
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Automatic Verification of Integer Array
Programs

Marius Bozga, Peter Habermehl, Radu Iosif, Filip Konečný,
Toḿaš Vojnar

Report no TR-2009-2

February 17, 2009

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Automatic Verification of Integer Array Programs
Marius Bozga, Peter Habermehl, Radu Iosif, Filip Konečný, Toḿaš Vojnar

VERIMAG, CNRS, 2 av. de Vignate, 38610 Gières, France,{bozga,iosif}@imag.fr
LIAFA, University Paris 7, Case 7014, 75205 Paris 13, France, haberm@liafa.jussieu.fr

FIT BUT, Božetěchova 2, 61266, Brno, Czech Republic,{ikonecny,vojnar}@fit.vutbr.cz

February 17, 2009

Abstract

We provide a verification technique for a class of programs working on integer ar-
rays of finite, but not a priori bounded length. We use the logic of integer arrays
SIL [12] to specify pre- and post-conditions of programs and their parts. Effects
of non-looping parts of code are computed syntactically on the level ofSIL . Loop
pre-conditions derived during the computation inSIL are converted into counter au-
tomata (CA). Loops are automatically translated—purely onthe syntactical level—
to transducers. Pre-condition CA and transducers are composed, and the composi-
tion over-approximated by flat automata with difference bound constraints, which
are next converted back intoSIL formulae, thus inferring post-conditions of the
loops. Finally, validity of post-conditions specified by the user inSIL may be
checked as entailment is decidable forSIL .

Keywords: programs with integer arrays, formal verification, flat counter automata, logic of
integer arrays

Reviewers: –

Notes: Version: 1.

How to cite this report:

@techreport{BHIKV09-TR,
title = {Automatic Verification of Integer Array Programs},
authors ={Marius Bozga, Peter Habermehl, Radu Iosif, Filip Konečný, Tomáš Vojnar},
institution ={Verimag Technical Report},
number ={TR-2009-2},
year ={2009},
note ={Version: 1}
}

1 Introduction

Arrays are an important data structure in all common programming languages. Automatic ver-
ification of programs using arrays is a difficult task since they are of a finite, but often not a
priori fixed length, and, moreover, their contents may be unbounded too. Nevertheless, various
approaches for automatic verification of programs with arrays have recently been proposed.

In this paper, we consider programs over integer arrays withassignments, conditional state-
ments, andnon-nestedwhile loops. Our verification technique is based on a combination of the
logic of integer arraysSIL [12], used for expressing pre-/post-conditions of programs and their
parts, andcounter automata(CA) andtransducers, into which we translate bothSIL formulae
and program loops in order to be able to compute the effect of loops and to be able to check
entailment.

SIL (Single Index Logic) allows one to describe properties overarrays of integers and scalar
variables. SIL uses difference bound constraints to compare array elements situated within a
window of a constant size. For instance, the formula(∀i.0≤ i ≤ n1−1→ b[i] ≥ 0) ∧ (∀i.0≤
i≤ n2−1→ c[i] < 0) describes a post-condition of a program partitioning an arraya into an array
b containing its positive elements and an arrayc containing its negative elements.SIL formulae
are interpreted over programstatesassigning integers to scalar variables and finite sequencesof
integers to array variables. As already proved in [12], the set of models of an∃∗∀∗-SIL formula
corresponds naturally to the set of traces of aflat CA with loops labeled by difference bound
constraints. This entails decidability of the satisfiability problem for∃∗∀∗-SIL .

In this paper we take a novel perspective on the connection between∃∗∀∗-SIL and CA,
allowing to benefit from the advantages of both formalisms. Indeed, the logic is useful to express
human-readable pre-/post-conditions of programs and their parts, and to compute the post-image
of (non-looping) program statements symbolically. On the other hand, automata are suitable for
expressing the effects of program loops.

In particular, given an∃∗∀∗-SIL formula, we can easily compute the strongest postcondition
of an assignment or a conditional statement in the same fragment of the logic. Upon reaching
a program loop, we then translate the∃∗∀∗-SIL formula ϕ describing the set of states at the
beginning of the loop into a CAAϕ encoding its set of models. Next, to characterize the effect
of a loopL, we translate it—purely syntactically—into atransducer TL, i.e., a CA describing
the input/output relation on scalars and array elements implemented byL. The post-condition
of L is then obtained by composingTL with Aϕ. The result of the composition is a CABϕ,L

representing theexactset of states afterany numberof iterations ofL. Finally, we translateBϕ,L

back into∃∗∀∗-SIL , obtaining a post-condition ofL w.r.t. ϕ. However, due to the fact that counter
automata are more expressive than∃∗∀∗-SIL , this final step involves a (refinable)abstraction.
We first generate aflat CA that over-approximates the set of traces ofBϕ,L, and then translate the
flat CA back into∃∗∀∗-SIL .

Our approach thus generates automatically ahuman-readable post-conditionfor each pro-
gram loop, giving the end-user some insight of what the program is doing. Moreover, as these
post-conditions are expressed in∃∗∀∗-SIL , they can be used to check entailment of user-specified
post-conditions given in∀∗-SIL , which is possible due to the decidability of the satisfiability
problem for∃∗∀∗-SIL .

1

We validate our approach by successfully and fully algorithmically verifying several array-
manipulating programs, like splitting of an array into positive and negative elements, rotating an
array, inserting into a sorted array, etc. Some of the steps were done manually as we have not yet
implemented all of the techniques—a full implementation that will allow us to do more examples
is underway.

Related Work. The area of automated verification of programs with arrays and/or synthesizing
loop invariants for such programs has recently received a lot of attention. For instance, [7, 17, 1,
2, 15, 11] build on templates of universally quantified loop invariants and/or atomic predicates
provided by the user. The form of the sought invariants is then based on these templates. Inferring
the invariants is tackled by various approaches, such as predicate abstraction using predicates
with Skolem constants [7], constraint-based invariant synthesis [1, 2], or predicate abstraction
combined with interpolation-based refinement [15].

In [19], an interpolating saturation prover is used for deriving invariants from finite unfold-
ings of loops. In the very recent work of [16], loop invariants are synthesised by first deriving
scalar invariants, combining them with various predefined first-order array axioms, and finally
using a saturation prover for generating the loop invariants on arrays. This approach can generate
invariants using quantifier alternation. A disadvantage isthat, unlike our approach, the method
does not take into account loop preconditions, which are sometimes necessary to find reasonable
invariants. Also, the method does not generate invariants in a decidable logical fragment, in
general.

Another approach, based on abstract interpretation, was used in [10]. Here, arrays are suit-
ably partitioned, and summary properties of the array segments are tracked. The partitioning is
based on heuristics related to tracking the position of index variables. These heuristics, however,
sometimes fail, and human guidance is needed. The approach was recently improved in [14] by
using better partitioning heuristics and relational abstract domains to keep track of the relations
of the particular array slices.

Recently, several works have proposed decidable logics capable of expressing complex prop-
erties of arrays [5, 20, 8, 3, 9]. In general, these logics lack the capability of universally relating
two successive elements of arrays, which is allowed in our previous work [13, 12]. Moreover,
the logics of [5, 20, 8, 3, 9] do not give direct means of automatically dealing with program
loops, and hence, verifying programs with arrays. In this work, we provide a fully algorithmic
verification technique that uses the decidable logic of [12]. Unlike many other works, we do not
synthesize loop invariants, but directly post-conditionsof loops with respect to given precondi-
tions, using a two-way automata-logic connection that we establish.

2 Preliminaries

For a setA, we denote byA∗ the set of finite sequences of elements fromA. For such a sequence
σ∈A∗, we denote by|σ| its length, and byσi the element at positioni, for 0≤ i < |σ|. We denote
by N the set of natural numbers, and byZ the set of integers. For a functionf : A→ B and a set
S⊆ A, we denote byf↓S the restriction off to S. This notation is naturally lifted to sets, pairs or
sequences of functions.

2

Given a formulaϕ, we denote byFV(ϕ) the set of its free variables. If we denote a formula as
ϕ(x1, ...,xn), we assumeFV(ϕ)⊆ {x1, ...,xn}. Forϕ(x), we denote byϕ[t/x1, . . . ,xn] the formula
in which each free occurrence ofx1, . . . ,xn is replaced by a termt. Given a formulaϕ, we denote
by |= ϕ the fact thatϕ is logically valid, i.e., it holds in every structure corresponding to its
signature.

A difference bound constraint(DBC) is a conjunction of inequalities of the forms (1)x−y≤
c, (2) x≤ c, or (3)x≥ c, wherec∈ Z is a constant. We denote by⊤ (true) the empty DBC. It is
well-known that the negation of a DBC is equivalent to a finitedisjunction ofpairwise disjoint
DBCs since, e.g.,¬(x−y≤ c) ⇐⇒ y−x≤−c−1 and¬(x≤ c) ⇐⇒ x≥ c+1. In particular,
the negation of⊤ is the empty disjunction, denoted as⊥ (false).

A counter automaton(CA) is a tupleA = 〈X,Q, I ,−→,F〉, where:X is a finite set of counters

ranging overZ, Q is a finite set of control states,I ⊆Q is a set of initial states,−→ is a transition

relation given by a set of rulesq
ϕ(X,X′)
−−−−→ q′ whereϕ is an arithmetic formula relating current

values of countersX to their future valuesX′ = {x′ | x∈ X}, andF ⊆Q is a set of final states.
A configurationof a CA A is a pair〈q,ν〉 whereq∈ Q is a control state, andν : X→ Z is

a valuation of the counters inX. For a configurationc = 〈q,ν〉, we designate byval(c) = ν the
valuation of the counters inc. A configuration〈q′,ν′〉 is animmediate successorof 〈q,ν〉 if and

only if A has a transition ruleq
ϕ(X,X′)
−−−−→ q′ such that|= ϕ[ν(X)/X][ν′(X′)/X′]. Given two control

statesq,q′ ∈ Q, a run ofA from q to q′ is a finite sequence of configurationsc1c2 . . .cn with
c1 = 〈q,ν〉, cn = 〈q′,ν′〉 for some valuationsν,ν′ : X→ Z, andci+1 is an immediate successor
of ci , for all 1≤ i < n. Let R (A) denote the set of runs ofA from some initial stateq0 ∈ I to
some final stateqf ∈ F, andTr(A) = {val(c1)val(c2) . . .val(cn) | c1c2 . . .cn ∈ R (A)} be its set
of traces.

For two counter automataAi = 〈Xi,Qi, Ii ,→i,Fi〉, i = 1,2 we define theproduct automatonas

A1⊗A2 = 〈X1∪X2,Q1×Q2, I1× I2,→,F1×F2〉, where〈q1,q2〉
ϕ
→〈q′1,q

′
2〉 if and only if q1

ϕ1
→1 q′1,

q2
ϕ2
→2 q′2 and|= ϕ↔ ϕ1∧ϕ2. We have that, for all sequencesσ ∈ Tr(A1⊗A2), σ↓X1∈ Tr(A1)

andσ↓X2∈ Tr(A2), and viceversa.

Lemma 1 Given Ai = 〈Xi,Qi , Ii,→i,Fi〉, i = 1,2, for all sequencesσ ∈ (X1∪X2→ Z)∗:

σ ∈ Tr(A1⊗A2) if and only ifσ↓X1∈ Tr(A1) andσ↓X2∈ Tr(A2)

Consequently, if X1 = X2 we have Tr(A1⊗A2) = Tr(A1)∩Tr(A2).

Proof: The states ofA1⊗A2 are pairs ofQ1×Q2, and the initial (final) states ofA1⊗A2 are

I1× I2 (F1×F2). There is a transition〈q1, r1〉
ϕ
−→ 〈q2, r2〉 in A1⊗A2 if and only if there exist

transitionsq1
ϕ1
−→ q2 in A1 andr1

ϕ2
−→ r2 in A2, andϕ = ϕ1∧ϕ2. The equivalence condition is

proved by induction on the length of the traceσ. 2

3

3 Counter Automata as Recognizers of States and Transitions

In the rest of this section, leta= {a1,a2, . . . ,ak} be a set ofarray variables, andb = {b1,b2, . . . ,bm}
be a set ofscalar variables. A state〈α, ι〉 is a pair of valuationsα : a→ Z

∗, andι : b→ Z. For
simplicity, we assume that|α(a1)| = |α(a2)| = . . . = |α(ak)| > 0, and denote by|α| the size of
the arrays in the state.

In the following, let X be a set of counters that is partitioned intovalue countersx =
{x1,x2, . . . ,xk}, index countersi = {i1, i2, . . . , ik}, parametersp = {p1, p2, . . . , pm}, andwork-
ing countersw. Notice thata andb are in 1:1 correspondence withx, i, andp, respectively.

Definition 1 Let 〈α, ι〉 be a state. A sequenceσ ∈ (X→ Z)∗ is said to beconsistentwith 〈α, ι〉,
denotedσ ⊢ 〈α, ι〉 if and only if, for all1≤ p≤ k, and all1≤ r ≤m:

1. for all q∈ N with 0≤ q < |σ|, we have0≤ σq(ip)≤ |α|,

2. for all q, r ∈N with 0≤ q < r < |σ|, we haveσq(ip)≤ σr(ip),

3. for all s∈ N with 0≤ s≤ |α|, there exists0≤ q < |σ| such thatσq(ip) = s,

4. for all q∈ N with 0≤ q < |σ|, if σq(ip) = s< |α|, thenσq(xp) = α(ap)[s],

5. for all q∈ N with 0≤ q < |σ|, we haveσq(pr) = ι(br).

Intuitively, a run of a CA represents the contents of a singlearray by traversing all of its
entries in one move from the left to the right. The contents ofmultiple arrays is represented by
arbitrarily interleaving the traversals of the different arrays. From this point of view, for a run to
correspond to some state (i.e., to beconsistentwith it), it must be the case that each index counter
either keeps its value or grows at each step of the run (point 2of Def. 1) while visiting each entry
within the array (points 1 and 3 of Def.1).1 The value of a certain entry of an arrayap is coded
by the value that the array counterxp has when the index counterip contains the position of the
given entry (point 4 of Def.1). Finally, values of scalar variables are encoded by valuesof the
appropriate parameter counters which stay constant withina run (point 5 of Def.1).

We call two sequencesσ,ρ ∈ (X → Z)∗ equivalent, denotedσ ≡ ρ, iff they agree on the
value, index, and parameter counters, i.e.,σ↓x∪i∪p= ρ↓x∪i∪p.

Proposition 1 Let 〈α, ι〉 and〈β,κ〉 be two states, andσ ∈ (X→ Z)∗ be a sequence that is con-
sistent with both〈α, ι〉 and〈β,κ〉. Thenα = β andι = κ.

Proof: First we prove that|α|= |β|. Suppose, by contradiction, that|α|< |β| for some 1≤ p≤ k.
Then there exists 1≤ p≤ k and 1≤ q < |σ| such that|α| < σq(ip) ≤ |β|, by the third point of

1In fact, each index counter reaches the value|α| which is by one more than what is needed to traverse an array
with entries 0. . . |α|−1. The reason is technical, related to the composition with transducers representing program
loops (which produce array entries with a delay of one step and hence need the extra index value to produce the last
array entry) as will become clear later. Note that the entry at position|α| is left unconstrained.

4

Definition 1. Sinceσ ⊢ α, by the first point of Definition1, σq(ip)≤ |α|: a contradiction. Then,
|α| ≥ |β|, and symmetrically, we can prove that|α| ≤ |β|. Hence|α|= |β|.

Next, we prove that, for all 1≤ p≤ k and for all 0≤ s< |α|, we haveα(ap)[s] = β(ap)[s]. By
the third and fourth points of Definition1, we have that, for all 1≤ p≤ k and for all 0≤ s< |α|,
there exists 0≤ q < |σ| such thatα(ap)[s] = σq(xp) = β(ap)[s].

Finally, by the fifth point of Definition1, we have that, for all 1≤ r ≤m, ι(br) = σq(br) =
κ(br) for all 1≤ q < |σ|. 2

A CA is said to bestate consistentif and only if for every traceσ ∈ Tr(A), there exists a
(unique) state〈α, ι〉 such thatσ ⊢ 〈α, ι〉. We denoteΣ(A) = {〈α, ι〉 | ∃ σ∈ Tr(A) . σ ⊢ 〈α, ι〉} the
set of states recognized by a CA.

A consequence of Definition1 is that, in between two adjacent positions of a trace, in a state-
consistent CA, the index counters never increase by more than one. Consequently, each transition
whose relation is non-deterministic w.r.t. an index counter can be split into two transitions: an
idle (no change) and atick (increment by one). In the following, we will silently assume that
each transition of a state-consistent CA is either idle or tick w.r.t. a given index counter.

Proposition 2 Let A be a state-consistent CA with index countersi = {i1, i2, . . . , ik}, value coun-
tersx = {x1,x2, . . . ,xk}, andσ ∈ Tr(A) be a trace. Then we have0≤ σq+1(ip)−σq(ip)≤ 1, for
all 1≤ p≤ k and all0≤ q < |σ|.

Proof: By the second point of Definition1, σq(ip) ≤ σq+1(ip). Now, suppose thatσq+1(ip) >
σq(ip)+1, for some 1≤ p≤ k. SinceA is state-consistent, there exists a state〈α, ι〉 such thatσ ⊢
〈α, ι〉. By the first point of Definition1, 0≤ σq+1(ip)≤ |α|, hence 0≤ σq+1(ip)−1< |α|, and by
the third point of Definition1, there exists a position 0≤ r < |σ| such thatσr(ip) = σq+1(ip)−1.
Then either 0≤ r < q or q+ 1 < r. Both cases are in contradiction with the second point of
Definition1. 2

In the following, letal = {al
1,a

l
2, . . . ,a

l
kl
}, l = 1,2, be two sets of array variables (not neces-

sarily disjoint), and letxl = {xl
1,x

l
2, . . . ,x

l
kl
}, i l = {i l1, i

l
2, . . . , i

l
kl
}, l = 1,2, be the corresponding

sets of value and index counters. Also, letbl = {bl
1,b

l
2, . . . ,b

l
ml
}, l = 1,2, be two sets of scalar

variables and letpl = {pl
1, pl

2, . . . , pl
ml
}, l = 1,2, be the corresponding sets of parameters.

Lemma 2 Let Al be two state consistent counter automata with value, index,parameter, and
working countersxl , i l , pl , yl , l = 1,2, respectively. Then A1⊗A2 is state consistent, and,
moreover, for all states〈α, ι〉 whereα : a1∪a2→ Z

∗ andι : b1∪b2→ Z, we have:

〈α, ι〉 ∈ Σ(A1⊗A2)⇒ 〈α↓a1, ι↓b1〉 ∈ Σ(A1) and〈α↓a2, ι↓b2〉 ∈ Σ(A2)

Consequently, ifa1 = a2 andb1 = b2, we haveΣ(A1⊗A2)⊆ Σ(A1)∩Σ(A2).

Proof: We denoteXl = xl ∪ i l ∪pl ∪yl , l = 1,2.
(1) To prove thatA1⊗A2 is state consistent, letσ ∈ Tr(A1⊗A2) be a trace. By Lemma1,

we haveσ↓Xl∈ Tr(Al), l = 1,2. SinceA1 andA2 are state consistent, there exist (unique) states

5

〈αl , ιl〉, whereαl : al → Z
∗ andιl : bl → Z, such thatσ↓Xl⊢ 〈αl , ιl 〉, l = 1,2. By Proposition1,

we have that〈α1↓a1∩a2, ι1↓b1∩b2〉 = 〈α2↓a1∩a2, ι2↓b1∩b2〉. Therefore, we can build from〈αl , ιl〉,
l = 1,2, a state〈α, ι〉 such thatσ ⊢ 〈α, ι〉.

(2) To prove the second point, letσ ∈ Tr(A1⊗A2) such thatσ ⊢ 〈α, ι〉. As before, there exist
states〈αl , ιl 〉, whereαl : al → Z

∗ andιl : bl → Z, such thatσ↓Xl⊢ 〈αl , ιl〉, l = 1,2. But since
σ ⊢ 〈α, ι〉, we haveσ↓Xl⊢ 〈α↓al , ι↓i l 〉, l = 1,2. Thus〈α↓al , ι↓i l 〉 ∈ Σ(Al), l = 1,2. 2

For any setU = {u1, ...,un}, let us denoteU i = {ui
1, ...,u

i
n} andUo = {uo

1, ...,u
o
n}. If s= 〈α, ι〉

andt = 〈β,κ〉 are two states such that|α|= |β| for all 1≤ p≤ k, the pair〈s, t〉 is referred to as a
transition. A CA T = 〈X,Q, I ,−→,F〉 is said to be atransduceriff its set of countersX is parti-

tioned into:input countersxi andoutput countersxo, wherex = {x1,x2, . . . ,xk}, index counters
i = {i1, i2, . . . , ik}, input parameterspi andoutput parameterspo, wherep = {p1, p2, . . . , pm},
andworking countersw.

Definition 2 A sequenceσ ∈ (X → Z)∗ is said to beconsistentwith a transition〈s, t〉, where
s= 〈α, ι〉 and t= 〈β,κ〉, denotedσ ⊢ 〈s, t〉 if and only if, for all1≤ p≤ k and all1≤ r ≤m:

1. for all q∈ N with 0≤ q < |σ|, we have0≤ σq(ip)≤ |α|,

2. for all q, r ∈N with 0≤ q < r < |σ|, we haveσq(ip)≤ σr(ip),

3. for all s∈ N with 0≤ s≤ |α|, there exists0≤ q < |σ| such thatσq(ip) = s,

4. for all q∈ N with 0≤ q < |σ|, if σq(ip) = s< |α|, thenσq(xi
p) = α(ap)[s],

5. for all q∈ N with 0≤ q < |σ|, if σq(ip) = s> 0, thenσq(xo
p) = β(ap)[s−1],

6. for all q∈ N with 0≤ q < |σ|, we haveσq(pi
r) = ι(br) andσ(po

r) = κ(br).

The intuition behind the way the transducers represent transitions of programs with arrays is
very similar to the way we use counter automata to represent states of such programs—the trans-
ducers just have input as well as output counters whose values in runs describe the corresponding
input and output states. Note that the definition of transducers is such that the output values occur
with a delay of exactly one step w.r.t. the corresponding input (cf. point 5 in Def.2).2

A transducerT is said to betransition consistentiff for every traceσ ∈ Tr(T) there exists a
transition〈s, t〉 such thatσ ⊢ 〈s, t〉. We denoteΘ(T) = {〈s, t〉 | ∃ σ ∈ Tr(T) . σ ⊢ 〈s, t〉} the set
of transitions recognized by a transducer.

2The intuition is that it takes the transducer one step to compute the output value, once it reads the input. It
is possible to define a completely synchronous transducer, we, however, prefer this definition for technical reasons
related to the translation of program loops into transducers.

6

3.1 Dependencies between Index Counters

Let X be a fixed set of counters, for the rest of this section. Adependencyδ is a conjunction of
equalities between elements belonging to (a subset of)X. For a valuationν : X→ Z, we write
ν |= δ if and only if the relation obtained fromδ by replacing each index counteri occurring inδ
by ν(i), is logically valid. For a sequenceσ ∈ (X→ Z)∗, we denoteσ |= δ if and only if σl |= δ,
for all 0≤ l < |σ|.

Proposition 3 Given an arbitrary sequenceσ∈ (X→Z)∗, wherei⊆X is a set of index counters,
and a dependencyδ on i, we haveσ |= δ if and only ifσ↓i |= δ.

Proof: From the definition of a dependency,δ involves only variables fromi. 2

For a dependencyδ, we denote[[δ]] = {σ ∈ (X → Z)∗ | there exists a states such thatσ ⊢
s andσ |= δ}, i.e., the set of all sequences that correspond to an array and that satisfyδ. A
dependencyδ1 is said to bestrongerthan another dependencyδ2, denotedδ1→ δ2, if and only
if the first order logic entailment betweenδ1 andδ2 is valid. Note thatδ1→ δ2 if and only if
[[δ1]]⊆ [[δ2]]. If δ1→ δ2 andδ2→ δ1, we writeδ1↔ δ2. For a state consistent counter automaton
(transition consistent transducer)A, we denote by∆(A) the strongest dependencyδ such that
Tr(A)⊆ [[δ]].

Definition 3 A CA A= 〈x,Q, I ,−→,F〉, wherex ⊆ X, is said to bestate-completeif and only if

for all states s∈ Σ(A), and each sequenceσ ∈ (X→ Z)∗, such thatσ ⊢ s andσ |= ∆(A), we have
σ ∈ Tr(A).

Intuitively, an automatonA is state-complete if it represents any states∈ Σ(A) in all possible
ways w.r.t. the strongest dependency relation on its index counters. The next lemma is needed
for technical reasons.

Lemma 3 Let Al = 〈xl ,Ql , Il ,→l ,Fl 〉, wherexl ⊆X, l = 1,2be two state consistent and complete
counter automata with the corresponding sets of arrays and scalars al and bl . If Σ(A1)↓a′,b′
∩ Σ(A2)↓a′,b′ 6= /0, for a′ = a1∩a2 andb′ = b1∩b2, then the following hold:

1. ∆(A1⊗A2)↔ ∆(A1)∧∆(A2), and

2. A1⊗A2 is state complete.

Proof: (1) Let i1⊆ x1 be the set of index counters ofA1, andi2⊆ x2 be the set of index counters
of A2.

“→” According to the definition, we have

∆(A1⊗A2) =
^

{δ | for all σ ∈ Tr(A1⊗A2) such thatσ ⊢ s for somes, σ |= δ}

=
^

{δ | for all tracesσ ∈ (X→ Z)∗ such thatσ↓x1∈ Tr(A1),

σ↓x2∈ Tr(A2), andσ ⊢ s for somes, σ |= δ}
→

^

{δ | for all σ ∈ Tr(A1) such thatσ ⊢ s for somes, σ |= δ}
= ∆(A1)

7

Note that we have
^

{δ | for all tracesσ ∈ (X→ Z)∗ such thatσ↓x1∈ Tr(A1),

σ↓x2∈ Tr(A2), andσ ⊢ s for somes, σ |= δ}
→

^

{δ | for all σ ∈ Tr(A1) such thatσ ⊢ s for somes, σ |= δ}

because

{δ | for all tracesσ ∈ (X→ Z)∗ such thatσ↓x1∈ Tr(A1),

σ↓x2∈ Tr(A2), andσ ⊢ s for somes, σ |= δ}
⊇ {δ | for all σ ∈ Tr(A1) such thatσ ⊢ s for somes, σ |= δ}

Symmetrically, we obtain∆(A1⊗A2)→ ∆(A2). Then∆(A1⊗A2)→ ∆(A1)∧∆(A2) follows.
“←” Let σ ∈ (X→ Z)∗ be a trace such thatσ |= ∆(A1)∧∆(A2) ands= 〈α, ι〉 be an arbitrary

state such thatσ⊢ s. By Proposition3, σ↓i1∪i2|= ∆(A1)∧∆(A2). SinceΣ(A1)↓a′,b′ ∩ Σ(A2)↓a′,b′ 6=
/0 for a′ = a1∩a2 andb′ = b1∩b2, there exists a statet = 〈β,κ〉 over arraysa1∪a2 and scalars
b1∪b2 such thatt↓a1,b1∈ Σ(A1) andt↓a2,b2∈ Σ(A2). Sinceσ ⊢ s, it is possible to build a trace
σ′ such thatσ↓i1∪i2= σ′↓i1∪i2 andσ′ ⊢ t: just replace the valuesα(ap)[s] of the value counters
ap ∈ a by the valuesβ(ap)[s] at each position inσ where the value of the index counterip is s
and replace the valueι(bq) of the parameter countersbq ∈ b by the valuesκ(bq) at each position
in σ.

We have thusσ′↓i1∪i2|= ∆(A1)∧∆(A2). By Proposition3, we haveσ′ |= ∆(A1)∧∆(A2). Since
A1 is state-complete,σ′ |= ∆(A1) andσ′↓x1⊢ t↓a1,b1∈ Σ(A1), we obtainσ′↓x1∈ Tr(A1), by Def-
inition 3. Symmetrically, we haveσ′↓x2∈ Tr(A2). Henceσ′ ∈ Tr(A1⊗A2) by Lemma1. By
Lemma2, we have thatA1⊗A2 is state consistent, and furthermore by definitionTr(A1⊗A2)⊆
[[∆(A1⊗A2)]]. Henceσ′ |= ∆(A1⊗A2), thereforeσ′↓i1∪i2= σ↓i1∪i2|= ∆(A1⊗A2), and by Propo-
sition3, σ |= ∆(A1⊗A2).

(2) Let s∈ Σ(A1⊗A2) be a state andσ ∈ (X → Z)∗ be a trace such thatσ ⊢ s and σ |=
∆(A1⊗A2). By Lemma2, we haves↓a1,b1∈ Σ(A1), s↓a2,b2∈ Σ(A2) and by the previous point,
σ |= ∆(A1)∧∆(A2). SinceA1 andA2 are state-complete, we haveσ↓x1∈Tr(A1) andσ↓x2∈Tr(A2)
and henceσ ∈ Tr(A1⊗A2) by Lemma1. 2

3.2 Composing Counter Automata with Transducers

For a counter automatonA and a transducerT, Σ(A) represents a set of states, whereasΘ(T) is
a transition relation. A natural question is whether the post-image ofΣ(A) via the relationΘ(T)
can be represented by a CA, and whether this automaton can be effectively built from A andT.

Definition 4 Given a counter automaton A with index countersi = {i1, ..., ik}, value counters
x = {x1, ...,xk}, and parametersp = {p1, ..., pm} and a transducer T with index countersi,
input/output countersxi/xo, and input/output parameterspi/po, we say that A and T arecom-
patibleiff, for all s ∈ Σ(A) such that〈s, t〉 ∈ Θ(T) for some state t, there exist tracesσ ∈ Tr(A)
andρ ∈ Tr(T) such thatσ ⊢ s andσ≡ ρ[x/xi][p/pi].

8

Informally, the definition above says that a counter automaton A and a transducerT are
compatible if and only if they can agree on the representation of each stateα from the intersection
betweenΣ(A) and the pre-image ofΘ(T). This guarantees that the composition of the two will
not “miss” any states.

The above definition gives a sufficient condition under whichthe post-image ofΣ(A) under
Θ(T) can be represented by an effectively computable CA. Notice that, in general, even if the
post image can be represented by a CA, it is not always the casethat this CA can be computed
from the description ofA andT.

Lemma 4 Given a state consistent counter automaton A with index counters i = {i1, ..., ik},
value countersx = {x1, ...,xk}, parametersp = {p1, ..., pm}, and working countersz and a tran-
sition consistent transducer T with index countersi, input/output countersxi/xo, input/output
parameterspi/po, and working countersu, z∩u = /0, if A is compatible with T , one can con-
struct a state consistent counter automaton B such that:

Σ(B) = {t | ∃ s∈ Σ(A) . 〈s, t〉 ∈ Θ(T)}

Proof: We build a counter automatonB with index countersi, value countersy = {y1,y2, . . . ,yk},
parameterspo, and working countersxi∪xo∪pi∪z∪u. By xio andpio, we denote the setsxi∪xo

andpi ∪po, respectively.
First, letA′ be the transducer with input countersxi, output countersxo, input parameterspi ,

output parameterspo, and working countersz∪u, and with a transition ruleq
ϕ[xi/x][pi/p]
−−−−−−−→ q′ for

each ruleq
ϕ
−→ q′ of A. Obviously, for each traceσ ∈ Tr(A′), we have(σ↓xi∪i∪pi∪z)[x/xi][p/pi] ∈

Tr(A).
Second, letT ′ be the transducer with input countersxi , output countersxo, and working

countersz∪u, and with the same set of transition rules asT. Finally, letB′ = A′⊗T ′ andB be
the counter automaton with index countersi, value countersy, wherey∩(xio∪pio∪ i∪z∪u) = /0,
parameterspo, working countersxio∪pi ∪z∪u, and transition rules

q
ϕ ∧

Vk
l=1 i′l>i l→yl=(xo

l)
′ ∧ i′l=i l→y′l=yl

−−−−−−−−−−−−−−−−−−−−−−−→ q′

for each transition ruleq
ϕ
−→ q′ of B′.

Let us prove now thatB is state consistent. Letσ ∈ Tr(B). By the definition ofB, σ′ =
σ↓xio∪pio∪i∪z∪u∈ Tr(B′) = Tr(A′)∩ Tr(T ′). SinceA is state consistent, so isA′. SinceT is
transition consistent, so isT ′. SinceT ′ andA′ share the same set of index counters, the first
three points of Definition1 hold for σ′, and therefore forσ. SinceT ′ is transition consistent,
there exists a transition〈s, t〉, s = 〈α, ι〉 and t = 〈β,κ〉 such thatσ′q(xo

p) = β(ap)[σ′q(ip)− 1],
wheneverσ′q(ip) > 0, for all 1≤ p≤ k, 0≤ q < |σ′|. By the definition ofB, we haveσq(yp) =
β(ap)[σ′q(ip)] = β(ap)[σq(ip)]. Last, for all parameterspo

r ∈ po, we haveσq(po
r) = κ(br), by

Definition2.
We are left with showing that indeedΣ(B) = {t | existss∈ Σ(A) s.t. 〈s, t〉 ∈ Θ(T)}. “⊆” Let

t = 〈β,κ〉 ∈ Σ(B). If t ∈ Σ(B), then there existsσ ∈ Tr(B) such thatσ ⊢ t. By the definition ofB,

9

σ′ = σ↓xio∪pio∪i∪z∪u∈ Tr(B′) = Tr(A′)∩Tr(T ′) such thatσ′q(xo
p) = β(ap)[σ′q(ip)−1], whenever

σ′q(ip) > 1, for all 1≤ p≤ k, 0≤ q < |σ′|. Sinceσ′ ∈ Tr(T′), there exists a states such that
σ′ ⊢ 〈s, t〉. Obviously,σ′↓xio∪pio∪i∪u∈ Tr(T) andσ′↓xio∪pio∪i∪u ⊢ 〈s, t〉, hence〈s, t〉 ∈ Θ(T). By
Definition 2, we have thatσ′↓xi∪pi∪i⊢ s. Moreover, asσ′ ∈ Tr(A′), (σ′↓xi∪pi∪i)[x/xi][p/pi] ∈

Tr(A) and(σ′↓xi∪pi∪i)[x/xi][p/pi] ⊢ sas well. Hences∈ Σ(A).
“⊇” Let s∈ Σ(A) such that〈s, t〉 ∈ Θ(T). SinceA andT are compatible, there exist traces

σ∈ Tr(A) andρ∈ Tr(T) such thatσ ⊢ sandσ≡ ρ[x/xi][p/pi]. Fromσ andρ, we can now build
a traceπ ∈ Tr(A′)∩Tr(T ′) = Tr(B′) such that:

• π↓xi∪pi∪i= ρ↓xi∪pi∪i= (σ↓x∪p∪i)[xi/x][pi/p]

• π↓z= σ↓z

• π↓xo∪po∪u= ρ↓xo∪po∪u

This is becauseA′ does not constrainxo, po, andu, whereasT ′ does not constrainz. Moreover,
ρ ⊢ 〈s, t〉 impliesπ ⊢ 〈s, t〉. We can now extendπ ∈ Tr(B′) to a traceπ′ ∈ Tr(B) such thatπ′ ⊢ t.
Hencet ∈ Σ(B). 2

The lemma above guarantees composability of a transducer with a counter automaton, under
the compatibility condition of Definition4. However, this condition cannot be applied in practice,
due to undecidability reasons3. In the following, we give sufficient compatibility conditions that
can easily be applied in practice.

Lemma 5 If A is a state-complete counter automaton with value counters x = {x1, . . . , xk}, index
countersi = {i1, . . . , ik}, and parametersp = {p1, . . . , pm}, and T is any transducer with input
countersxi , index countersi, and input parameterspi such that∆(T)[x/xi]→ ∆(A), then A is
compatible with T .

Proof: Let s∈ Σ(A) be a state such that〈s, t〉 ∈ Θ(T), for some statet. Hence there exists
ρ ∈ Tr(T) such thatρ ⊢ 〈s, t〉, i.e., ρ[x/xi][p/pi] ⊢ s. As ρ ∈ Tr(T), ρ |= ∆(T), and since
∆(T)[x/xi]→ ∆(A), we also haveρ[x/xi] |= ∆(A). Let σ be a trace over the counters ofA such
thatσ≡ ρ[x/xi][p/pi]. By Proposition3, we haveσ |= ∆(A) andσ ⊢ s. SinceA is state-complete,
we obtainσ ∈ Tr(A). By Definition4, A is compatible withT. 2

We have reduced the problem of checking compatibility to theproblems of checking state-
completeness and comparing dependencies on index counters. Both criteria can now be guar-
anteed in a sound (but not necessarily complete) way by some syntactic conditions that will be
introduced later on. Namely, we prove that a counter automaton A generated from a formula is
state-complete, and we give sufficient syntactic conditions to guarantee that∆(T)[x/xi]→ ∆(A),
whenA is generated from a formula andT from a program.

3Trace inclusion is undecidable for counter automata.

10

Theorem 1 If A is a state-consistent and state-complete counter automaton with value counters
x = {x1, ..., xk}, index countersi = {i1, ..., ik}, and parametersp = {p1, ..., pm}, and T is a
transducer with input (output) countersxi (xo), index countersi, and input (output) parameters
pi (po) such that∆(T)[x/xi]→ ∆(A), then one can build a state-consistent counter automaton B,
such thatΣ(B) = {t | ∃ s∈ Σ(A) . 〈s, t〉 ∈Θ(T)}, and, moreover∆(B)→ ∆(T)[x/xi].

Proof: By Lemma5 A is compatible withT, and by Lemma4, there existsB such thatΣ(B) =
{t | ∃ s∈Σ(A) . 〈s, t〉∈Θ(T)}. For the second point, notice that, in the proof of Lemma4, ∆(B) =
∆(B′)[x/xi]→ (∆(A′)∧∆(T ′))[x/xi] = ∆(A)∧∆(T) = ∆(T). The step∆(B′)→ ∆(A′)∧∆(T ′) is
becauseB′ = A′⊗T ′ and uses the “→” direction of the proof of the first point of Lemma3. 2

4 Singly Indexed Logic

We consider three types of variables. Thescalar variables b,b1,b2, ... ∈ BVar appear in the
bounds that define the intervals in which some array propertyis required to hold and within
constraints on non-array data variables. Theindex variables i, i1, i2, ...∈ IVar andarray variables
a,a1,a2, ... ∈ AVar are used in array terms. The setsBVar, IVar, andAVar are assumed to be
pairwise disjoint.

n,m, . . . ∈ Z integer constants
b,b1,b2, . . . ∈ BVar scalar variables
φ Presburger constraints

i, j, i1, i2, . . . ∈ IVar index variables
a,a1,a2, . . . ∈ AVar array variables
∼ ∈ {≤,≥}

B := n | b+n array-bound terms
G := ⊤ | B≤ i ≤ B | G∧G | G∨G guard expressions
V := a[i +n]∼ B | a1[i +n]−a2[i +m]∼ p | i−a[i +n]∼m | V ∧V value expressions
F := ∀i . G→V | φ(B1,B2, . . . ,Bn) | ¬F | F ∧ F formulae

Figure 1: Syntax of the Single Index Logic

Figure1 shows the syntax of the Single Index LogicSIL . We use the symbol⊤ to denote
the boolean valuetrue. In the following, we will writei < f instead ofi ≤ f −1, i = f instead
of f ≤ i ≤ f , ϕ1∨ ϕ2 instead of¬(¬ϕ1 ∧¬ϕ2), and∀i . υ(i) instead of∀i . ⊤ → υ(i). If
B1(b1), ...,Bn(bn) are bound terms with free variablesb1, ...,bn ∈ BVar, respectively, we write
any Presburger formulaϕ on termsa1[B1], ...,an[Bn] as a shorthand for(

Vn
k=1∀ j . j = Bk→

ak[i] = b′k)∧ϕ[b′1/a1[B1], ...,b′n/an[Bn]], whereb′1, ...,b
′
n are fresh scalar variables.

The semantics of a formulaϕ is defined in terms of the forcing relation〈α, ι〉 |= ϕ between
states and formulae. In particular,〈α, ι〉 |= ∀i . γ(i,b)→ υ(i,a,b) if and only if, for all valuesn∈
T

a[i +m] occurs inυ[−m, |α|−m−1], if |= γ[n/i][ι(b)/b], then also|= υ[n/i][ι(b)/b][α(a)/a].

We denote[[ϕ]] = {〈α, ι〉 | 〈α, ι〉 |= ϕ}. Thesatisfiability problemasks, for a given formulaϕ,

11

whether[[ϕ]]
?
= /0. We say that an automatonA and aSIL formulaϕ correspondif and only if

Σ(A) = [[ϕ]].
The∃∗∀∗ fragment ofSIL is the set of SIL formulae which, when written in prenex normal

form, have the quantifier prefix of the form∃i1 . . .∃in∀i1 . . .∀im. As shown in [12] (for a slightly
more complex syntax), the∃∗∀∗ fragment ofSIL is equivalent to the set of existentially quantified
boolean combinations of (1) Presburger constraints on scalar variablesb, and (2) array properties
of the form∀i . γ(i,b)→ υ(i,b,a).

Theorem 2 ([12]) The satisfiability problem is decidable for the∃∗∀∗ fragment ofSIL .

Below, we establish a two-way connection between∃∗∀∗-SIL and counter automata. Namely,
we show how loop pre-conditions written in∃∗∀∗-SIL can be translated to CA in a way suitable
for their further composition with transducers representing program loops (for this reason the
translation differs from [12]). Then, we show how∃∗∀∗-SIL formulae can be derived from the
CA that we obtain as the product of loop transducers and pre-condition CA.

4.1 From∃∗∀∗-SIL to Counter Automata

Given a pre-conditionϕ expressed in∃∗∀∗-SIL , we build a corresponding counter automatonA,
i.e.,Σ(A) = [[ϕ]]. Without loosing generality, we will assume that the pre-condition is satisfiable
(which can be effectively checked due to Theorem2).

For the rest of this section, let us fix a set of array variablesa = {a1,a2, . . . ,ak} and a set of
scalar variablesb = {b1,b2, . . . ,bm}. As shown in [12], each∃∗∀∗-SIL formula can be equiva-
lently written as a boolean combination of two kinds of formulae:

(i) array properties of the form∀i . f ≤ i ≤ g→ υ, where f andg are bound terms, andυ
is either: (1)ap[i] ∼ B, (2) i−ap[i] ∼ n, or (3) ap[i]−aq[i + 1] ∼ n, where∼∈ {≤,≥},
1≤ p,q≤ k, n∈ Z, andB is a bound term.

(ii) Presburger constraints on scalar variablesb.

Let us now fix a (normalized) pre-condition formulaϕ(a,b) of ∃∗∀∗-SIL . By pushing nega-
tion inwards (using DeMorgan’s laws) and eliminating it from Presburger constraints on scalar
variables, we obtain a boolean combination of formulae of the forms (i) or (ii) above, whereonly
array properties may occur negated.

W.l.o.g., we consider only pre-condition formulae withoutdisjunctions.4 For such formulae
ϕ, we build CAAϕ with index countersi = {i1, i2, ..., ik}, value countersx = {x1,x2, ...,xk}, and
parametersp = {p1, p2, ..., pm}, corresponding to the scalarsb.

For a term or formulaf , we denote byf the term or formula obtained fromf by replacing
eachbq by pq, 1≤ q≤ m, respectively. For an atomic propositionυ on array values of type
(1)–(3), we defineτυ andυ as follows:

(a) τυ
∆
= {ip} andυ ∆

= xp∼ B if υ is ap[i]∼ B, where 1≤ p≤ k,

4Given a formula containing disjunctions, we put it in DNF andcheck each disjunct separately.

12

(b) τυ
∆
= {ip} andυ ∆

= ip−xp∼ n if υ is i−ap[i]∼ n, where 1≤ p≤ k, and

(c) τυ
∆
= {ip, iq} andυ ∆

= xp−x′q∼ n if υ is ap[i]−aq[i +1]∼ n, where 1≤ p,q≤ k.

For a set of index countersI = {ip1, ip2, . . . , ipl} where 1≤ l ≤ k and p j ∈ {1, ...,k} for each

1≤ j ≤ l , we denote bytick(I)
∆
=

Vl
j=1 i′p j

= ip j +1, by idle(I)
∆
=

Vl
j=1 i′p j

= ip j ∧x′p j
= xp j , by

I ∼ ℓ
∆
=

Vl
j=1 ip j ∼ ℓ, and byI ′ ∼ ℓ

∆
=

Vl
j=1 i′p j

∼ ℓ, where∼∈ {<,>,=} andℓ is any linear term.
For any set of countersU , let const(U) =

V

u∈U u′ = u.
The construction ofAϕ is defined recursively on the structure ofϕ:
• If ϕ = ψ1∧ψ2, thenAϕ = Aψ1⊗Aψ2.

• If ϕ is a Presburger constraint onb, thenAϕ = 〈X,Q,{qi},−→,{qf}〉 where:

– X = {pq | bq ∈ FV(ϕ)∩BVar, 1≤ q≤m},

– Q = {qi ,qf},

– qi
ϕ̄ ∧

V

x∈X x′=x
−−−−−−−−→ qf andqf

V

x∈X x′=x
−−−−−−→ qf .

• If ϕ is ∀i . f ≤ i ≤ g→ υ, thenAϕ = 〈X,Q,{qi},−→,{qf}〉 where:

– X = {xp, ip | ap ∈ FV(ϕ)∩AVar, 1≤ p≤ k} ∪ {pq | bq ∈ FV(ϕ)∩BVar, 1≤ q≤
m} ∪ {wN}

– Q = {qi ,q1,q2,q3,qf}

– Assumingconst({pq | bq ∈ FV(ϕ)∩BVar, 1≤ q≤m}) to be an implicit transition
constraint,h=1 if υ is ap[i]− aq[i + 1] ∼ n, 1 ≤ p,q ≤ k, andh=0 otherwise, the
transition relation is defined as shown in Figure2.

• If ϕ is¬(∀i . f ≤ i ≤ g→ υ), thenAϕ = 〈X,Q,{qi},−→,{qf}〉 where:

– X = {xp, ip | ap ∈ FV(ϕ)∩AVar, 1≤ p≤ k} ∪ {vq | bq ∈ FV(ϕ)∩BVar, 1≤ q≤
m} ∪ {wN}

– Q = {qi ,q1,q2,q3,qf}

– Assumingconst({vq | bq ∈ FV(ϕ)∩BVar, 1≤ q≤m}) to be an implicit transition
constraint,h=1 if υ is ap[i]− aq[i + 1] ∼ n, 1 ≤ p,q ≤ k and h=0 otherwise, the
transition relation is defined as shown in Figure3.

Intuitively, the automatonAϕ or A¬ϕ for a formula∀i . f ≤ i ≤ g→ υ waits in q1 increas-
ing its index counters until the lower boundf is reached, then moves toq2 and checks the
value constraintυ until the upper boundg is reached. Finally, the control moves toq3 and the
automaton scans the rest of the array until the end. In each state, the automaton can also non-
deterministically choose to idle, which is needed to ensurestate-completeness when making a

13

qi
τυ=0 ∧ idle(τυ)
−−−−−−−−−→ qi q j

idle(τυ)
−−−−→ q j for all j ∈ {1,2,3, f}

qi
τυ+1< f≤g ∧ tick(τυ) ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−→ q1 q1

τυ+1< f ∧ tick(τυ) ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−→ q1

q1
τυ+1= f ∧ tick(τυ) ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−→ q2 q2

τυ<g ∧ tick(τυ) ∧ υ ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−−→ q2

q2
τυ=g ∧ tick(τυ) ∧ υ ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−−→ q3 q3

tick(τυ) ∧ τυ<wN−1
−−−−−−−−−−−−→ q3

q3
tick(τυ) ∧ τυ=wN−1
−−−−−−−−−−−−→ qf

qi
f≤τυ<g ∧ tick(τυ) ∧ υ ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−−→ q2 qi

τυ+1= f≤g ∧ tick(τυ) ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−→ q2

qi
f≤τυ=g ∧ tick(τυ) ∧ υ ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−−→ q3 qi

(f>g∨ f≤g<0) ∧ tick(τυ) ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−−−→ q3

q2
tick(τυ) ∧ υ ∧ τυ=wN−1
−−−−−−−−−−−−−−→ qf if h = 0 q2

tick(τυ) ∧ τυ=wN−1
−−−−−−−−−−−−→ qf if h = 1

q1
tick(τυ) ∧ τυ=wN−1
−−−−−−−−−−−−→ qf

qi
tick(τυ) ∧ f≤τυ≤g ∧ υ ∧ 0=τυ=wN−1
−−−−−−−−−−−−−−−−−−−−−−−→ qf if h = 0 qi

tick(τυ) ∧ (f>g∨ f≤g<0) ∧ 0=τυ=wN−1
−−−−−−−−−−−−−−−−−−−−−−−−→ qf if h = 0

qi
tick(τυ) ∧ 0< f≤g ∧ 0=τυ=wN−1
−−−−−−−−−−−−−−−−−−−→ qf if h = 0 qi

tick(τυ) ∧ 0=τυ=wN−1
−−−−−−−−−−−−−→ qf if h = 1

Figure 2: Transition rules of the automatonAϕ for ϕ≡ ∀i . f ≤ i ≤ g→ υ

product of such CA. Forυ of type (1) and (2), the automaton has one index (ip) and value (xp)
counters, while forυ of type (3), there are two dependent index (ip, iq) and value (xp,xq) counters.

Figure4.1 shows the CAAϕ for ϕ : ∀i . f ≤ i ≤ g→ υ. Figure4.1 shows the CAAϕ for
ϕ : ¬(∀i . f ≤ i ≤ g→ υ).

We aim now at computing the strongest dependency∆(Aϕ) between the index counters of
Aϕ, and, moreover, at showing thatAϕ is state-complete (cf. Definition3). SinceAϕ is defined
inductively, on the structure ofϕ, ∆(Aϕ) can also be computed inductively. Letδ(ϕ) be the
formula defined as follows:

• δ(ϕ) =⊤ if ϕ is a Presburger constraint onb,

• for ϕ≡ ∀i . f ≤ i ≤ g→ υ, δ(ϕ)
∆
= δ(¬ϕ)

∆
=

{

⊤ if υ is ap[i]∼ B or i−ap[i]∼ n,
ip = iq if υ is ap[i]−aq[i +1]∼ n,

• δ(ϕ1∧ϕ2) = δ(ϕ1)∧δ(ϕ2).

Theorem 3 Given a satisfiable formulaϕ of∃∗∀∗-SIL , the following hold for the CA Aϕ, defined
in the previous:

1. Aϕ is state consistent,

2. Aϕ is state complete,

3. Aϕ andϕ correspond,

4. δ(Aϕ) ↔ ∆(Aϕ).
14

qi
τυ=0 ∧ idle(τυ)
−−−−−−−−−→ qi q j

idle(τυ)
−−−−→ q j for all j ∈ {1,2,3, f}

qi
τυ+1< f≤g ∧ tick(τυ) ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−→ q1 q1

τυ+1< f ∧ tick(τυ) ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−→ q1

q1
τυ+1= f ∧ tick(τυ) ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−→ q2 q2

τυ<g ∧ tick(τυ) ∧ υ ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−−→ q2

q2
τυ≤g ∧ tick(τυ) ∧ ¬υ ∧ τυ<wN−1
−−−−−−−−−−−−−−−−−−−−→ q3 q3

tick(τυ) ∧ τυ<wN−1
−−−−−−−−−−−−→ q3

qi
f≤τυ≤g ∧ tick(τυ) ∧ ¬υ ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−−−→ q3 q3

tick(τυ) ∧ τυ=wN−1
−−−−−−−−−−−−→ qf

qi
f≤τυ<g ∧ tick(τυ) ∧ υ ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−−→ q2 qi

τυ+1= f≤g ∧ tick(τυ) ∧ 0=τυ<wN−1
−−−−−−−−−−−−−−−−−−−−−−→ q2

q2
tick(τυ) ∧ ¬υ ∧ τυ=wN−1
−−−−−−−−−−−−−−−→ qf if h = 0 qi

tick(τυ) ∧ f≤τυ≤g ∧ ¬υ ∧ 0=τυ=wN−1
−−−−−−−−−−−−−−−−−−−−−−−−→ qf if h = 0

Figure 3: Transition rules of the automatonA¬ϕ for ϕ≡ ∀i . f ≤ i ≤ g→ υ

Proof: By induction on the structure ofϕ:

• ϕ = ∀i . f ≤ i ≤ g→ υ. This case is by analysis of the CA in Figure4.1.

• ϕ = ¬(∀i . f ≤ i ≤ g→ υ). This case is by analysis of the CA in Figure4.1.

• ϕ is a Presburger constraint onb and|a|, a∈ a. This case is by the analysis of the CA.

• ϕ = ψ1∧ψ2. Sinceϕ is satisfiable, there exists a state〈α, ι〉 ∈ [[ϕ]] = [[ψ1]]∩ [[ψ2]]. By the
induction hypothesis,Aψ1 corresponds toψ1, hence there exists a traceσ1 ∈ Tr(Aψ1) such
that σ1 ⊢ 〈α, ι〉, i.e. 〈α, ι〉 ∈ Σ(Aψ1). Symmetrically,〈α, ι〉 ∈ Σ(Aψ2), thereforeΣ(Aψ1)∩
Σ(Aψ2) 6= /0. By applying Lemma3 and the induction hypothesis, we obtain that

∆(Aϕ) = ∆(Aψ1)∧∆(Aψ2) ↔ δ(ψ1)∧δ(ψ2) = δ(ϕ)

and thatAϕ = Aψ1⊗Aψ2 is state complete, sinceAψ1 andAψ2 are. The fact thatAϕ is state
complete follows directly from the induction hypothesis. We are left with proving thatAϕ
corresponds toϕ. Let Xi denote in the following the sets of counters ofAψi , and letai, bi

denote the sets of array and bound variables corresponding to Xi, i = 1,2.

– Let σ ∈ Tr(Aϕ) be a trace. By Lemma1, we haveσ↓Xi∈ Tr(Aψi), i = 1,2. By the
induction hypothesis, there exist statessi = 〈αi , ιi〉 ∈ [[ψi]] such thatσ↓Xi⊢ si , i = 1,2.
By Proposition1 we can build a states= 〈α, ι〉 such that〈α↓ai , ι↓bi〉 = si , i = 1,2.
Henceσ ⊢ s ands∈ [[ψ1∧ψ2]] = [[ϕ]].

– Let s∈ [[ϕ]] be a state. Sinces∈ [[ψ1]]∩ [[ψ2]], by the induction hypothesis there exists
two tracesσi ∈ Tr(Aψi) such thatσi ⊢ s, i = 1,2. By an argument similar to the one
used in the proof of Lemma3, we can build a sequenceσ ∈ (X1∪X2→ Z)∗ such
thatσ↓Xi∈ Tr(Aψi), i = 1,2, andσ ⊢ s. By Lemma1, we haveσ ∈ Tr(Aψ1⊗Aψ2) =
Tr(Aϕ).

2

15

qi q1 q2 q3 qf

tick(τυ) ∧

τυ +1 < f ≤ g∧

0 = τυ < wN −1

tick(τυ) ∧

τυ +1= f ∧

τυ < wN −1

τυ = g ∧ tick(τυ) ∧

υ ∧ τυ < wN−1

tick(τυ) ∧

τυ = wN−1

f ≤ τυ < g ∧ tick(τυ) ∧ υ ∧ 0 = τυ < wN−1

τυ +1= f ≤ g ∧ tick(τυ) ∧ 0 = τυ < wN −1

f ≤ τυ = g ∧ tick(τυ) ∧ υ ∧ 0 = τυ < wN −1

(f > g∨ f ≤ g < 0) ∧ tick(τυ) ∧ 0 = τυ < wN −1

tick(τυ) ∧ υ ∧ τυ = wN −1

tick(τυ) ∧ τυ = wN −1

tick(τυ) ∧ f ≤ τυ ≤ g ∧ υ ∧ 0 = τυ = wN −1

tick(τυ) ∧ (f > g∨ f ≤ g < 0) ∧ 0 = τυ = wN−1

tick(τυ) ∧ 0 < f ≤ g ∧ 0 = τυ = wN−1

τυ = 0∧

idle(τυ)

idle(τυ) idle(τυ) idle(τυ) idle(τυ)

τυ +1 < f ∧

tick(τυ) ∧ τυ < wN−1

τυ < g ∧ tick(τυ) ∧

υ ∧ τυ < wN −1

tick(τυ) ∧

τυ < wN−1

Figure 4: The counter automaton for the SIL formulae∀i . f ≤ i ≤ g→ υ for theh = 0 case (for
the other case, the three transitions fromqi to qf are replaced with only one transition labeled
with tick(τυ) ∧ 0 = τυ = wN−1, andυ is removed in the transitionq2−→ qf)

qi q1 q2 q3 qf

tick(τυ) ∧

τυ +1 < f ≤ g∧

0 = τυ < wN −1

tick(τυ) ∧

τυ +1= f ∧

τυ < wN −1

τυ = g ∧ tick(τυ) ∧

¬υ ∧ τυ < wN −1

tick(τυ) ∧

τυ = wN−1

f ≤ τυ < g ∧ tick(τυ) ∧ υ ∧ 0 = τυ < wN−1

τυ +1= f ≤ g ∧ tick(τυ) ∧ 0 = τυ < wN −1

f ≤ τυ ≤ g ∧ tick(τυ) ∧ ¬υ ∧ 0 = τυ < wN−1

tick(τυ) ∧ ¬υ ∧ τυ = wN−1

tick(τυ) ∧ f ≤ τυ ≤ g ∧ ¬υ ∧ 0 = τυ = wN −1

τυ = 0∧

idle(τυ)

idle(τυ) idle(τυ) idle(τυ) idle(τυ)

τυ +1 < f ∧

tick(τυ) ∧ τυ < wN−1

τυ < g ∧ tick(τυ) ∧

υ ∧ τυ < wN −1

tick(τυ) ∧

τυ < wN−1

Figure 5: The counter automaton for the SIL formulae¬(∀i . f ≤ i ≤ g→ υ) for theh = 0 case
(for the other case, two transitions, namelyqi −→ qf andq2−→ qf , are removed)

16

4.2 From Counter Automata to∃∗∀∗-SIL

The purpose of this section is to establish a dual connection, from counter automata to the
∃∗∀∗ fragment ofSIL . Since obviously, counter automata are much more expressive than∃∗∀∗-
SIL , our first concern is to abstract a given state-consistent CAA by a set ofrestrictedCA
AK

1 ,AK
2 , . . . ,AK

n , such thatΣ(A)⊆
Tn

i=1 Σ(AK
i), and for eachAK

i , 1≤ i ≤ n, to generate an∃∗∀∗-
SIL formulaϕi that corresponds to it. As a result, we obtain a formulaϕA =

Vn
i=1ϕi such that

Σ(A)⊆ [[ϕA]].
Let ρ(X,X′) be a relation on a given set of integer variablesX, and I(X) be a predicate

defining a subset ofZk. We denote byρ(I) = {X′ | ∃X ∈ I . 〈X,X′〉 ∈ R} the image ofI via R,
and we letρ∧ I = {〈X,X′〉 ∈ ρ | X ∈ I}. By ρn, we denote then-times relational composition
ρ◦ρ◦ . . .◦ρ, ρ∗ =

W

n≥0ρn is the reflexive and transitive closure ofρ, and⊤ is the entire domain
Z

k. It is known [6, 4] thatρn andρ∗ are Presburger definable ifρ is a difference bound constraint.
Let D(ρ) denote the strongest (in the logical sense) difference bound relationD s.t. ρ ⊆ D.

If ρ is Presburger definable,D(ρ) can be effectively computed5, and, moreover, ifρ is a finite
union ofn difference bound relations, this takesO(n×4k2) time6.

We now define the restricted class of CA, calledflat counter automata with difference bound
constraints(FCADBC) into which we abstract the given CA. Acontrol pathin a CAA is a finite
sequenceq1q2...qn of control states such that, for all 1≤ i < n, there exists a transition rule

qi
ϕi
−→ qi+1. A cycleis a control path starting and ending in the same control state. Anelementary

cycle is a cycle in which each state appears only once, except for the first one, which appears
both at the beginning and at the end. A CA is said to beflat (FCA) iff each control state belongs
to at most one elementary cycle. An FCA such that every relation labeling a transition occurring
in an elementary cycle is a DBC, and the other relations are Presburger constraints, is called an
FCADBC.

With these notations, we define theK-unfoldingof a one-state self-loop counter automa-
ton Aρ = 〈X,{q},{q},q

ρ
−→ q,{q}〉 as the FCADBCAK

ρ = 〈X,QK
ρ ,{q1},→

K
ρ ,QK

ρ 〉, whereQK
ρ =

{q1,q2, ...,qK} and→K
ρ is defined such thatqi

ρ
−→ qi+1, 1≤ i < K, andqK

ρK(⊤) ∧ ρ
−−−−−−→ qK. TheK-

abstractionof Aρ, denotedAK
ρ (cf. Figure6), is obtained fromAK

ρ by replacing the transition rule

qK
ρK(⊤) ∧ ρ
−−−−−−→ qK with the difference bound ruleqK

D(ρK(⊤) ∧ ρ)
−−−−−−−−→ qK. Intuitively, the information

gathered by unfolding theconcreterelationK times prior to the abstraction on the loopqK −→ qK,

allows to tighten the abstraction, according to theK parameter. Notice that theAK
ρ abstraction of

a relationρ is an FCADBC with exactly one initial state, one self-loop, and all states final. The
following lemma proves that the abstraction is sound, and that it can be refined, by increasingK.

Lemma 6 Given a relationρ(X,X′) on X= {x1,x2, . . . ,xk}, the following hold:

• Tr(Aρ) = Tr(AK
ρ)⊆ Tr(AK

ρ), for all K > 0,

5D(ρ) can be computed by finding the unique minimal assignmentν : {zi j | 1≤ i, j ≤ k} → Z that satisfies the
Presburger formulaφ(z) : ∀X∀X′ . ρ(X,X′)→

V

xi ,xj∈X∪X′ xi−x j ≤ zi j .
6If ρ = ρ1∨ ρ2∨ . . .∨ ρn, and eachρi is represented by a(2k)2-matrix Mi , D(ρ) is given by the pointwise

maximum among all matricesMi , 1≤ i ≤ n.

17

ρ ρ ρ
...

K times

q2 q3
...

ρ(x,x′)

q1 qK

D(ρK(⊤)∧ρ)

Figure 6:K-abstraction of a relation

• Tr(AK2
ρ)⊆ Tr(AK1

ρ) if K1≤ K2.

For the rest of this section, assume a set of arraysa = {a1,a2, . . . ,ak} and a set of scalars
b = {b1,b2, . . . ,bm}. At this point, we can describe an abstraction for counter automata that
yields from an arbitrary state-consistent CAA, a set of state-consistent FCADBCAK

1 ,AK
2 , ...,AK

n ,
whose intersection of sets of recognized states is a superset of the original one, i.e.,Σ(A) ⊆
Tn

i=1Σ(AK
i). Let A be a state-consistent CA with countersX partitioned into value counters

x = {x1, ...,xk}, index countersi = {i1, ..., ik}, parametersp = {p1, ..., pm} and working counters
w. We assume that the only actions on an index counteri ∈ i aretick (i′ = i +1) andidle (i′ = i),
which is sufficient for the CA that we generate fromSIL or loops.

The main idea behind the abstraction method is to keep the idle relations separate from ticks.
Notice that, by combining (i.e., taking the union of) idle and tick transitions, we obtain non-
deterministic relations (w.r.t. index counters) that may break the state-consistency requirement
imposed on the abstract counter automata. Hence, the first step is to eliminate the idle transitions.

Let δ be an over-approximation of the dependency∆(A), i.e., ∆(A)→ δ. In particular, ifA
was obtained as in Theorem1, by composing a pre-condition automaton with a transducerT, and
if we dispose of an over-approximationδ of ∆(T), i.e., ∆(T)→ δ, we have that∆(A)→ δ, cf.
Theorem1—any over-approximation of the transducer’s dependency isan over-approximation
of the dependency for the post-image CA.

The dependencyδ induces an equivalence relation on index counters: for alli, j ∈ i, i ≃δ j
iff δ→ i = j. This relation partitionsi into n equivalence classes[is1], [is2], ..., [isn], where 1≤
s1,s2, ...,sn ≤ k. Let us considern identical copies ofA: A1,A2, ...,An. Each copyA j will be
abstractedw.r.t. the corresponding≃δ-equivalence class[isj] into AK

j obtained as in Figure6.
Thus we obtainΣ(A)⊆

Tn
j=1Σ(AK

j), by Lemma6.
We describe now the abstraction of theA j copy ofA into AK

j . W.l.o.g., we assume that the
control flow graph ofA j consists of one strongly connected component (SCC)—otherwise we
separately replace each (non-trivial) SCC by a flat CA obtained as described below. Out of the
set of relationsR A j that label transitions ofA j , let υ j

1, ...,υ
j
p be the set ofidle relations w.r.t.

[isj], i.e., υ j
t →

V

i∈[isj]
i′ = i, 1≤ t ≤ p, andθ j

1, ...,θ
j
q be the set oftick relations w.r.t.[isj], i.e.,

θ j
t →

V

i∈[isj]
i′ = i +1, 1≤ t ≤ q. Note that since we consider index counters belonging to the

same≃δ-equivalence class, they either all idle or all tick, hence{υ j
1, . . . ,υ

j
p} and{θ j

1, . . . ,θ
j
q}

form a partition ofR A j .

Let ϒ j = D(
Wp

t=1 υ j
t) be the best difference bound relation that approximates theidle part of

A j , andϒ∗j be its reflexive and transitive closure7. Let Θ j =
Wq

t=1D(ϒ∗j)◦θ j
t , and letAΘ j be the

7Sinceϒ j is a difference bound relation, by [6, 4], we have thatϒ∗j is Presburger definable.

18

one-state self-loop automaton whose transition is labeledby Θ j , andAK
j be theK-abstraction of

AΘ j (cf. Figure6). It is to be noticed that the abstraction replaces a state-consistent FCA with
a single SCC by a set of state-consistent FCADBCwith one self-loop. The soundness of the
abstraction is proved in the following:

Lemma 7 Given a state-consistent CA A with index countersi and a dependencyδ s.t.∆(A)→ δ,
let [is1], [is2], . . . , [isn] be the partition ofi into≃δ-equivalence classes. Then eachAK

i , 1≤ i ≤ n
is state-consistent, andΣ(A)⊆

Tn
i=1Σ(AK

i), for any K≥ 0.

The next step is to build, for each FCADBCAK
i , 1≤ i ≤ n, an∃∗∀∗-SIL formula ϕi such

thatΣ(AK
i) = [[ϕi]], for all 1≤ i ≤ n, and, finally, letϕA =

Vn
i=1ϕi be the needed formula. The

generation of the formulae builds on that we are dealing withCA of the form depicted in the
right of Figure6.8

For a relationϕ(X,X′), X = x∪p, letTi(ϕ) be theSIL formula obtained by replacing each:

• unprimed value counterxs∈ FV(ϕ)∩x by as[i], 1≤ s≤ k,

• primed value counterx′s∈ FV(ϕ)∩x′ by as[i +1], 1≤ s≤ k,

• parametervs∈ FV(ϕ)∩v by bs, 1≤ s≤m.

For the rest, fix an automatonAK
j of the form from Figure6 for some 1≤ j ≤ n, and letqp

ρ
−→

qp+1, 1≤ p< K, be its sequential part, andqK
λ
−→ qK its self-loop. Let[isj] = {it1, it2, ..., itq} be the

set of relevant index counters forAK
j , and letxr = x \ {xt1, ...,xtq} be the set of redundant value

counters. With these notations, the desired formula is defined asϕ j = (
WK−1

l=1 τ(l)) ∨ (∃b . b≥
0∧ τ(K)∧ω(b)), where:

τ(l) :
l−1̂

s=0

Ts(∃i,xr ,x′r ,w. ρ)

ω(b) : (∀i . K ≤ j < K +b→ Ti(∃i,xr ,x′r ,w. λ)) ∧

T0(∃i,x,x′,w. λb[K/it1, ..., itq][K +b−1/i′t1, ..., i
′
tq])

Here,b∈ BVar is a fresh scalar denoting the number of times the self-loopqK
λ
−→ qK is iterated.

λb denotes the formula defining theb-times composition ofλ with itself.9

8In case we start from a CA with more SCCs, we get a CA with a DAG-shaped control flow interconnecting
components of the form depicted in Figure6 after the abstraction. Such a CA may be converted toSIL by describing
each component by a formula as above, parameterized by its beginning and final index values, and then connecting
such formulae by conjunctions within particular control branches and taking a disjunction of the formulae derived
for the particular branches.

9Sinceλ is difference bound relation,λb can be defined by a Presburger formula [6, 4].

19

Intuitively, τ(l) describes arrays corresponding to runs ofAK
j from q1 to ql , for some 1≤

l ≤ K, without iterating the self-loopqK
λ
−→ qK, while ω(b) describes the arrays corresponding to

runs going through the self-loopb times. The second conjunct ofω(b) uses the closed form of
theb-th iteration ofλ, denotedλb, in order to capture the possible relations betweenb and the
scalar variablesb corresponding to the parametersp in λ, created by iterating the self-loop.

Theorem 4 Given a state-consistent CA A with index countersi and given a dependencyδ such
that ∆(A)→ δ, we haveΣ(A)⊆ [[ϕA]], where:

• ϕA =
Vn

i=1 ϕi , whereϕi is the formula corresponding toAK
i , for all 1≤ i ≤ n, and

• AK
1 ,AK

2 , . . . ,AK
n are the K-abstractions corresponding to the equivalence classes induced

by δ on i.

5 Array Manipulating Programs

We consider programs consisting of assignments, conditional statements, and non-nested while
loops in the syntax shown in Figure7. We consider a very simple syntax to make the presentation
of the proposed techniques easier: various more complex features can be handled by straightfor-
wardly extending the techniques described below.

A state of a programis a pair〈l ,s〉 wherel is a line of the program ands is a state〈α, ι〉
defined as in Section3. The semantics of program statements is the usual one (e.g.,[18]). For
simplicity of the further constructions, we assume that noout-of-bound array referencesoccur in
the programs. However, the approach can be extended to take care of such references if extended
as described in AppendixB.

Considering the program statements given in Figure7, we have developed a strongest post-
condition calculus for the∃∗∀∗-SIL , given in AppendixA. This calculus captures the semantics
of the assignments and conditionals, and is used to deal withthe sequential parts of the program
(the blocks of statements outside the loops). It is also shown that∃∗∀∗-SIL is closed for strongest
post-conditions.

5.1 From Loops to Counter Automata

Given a loopL starting at control linel , such thatl ′ is the control line immediately followingL,
we denote byΘL = {〈s, t〉 | there is a run ofL from 〈l ,s〉 to 〈l ′, t〉} the transition relation induced
by L. We define theloop dependencyδL as the conjunction of equalitiesip = iq, ip, iq ∈ IVar,
where (1)ep≡ eq wheree1 ande2 are the expressions initializingip andiq and (2) for each branch
of L finished by an index increment statementincr(I), ip ∈ I ⇐⇒ iq ∈ I . The equivalence
relation≃δL

on index counters is defined as before:ip≃δL
iq iff |= δL→ ip = iq.

Assume that we are given a loopL as in Figure8with AVar= {a1, . . . ,ak}, IVar = {i1, . . . , ik},
andBVar = {b1, . . . ,bm} being the sets of array, index, and scalar variables, respectively. Let
I1, I2, . . . , In⊆ IVar be the partition ofIVar into equivalence classes, induced by≃δL

. ForE being
a condition, assignment, index increment, or an entire loop, we definedE : AVar→ N∪{⊥} as

20

a,a1,a2, ... ∈ AVar ... array variables
i, i1, i2, ... ∈ IVar ... index variables
b,b1,b2, ... ∈ BVar ... scalar variables

n∈ Z ... integer constants
c∈N ... natural constants

LHSL ::= b | a[i +c] left-hand sides in loops
RHSL ::= LHSL+n | i +n right-hand sides in loops(1)

ASGNL ::= LHSL = RHSL; assignements in loops
CNDL ::= CNDL && CNDL | RHSL ≤RHSL conditions in loops
INC ::= incr({[i,]∗ i}); index increments(2)

IFL ::= i f (CNDL) ASGN∗L INC conditional statements in loops(3)

[else i f (CNDL) ASGN∗L INC]∗

else ASGN∗L INC
IDX ::= [a : i = b+n,]∗ a : i = b+n index declaration and initialization(4)

WHILE ::= whileIDX (CNDL) IFL while loops

LHSP ::= b | a[b+c] left-hand sides outside of loops
RHSP ::= LHSP+n right-hand sides outside of loops(1)

ASGNP ::= LHSP = RHSP; assignements outside of loops
CNDP ::= CNDP && CNDP | RHSP≤ RHSP conditions outside of loops
IFP ::= i f (CNDP) [ASGNP | IFP |WHILE]∗ conditional statements outside of loops(3)

[else i f (CNDP) [ASGNP | IFP |WHILE]∗]∗

else[ASGNP | IFP |WHILE]∗

PROGRAM ::= [ASGNP | IFP |WHILE]+ array programs

(1) If n is zero, we skip it.
(2) Each index variable may be incremented at most once in theincrement statementincr.
(3) If the condition istrue, we skip thei f keyword and theelsebranch.
(4) We assume a 1:1 correspondence between arrays and indices in the loop. The indices are
local to the loop.

Figure 7: Syntax of the considered array programs

21

whilea1:i1=e1,...,ak:ik=ek (C)
i f (C1) S1

1; ...;S1
n1

;
else i f (C2) S2

1; ...;S2
n2

;
...

else i f (Ch−1) Sh−1
1 ; ...;Sh−1

nh−1
;

else Sh1; ...;Sh
nh

;

Figure 8: A while loop

dE(a) = max{c | a[i + c] occurs inE} provideda is used inE, anddE(a) =⊥ otherwise. The
transducerTL = 〈X,Q,{q0},−→,{qf in}〉, corresponding to the program loopL, is defined below:

• X = {xi
r ,x

o
r , ir | 1≤ r ≤ k}∪{wi

r,l | 1≤ r ≤ k,1≤ l ≤ dL(ar)}∪{wo
r,l | 1≤ r ≤ k, 0≤ l ≤

dL(ar)}∪ {pi
r , po

r ,wr | 1≤ r ≤ m}∪ {wN} wherexi/o
r , 1≤ r ≤ k, are input/output array

counters,pi/o
r , 1≤ r ≤ k, are parameters storing input/output scalar values, andwr , 1≤

r ≤m, are working counters used for the manipulation of arrays and scalars (wN stores the
common length of arrays).

• Q = {q0,qpre,qloop,qsu f,qf in}∪{qr
l | 1≤ r ≤ h,0≤ l < nr}.

• The transition rules ofTL are the following. We assume an implicit constraintx′ = x for
each counterx∈ X such thatx′ does not appear explicitly:

– q0
ϕ
−→ qpre, ϕ =

V

1≤r≤m(wr = pi
r)∧wN > 0∧

V

1≤r≤k(ir = 0∧xi
r = wo

r,0)∧
V

1≤r≤k
1≤l≤dL(ar)

(wi
r,l = wo

r,l) (the counters are initialized).

– For each≃δL
-equivalence classI j , 1≤ j ≤ n, qpre

ϕ
−→ qpre with ϕ =

V

1≤r≤k(ir <

ξ(er))∧ξ(incr(I)) (TL copies the initial parts of the arrays untouched byL).

– qpre
ϕ
−→ qloop, ϕ =

V

1≤r≤k ir = ξ(er) (TL starts simulatingL).

– For each 1≤ l ≤ h, qloop
ϕ
−→ ql

0, ϕ = ξ(C)∧
V

1≤r<l (¬ξ(Cr))∧ ξ(Cl) whereCh = ⊤

(TL chooses the loop branch to be simulated).

– For each 1≤ l ≤ h, 1≤ r ≤ nl , ql
r−1

ξ(Sl
r)−−−→ q whereq = ql

r if r < nl , andq = qloop

otherwise (the automaton simulates one branch of the loop).

– qloop
ϕ
−→ qsu f, ϕ =¬ξ(C)∧

V

1≤r≤m(wr = po
r) (TL finished the simulation of the actual

execution ofL).

– For each≃δL
-equivalence classI j , 1 ≤ j ≤ n, and ir ∈ I j , qsu f

ϕ
−→ qsu f, ϕ = ir <

wN ∧ ξ(incr(I j)) (copy the array suffixes untouched by the loop).

22

– qsu f
ϕ
−→ qf in, ϕ =

V

1≤r≤k ir = wN (all arrays are entirely processed).

The syntactical transformationξ of assignments and conditions preserves the structure of
these expressions, but replaces eachbr by the counterwr and eachar [ir +c] by wo

r,c for br ∈BVar,
ar ∈ AVar, ir ∈ IVar, andc ∈ N. On the left-hand sides of the assignments, future values of
the counters are used. The translation of the increment statements is a bit more involved as it
implies “shifting” of the contents of the window containingthe array entries that the program
can currently manipulate:

• ξ(n) := n for n∈ Z, ξ(br) := wr for 1≤ r ≤m, ξ(ir) := ir for 1≤ r ≤ k, andξ(ar [ir +
c]) := wo

r,c for 1≤ r ≤ k, c∈N,

• ξ(LHSL+n) := ξ(LHSL)+n for n∈ Z,

• ξ(LHSL = RHSL) := (ξ(LHSL))
′ = ξ(RHSL),

• ξ(RHSL,1≤ RHSL,2) := ξ(RHSL,1)≤ ξ(RHSL,2),

• ξ(CNDL,1 &&CNDL,2) := ξ(CNDL,1)∧ξ(CNDL,2),

• ξ(incr(I)) :=
V

ir∈I ξ(incr(ir)) for I ⊆ IVar, and

• ξ(incr(ir)) := xi
r
′
= wi

r,1∧
V

1<l≤dL(ar) wi ′
r,l−1 = wi

r,l ∧xo
r
′ = wo

r,0∧
V

0<l≤dL(ar) wo′
r,l−1 = wo

r,l ∧wi ′
r,dL(ar) = wo′

r,dL(ar)∧ i′r = ir +1,
if dL(ar) > 0,

• ξ(incr(ir)) := xi
r
′
= wo′

r,0∧xo
r
′ = wo

r,0∧ i′r = ir +1, if dL(ar) = 0.

The main idea of the construction is the following.TL preserves the exact sequences of op-
erations done on arrays and scalars inL, but performs them on suitably chosen counters instead,
exploiting the fact that the program always accesses the arrays through a bounded window only,
which is moving from the left to right. The contents of this window is stored in the working
counters whose meaning shifts at each increment step. In particular, the initial value of an array
cell ar [l] is stored inwo

r,dL(ar)
for dL(ar) > 0 (the case ofdL(ar) = 0 is just a bit simpler). This

value can then be accessed and/or modified viawo
r,q whereq ∈ {dL(ar), ...,0} in the iterations

l − dL(ar), ..., l , respectively, due to copyingwo
r,q into wo

r,q−1 whenever simulatingincr(ir) for

q > 0. At the same time, the initial value ofar [l] is stored inwi
r,dL(ar)

, which is then copied into

wi
r,q for q ∈ {dL(ar)− 1, ...,1} and finally intoxi

r , which happens exactly whenir reaches the
value l . Within the simulation of the nextincr(ir) statement, the final value ofar [l] appears in
xo

r , which is exactly in accordance with how a transducer expresses a change in a certain cell of
an array (cf. Def.2).

Note also that the value of the index countersir is correctly initialized via evaluating the
appropriate initializing expressionser , it is increased at the same positions of the runs in both
the loopL and the transducerTL, and it is tested within the same conditions. Moreover, the
construction takes care of appropriately processing the array cells which are accessed less than

23

the maximum possible number of times (i.e., less thanδL(ar)+1-times) by (1) “copying” from
the inputxi

r counters to the outputxo
r counters the values of all the array cells skipped at the

beginning of the array by the loop, (2) by appropriately setting the initial values of all the working
array counters before simulating the first iteration of the loop, and (3) by finishing the pass
through the entire array even when the simulated loop does not pass it entirely.

The scalar variables are handled in a correct way too: Their input value is recorded in thepi
r

counters, this value is initially copied into the working counterswr which are modified through-
out the run of the transducer by the same operations as the appropriate program variable, and,
at the end, the transducer checks whether thepo

r counters contain the right output value of these
variables.

Finally, as for what concerns the dependencies, note that all the arrays whose indices are
dependent in the loop (meaning that these indices are advanced in exactly the same loop branches
and are initialized in the same way) are processed at the sametime in the initial and final steps of
the transducers (when the transducer is in the control statesqpre or qsu f). Within the control paths
leading fromqloop to qloop, indices of such arrays are advanced at the same time as thesepaths
directly correspond to the branches of the loop. Hence, the working counters of these arrays have
always the same value, which is, however, not necessarily the case for the other arrays.

It is thus easy to see that we can formulate the correctness ofthe translation as captured by
the following Theorem.

Theorem 5 Given a program loop L, the following hold:

• TL is a transition-consistent transducer,

• Θ(L) = Θ(TL), and

• ∆(TL)→ δL.

The last point ensures thatδL is a safe over-approximation of the dependency between the
index counters ofTL. This over-approximation is used in Theorem1 to check whether the post-
image of a pre-condition automatonA can be effectively computed, by checkingδT → ∆(A). In
order to meet requirements of Theorem1, one can extendTL in a straightforward way to copy
from the input to the output all the arrays and integer variables which appear in the program but
not in L.

Note that the described translation is not intended to be as optimal as possible—it can for
sure be optimized and one can also use common static analysesfor a further optimization of the
obtained transducers. For example, one can always in a standard way (using substitutions of the
assigned values) compress each loop ofTL simulating a single branch ofL into a self-loop.

6 Examples

In order to validate our approach, we have performed proof-of-concept experiments with several
programs handling integer arrays. Table1 reports the size of the derived post-image automata

24

(i.e., the CA representing the set of states after the main program loop) in numbers ofcontrol
statesandcounters. The automata were slightly optimized using simple, lightweight static tech-
niques (eliminating useless counters, compacting sequences of idling transitions with the first
tick transition, eliminating clearly infeasible transitions). The result sizes give a hint on the
simplicity and compactness of the obtained automata. As ourprototype implementation is not
completed to date, we have performed several steps of the translation into counter automata and
back manually. The details of the experiments are given in AppenixC.

Table 1: Case studies
program control states counters

init 4 8
partition 4 24
insert 7 19
rotate 4 15

The init example is the classical initialization of an array with zeros. Thepartition
example copies the positive elements of an arraya into another arrayb, and the negative ones
into c. Theinsert example inserts an element on its corresponding position ina sorted array.
Therotate example takes an array and rotates it by one position to the left. For all examples
from Table1, a human-readable post-condition describing the expectedeffect of the program has
been inferred by our method.

7 Conclusion

In this paper, we have developed a new method for the verification of programs with integer
arrays based on a novel combination of logic and counter automata. We use a logic of integer
arrays to express pre- and post-conditions of programs and their parts, and counter automata and
transducers to represent the effect of loops and to decide entailments. We have successfully val-
idated our method on a set of experiments. A full implementation of our technique, which will
allow us to do more experiments, is currently under way. In the future, we are, e.g., planning
to investigate possibilities of using more static analysesto further shrink the size of the gener-
ated automata, optimizations to be used when computing transitive closures needed within the
translation from CA toSIL , adjusted for the typical scenarios that happen in our setting, etc.

Acknowledgement. The work was supported by the French Ministry of Research (RNTL
project AVERILES), the Czech Science Foundation (projects102/07/0322, 102/09/H042), the
Czech-French Barrande project MEB 020840, and the Czech Ministry of Education by the
project MSM 0021630528.

25

References

[1] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant Synthesis for
Combined Theories. InIn Proc. VMCAI’07, LNCS4349. Springer, 2007.1

[2] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path Invariants. InProc. of
PLDI’07, ACM SIGPLAN, 2007.1

[3] A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting Systems with Data:
A Framework for Reasoning about Systems with Unbounded Structures over Infinite Data
Domains. InProc. FCT’07, LNCS4639, 2007.1

[4] M. Bozga, R. Iosif, and Y. Lakhnech. Flat Parametric Counter Automata. InProc. of
ICALP’06, LNCS4052. Springer, 2006.4.2, 7, 9

[5] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s DecidableAbout Arrays? InProc. of
VMCAI’06, LNCS3855. Springer, 2006.1

[6] H. Comon and Y. Jurski. Multiple Counters Automata, Safety Analysis and Presburger
Arithmetic. InProc. of CAV’98, LNCS1427. Springer, 1998.4.2, 7, 9

[7] C. Flanagan and S. Qadeer. Predicate Abstraction for Software Verification. InProc. of
POPL’02. ACM, 2002.1

[8] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision Procedures for Extensions
of the Theory of Arrays.Annals of Mathematics and Artificial Intelligence, 50, 2007.1

[9] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT Model Checking of
Array-based Systems. InProc. of IJCAR’08, LNCS5195. Springer, 2008.1

[10] D. Gopan, T.W. Reps, and S. Sagiv. A Framework for Numeric Analysis of Aarray Opera-
tions. InPOPL’05. ACM, 2005.1

[11] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting Abstract Interpreters to Quantified Log-
ical Domains. InPOPL’08. ACM, 2008.1

[12] P. Habermehl, R. Iosif, and T. Vojnar. A Logic of Singly Indexed Arrays. InProc. of
LPAR’08, LNAI 5330. Springer, 2008.(document), 1, 4, 2, 4, 4.1

[13] P. Habermehl, R. Iosif, and T. Vojnar. What Else is Decidable about Integer Arrays? In
Proc. of FoSSaCS’08, LNCS4962. Springer, 2008.1

[14] N. Halbwachs and M. Péron. Discovering Properties about Arrays in Simple Programs. In
Proc. of PLDI’08. ACM, 2008.1

[15] R. Jhala and K. McMillan. Array Abstractions from Proofs. In CAV’07, LNCS4590.
Springer, 2007.1

26

[16] L. Kovács and A. Voronkov. Finding Loop Invariants forPrograms over Arrays Using a
Theorem Prover. InProc. of FASE’09, LNCS. Springer, 2009.1

[17] S.K. Lahiri and R.E. Bryant. Indexed Predicate Discovery for Unbounded System Verifi-
cation. InCAV’04, LNCS3114. Springer, 2004.1

[18] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.5

[19] K. McMillan. Quantified Invariant Generation Using an Interpolating Saturation Prover. In
Proc. of TACAS’08, LNCS4963. Springer, 2008.1

[20] A. Stump, C.W. Barrett, D.L. Dill, and J.R. Levitt. A Decision Procedure for an Extensional
Theory of Arrays. InProc. of LICS’01. IEEE Computer Society, 2001.1

27

A Post-condition Calculus

In this section we give rules to obtain the strongest postcondition for SIL formulae expressing
configurations of arrays w.r.t. statements of the program. We also explain how to decide verifi-
cation conditions involvingSIL formulae.

Assignements It is sufficient to consider basic assignements of the forms (1) b = RHSwhere
b is a scalar variable andRHSdoes not containb and (2)a[b+c] = RHSwherea is an array,b
a scalar variable,c a positive constant andRHSdoes not containa. Other assignements can be
simulated by several of these basic assignements.

Let us start with assignements of the formb = RHS. Thenpost(φ) is defined as

∃b′.φ[b′/b]∧b = RHS

whereφ[b′/b] is the formulaφ with all free occurrences ofb replaced byb′.
We continue with assignements of the forma[b+ c] = RHS. We suppose that the only oc-

curences ofb in φ are free. Thenpost(φ) is defined as

∃a.φ[a/a[b+c]]∧a[b+c] = RHS

whereφ[a/a[b+c]] is the formula where all “occurrences” ofa[b+c] are replaced bya. Here
an occurrence ofa[b+c] is an occurence ofa[t] wheret is some index term which has potentially
the value ofb+c. We obtainφ[a/a[b+c]] in the following way:

• Replaceφ by an equivalent formulaφ′ where occurrences ofa[b+ c] are isolated.φ′ is
given as follows.

– Replace all subformulae of the formψ = ∀ j.G→V in φ by ψ′∧ψ′′ which is obtained
as follows. LetT be the set of index terms accessinga in V. Then replace the guard
G by G∧

V

t∈T b+ c 6= t to obtainψ′. Let C be the set of constants appearing inT.
Thenψ′′ is given as

V

c′∈C(G→V)[(b+c−c′)/ j]

• Now replace all occurrences ofa[b+c] in φ′ by a.

Conditionals statements We consider a simple statement of the formi f CONDp ASGNp

else ASGN′p. The other conditional statements can be handled in a very similar way.
Let ϕ be aSIL formula. Then the postcondition of the statement is given bythe disjunction of

the postcondition ofASGNp of ϕ∧CONDp and of the postcondition ofASGN′p of ϕ∧¬CONDp.

Closure under post-condition of the∃∗∀∗ fragment It is clear that ifϕ is a formula in∃∗∀∗-
SIL , then its post-condition is in∃∗∀∗-SIL as well since only one existential quantifier is added
by the post-condition computation.

28

Deciding verification conditions The user can specify a postconditionψ in the∀∗ fragment
of SIL , i.e. all formulae which when written in prenex normal form have the quantifier prefix
∀i1 . . .∀im, wherei1, . . . , im are index variables.ψ can contain freely occurring array and scalar
variables.

Then, checking if a formulaϕ in ∃∗∀∗-SIL obtained as a computed postcondition entailsψ
is decidable since the validity ofϕ→ ψ is equivalent to the non-satisfiability ofϕ∧¬ψ. This
formula is in∃∗∀∗-SIL whose satisifiability problem is decidable due to Theorem2.

29

B Transducers Checking for Out-of-Bound Array References

In order to be able to check forout-of-bound array references, we may assume that the set of
scalar variables used in the given program contains a variable ba for each array variablea∈AVar,
which stores the assumed length of the arraya.10 We can now extend the translation from loops
to transducers, which we presented in Section5.1, as follows. We translate a loopL of the form
depicted in Figure8 to the transducerTL = 〈X,Q,{q0},−→,{qf in,qerr}〉 defined below:

• X = {xi
r ,x

o
r , ir | 1≤ r ≤ k}∪{wi

r,l | 1≤ r ≤ k,1≤ l ≤ dL(ar)}∪{wo
r,l | 1≤ r ≤ k, 0≤ l ≤

dL(ar)}∪ {pi
r , po

r ,wr | 1≤ r ≤ m}∪ {wN} wherexi/o
r , 1≤ r ≤ k, are input/output array

counters,pi/o
r , 1≤ r ≤ k, are parameters storing input/output scalar values, andwr , 1≤

r ≤m, are working counters used for the manipulation of arrays and scalars (wN stores the
common length of arrays).

• Q = {q0,qpre,qloop,qsu f,qf in,qoob,qerr}∪{qr
l | 1≤ r ≤ h,0≤ l < nr}.

• The transition rules ofTL are the following. We assume an implicit constraintx′ = x for
each counterx∈ X such thatx′ does not appear explicitly:

– q0
ϕ
−→ qpre, ϕ =

V

1≤r≤m(wr = pi
r)∧wN > 0∧

V

1≤r≤k(ir = 0∧xi
r = wo

r,0)∧
V

1≤r≤k
1≤l≤dL(ar)

(wi
r,l = wo

r,l). The counters are initialized.

– For each≃δL
-equivalence classI j , 1≤ j ≤ n, qpre

ϕ
−→ qpre with ϕ =

V

1≤r≤k(ir <

ξ(er))∧ξ(incr(I)). TL copies the initial parts of the arrays untouched byL.

– qpre
ϕ
−→ qloop, ϕ =

V

1≤r≤k ir = ξ(er). TL starts simulatingL.

– For each 1≤ l ≤ h, qloop
ϕ
−→ ql

0 with ϕ = ξ(C)∧¬o(C)∧
V

1≤r<l (¬ξ(Cr)∧¬o(Cr))∧

ξ(Cl)∧¬o(Cl) whereCh = ⊤. The automaton chooses a branch of the loop to sim-
ulate. Moreover, there are special transitions for the caseof an out-of-bound ac-

cess: For each 1≤ l ≤ h and each disjunctψ of o(Cl), qloop
ϕ′
−→ qoob with ϕ′ =

ξ(C)∧
V

1≤r<l (¬ξ(Cr))∧ψ∧ϕout, and there are also transitionsqloop
ϕ′′
−→ qoob where

ϕ′′ = ψ∧ϕout for each disjunctψ in o(C). The formulaϕout =
V

1≤r≤m(wr = po
r)

defines the output values of scalar variables.

10Note thatba is a program variable whose contents may differ from the uniform length of the simulated arrays
wN that we introduce in our model in order to deal with (possiblypadded or, on the other hand, shortened) arrays
having the same length. We can have a situation whenba < wN meaning that the real array is padded in our model by
cells which will not be used within a simulation of the loop. On the other hand, it may even be the case thatwn < ba

which may happen when not all elements ofa are really used in the loop (in which case they may effectively be left
out within the simulation).

30

– For each 1≤ l ≤ h, 1≤ r ≤ nl , ql
r−1

ξ(Sl
r)∧¬o(Sl

r)−−−−−−−→ q whereq= ql
r if r < nl andq= qloop

otherwise. The automaton simulates one branch of the loop. For the case of out-of-

bound accesses, there are also transitionsql
r−1

ψ∧ϕout
−−−−→ qoob for each disjunctψ in

o(Sl
r).

– qloop
¬ξ(C)∧¬o(C)∧ϕout
−−−−−−−−−−−→ qsu f. The automaton finishes the simulation of the loop body.

– For each≃δL
-equivalence classI j , 1≤ j ≤ n, ir ∈ I j , andt ∈ {su f,oob}, qt

ϕ
−→ qt

whereϕ = ir < wN ∧ ξ(incr(I j)). These transitions copy the final parts of the arrays
untouched by the loop. The copy is synchronous for dependentarrays. Note that we
do not have to worry about the dependent arrays having different lengthsba asTL is
now not really accessing the useful contents of the arrays, and the arrays are padded
to the same total lengthwN.

– For (t, t ′) ∈ {(su f, f in),(oob,err)}, qt
ϕ
−→ qt ′ whereϕ =

V

1≤r≤k ir = wN. All arrays

are entirely processed.

In the above, we assume the same syntactical translationξ of particular assignement state-
ments, index increments, initialization expressions, andconditions as in Section5.1. It remains
to define the test for an out-of-bound access within a condition or assignement statementE:
o(E) =

W

1≤r≤k.dE(ar)6=⊥ ip+dE(ar)≥ bar .
In order to be able to describe the effect of the above translation, let us assume that whenever

an out-of-bound array reference happens in a run of a program, the control is transferred to a
special terminal error lineerr without modifying the contents of the program variables in any
way. Given a loopL, we then denote byΘ f in(L) the set of pairs of states〈s, t〉 such that there
is a run ofL from 〈l1,s〉 to 〈l2, t〉, l2 6= err, assuming thatL starts at the linel1 andl2 is the line
immediately followingL. Moreover, letΘerr(L) be the set of pairs of states〈s, t〉 such that there
is a run ofL from 〈l1,s〉 to 〈err, t〉. Further, given the transducerTL derived for a loopL, let
T f in

L andTerr
L be the transducers obtained fromTL by restricting its set of final states to{qf in} or

{qerr}, respectivelly. We can now give an alternative to Theorem5 characterizing correctness of
the extended construction.

Theorem 6 Given a program loop L, the following hold:

• TL is a transition-consistent transducer,

• Θr(L) = Θ(Tr
L) for r ∈ { f in,err}, and

• ∆(TL)→ δL.

31

C Details of the Considered Case Studies

C.1 Array Partition

Input : An arraya, parameterb1 denoting the number of useful cells ina.
Data: b2,b3 – auxiliary variables
Output : Array a2 contains non-negative elements, arraya3 contains negative elements.

/* ϕ : b1≥ 0 */
b2 := 0;
b3 := 0;
while a1:i1=0,a2:i2=0,a3:i3=0(i1 < b1) do

if a1[i1]≥ 0 then
a2[i2] := a1[i1];
b2 := b2+1;
i1++;
i2++;

else
a3[i3] := a1[i1];
b3 := b3+1;
i1++;
i3++;

end
end
/* ψ : ∀i.(0≤ i ≤ b2−1)⇒ (a2[i]≥ 0) ∧ ∀i.(0≤ i ≤ b3−1)⇒ (a3[i] < 0) */

Algorithm 1 : Array partition program

Formulaϕin expressing the program state at the point where the program enters the loop is
constructed according to the postcondition calculus, as described in appendixA. This formula is
then translated to a counter automatonAin according to section4.1. Then, a loop transducerAL

is constructed in accordance with section5.1. The automatonAout describing a program state at
the point where the program leaves the loop is created according to lemma4.

In the split example, we have

ϕin = vi
1≥ 0 ∧ vi

2 = 0 ∧ vi
3 = 0,

Ain = ({vi
1,v

i
1,v

i
1},{qi,qf },{qi},→,{qf}), where

→= {qi
vi

1≥0 ∧ vi
2=0 ∧ vi

3=0∧const(vi
1,v

i
1,v

i
1)−−−−−−−−−−−−−−−−−−−−−→ qf ,qf

const(vi
1,v

i
1,v

i
1)−−−−−−−−→ qf }.

AutomatonAout is depicted in figureC.1. We don’t show the automatonAL as its structure is ex-
actly the same as inAout and labeling ofAL’s transitions is a subset ofAout’s transitions. Notably,
guards specifying post-image value counters (y1,y2,y3) are not present inAL. Correspondence
between program variables and counters inAout is given in tableC.1.

32

Figure 9: Array partition - correspondence between programvariables and counters

array
variable

index
counter

val. counter
at loop exit

val. counter
at loop entry

transducer
output

a1 i1 y1 xi
1 xo

1
a2 i2 y2 xi

2 xo
1

a3 i3 y3 xi
3 xo

1
scalar

variable
parameter at

loop exit
parameter at
loop entry

b1 v1 vi
1

b2 v2 vi
2

b3 v3 vi
3

q0 qloop qsu f qf in
A1 :

wN > 0∧

vi
1 ≥ 0 ∧ vi

2 = 0 ∧ vi
3 = 0 ∧

i1 = 0∧xi
1 = wo

1,0∧

i2 = 0∧xi
2 = wo

2,0∧

i3 = 0∧xi
3 = wo

3,0 ∧

y′1 = y1 ∧ y′2 = y2 ∧ y′3 = y3 ∧

w1 = vi
1∧w2 = vi

2∧w3 = vi
3 ∧

const(w2,w3, i1,xi
1,xo

1,wo
1,0,

i2,xi
2,xo

2,wo
2,0, i3,xi

3,xo
3,wo

3,0) ∧

ϕconst

A2 :

i1 ≥ w1

y′1 = y1 ∧ y′2 = y2 ∧ y′3 = y3 ∧

w1 = v1∧w2 = v2∧w3 = v3 ∧

const(w2,w3, i1,xi
1,xo

1,wo
1,0,

i2,xi
2,xo

2,wo
2,0, i3,xi

3,xo
3,wo

3,0) ∧

ϕconst

A3 :

i1 = wN ∧ i2 = wN ∧ i3 = wN ∧

y′1 = y1 ∧ y′2 = y2 ∧ y′3 = y3 ∧

const(w2,w3, i1,xi
1,xo

1,wo
1,0,

i2,xi
2,xo

2,wo
2,0, i3,xi

3,xo
3,wo

3,0) ∧

ϕconst

B2B3 C1C2

C3

B2:
i1 < w1 ∧ wo

1,0 ≥ 0 ∧ cnt(i1 ++) ∧

xo
2
′ = wo

1,0 ∧ xi
2
′
= wo

2,0
′ ∧ i′2 = i2 +1∧

y1 = xo
1
′ ∧ y2 = xo

2
′ ∧ y′3 = y3 ∧ w′2 = w2 +1∧

const(i3,xi
3,xo

3,wo
3,0,w3) ∧

ϕconst

B3:
i1 < w1 ∧ wo

1,0 < 0 ∧ cnt(i1 ++) ∧

xo
3
′ = wo

1,0 ∧ xi
3
′
= wo

3,0
′ ∧ i′3 = i3 +1∧

y1 = xo
1
′ ∧ y′2 = y2 ∧ y3 = xo

3
′ ∧ w′3 = w3 +1∧

const(i2,xi
2,xo

2,wo
2,0,w2) ∧

ϕconst

C1:
i1 < wN ∧ cnt(i1 ++) ∧

y1 = xo
1
′ ∧ y′2 = y2 ∧ y′3 = y3 ∧

const(i2,xi
2,xo

2,wo
2,0,

i3,xi
3,xo

3,wo
3,0,w2,w3) ∧

ϕconst

C2:
i2 < wN ∧ cnt(i2 ++) ∧

y′1 = y1 ∧ y2 = xo
2
′ ∧ y′3 = y3 ∧

const(i1,xi
1,xo

1,wo
1,0,

i3,xi
3,xo

3,wo
3,0,w2,w3) ∧

ϕconst

C3:
i3 < wN ∧ cnt(i3 ++) ∧

y′1 = y1 ∧ y′2 = y2 ∧ y3 = xo
3
′ ∧

const(i1,xi
1,xo

1,wo
1,0,

i2,xi
2,xo

2,wo
2,0,w2,w3) ∧

ϕconst

const:
const(vi

1,vi
2,vi

3,v1,v2,v3,w1,wN)

cnt(i):

cnt(i1 ++) := xi
1
′
= wo

1,0
′ ∧ xo

1
′ = wo

1,0 ∧ i′1 = i1 +1

cnt(i2 ++) := xi
2
′
= wo

2,0
′ ∧ xo

2
′ = wo

2,0 ∧ i′2 = i2 +1

cnt(i3 ++) := xi
3
′
= wo

3,0
′ ∧ xo

3
′ = wo

3,0 ∧ i′3 = i3 +1

Figure 10: Array partition - loop post-image represented byAout

33

C.1.1 From CA to SIL

Arraysa1, a2, a3 are independent.
Let us focus on computing the abstraction w.r.t.a2 equivalence class. The case fora3 is

similar (and the case ofa1 is simpler).
The abstraction from a the non-flat CA to a flat CA with DBC constraints is schematized in

figureC.1.1.

B2 C2

B3
C1 C3

A1 A2 A3qloop qsu f

A1 A2 A3
qloop

qsu f qfq0

q0 qf

φB = B2◦D(B∗3) φC = C2 ◦D((D(C1∨C3))
∗)

Figure 11: Array partition - abstraction of the post-image

C.1.2 Stateqloop

Remark that relations arepartitionedi.e, the set of counters restricted on every line are disjoint.

B2 : i1 < w1∧ i′1 = i1+1∧w′1 = w1

∧ wo
1,0 >= 0∧xi

1
′
= wo

1,0
′∧xo

1
′ = wo

1,0∧xo
2
′ = wo

1,0∧y1 = xo
1
′∧y2 = xo

2
′

∧ xi
2
′
= wo

2,0
′

∧ i′2 = i2+1

∧ w′2 = w2 +1

∧ Id(wo
3,0,x

o
3,x

i
3,y3,v

i
1,v

i
2,v

i
3,v1,v2,v3,w3, i3,wN)

34

B3 : i1 < w1∧ i′1 = i1+1∧w′1 = w1

∧ wo
1,0 < 0∧xi

1
′
= wo

1,0
′∧xo

1
′ = wo

1,0∧xo
3
′ = wo

1,0∧y1 = xo
1
′∧y3 = xo

3
′

∧ xi
3
′
= wo

3,0
′

∧ i′3 = i3+1

∧ w′3 = w3+1

∧ Id(wo
2,0,x

o
2,x

i
2,y2,v

i
1,v

i
2,v

i
3,v1,v2,v3,w2, i2,wN)

D(B∗3) : i′1≥ i1∧w′1 = w1

∧ ⊤

∧ ⊤

∧ i′3≥ i3
∧ w′3≥ w3

∧ Id(wo
2,0,x

o
2,x

i
2,y2,v

i
1,v

i
2,v

i
3,v1,v2,v3,w2, i2,wN)

φB = B2◦D(B∗3) : i′1≥ i1+1∧ i1 < w1∧w′1 = w1

∧ i′2 = i2+1

∧ w′2 = w2 +1

∧ wo
1,0≥ 0∧xo

2
′ = wo

1,0 = y1 = y2

∧ xi
2
′
= wo

2,0
′

∧ i′3≥ i3
∧ w′3≥w3

∧ Id(vi
1,v

i
2,v

i
3,v1,v2,v3,wN)

T (∃i∃xr∃w . φB) : T (y2≥ 0) = a2[j]≥ 0

φn
B : i′1≥ i1+n∧ i1 < w1∧w′1 = w1∧

i′2 = i2+n∧w′2 = w2 +n∧

xi
2
′
= wo

2,0∧

i′3≥ i3+n∧w′3 ≥w3 +n∧ Id(vi
1,v

i
2,v

i
3,v1,v2,v3,wN)

T (∃i∃x∃w . (A1◦φn
B◦A2)) : T (v2 = n) = b2 = n

35

C.1.3 Stateqsu f

C1 = i1 < wN∧ i′1 = i1+1∧w′N = wN

∧ xi
1
′
= wo

1,0
′∧xo

1
′ = wo

1,0∧y1 = xo
1
′

∧ Id(y2,y3, i2, i3,w
o
2,0,x

o
2,x

i
2,w

o
3,0,x

o
3,x

i
3,v

i
1,v

i
2,v

i
3,v1,v2,v3,w1,w2,w3)

C2 = i2 < wN∧ i′2 = i2+1∧w′N = wN

∧ xi
2
′
= wo

2,0
′∧xo

2
′ = wo

2,0∧y2 = xo
2
′

∧ Id(y1,y3, i1, i3,w
o
1,0,x

o
1,x

i
1,w

o
3,0,x

o
3,x

i
3,v

i
1,v

i
2,v

i
3,v1,v2,v3,w1,w2,w3)

C3 = i3 < wN∧ i′3 = i3+1∧w′N = wN

∧ xi
3
′
= wo

3,0
′∧xo

3
′ = wo

3,0∧y3 = xo
3
′

∧ Id(y2,y1, i2, i1,w
o
2,0,x

o
2,x

i
2,w

o
1,0,x

o
1,x

i
1,v

i
1,v

i
2,v

i
3,v1,v2,v3,w1,w2,w3)

D(C1∨C3) = i1≤ i′1≤ i1+1

∧ i3≤ i′3≤ i3+1

∧ w′N = wN

∧ Id(y2, i2,w
o
2,0,x

o
2,x

i
2,v

i
1,v

i
2,v

i
3,v1,v2,v3,w1,w2,w3)

D((D(C1∨C3))
∗) = i1≤ i′1
∧ i3≤ i′3
∧ w′N = wN

∧ Id(y2, i2,w
o
2,0,x

o
2,x

i
2,v

i
1,v

i
2,v

i
3,v1,v2,v3,w1,w2,w3)

φC = C2◦D((D(C1∨C3))
∗) = i′2 = i2+1∧ i2 < wN∧w′N = wN

∧ xi
2
′
= wo

2,0
′∧wo

2,0 = xo
2
′ = y2

∧ i′1≥ i1
∧ i′3≥ i3
∧ Id(vi

1,v
i
2,v

i
3,v1,v2,v3,w1,w2,w3)

C.1.4 The SIL formula

The formula is∃n∀j . 0≤ j < n→ a2[j]≥ 0∧b2 = n. This can be further simplied to∀j . 0≤ j <
b2→ a2[j]. Notice thatK = 0 here, which simplifies things a lot. Fori3 we obtain in a similar
way∀j . 0≤ j < b3→ a3[j].

36

C.2 Insertion of an Element

Input : A sorted arraya, parameterb1 denoting the number of used cells (see
precondition) in the input arraya, b2 is an element to insert.

Data: b3,b4 – auxiliary variables
Output : Elementb2 is inserted intoa (hence the number of useful cells ina increases by

one), the value of a variableb5 is an index ofa whereb2 was inserted. The scalar
variableb5 has a value of an index whereb2 was inserted.

/* ψpre : ∀i.(0≤ i ≤ b1−2)⇒ (a[i]≤ a[i +1])∧0≤ b1 */

b3 := b2;
b5 := 0;
while a:i=0(i < b1) do

if (a[i]≤ b2) then
b5 := b5+1;
i ++;

else
b4 := a[i];
a[i] := b3;
b3 := b4;
i ++;

end
end
a[b1] := b3;
b1++;
/* ψpost : 0≤ b5≤ d0 ∧ ∀i.(0≤ i ≤ b1−2)⇒ (a[i]≤ a[i +1]) ∧
∀i.(b5≤ i ≤ b5)⇒ (a[i] = b2]) */

Algorithm 2 : Insertion of an element into a sorted array

Formulaϕin expressing the program state at the point where the program enters the loop is
constructed according to the postcondition calculus, as described in appendixA.

ϕin := ϕ1∧ϕ2∧ϕ3∧ϕ4, whereϕ1 := ∀i.(0≤ i ≤ b1−2)⇒ (a[i]≤ a[i +1]),

ϕ2 := 0≤ b1, ϕ3 := b3 = b2, ϕ4 := b5 = 0

This formula is then translated to a counter automatonAin according to a construction described
in section4.1. So, for each formulaϕi , i ∈ {1,2,3,4}, we construct an automatonAϕi . A counter
transducerAL is constructed for the program loop (in accordance with section 5.1). The automata
representation of the post-image of theϕin andϕloop is constructed by making product of allAϕi ,
i ∈ {1,2,3,4} andAL and by adding new value counters (denoted byy in examples) in accordance
with section4.1.

It is convenient to make the product of the automata describing presburger constraints and
of the loop transducer first (we can prevent some redundant guards to appear in the post-image

37

automaton by this). By this, we obtainAL
′ = Aϕ2⊗Aϕ3⊗Aϕ4⊗AL and then we make a product

Aout = A1⊗AL
′ to obtain the post-image. ForA1, see figureC.2, for AL figureC.2 and forAout

L
figureC.2.

qi q2 q3 qf

{8}

i = vi
1−2 ∧ tick(i) ∧

xi ≤ xi ′ ∧ i < wN−1

{12}

tick(i) ∧

i = wN−1

{2}

0 = i < vi
1−2∧

tick(i) ∧ xi ≤ xi ′ ∧

i < wN −1

{3} 0 = i = vi
1−2 ∧ tick(i) ∧ xi ≤ xi ′ ∧ i < wN−1

{4} 0 = i ∧ 0 > vi
1−2 ∧ tick(i) ∧ i < wN −1

{9} tick(i) ∧ xi ≤ xi ′ ∧ i = wN −1

{5} tick(i) ∧ i = wN−1

{1}

i = 0∧
idle(i)

idle(i)

{6}

idle(i)

{10}

idle(i)

{13}

{7} {11}

i < vi
1−2 ∧ tick(i) ∧

xi ≤ xi ′ ∧ i < wN−1

tick(i) ∧

i < wN−1

Figure 12: Counter automatonA1 representing the forall subformula of the precondition.

q0 qloop qsu f qf in

{1}

wN > 0∧ϕinit∧

i = 0∧xi = wo
1,0∧

vi
1 = v1∧vi

2 = v2∧ w3 = vi
3∧

w4 = vi
4∧w5 = vi

5∧

const(w3,w4,w5,

i,xi ,xo,wo
1,0,y

vi
1,vi

2,vi
3,vi

4,vi
5,

v1,v2,v3,v4,v5,wN)

{4}

i ≥ vi
1∧

w3 = v3∧w4 = v4∧w5 = v5∧

const(w3,w4,w5,

i,xi ,xo,wo
1,0,y

vi
1,vi

2,vi
3,vi

4,vi
5,

v1,v2,v3,v4,v5,wN)

{6}

i = wN∧

const(w3,w4,w5,

i,xi ,xo,wo
1,0,y

vi
1,vi

2,vi
3,vi

4,vi
5,

v1,v2,v3,v4,v5,wN)

i < vi
1∧wo

1,0 ≤ w2∧w′5 = w5 +1∧

xo′ = wo
1,0∧xi ′ = wo

1,0
′ ∧ tick(i)∧y = xo′∧

const(w3,w4,

vi
1,vi

2,vi
3,vi

4,vi
5,

v1,v2,v3,v4,v5,wN

{2}

i < vi
1∧wo

1,0 > w2∧w′4 = wo
1,0∧

w′3 = wo
1,0∧xo′ = w3∧

xi ′ = wo
1,0
′ ∧ tick(i)∧y = xo′∧

const(w5,

vi
1,vi

2,vi
3,vi

4,vi
5,

v1,v2,v3,v4,v5,wN

{3}

i < wN ∧xo′ = wo
1,0

xi ′ = wo
1,0
′ ∧ tick(i)∧y = xo′

const(vi
1,vi

2,vi
3,vi

4,vi
5,

v1,v2,v3,v4,v5,wN

{5}

Figure 13: Product of a loop counter transducerAL with automataA2, A3 andA4 (note:ϕinit :=
0≤ vi

1∧vi
3 = vi

2∧vi
5 = 0).

38

AutomatonAout can be simplified further. Firstly, every non-loop, non-initial and non-final
state can be eliminated by composing its incoming and outcoming transitions. Formally, let
in(s) (out(s)) be a set of all incoming (outcoming) transitions of states. Every states which is
neither initial nor final nor it contains any loops can be eliminated by composing everyt ∈ in(s)
with every t ′ ∈ out(s). In our framowork, this elimination can be applied to stateswhere all
incoming transitions are idle or where all outcoming transitions are idle (otherwise we would
lose state-consistency). With this additional condition,this simplification can be applied to states
(qi,qloop), (qf ,qloop), (qf ,qsu f) in the insert example.

Secondly, every non-trivial strongly connected componentsccof the automaton can be anal-
ysed by constructing a dependency graph of its transitions.This technique may discover that
loops (or transitions, generally) can be performed only in some order. If this leads to simplifica-
tion of a scc(e.g. sccbecomes flat), then thisscc is replaced by the dependency graph. In the
insert example, this is the case of state(q2,qloop), where the dependency analysis discovers that a
transitionϕ(7,3) can never be followed byϕ(7,2) (analogically for state(q3,qloop) and transitions
ϕ(11,3) andϕ(11,2)).

Both previous optimizations have been implemented in the FLATA library. The result of this
optimization, an automatonϕout

′, can be seen in figureC.2. Moreover, by a simple analysis of
the loop, it can be found out that variablesb1 andb2 are never assigned, so the loop transducer
does not have to use auxiliary countersw1 andw2.

qi ,qo qi ,qloop q2,qloop

q3,qloop

qf ,qloop

q3,qsu fqf ,qsu fqf ,qf in

ϕ(1,1)

idle

ϕ(2,2)

ϕ(2,3)

ϕ(3,2)

ϕ(3,3)

ϕ(4,2)

ϕ(4,3)
ϕ(5,3)

ϕ(8,2) ϕ(8,3)

ϕ(10,4)idle
ϕ(12,3)

ϕ(12,5)

ϕ(13,4) idle

ϕ(13,6)

idle

ϕ(7,2)

ϕ(7,3)

ϕ(11,2)

ϕ(11,3)

ϕ(11,5)

ϕ(5,2)

ϕ(12,2)

Figure 14: Insert example, the post-image automatonAout (idle transitions are marked, the rest
are ticks).

39

qi ,q0

q2,qloop

q2,qloop
′

q3,qloop

q3,qloop
′

q3,qsu fqf ,qf in

ϕ15idle

ϕ15idle

ϕ1

ϕ2

ϕ3
ϕ4

ϕ5
ϕ6

ϕ7 ϕ8

ϕ9 ϕ10

ϕ11idle

ϕ12

ϕ13

ϕ14

ϕ(7,2)

ϕ(7,3)

ϕ(11,2)

ϕ(11,3)

ϕ(11,5)

ϕ1 := ϕ(1,1)(2,2)

ϕ2 := ϕ(1,1)(2,3)

ϕ3 := ϕ(1,1)(3,2)

ϕ4 := ϕ(1,1)(3,3)

ϕ5 := ϕ(1,1)(4,2)

ϕ6 := ϕ(1,1)(4,3)

ϕ7 := ϕ(8,2)

ϕ8 := ϕ(8,3)

ϕ9 := ϕ(1,1)(5,2)(13,4)(13,6)

ϕ10 := ϕ(1,1)(5,3)(13,4)(13,6)

ϕ11 := ϕ(10,4)

ϕ12 := ϕ(12,2)(13,4)(13,6)

ϕ13 := ϕ(12,3)(13,4)(13,6)

ϕ14 := ϕ(12,5)(13,6)

Figure 15: SimplificationAout
′ of the post-image automatonAout.

Definitions of transition labels:

ϕ1 : 0 = i < vi
1−2 ∧ xi ≤ (xi)′ ∧ i < wN−1

∧ wN > 0∧0≤ vi
1∧vi

3 = vi
2∧vi

5 = 0∧xi = wo
1,0∧vi

1 = v1∧vi
2 = v2∧w3 = vi

3∧w4 = vi
4∧w5 = vi

5

∧ wo
1,0≤ w2∧w′5 = w5 +1∧xo′ = wo

1,0∧xi ′ = wo
1,0
′∧ tick(i)∧y= xo′

∧ const(w3,w4,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ2 : 0 = i < vi
1−2 ∧ xi ≤ (xi)′ ∧ i < wN−1

∧ wN > 0∧0≤ vi
1∧vi

3 = vi
2∧vi

5 = 0∧xi = wo
1,0∧vi

1 = v1∧vi
2 = v2∧w3 = vi

3∧w4 = vi
4∧w5 = vi

5

∧ wo
1,0 > w2∧w′4 = wo

1,0∧w′3 = wo
1,0∧xo′ = w3∧xi ′ = wo

1,0
′∧ tick(i)∧y= xo′

∧ const(w5,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ3 : 0 = i = vi
1−2 ∧ xi ≤ (xi)′ ∧ i < wN−1

∧ wN > 0∧0≤ vi
1∧vi

3 = vi
2∧vi

5 = 0∧xi = wo
1,0∧vi

1 = v1∧vi
2 = v2∧w3 = vi

3∧w4 = vi
4∧w5 = vi

5

∧ wo
1,0≤ w2∧w′5 = w5 +1∧xo′ = wo

1,0∧xi ′ = wo
1,0
′∧ tick(i)∧y= xo′

∧ const(w3,w4,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

40

ϕ4 : 0 = i = vi
1−2 ∧ xi ≤ (xi)′ ∧ i < wN−1

∧ wN > 0∧0≤ vi
1∧vi

3 = vi
2∧vi

5 = 0∧xi = wo
1,0∧vi

1 = v1∧vi
2 = v2∧w3 = vi

3∧w4 = vi
4∧w5 = vi

5

∧ wo
1,0 > w2∧w′4 = wo

1,0∧w′3 = wo
1,0∧xo′ = w3∧xi ′ = wo

1,0
′∧ tick(i)∧y= xo′

∧ const(w5,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ5 : 0 = i ∧ vi
1 = 1 ∧ i < wN−1

∧ wN > 0∧vi
3 = vi

2∧vi
5 = 0∧ i = 0∧xi = wo

1,0∧vi
1 = v1∧vi

2 = v2∧w3 = vi
3∧w4 = vi

4∧w5 = vi
5

∧ wo
1,0≤ w2∧w′5 = w5 +1∧xo′ = wo

1,0∧xi ′ = wo
1,0
′∧ tick(i)∧y= xo′

∧ const(w3,w4,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ6 : 0 = i ∧ vi
1 = 1 ∧ i < wN−1

∧ wN > 0∧vi
3 = vi

2∧vi
5 = 0∧ i = 0∧xi = wo

1,0∧vi
1 = v1∧vi

2 = v2∧w3 = vi
3∧w4 = vi

4∧w5 = vi
5

∧ wo
1,0 > w2∧w′4 = wo

1,0∧w′3 = wo
1,0∧xo′ = w3∧xi ′ = wo

1,0
′∧ tick(i)∧y= xo′

∧ const(w5,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ7 : i = vi
1−2 ∧ xi ≤ (xi)′ ∧ i < wN−1

∧ wo
1,0≤ w2∧w′5 = w5 +1∧xo′ = wo

1,0∧xi ′ = wo
1,0
′∧ tick(i)∧y= xo′

∧ const(w3,w4,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ8 : i = vi
1−2 ∧ xi ≤ (xi)′ ∧ i < wN−1

∧ wo
1,0 > w2∧w′4 = wo

1,0∧w′3 = wo
1,0∧xo′ = w3∧xi ′ = wo

1,0
′∧ tick(i)∧y= xo′

∧ const(w5,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ9 : 0 = i = wN−1

∧ wN > 0∧0≤ vi
1∧vi

3 = vi
2∧vi

5 = 0∧xi = wo
1,0∧vi

1 = v1∧vi
2 = v2∧w3 = vi

3∧w4 = vi
4∧w5 = vi

5

∧ i = vi
1−1∧w′3 = v3∧w′4 = v4∧w′5 = v5∧

∧ wo
1,0≤ w2∧w′5 = w5 +1∧xo′ = wo

1,0∧xi ′ = wo
1,0
′∧ tick(i)∧y= xo′

∧ const(w3,w4,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

41

ϕ10 : 0 = i = wN−1

∧ wN > 0∧0≤ vi
1∧vi

3 = vi
2∧vi

5 = 0∧xi = wo
1,0∧vi

1 = v1∧vi
2 = v2∧w3 = vi

3∧w4 = vi
4∧w5 = vi

5

∧ i = vi
1−1∧w′3 = v3∧w′4 = v4∧w′5 = v5∧

∧ wo
1,0 > w2∧w′4 = wo

1,0∧w′3 = wo
1,0∧xo′ = w3∧xi ′ = wo

1,0
′∧ tick(i)∧y= xo′

∧ const(w5,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ11 : i ≥ vi
1∧w3 = v3∧w4 = v4∧w5 = v5∧

∧ const(w3,w4,w5, i,x
i ,xo,wo

1,0,y,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ12 : i = wN−1

∧ i = vi
1−1∧w′3 = v3∧w′4 = v4∧w′5 = v5∧

∧ wo
1,0≤w2∧w′5 = w5 +1∧xo′ = wo

1,0∧xi ′ = wo
1,0
′∧ tick(i)∧y= xo′

∧ const(w3,w4,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ13 : i = wN−1

∧ i = vi
1−1∧w′3 = v3∧w′4 = v4∧w′5 = v5∧

∧ wo
1,0 > w2∧w′4 = wo

1,0∧w′3 = wo
1,0∧xo′ = w3∧xi ′ = wo

1,0
′∧ tick(i)∧y= xo′

∧ const(w5,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ14 : i = wN−1

∧ xo′ = wo
1,0∧xi ′ = wo

1,0
′∧ tick(i)∧y= xo′

∧ const(vi
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

ϕ15 : const(w3,w4,w5, i,x
i ,xo,wo

1,0,y,v
i
1,v

i
2,v

i
3,v

i
4,v

i
5,v1,v2,v3,v4,v5)

42

C.2.1 Postcondition computation

ϕs
7,2 ϕs

7,3

ϕ7,2

ϕ11,5

ϕ2,2 ϕ7,2 ϕ7,2 ϕ7,3 ϕ7,3 ϕ7,3 ϕ8,3 ϕ11,3

ϕ7,3

ϕ12,5ϕ1,1

id

id

id

id

ϕ10,4 ϕ13,6

Where
ϕs

7,2 = ϕ7,2∧xi = wo
1,0∧y′ = wo

1,0
′ (and impliesy≤ y′)

ϕs
7,3 = ϕ7,3∧w4 = w3≤ xi = wo

1,0∧y′ = w′3 (and impliesy≤ y′)

43

C.3 Array Rotation

Input : An arraya1, parameterb1 denoting the number of used cells ina1.
Data: Auxiliary arraya2, which used for specification of postcondition, keeps a copyof

a1, auxiliary scalar variableb2 holding value of the first element ofa1.
Output : Array a1 is rotated by one to the left.

/* ψpre : b1 > 0 ∧ ∀i.(0≤ i ≤ b1−1)⇒ (a1[i] = a2[i]) */

b2 := a1[0];
while a:i=0(i ≤ b1−2) do

a1[i] := a1[i +1];
i ++;

end
a1[b1−1] := b2;

/* ψpost : ∀i.(0≤ i ≤ b1−2)⇒ (a1[i] = a2[i +1]) ∧
∀i.(b1−1≤ i ≤ b1−1)⇒ (a1[i] = b2) */

Algorithm 3 : Array rotation

A loop post-image counter automaton is constructed in a samemanner as in split and insert
examples. By a simple analysis of the loop, it can be found outthat variableb1 is never assigned,
so the loop transducer does not have to use auxiliary counterw1. Furthermore, we have to deal
with variables which are not used in the loop in this example:

• scalar variables – scalar variableb2 is not used in the loop, the product is modified in the
way that the initial transition contains avi

2 = v2 constraint

• array variables – array variablea2 is not used in the loop, the product automaton is modified
in the way that every transition contains axi

2 = y2 constraint. (i1 and i2 are dependent in
the precondition) andi2 ticks if and only if i1 ticks.

ϕ1 : 0 = {i1, i2}= wN−1 = vi
1−2

∧ xi
1 = xi

2∧xi
1 = vi

2

∧ wN > 0∧vi
1 = v1∧vi

2 = v2

∧ xi
1 = wo

1,0∧wo
1,1 = wi

1,1

∧ xo
1
′ = wo

1,1∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

44

q0 qloop qsu f qf in

wN > 0∧

vi
1 = v1∧ i1 = 0∧

xi
1 = wo

1,0∧wo
1,1 = wi

1,1∧

const(i1,xi
1,xo

1,wi
1,1,wo

1,0,w
o
1,1,y1,

vi
1,v1,wN)

{1}

i1 > vi
1−2∧

const(i1,xi
1,xo

1,wi
1,1,wo

1,0,w
o
1,1,y1,

vi
1,v1,wN)

{3}

i = wN∧

const(i1,xi
1,xo

1,wi
1,1,wo

1,0,wo
1,1,y1,

vi
1,v1,wN)

{5}

i1 ≤ vi
1−2∧

xo
1
′ = wo

1,1∧

xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧

wo
1,1
′ = wi

1,1
′
∧ tick(i1)∧y1 = xo

1
′ ∧

const(vi
1,v1,wN)

{2}

i < wN∧

xo
1
′ = wo

1,0∧

xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧

wo
1,1
′ = wi

1,1
′
∧ tick(i1)∧y1 = xo

1
′ ∧

const(vi
1,v1,wN)

{4}

Figure 16: Loop automatonAL

ϕ2 : 0 = {i1, i2}= wN−1 = vi
1−1

∧ xi
1 = xi

2∧xi
1 = vi

2

∧ wN > 0∧vi
1 = v1∧vi

2 = v2

∧ xi
1 = wo

1,0∧wo
1,1 = wi

1,1

∧ xo
1
′ = wo

1,0∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

ϕ3 : 0 = {i1, i2}< wN−1∧{i1, i2}< vi
1−1

∧ xi
1 = xi

2∧xi
1 = vi

2

∧ wN > 0∧vi
1 = v1∧vi

2 = v2

∧ xi
1 = wo

1,0∧wo
1,1 = wi

1,1

∧ xo
1
′ = wo

1,1∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

ϕ4 : 0 = {i1, i2}= vi
1−1 < wN−1

∧ xi
1 = xi

2∧xi
1 = vi

2

∧ wN > 0∧vi
1 = v1∧vi

2 = v2

∧ xi
1 = wo

1,0∧wo
1,1 = wi

1,1

∧ xo
1
′ = wo

1,0∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

45

qi q2 q3 qf

{2}

{i1, i2}= 0∧

{i1, i2}< vi
1−1∧

tick(i1, i2)∧xi
1 = xi

2∧

xi
1 = vi

2∧

{i1, i2}< wN −1

{7}

{i1, i2}= vi
1−1∧

tick(i1, i2)∧xi
1 = xi

2∧

{i1, i2}< wN −1

{11}

tick(i1, i2)∧

{i1, i2}= wN−1

{3} {i1, i2}= 0∧{i1, i2}= vi
1−1∧ tick(i1, i2)∧xi

1 = xi
2∧ xi

1 = vi
2∧{i1, i2}< wN−1

{8} tick(i1, i2)∧xi
1 = xi

2∧ {i1, i2}= wN −1

{4} {i1, i2}= 0∧{i1, i2} ≤ vi
1−1∧ tick(i1, i2)∧xi

1 = xi
2∧ xi

1 = vi
2∧{i1, i2}= wN −1

{1}

{i1, i2}= 0 ∧

idle(i1, i2)
idle(i1, i2
{5}

idle(i1, i2
{9}

idle(i1, i2
{12}

{6}
{i1, i2}< vi

1−1∧

tick(i1, i2)∧xi
1 = xi

2∧

{i1, i2}< wN−1

{10}

tick(i1, i2)∧

{i1, i2}< wN−1

Figure 17: Counter automatonA1 representing the forall subformula of the precondition (opti-
mized byb1 > 0 formula – 2 transitions were be removed).

qi ,qo qi ,qloop q2,qloop

q2,qsu f

qi ,qsu f

qf ,qloop

qf ,qsu f

qf ,qf in

q3,qsu f

(1,1)

idle

(2,2)

(1,3)idle

(4,2)

(12,3)idle

(12,5)

idle

(5,3)idle
(8,2)

(8,4)

(7,4)

(4,4)

(3,4)
(11,4)

(6,2)

(10,4)

Figure 18: Rotation example, the product automaton (idle transitions are marked, the rest are
ticks)

46

qi ,qo

q2,qloop

qf ,qf in

q3,qsu f

ϕ1

(1,1)(4,2)(12,3)(12,5)

ϕ2

(1,1)(1,3)(4,4)(12,5)

ϕ3

(1,1)(2,2)

ϕ4

(1,1)(1,3)(3,4)

ϕ5

(6,2)

ϕ6

(8,2)(12,3)(12,5)

ϕ7

(5,3)(8,4)(12,5)

ϕ8

(5,3)(7,4)

ϕ9

(10,4)

ϕ10

(11,4)(12,5)

Figure 19: Rotation example, the simplified product automaton (idle transitions composed)

ϕ5 : {i1, i2}< wN−1∧{i1, i2}< vi
1−1

∧ xi
1 = xi

2

∧ xo
1
′ = wo

1,1∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

ϕ6 : {i1, i2}= wN−1 = vi
1−2

∧ xi
1 = xi

2

∧ xo
1
′ = wo

1,1∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

ϕ7 : {i1, i2}= wN−1 > vi
1−2

∧ xi
1 = xi

2

∧ xo
1
′ = wo

1,0∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

47

ϕ8 : {i1, i2}= vi
1−1 < wN−1

∧ xi
1 = xi

2

∧ xo
1
′ = wo

1,0∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

ϕ9 : {i1, i2}< wN−1

∧ xo
1
′ = wo

1,0∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

ϕ10 : {i1, i2}= wN−1

∧ xo
1
′ = wo

1,0∧xi
1
′
= wi

1,1∧wo
1,0
′ = wo

1,1∧wo
1,1
′ = wi

1,1
′
∧ tick(i1, i2)∧y1 = xo

1
′∧xi

2 = y2

∧ const(vi
1,v1,wN,vi

2,v2)

C.3.1 Postcondition computation

We unfold theϕ5 loop once. Then, we translate the ticks before the unfolded loop:

ϕ3∧ϕ−1
5 (⊤) : ϕ3∧wo

1,1 = wi
1,1∧xi

1
′
= xi

2
′
∧xi

2
′
= y2

′

T0(ϕ3∧ϕ−1
5 (⊤)) : a2[0] = b2∧a1[0] = a2[1]

ϕ5∧ϕ−1
5 (⊤) : ϕ5∧xi

1
′
= xi

2
′
∧xi

2
′
= y2

′

T1(ϕ5∧ϕ−1
5 (⊤)) : a1[1] = a2[2]

Now we translate the loop:

ϕs
5 = ϕ5(⊤)∧ϕ5 : ϕ5∧wo

1,1 = wi
1,1

Ti(ϕs
5) : a1[i] = a2[i +1]

T0(ϕs
5
n) : n+2 = b2−1

Here we used the initial value ofi in the unfolded loop and the exit conditioni′ = b2−1.
Putting it all together we obtain:

∃n . a1[0] = a2[1]∧a1[1] = a2[2]∧ (∀i . 2≤ i < n+2→ a1[i] = a2[i +1])∧n+2 = b2−1

By straightforward simplifications:

∀i . 0≤ i < b2−1→ a1[i] = a2[i +1]

48

C.4 Zero Array

Input : An arraya, parameterb1 denoting the number of used cells ina.
Output : All used cells ina are equal to 0.

/* ψpre : b1≥ 0 */

while a:i=0(i ≤ b1−1) do
a[i] := 0;
i ++;

end

/* ψpost : ∀i.(0≤ i ≤ b1−1)⇒ (a[i] = 0) */

Algorithm 4 : Zero array

q0 qloop qsu f qf in

wN > 0∧vi ≤ 1∧w1 = vi
1∧

i = 0∧xi = wo
1,0∧

const(i,xi ,xo,wo
1,0,y

vi
1,v1,w1,wN)

i > w1−1∧w1 = v1∧

const(i,xi ,xo,wo
1,0,y

vi
1,v1,w1,wN)

i = wN∧

const(i,xi ,xo,wo
1,0,y

vi
1,v1,w1,wN)

i ≤ w1−1∧xo′ = 0∧

xi ′ = wo
1,0
′ ∧ tick(i)∧y = xo′∧

const(vi
1,v1,w1,wN)

i < wN ∧xo′ = wo
1,0∧

xi ′ = wo
1,0
′ ∧ tick(i)∧y = xo′

const(vi
1,v1,w1,wN)

Figure 20: Automata representation of the post-image of thezero array program’s loop

49

	Introduction
	Preliminaries
	Counter Automata as Recognizers of States and Transitions
	Dependencies between Index Counters
	Composing Counter Automata with Transducers

	Singly Indexed Logic
	From **-SIL to Counter Automata
	From Counter Automata to **-SIL

	Array Manipulating Programs
	From Loops to Counter Automata

	Examples
	Conclusion
	Post-condition Calculus
	Transducers Checking for Out-of-Bound Array References
	Details of the Considered Case Studies
	Array Partition
	From CA to SIL
	State qloop
	State qsuf
	The SIL formula

	Insertion of an Element
	Postcondition computation

	Array Rotation
	Postcondition computation

	Zero Array

