verimag Research Report no TR-2009-5

May 22, 2009

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Extending the Safety-Progress Classification of Properties in a
Runtime Verification Context

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

May 22, 2009

Abstract

This paper revisit and extends results about the Safety-Progress classification of properties in-
troduced by Chang, Manna, and Pnueli [1]. Our work is motivated by runtime verification,
as so we believe that this general classification is a good basis for specifying properties. In
runtime verification, a major and distinguishing feature is the interest of finite execution se-
quences and their validation of properties. Indeed, finite execution sequences are often abstract
representation of incremental chunks of a program execution. These executions sequences are
fed to a monitor, i.e. a mechanism designed to state appraisal wrt. a desired property under
scrutiny.
We show in this paper, that the four views originally dedicated to infinitary properties can be
uniformly extended to finitary ones.

Keywords: r-property, safety-progress, hierarchy, runtime verification, Streett, DFA, safety, guarantee,
response, persistence

Notes:

How to cite this report:

@techreport { ,
title = { Extending the Safety-Progress Classification of Properties in a Runtime Verification
Context},
authors = { Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier},
institution = { Verimag Research Report },
number = {TR-2009-5},
year = { 2009},
note = { }
}

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

Contents
1 Introduction 1

2 Preliminaries and notations 2
2.1 Sequences and execution sequences . 2
2.2 Properties . 2

3 Informal description 3

4 The language-theoretic view of r-properties 4
4.1 Building finitary and infinitary properties from finitary ones 4
4.2 About r-properties . 6

5 The automata view of r-properties 6
5.1 Synthesis of Streett automata from DFAs . 8

6 Conclusion 10

1 Introduction
This paper extends results about the safety-progress [1, 2, 3] classification of properties. In the original
papers this classification introduced a hierarchy between properties defined as infinite execution sequences.
We extend the classification to deal with finite-length execution sequences. As so we revisit this classifica-
tion for r-properties.

The safety-progress classification: initial version The safety-progress classification is an alternative
to the more classical safety-liveness [4, 5] dichotomy. Unlike this later, the safety-progress classification
is a hierarchy and not a partition. It provides a finer-grain classification, and the properties of each class
are characterized according to four views [1]: a language-theoretic view, a topological view, a temporal
logic view, and an automata-based view. The language-theoretic view describes the hierarchy according
to the way each class can be constructed from sets of finite sequences. The topological view characterizes
the classes as sets with topological properties. The third vision links the classes to their expression in
temporal logic. At last, the automata-view gives syntactic characterization on the automata recognizing the
properties of a given class.

Later [6], this hierarchy was characterized in terms of Büchi, co-Büchi, and Streett acceptance condi-
tions. A second characterization consisted in an Until-Release hierarchy: a logical (LTL) view in which
properties are classified according to the alternation depth of the until and release operators.

Contribution In this paper we revisit the safety-progress classification in a runtime verification fashion.
The usual words are here execution sequences produced by an underlying program. And the properties are
used for specification. In order to deal with finite sequences, we will introduce r-properties able to describe
finitary and infinitary properties. Furthermore, we will consider here only the language-theoretic and the
automata views dedicated to r-properties.

The contributions of this report are as follows:

• Language-theoretic view: we give a formal definitions of all operators of the language-theoretic
view introduced in [2]. Moreover, we introduce two operators for response and persistence finite
sequences. Those definitions are consistent with their infinitary corresponding ones.

• Automata view: we introduce a finite-sequence acceptance criterion for Streett automata. This crite-
rion is compatible with operators producing finite sequences in the language-theoretic view. More-
over, we introduce a transformation over Deterministic Finite-state Automata [7] so as to produce
Streett automata. Similarly to the operators in the language-theoretic view those transformations are
specific to each class of properties.

Verimag Research Report no TR-2009-5 1/10

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

Paper Organization The remainder of this report is organized as follows. The Sect. 2 introduces some
preliminaries and notations. In Sect. 3 we introduce the hierarchy informally. The language-theoretic view
is studied in Sect. 4. In Sect. 5 we deal with the automata view of the hierarchy. Some concluding remarks
are given in Sect. 6.

2 Preliminaries and notations
This section introduces some preliminary notations, namely the notions of program execution sequences
and program properties.

2.1 Sequences and execution sequences
Sequences and execution sequences. Considering a finite set of elements E, we define notations about
sequences of elements belonging to E. A sequence σ containing elements of E is formally defined by a
total function σ : I → E where I is either the interval [0, n − 1] for some n ∈ N, or N itself (the set
of natural numbers). We denote by E∗ the set of finite sequences over E (partial function from N), by
E+ the set of non-empty finite sequences over E, and by Eω the set of infinite sequences over E. The
set E∞ = E∗ ∪ Eω is the set of all sequences over E. The empty sequence of E is denoted by εE or
ε when clear from context. The length (number of elements) of a finite sequence σ is noted |σ| and the
(i + 1)-th element of σ is denoted by σi. For two sequences σ ∈ E∗, σ′ ∈ E∞, we denote by σ · σ′ the
concatenation of σ and σ′, and by σ ≺ σ′ the fact that σ is a strict prefix of σ′ (resp. σ′ is a strict suffix
of σ). The sequence σ is said to be a strict prefix of σ′ ∈ Σ∞ when ∀i ∈ {0, . . . , |σ| − 1} · σi = σ′i and
|σ| < |σ′|. When σ′ ∈ E∗, we note σ � σ′

def= σ ≺ σ′ ∨ σ = σ′. For σ ∈ E∞ and n ∈ N, σ···n is the
sub-sequence containing the n + 1 first elements of σ. Also, when |σ| > n, the subsequence σn··· is the
sequence containing all elements of σ but the n first ones. For i, j ∈ N with i ≤ j, we denote by σi···j the
subsequence of σ containing the (i+ 1)-th to the (j + 1)-th (included) elements.

A program P is considered as a generator of execution sequences. We are interested in a restricted
set of operations the program can perform. These operations influence the truth value of properties the
program is supposed to fulfill. Such execution sequences can be made of access events on a secure system
to its ressources, or kernel operations on an operating system. In a software context, these events may be
abstractions of relevant instructions such as variable modifications or procedure calls. We abstract these
operations by a finite set of events, namely a vocabulary Σ. We denote by PΣ a program for which the
vocabulary is Σ. The set of execution sequences of PΣ is denoted by Exec(PΣ) ⊆ Σ∞. This set is prefix-
closed, that is ∀σ ∈ Exec(PΣ), σ′ ∈ Σ∗ · σ′ � σ ⇒ σ′ ∈ Exec(PΣ). In the remainder of this article, we
consider a vocabulary Σ.

2.2 Properties
Properties as sets of execution sequences. A finitary property (resp. an infinitary property, a property)
is a subset of execution sequences of Σ∗ (resp. Σω, Σ∞). Considering a given finite (resp. infinite,
finite or infinite) execution sequence σ and a property φ (resp. ϕ, θ), when σ ∈ φ, noted φ(σ) (resp.
σ ∈ ϕ, noted ϕ(σ), σ ∈ θ, noted θ(σ)), we say that σ satisfies φ (resp. ϕ, θ). A consequence of
this definition is that properties we will consider are restricted to single execution sequences, excluding
specific properties defined on powersets of execution sequences (like fairness, for instance). Moreover,
for a finitary property φ and an execution sequence σ ∈ Σ∞, we denote by Pref≺(φ, σ) the set of all
(strict) prefixes of σ satisfying φ, i.e. Pref≺(φ, σ) = {σ′ ∈ φ | σ′ ≺ σ}. The longest prefix of σ
satisfying φ (noted Max(Pref≺(φ, σ))) is the maximal element regarding ≺ if Pref≺(φ, σ) 6= ∅. Given
a property φ ⊆ Σ∗ and an execution sequence σ ∈ Σ∗, a straightforward property of the set Pref ≺(φ, σ)
is that ∀a ∈ Σ, ∀σ′ ∈ Σ∗`

σ′ ≺ σ ∧ σ′ = Max (Pref ≺(φ, σ)) ∧ ¬φ(σ) ⇒ σ′ = Max (Pref ≺(φ, σ · a))
´

∀a ∈ Σ,¬φ(σ) ⇒ Max (Pref ≺(φ, σ · a)) = Max (Pref ≺(φ, σ)).
Runtime verificationa mechanisms run with the underlying program under scrutiny, it should be able to

decide about the truth value of a property regarding the current produced execution sequence. The principle
of analyzing execution sequence at runtime restricts the kind of property our monitors can analyze. Indeed,

2/10 Verimag Research Report no TR-2009-5

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

the analysis of runtime execution monitor is, by definition, restricted to one execution sequence. Such a
fact implies that the security automaton cannot decide about property involving several executions of the
monitored program. An example of such a kind of property is for instance a fairness property.

Runtime properties. In this paper we are interested in runtime properties. As stated in the introduction,
we consider finite and infinite execution sequences (that a program may produce), runtime verification
properties should characterize satisfaction for both kinds of sequence in a uniform way. As so, We introduce
r-properties (runtime properties) as pairs (φ, ϕ) ⊆ Σ∗ × Σω. Intuitively, the finitary property φ represents
the desirable property that finite execution sequences should fulfill, whereas the infinitary property ϕ is
the expected property for infinite execution sequences. The definition of negation of a r-property follows
from definition of negation for finitary and infinitary properties. For a r-property (φ, ϕ), we define (φ, ϕ)
as (φ, ϕ). Boolean combinations of r-properties are defined in a natural way. For ∗ ∈ {∪,∩}, (φ1, ϕ1) ∗
(φ2, ϕ2) = (φ1 ∗ φ2, ϕ1 ∗ ϕ2). Considering an execution sequence σ ∈ Exec(PΣ), we say that σ satisfies
(φ, ϕ) when σ ∈ Σ∗∧φ(σ)∨σ ∈ Σω ∧ϕ(σ). For a r-property Π = (φ, ϕ), we note Π(σ) when σ satisfies
(φ, ϕ).

3 Informal description
The safety-progress classification is made of four basic classes over execution sequences. Informally, the
classes were defined as follows:

• safety properties are the properties for which whenever a sequence satisfies a property, all its prefixes
satisfy this property.

• guarantee properties are the properties for which whenever a sequence satisfies a property, there are
some prefixes (at least one) satisfying this property.

• response properties are the properties for which whenever a sequence satisfies a property, an infinite
number of its prefixes satisfy this property.

• persistence properties are the properties for which whenever a sequence satisfies a property, all its
prefixes continuously satisfy this property from a certain point.

Furthermore, two extra classes can be defined as (finite) boolean combinations (union and intersection)
of basic classes.

• The obligation class can be defined as the class obtained by boolean combination of safety and
guarantee properties.

• The reactivity class can be defined as the class obtained by boolean combination of response and
persistence properties. This is the more general class containing all linear temporal properties [1].

The following example introduces informally the aforementioned properties. In Example 4.2, we for-
malize those properties into r-properties.

EXAMPLE 3.1 Let consider an operating system where a given operation op is allowed only when an
authorization auth has been granted before. The operator is also endowed with three pimitives related
to authentication: r auth (requesting authentication), g auth (granting authentication), d auth (denying
authentication). Then,

• the property Π1 stating that “each occurence of op should be preceded by a distinct occurence of
g auth” is a safety property;

• the property Π2 stating that “In this session, the user should perform an authorization request r auth
which should be eventually followed by a grant (g auth) or a deny (d auth)” is a guarantee property;

• the property Π3 stating that “the system should run forever, unless a d auth is issued and then the user
should be disconnected (disco) and the system should terminate (end)” is an obligation property;

Verimag Research Report no TR-2009-5 3/10

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

• the property Π4 stating that “each occurrence of r auth should be first written in a log file and
then answered either with a g auth or a d auth without any occurrence of op in the meantime” is a
response property;

• the property Π5 stating that “after a d auth, a (forbidden) use of operation op should imply that at
some point any future call to r auth will always result in a d auth answer” is a persistence property.

4 The language-theoretic view of r-properties
In the language-theoretic view of the hierarchy, r-properties are pairs of sets of execution sequence.

4.1 Building finitary and infinitary properties from finitary ones
The language-theoretic view of the safety-progress classification is based on the construction of infinitary-
properties and finitary-properties from finitary ones. It relies on the use of four operators A,E,R, P
(building infinitary properties) and four operators Af , Ef , Rf , Pf (building finitary properties) applying to
finitary properties. In the original classification of Mana and Pnueli, operators A,E,R, P,Af , Ef were
introduced. In this paper, we add operators Rf and Pf and give a formal definition of all operators.

Let ψ a finitary property over Σ.

• A(ψ) consists of all infinite words σ such that all prefixes of σ belong to ψ.

Formally A(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ψ(σ′)}.

• E(ψ) consists of all infinite words σ such that some prefixes of σ belong to ψ.

Formally E(ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ ψ(σ′)}.

• R(ψ) consists of all infinite words σ such that infinitely many prefixes of σ belong to ψ.

Formally R(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗,∃σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ψ(σ′′)}.

• P (ψ) consists of all infinite words σ such that all but finitely many prefixes of σ belong to ψ.

Formally P (ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗,∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ⇒ ψ(σ′′)}.

Operators Af , Ef , Rf , Pf build finitary properties from finitary ones.

• Af (ψ) consists of all finite words σ such that all prefixes of σ belong to ψ.

Formally Af (ψ) = {σ ∈ Σ∗ | ∀σ′ ∈ Σ∗, σ′ � σ ⇒ ψ(σ′)}. One can observe that Af (ψ) = ψ if ψ
is prefix-closed and ∅ else.

• Ef (ψ) consists of all finite words σ such that some prefixes of σ belong to ψ.

Formally Ef (ψ) = {σ ∈ Σ∗ | ∃σ′ ∈ Σ∗, σ′ � σ ∧ ψ(σ′)}. One can observe that Ef (ψ) = ψ · Σ∗.

• Rf (ψ) consists of all finite words σ such that ψ(σ) and there exists a continuation σ′ of σ also
belonging to ψ.

Formally Rf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∃σ′ ∈ Σ∗ · σ ≺ σ′ ∧ ψ(σ′)}.

• Pf (ψ) consists of all finite words σ belonging to ψ s.t. there exists an extension σ′ of σ s.t. each
extension σ′′ of σ′ belongs to ψ.

Formally Pf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∃σ′ ∈ Σ∗ · σ � σ′ ∧ ∀σ′′, σ′ � σ′′ ⇒ ψ(σ′′)}.

Based on these operators, each class can be seen from the language-theoretic view.

DEFINITION 4.1 A r-property Π = (φ, ϕ) is defined to be

• A safety r-property if Π = (Af (ψ), A(ψ)) for some finitary property (ψ). That is, all prefixes of a
finite word σ ∈ φ or of an infinite word σ ∈ ϕ belong to ψ.

4/10 Verimag Research Report no TR-2009-5

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

• A guarantee r-property if Π = (Ef (ψ), E(ψ)) for some finitary property ψ. That is, each finite word
σ ∈ φ or infinite word σ ∈ ϕ is guaranteed to have some prefixes (at least one) belonging to ψ.

• A response r-property if Π = (Rf (ψ), R(ψ)) for some finitary property ψ. That is, each infinite
word σ ∈ ϕ recurrently has (infinitely many) prefixes belonging to ψ.

• A persistence r-property if Π = (Pf (ψ), P (ψ)) for some finitary property ψ. That is, each infinite
word σ ∈ ϕ persistently has (continuously from a certain point on) prefixes belonging to ψ.

In all cases, we say that Π is built over ψ. Furthermore, obligation (resp. reactivity) r-properties are
obtained by boolean combinations of safety and guarantee (resp. response and persistence) r-properties.

Given a set of events Σ, we note Safety(Σ) (resp. Guarantee(Σ), Obligation(Σ), Response(Σ),
Persistence(Σ)) the set of safety (resp. guarantee, obligation, response, persistence) r-properties defined
over Σ.

We expose some straightforward consequences of definitions of safety and guarantee r-properties.

PROPERTY 4.1 (CLOSURE OF r-PROPERTIES) Considering an r-property Π = (φ, ϕ) defined over an
alphabet Σ built from a finitary property ψ, the following facts hold:

• If Π is a safety r-property, all prefixes of a sequence belonging to Π also belong to Π. That is,
∀σ ∈ Σ∞,Π(σ) ⇒ ∀σ′ ≺ σ,Π(σ′).

Indeed, we have either φ(σ) or ϕ(σ), i.e. all prefixes σ′ of σ belong to ψ. Necessarily, all prefixes σ′′

of σ′ also belong to ψ, that is ψ(σ′′). By definition, that means σ′ ∈ Af (ψ), i.e. φ(σ′) and Π(σ′).

• If Π is a guarantee r-property, all continuations of a finite sequence belonging to Π also belong to
Π. That is, ∀σ ∈ Σ∗,Π(σ) ⇒ ∀σ′ ∈ Σ∞,Π(σ · σ′).
Indeed, Π(σ) implies that σ has at least one prefix σ0 � σ belonging to ψ: σ ∈ Ef (ψ). Then, any
continuation of σ built using any finite or infinite sequence σ′ has at least the same prefix belonging
to ψ. If σ′ ∈ Σ∗, we have σ0 � σ � σ ·σ′ and σ ·σ′ ∈ Ef (ψ). If σ′ ∈ Σω, we have σ0 � σ ≺ σ ·σ′
and σ · σ′ ∈ E(ψ).

We illustrate in the following example the construction of infinitary properties from finitary ones for
each of the four operators (finite and infinite).

EXAMPLE 4.1 (CONSTRUCTION OF INFINITARY AND FINITARY PROPERTIES FROM FINITARY ONES) We
use regular-expressions to define properties.

• For the finitary property ψ = ε+a+ ·b∗, Af (ψ) = ε+a+ ·b∗, A(ψ) = aω+a+ ·bω, (Af (ψ), A(ψ))
is a safety r-property. This language contains all the words that have either only occurrences of a or
a finite number of occurrences of a (at least one) followed only by occurrences of b.

• For the finitary property ψ = a+ · b∗, Ef (ψ) = a+ · b∗ · Σ∗, E(ψ) = a+ · b∗ · Σω, (Ef (ψ), E(ψ))
is a guarantee r-property.

• For the finitary property ψ = Σ∗ · b, Rf (ψ) = (Σ∗ · b)+, R(ψ) = (Σ∗ · b)ω, (Rf (ψ), R(ψ)) is a
response r-property. This language contains all the words that have infinitely many occurrences of
b.

• For the finitary property ψ = Σ∗ · b, Pf (ψ) = Σ∗ · b+, P (ψ) = Σ∗ · bω, (Pf (ψ), P (ψ)) is a
persistence r-property. This language contains all the words that, from a certain point on, contain
only occurrences of b.

EXAMPLE 4.2 (r-PROPERTIES) Properties of Example 3.1 can be formalized as r-properties as follows.

• the property Π1 can be expressed as a safety r-property built over ψ1 = (g auth+ · op)∗ · g auth∗

with Σ = {g auth, op}

Verimag Research Report no TR-2009-5 5/10

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

• the property Π2 can be expressed as a guarantee r-property built over ψ2 = (Σ\{r auth})∗ ·r auth·
(Σ \ {g auth, d auth})∗ · (g auth+ d auth) with Σ = {g auth, d auth, r auth}

• the property Π3 can be expressed as an obligation r-property built over ψ3 = (Σ \ {d auth, end})∗,
and ψ′3 = (Σ \ {d auth, end})∗ · d auth · (Σ \ {disco})∗ · disco with Σ = {end, d auth, disco};
then Π3 is (Af (ψ3), A(ψ3)) ∨ (Ef (ψ′3), E(ψ′3)).

• the property Π4 can be expressed as a response r-property built over ψ4 = r auth · log+ · (d auth+
g auth) with Σ = {g auth, d auth, op, log}

• the property Π5 can be expressed as a persistence r-property built overψ5 = (d auth·g auth)∗.d auth·
(Σ\{r auth, d auth})∗·op·

(
g auth∗+(r auth·(Σ\{d auth})+)

)∗
with Σ = {g auth, d auth, op}

4.2 About r-properties
The following lemma (inspired from [1]) provides a decomposition of each obligation r-properties in a
normal form.

LEMMA 4.1 Any obligation r-property can be represented as the intersection
n⋂
i=1

(Safetyi ∪Guaranteei)

for some n > 0, where Safetyi and Guaranteei are respectively safety and guarantee r-properties. We
refer to this presentation as the conjunctive normal form of obligation r-properties.

When an r-property Π is expressed as ∩ki=1(Safetyi ∪ Guaranteei), Π is said to be a k-obligation
r-property. The set of k-obligation r-properties (k ≥ 1) is denoted Obligationk. Similar definitions and
properties hold for reactivity r-properties which are expressed by combination of response and persistence
r-properties.

5 The automata view of r-properties
For each class of the safety-progress classification it is possible to syntactically characterize a recognizing
automaton. We define a variant of deterministic and complete Streett automata (introduced in [8] and used
in [1]) for property recognition. These automata process events and decide properties of interest. We
add to original Streett automata a finite-sequence recognizing criterion in such a way that these automata
uniformly recognize r-properties.

DEFINITION 5.1 (STREETT m-AUTOMATON) A deterministic Streettm-automaton is a tuple (Q, qinit,Σ,−→
, {(R1, P1), . . . , (Rm, Pm)}) defined relatively to a set of events Σ. The setQ is the set of automaton states,
qinit ∈ Q is the initial state. The function −→: Q × Σ → Q is the transition function. In the following,
for q, q′ ∈ Q, e ∈ Σ we abbreviate −→ (q, e) = q′ by q e−→ q′. The set {(R1, P1), . . . , (Rm, Pm)} is the
set of accepting pairs, for all i ≤ m, Ri ⊆ Q are the sets of recurrent states, and Pi ⊆ Q are the sets of
persistent states.

We refer to an automaton with m accepting pairs as a m-automaton. When m = 1, a 1-automaton is
also called a plain-automaton, and we refer toR1 andP1 asR andP . In the followingA = (QA, qinit

A,Σ,−→A
, {(R1, P1), . . . , (Rm, Pm)}) designates a Streett m-automaton.

For σ ∈ Σ∞, the run of σ on A is the sequence of states involved by the execution of σ on A. It is
formally defined as run(σ,A) = q0 · q1 · · · where ∀i · (qi ∈ QA ∧ qi

σi−→A qi+1) ∧ q0 = qinit
A. The

trace resulting in the execution of σ on A is the unique sequence (finite or not) of tuples (q0, σ0, q1) ·
(q1, σ1, q2) · · · where run(σ,A) = q0 · q1 · · · .

Also we consider the notion of infinite visitation of an execution sequence σ ∈ Σω on a Streett automa-
tonA, denoted vinf (σ,A), as the set of states appearing infinitely often in run(σ,A). It is formally defined
as follows: vinf(σ,A) = {q ∈ QA | ∀n ∈ N,∃m ∈ N ·m > n ∧ q = qm with run(σ,A) = q0 · q1 · · · }.

For a Streett automaton, the notion of acceptance condition is defined using the accepting pairs.

6/10 Verimag Research Report no TR-2009-5

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

12
op

Σ

3

g auth

AΠ1op

Σ \ {op}Σ \ {g auth, op}

Figure 1: Recognizing automaton for the safety r-property Π1

2 3

{g auth, d auth}

Σ \ {g auth, d auth}
Σ

AΠ21
r auth

Σ \ {r auth}

Figure 2: A guarantee-automaton for the guarantee r-property Π2

DEFINITION 5.2 (ACCEPTANCE CONDITION (INFINITE SEQUENCES)) For σ ∈ Σω, we say that A ac-
cepts σ if ∀i ∈ {1, . . . ,m} · vinf (σ,A) ∩Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi.

To deal with r-properties we need to define also an acceptance criterion for finite sequences.

DEFINITION 5.3 (ACCEPTANCE CONDITION (FINITE SEQUENCES)) For a finite-length execution sequence
σ ∈ Σ∗ such that |σ| = n, we say that the m-automaton A accepts σ if (∃q0, . . . , qn ∈ QA · run(σ,A) =
q0 · · · qn ∧ q0 = qinit

A and ∀i ∈ {1, . . . ,m} · qn ∈ Pi ∪Ri).

The hierarchy of automata. By setting syntactic restrictions on a Streett automaton, we modify the kind
of properties recognized by such an automaton.

• A safety automaton is a plain automaton such that R = ∅ and there is no transition from a state
q ∈ P to a state q′ ∈ P .

• A guarantee automaton is a plain automaton such that P = ∅ and there is no transition from a state
q ∈ R to a state q′ ∈ R.

• An m-obligation automaton is an m-automaton such that for each i in {1, . . . ,m}:

– there is no transition from q ∈ Pi to q′ ∈ Pi,
– there is no transition from q ∈ Ri to q′ ∈ Ri,

• A response automaton is a plain automaton such that P = ∅,

• A persistence automaton is a plain automaton such that R = ∅,

• A reactivity automaton is any unrestricted automaton.

Automata and properties. We say that a Streett automaton AΠ defines a r-property (φ, ϕ) ∈ Σ∗ × Σω

if and only if the set of finite (resp. infinite) execution sequences accepted by AΠ is equal to φ (resp. ϕ).
Conversely, a property (φ, ϕ) ∈ Σ∗ × Σω is said to be specifiable by an automaton AΠ if the set of finite
(resp. infinite) execution sequences accepted by the automaton AΠ is φ (resp. ϕ).

1 2 3
d auth disco

Σ \ {d auth, end} Σ \ {disco}
Σ

AΠ3

4 Σend

Figure 3: A 1-obligation-automaton for the obligation r-property Π3

Verimag Research Report no TR-2009-5 7/10

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

1 2 3

4

{d auth, g auth}

req auth log

Σ \ {log}

{op, req auth}

log

Σ

Figure 4: A response-automaton for the response r-property Π4

1 2 3 4
d auth

op r auth

Σ \ {r auth, d auth} Σ \ {r auth} Σ \ {d auth}

d auth

g auth

Σ \ {d auth}

Figure 5: A persistence-automaton for the persistence r-property Π5

EXAMPLE 5.1 (SPECIFYING r-PROPERTIES BY STREETT AUTOMATA) The r-properties previously intro-
duced in example 3.1 can be specified by Streett automata.

• Property Π1 is specified by automaton AΠ1 depicted on Fig. 1. Its set of states is {1, 2, 3}, the initial
state is 1, and we have R = ∅ and P = {1, 3}.

• Property Π2 is specified by automaton AΠ2 depicted on Fig. 2 (up side). Its set of states is {1, 2, 3},
the initial state is 1, and we have P = ∅ and R = {3}.

• Property Π3 is specified by automaton AΠ3 depicted on Fig. 3. Its set of states is {1, 2, 3, 4}, the
initial state is 1, and we have P = {1} and R = {3}.

• Property Π4 is specified by automaton AΠ4 depicted on Fig. 4. Its set of states is {1, 2, 3, 4}, the
initial state is 1, and we have P = ∅ and R = {1}.

• Property Π5 is specified by automaton AΠ5 depicted on Fig. 5. Its set of states is {1, 2, 3, 4}, the
initial state is 1, and we have P = {3} and R = ∅.

Properties of automata. Now we give a property of Streett automata related to their accepting pairs.
Indeed given a Streett m-obligation automaton (with m accepting pairs), it is possible to characterize the
language accepted by the automaton resulting in “forgetting” some accepting pairs of the initial automaton.
This is formalized as follows.

LEMMA 5.1 (FORGETTING ACCEPTING PAIRS FOR OBLIGATION PROPERTIES) Given am-automatonAΠ =
(Q, qinit,Σ,−→,{(R1, P1), . . . , (Rm, Pm)}) recognizing a r-property Π. Following [1], Π can be ex-
pressed as

⋂m
i=1 Πi where the Πi are obligation r-properties.

Given a subset X ⊆ {1, . . . ,m}, the automaton AΠ/X = (Q, qinit,Σ,−→,{(Ri, Pi) | i ∈ X}) recognizes
the r-property

⋂
i∈X Πi.

Proof. For infinite execution sequences, this proof has been done in [1]. For finite execution sequences,
the proof is a straightforward adaptation. �

5.1 Synthesis of Streett automata from DFAs
A Deterministic Finite-state Automaton (DFA) [7], is defined relatively to an alphabet Σ, and is formally
defined as a tuple (Q, qinit ,−→, F) where Q is a finite set of states, qinit ∈ Q is the initial state, →:
Q× Σ → Q is the transition function, and F ⊆ Q is the set of accepting states.

In the following ψ = (Qψ, qinit
ψ,−→ψ, F

ψ) designates a DFA recognizing a finitary property ψ.

8/10 Verimag Research Report no TR-2009-5

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

DEFINITION 5.4 (DFA TO STREETT SAFETY AUTOMATA) Given a DFA Aψ recognizing a finitary prop-
erty ψ ⊆ Σ∗. We define the transformation DFA2StreettSafety(Aψ) = AΠ = (QAΠ , qinit

AΠ ,−→AΠ

, {(∅, P)}) such that:

• QΠ = QAψ ∩ F ∪ {sink}, where sink /∈ QAψ ,

• qinit
AΠ = qinit

Aψ if qinit
Aψ ∈ FAψ , and sink else,

• →Π is defined as the smallest relation verifying:

– q
a−→AΠ q′ if q ∈ F ∧ q′ ∈ F ∧ q

a−→Aψ q′ (TSAF1)

– q
a−→AΠ sink if q′ /∈ F ∧ q

a−→Aψ q′ (TSAF2)

• P = F , (m = 1)

One can notice that the resulting automaton is indeed a Streett safety automaton as R = ∅ and there is
no transition from P -states to P -states.

DEFINITION 5.5 (DFA TO STREETT GUARANTEE AUTOMATA) Given a DFA Aψ recognizing a finitary
propertyψ ⊆ Σ∗. We define the transformation DFA2StreettGuarantee(Aψ) = AΠ = (QAΠ , qinit

AΠ ,−→AΠ

, {(R, ∅)}) such that:

• QΠ is the minimal subset of QAψ of attainable states with −→AΠ from the initial state qinit
AΠ

• qinit
AΠ = qinit

Aψ ,

• →Π is defined as the smallest relation verifying:

– q
a−→AΠ q if ∃q′ ∈ QAψ · q a−→Aψ q′ ∧ q ∈ F (TGUAR1)

– q
a−→AΠ q′ if q /∈ F ∧ q

a−→Aψ q′ (TGUAR2)

• R = F , (m = 1)

One can notice that the resulting automaton is indeed a Streett guarantee automaton as P = ∅ and there
is no transition from R to R. This automaton is not minimal for R-states, these states can be merged.

DEFINITION 5.6 (DFA TO STREETT RESPONSE AUTOMATA) Given a DFAAψ recognizing a finitary prop-
erty ψ ⊆ Σ∗. We define the transformation DFA2StreettResponse(Aψ) = AΠ = (QAΠ , qinit

AΠ ,−→AΠ

, {(R, ∅)}) such that:

• QΠ = QAψ ,

• qinit
AΠ = qinit

Aψ ,

• →Π is defined as →Aψ ,

• R = {q ∈ QΠ ∩ F | ReachAΠ(q) ∩ F 6= ∅}, (m = 1)

DEFINITION 5.7 (DFA TO STREETT PERSISTENCE AUTOMATA) Given a DFA Aψ recognizing a finitary
propertyψ ⊆ Σ∗. We define the transformation DFA2StreettPersistence(Aψ) = AΠ = (QAΠ , qinit

AΠ ,−→AΠ

, {(∅, P)}) such that:

• QΠ = QAψ ,

• qinit
AΠ = qinit

Aψ ,

• →Π is defined as →Aψ ,

• P = {q ∈ QΠ ∩ F | ∃q0, . . . , qn · ∃a0, . . . , an−1 · q0 = q ∧ ∃i < n · qn = qi ∧ ∀i ∈ {1, . . . , n} · qi ∈
F ∧ qi

ai−→Aψ qi+1}, (m = 1)

THEOREM 5.1 Given a property ψ, defining a regular language over Σ and recognized by a DFA Aψ ,
the safety (resp. guarantee, response, persistence) r-property (Xf (ψ), X(ψ)) where X ∈ {A,E,R, P}
is recognized by the Streett automaton obtained by the DFA to Streett transformation for safety (resp.
guarantee, response, persistence) properties.

Verimag Research Report no TR-2009-5 9/10

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

Safety

Progress

Obligation

Reactivity

Response Persistence

GuaranteeSafety

T
i[Responsei ∪ Persistencei]

T
i[Safetyi ∪Guaranteei]

(Af (ψ), A(ψ)) (Ef (ψ), E(ψ))
D2S safety(ψ)

(Rf (ψ), R(ψ)) (Pf (ψ), P (ψ))

D2S guarantee(ψ)

D2S response(ψ) D2S persistence(ψ)

Figure 6: Hierarchal representation of the Safety-Progress classification of r-properties

6 Conclusion
We have extended the language-theoretic and automata views of the Safety-Progress classification in order
to deal with finite-lenght sequences. These extension are consistent wrt. the considered views.

In Fig. 6 is depicted the hierarchal representation of the Safety-Progress classification of r-properties.

References
[1] Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. Technical report, Stanford

University, Dept. of Computer Science (1992) (document), 1, 1, 3, 4.2, 5, 5.1, 5

[2] Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In: Automata,
Languages and Programming. (1992) 474–486 1, 1

[3] Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989). In: PODC ’90:
Proceedings of the ninth annual ACM symposium on Principles of distributed computing, New York,
NY, USA, ACM (1990) 377–410 1

[4] Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3 (1977)
125–143 1

[5] Alpern, B., Schneider, F.B.: Defining liveness. Technical report, Cornell University, Ithaca, NY, USA
(1984) 1

[6] Cerna, I., Pelanek, R.: Relating the hierarchy of temporal properties to model checking. In: Pro-
ceedings of Mathematical Foundations of Computer Science (MFCS 2003), Springer-Verlag (2003)
318–327 1

[7] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, Massachusetts (1979) 1, 5.1

[8] Streett, R.S.: Propositional dynamic logic of looping and converse. In: STOC ’81: Proceedings of
the thirteenth annual ACM symposium on Theory of computing, New York, NY, USA, ACM (1981)
375–383 5

10/10 Verimag Research Report no TR-2009-5

	Introduction
	Preliminaries and notations
	Sequences and execution sequences
	Properties

	Informal description
	The language-theoretic view of r-properties
	Building finitary and infinitary properties from finitary ones
	About r-properties

	The automata view of r-properties
	Synthesis of Streett automata from DFAs

	Conclusion

