
Arrival Curves for Real-Time
Calculus: the Causality Problem

and its Solutions

Matthieu Moy and Karine Altisen

Verimag Research Report no TR-2009-15

October 8, 2010

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Arrival Curves for Real-Time Calculus: the Causality
Problem and its Solutions
Matthieu Moy and Karine Altisen

Verimag (UMR CNRS 5105)
Centre Équation - 2, avenue de Vignate

38610 Gières - FRANCE
E-mail: Matthieu.Moy@imag.fr, Karine.Altisen@imag.fr

October 8, 2010

Abstract

The Real-Time Calculus (RTC) [19] is a framework to analyze heterogeneous real-time
systems that process event streams of data. The streams are characterized by pairs of
curves, called arrival curves, that express upper and lower bounds on the number of
events that may arrive over any specified time interval. System properties may then be
computed using algebraic techniques in a compositional way. A well-known limitation
of RTC is that it cannot model systems with states and recent works [10, 9, 2, 16, 14]
studied how to interface RTC curves with state-based models. Doing so, while trying,
for example to generate a stream of events that satisfies some given pair of curves, we
faced a causality problem [17]: it can be the case that, once having generated a finite
prefix of an event stream, the generator deadlocks, since no extension of the prefix
can satisfy the curves afterwards. When trying to express the property of the curves
with state-based models, one may face the same problem. This paper formally defines
the problem on arrival curves, and gives algebraic ways to characterize causal pairs of
curves, i.e. curves for which the problem cannot occur. Then, we provide algorithms to
compute a causal pair of curves equivalent to a given curve, in several models. These
algorithms provide a canonical representation for a pair of curves, which is the best
pair of curves among the curves equivalent to the ones they take as input.
We consider the general case of infinite curves (either discrete or continuous time
and events), and give algorithms for particular cases (finite curves in discrete time,
piecewise affine functions, and a combination of both).

Keywords: Real-Time Calculus, Arrival Curve, Causality, Forbidden Regions

Reviewers: Florence Maraninchi

How to cite this report:

@techreport {verimag-TR-2009-15,
title = {Arrival Curves for Real-Time Calculus: the Causality Problem and its

Solutions},
author = {Matthieu Moy and Karine Altisen},
institution = {{Verimag} Research Report},
number = {TR-2009-15},
year = {2009}

}

Matthieu Moy and Karine Altisen

1 Introduction
The increasing complexity of modern embedded systems makes their design more and more dif-
ficult. Modeling and analysis techniques have been developed that help taking or validating
decisions on the conception of a system as early as possible in the design process.

There exists many methods among which we can distinguish two families. Computational ap-
proaches study fine-grain models of the system to represent its complete behavior. The validation
of the system using such a model may involve simulation, testing and verification. As opposed,
analytical techniques, such as Real Time Scheduling (founded with [12]) and Real Time Calculus
[19], use purely analytical models, based on mathematical equations that can be solved efficiently.
These models can represent in a simple way the amount of events to be processed and how fast
they can be processed. Solving these equations can give, for example, the best and worst cases for
performances.

Both families of approaches have their advantages and drawbacks. Simulating precisely an
embedded system gives very precise results, but only for one simulation, and one instance of a
system. Analytical approaches, on the other hand, give strict worst case execution times, and
usually give results very fast, but do so only for cases that the theory can take into account.
For example, Real-Time Calculus cannot handle the notion of state in the modeling of a system.
Recent studies try to combine the approaches to take the best of both [10, 9, 20, 1]. The work we
present in this paper fully takes its root and motivation in one of those studies, while trying to
combine Real-Time Calculus, state-based models and abstract interpretation, using synchronous
languages [2].

The Real-Time Calculus (RTC) [19] is a framework to model and analyze heterogeneous system
in a compositional manner. It relies on the modeling of timing properties of event streams with
curves called arrival curves (and service curves, which count available resources instead of events
in a similar fashion). A component can be described with curves for its input stream and available
resources and some other curves for the outputs. For already-modeled components, RTC gives
exact bounds on the output stream of a component as a function of its input stream. This result
can then be used as input for the next component. Arrival curves are function of relative time
that constrains the number of events that can occur in an interval of time. For any sliding window
of time of length ∆, the pair of arrival curves (αu, αl) gives explicitly the lower αl(∆) and upper
αu(∆) bounds on the number of events (see examples in Figure 1). But, arrival curves may
also contain implicit constraints indirectly deduced from explicit ones. This paper studies those
implicit constraints and provides algorithms to make them explicit.

Motivation. Implicit constraints cause problems in several contexts. For simulation purpose
[8], it is typical to produce a stream of events that satisfies some given arrival curves using a
generator of events. Such generators are the computational representation of a pair of curves,
they are built to generate any streams that satisfies the curves. There are multiple ways to write
such generators [8, 1, 2, 20] but many faced the problem. For the explanation, let us consider
a straightforward one, in discrete time: it computes at each point in time the lower and upper
bounds on the number of events allowed to be emitted, based on the events already emitted, and
it emits a random number of events within these bounds. Now, it may happen, due to implicit
constraints, that some upper bound is strictly lower than the lower bound, leading the generator
to a deadlock.

Another case where implicit constraints are problematic is the case of formal verification of
a system, with inputs and outputs characterized by arrival curves. One may want to prove a
property like “If the input complies with the arrival curve pairs αI , then the output satisfies
the arrival curve pairs αO”. But verification tools based on reachability analysis (see, e.g. [6])
usually allow only the expression of “If the input complies with αI up to time t, then the output
complies with the αO up to time t”. Then, the tool may find a counter-example violating αO
without violating αI up to time t, but it can be the case that this finite counter-example cannot
be extended into an infinite execution that satisfies αI . This would therefore be a spurious counter-
example. Getting rid of these counter-examples sometimes requires heavyweight state exploration
techniques (for example, the -causal option of lesar [18] does this for Boolean programs) but

Verimag Research Report no TR-2009-15 1/39

Matthieu Moy and Karine Altisen

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

0 1 2 3 4 5 6
∆

7

events

1
2
3
4
5
6
7

0

αl

αu

��
��
��
��

�������
�������
�������
�������

����

0 1 2 3 4 5 6

αl

αu

∆
7

events

0
1
2
3
4
5
6
7

(a) Unreachable Regions (b) Forbidden regions
Figure 1: Implicit and explicit constraints on arrival curves

not all tools are able to do it (nbac [6] cannot, for example, and the problem is known to be
undecidable for integer programs). The technique that translates the constraints of arrival curves
into a model to be analyzed by a verifier tool was used for, e.g., timed automata [10, 9, 20], event
count automata [16] and synchronous programs [2]. For each tool, one can pose the questions:
“what is the behavior of the tool when used on curves with forbidden regions?” and “do the tool
output curves with forbidden regions?”. Actually, except [2], the papers do not give answer to
them. We will see that [10, 9, 20] do not create curves with forbidden regions while [16] could
at least in theory, and we explain why. Each of the tools would badly behave in the presence of
forbidden regions, and this paper gives a way to get rid of them before using any tool.

Implicit constraints on arrival curves. We distinguish two kinds of implicit constraints,
that we call informally “unreachable regions” and “forbidden regions”. The first one is a well-
studied phenomenon within the Real-Time Calculus community [11] and the second, which may
produce deadlocks in generators and spurious counter-examples in verification is the goal of this
paper. Let us discover those using a pair of arrival curves (αu, αl) (see Figure 1 for an example).

Firstly, by splitting some time interval into smaller ones, we can get additional constraints.
As shown in Figure 1.(a), in an interval of size ∆ = 6, the curve says explicitly that the lower
bound on the number of events is 1, but splitting this interval into three intervals of size 2, one
can deduce a better bound, which is 3. Although the curve explicitly specified the bounds αl(6)
and αu(6) to be 1 and 7, the number of events in a window of size 6 can actually never be equal to
1 (αl(6)). In other words, the actual implicit lower bound is greater than αl(6): this means that
the curve is equivalent to a tighter curve. A well-known result [11] is that the upper (resp. lower)
curve does not have this kind of implicit constraints if it is sub-additive (resp. super-additive).
The transformation of an arbitrary curve into an equivalent sub-additive (resp. super-additive)
curve making those constraints explicit is called sub-additive closure (resp. super-additive closure).
In this paper, we call the region between the curves and its sub-additive (resp. super-additive)
closure unreachable regions. Unreachable regions are due to constraints of a single curve on itself,
and can be computed at some point by looking only at the past, i.e. smaller ∆.

The second case of implicit constraints can be found by looking at both curves towards the
future. Figure 1.(b) gives an example of such a case: since αl(3) = 0, the lower curve does not
give a lower bound on the number of events that can occur in a window of time of size 3, but if
an execution has no event during such a window, then the upper curve prevents it from emitting
more than 3 events in the next 2 units of time, while the lower curve will force it to emit at least
4. It is therefore impossible to emit no events for 3 units of time. We call the regions that contain
such points forbidden regions. No execution can cross a forbidden region without getting blocked
some time latter, due to some contradiction between lower and upper constraints. Borrowing the
vocabulary used in [17], we call this kind of implicit constraints causality constraints. A pair of
curves for which the beginning of an execution never prevents the execution from continuing is
called causal. Intuitively, this is the same as having no forbidden region (but we will see that the
relationship between absence of forbidden region and causality is only a one-way implication).

Surprisingly, this question has received very little attention and to the best of our knowledge, no
transformation has been published before [3] to make these implicit constraints explicit. One may
wonder if this is a “true” problem, i.e. if such non causal curves can be encountered in practice.

Verimag Research Report no TR-2009-15 2/39

Matthieu Moy and Karine Altisen

Indeed, part of the answer is that they cannot come from measurements on a real system, since
curves derived from execution or simulation of real systems are always well-formed. The common
practice is to use such curves for the inputs of RTC models. As RTC computations preserve the
causality of the curves, non-causal curves were not considered as a problem so far. This may
explain why no studies have been published yet on the subject. Things are different when instead
of using RTC, one uses other tools for deriving output arrival curves, given some input arrival
curves. Those tools, among them model-checking of timed automata [5] on abstracted models,
abstract interpretation of Lustre programs [6], may compute non-causal arrival curves, even when
the input is causal.

Additionally, non-causal curves contain implicit constraints that could be made explicit. If the
output of a computation gives the curve in Figure 1, then making the implicit constraint explicit
gives tighter bounds on the number of events (for example, a tighter bound on the number of
events in a window of size 4). We encountered the case, when merging the output of several
computations for the same set of flows of events [1] using different approximate methods. This
provides several pairs of curves, each of them being a valid over-approximation of the expected
result. The basic combination of these curves (point-wise minimum and maximum) can contain
implicit constraints, and making them explicit gives more precise results from the same analysis.

Contributions. To solve these issues, this paper formally defines the causality problem and
propose several solutions.

• We give a characterization of the notion of causal pairs of arrival curves.
• Combining this property with existing ones, we give a definition for a canonical representation

of a pair of curves, which is causal and sub-additive/super-additive. We show that it is also
the tightest possible representation of the original curve.

• We propose an algorithm that transforms a pair of arrival curves into its equivalent causal
representation.

All results in the paper are proved and may be applied to dense-time or discrete-time arrival curves
on the one hand, to discrete-event or fluid-event models on the other hand. The implementation
part has been developed for discrete-time discrete-event models, since this was our context of use,
but we believe it could be adapted to other contexts. Furthermore, although all along the paper
we talk about arrival curves, the reader should be convinced that every results also apply to service
curves.

Compared to previous works on the same subject [3], this paper provides all the details (in-
termediate lemma, complete proofs, examples...) about the main results that were previously
omitted by lack of space, and provides algorithms for two more classes of curves: piecewise affine
concave/convex curves, and combination of finite discrete curves with the later (see sections 5.2
and 5.3).

The outline of this paper is as follows: Section 2 defines arrival curves and some few algebraic
operators; Section 3 defines causality and gives a characterization of it; Section 4 shows how to
compute the tightest causal representation of arrival curves; and Section 5 gives an algorithm for
computing it on particular classes of curves.

2 Arrival Curves
Usually in RTC, arrival curves are given by pairs, to express the upper and lower bounds on the
number of events that can occur in any window of time. This section defines arrival curves. It
first gives the context — the study allows either discrete or continuous time and discrete or fluid
event counts — and recalls some basic notions of Min/Max-plus algebra that will be used later in
the paper.

2.1 Basic Notions in Min-plus and Max-plus Algebra
Notations: R+ denotes the set of non-negative reals; R+ = R+ ∪ {+∞} the set of non-negative
reals extended with +∞; N the set of naturals and N = N ∪ {+∞} the set of naturals extended

Verimag Research Report no TR-2009-15 3/39

Matthieu Moy and Karine Altisen

with +∞.
To define arrival curves, we use functions that measure the number of events occurring at a

given time. We assume to have a discrete-event model or a fluid-event model (the number of
events may be discrete or continuous, in N or R+, we give bounds in N or R+, +∞ being used
to denote the absence of constraint on upper bounds), and we allow the time to be either discrete
or continuous. We note the time T to represent R+ or N ; and E the event count to represent R+

or N (E being either R+ or N). Functions will be from T to E whatever be the value of T and E .

Definition 1. Let f be such a function from T to E.
f is said to be wide-sense increasing iff(def)

∀x, y ∈ T . x ≤ y =⇒ f(x) ≤ f(y)

We note F the set of functions f such that f is a function from T to E , f is wide-sense
increasing and f(0) = 0. Ffinite represents the set of functions in F restricted to functions from
T to E . We use the usual pointwise order on F :

Definition 2. Let f, g ∈ F ,

f ≤ g def⇐⇒ ∀x ∈ T . f(x) ≤ g(x)

We recall the usual operators ⊗, ⊗ ,�, � :

Definition 3. Let f, g be functions from T to E and x ∈ T ,

(f ⊗ g)(x) def= inf
t∈[0,x]

{f(x− t) + g(t)} ((min, +) convolution)

(f ⊗ g)(x) def= sup
t∈[0,x]

{f(x− t) + g(t)} ((max, +) convolution)

(f � g)(x) def= sup
t≥0
{f(x+ t)− g(t)} ((min, +) deconvolution)

(f � g)(x) def= inf
t≥0
{f(x+ t)− g(t)} ((max, +) deconvolution)

Note that if f, g ∈ F , (f ⊗ g) and (f ⊗ g) are in F , but (f � g) and (f � g) may not (since,
for instance, (f � g)(0) and (f � g)(0) may not be equal to zero). The following lemma gives
conditions for (f � g) and (f � g) to be in F .

Lemma 1. Let f, g be two functions. If f, g ∈ F , then

1. f ⊗ g ∈ F ; f ⊗ g ∈ F ;

2. f � g and f � g are wide-sense increasing;

3. f � g ∈ F ⇐⇒ f ≤ g

4. f � g ∈ F ⇐⇒ g ≤ f

Proof. 1. (f ⊗g)(0) = inf0≤t≤0{f(0− t)+g(t)} = f(0)+g(0) = 0; let x, y ∈ T such that x ≤ y,
for all t: f(x− t) + g(t) ≤ f(y − t) + g(t) since f is wide-sense increasing, this implies that
f ⊗ g(x) ≤ f ⊗ g(y).

2. Let x, y ∈ T such that x ≤ y, then for all t ≥ 0: f(x + t) − g(t) ≤ f(y + t) − g(t) since f
is wide-sense increasing and this implies that f � g(x) ≤ f � g(y). The proof is exactly the
same to prove that f � g(x) ≤ f � g(y).

3. f � g(0) = supt≥0{f(t)− g(t)}. Note that f ≤ g ⇐⇒ supt≥0{f(t)− g(t)} ≤ 0. If f ≤ g,
as f(0) = g(0) = 0, we have f � g(0) = 0. Conversely, if f � g(0) = 0, this means that
supt≥0{f(t)− g(t)} ≤ 0, hence f ≤ g.

Verimag Research Report no TR-2009-15 4/39

Matthieu Moy and Karine Altisen

4. The proof for � is the same as for �.

We now give the formal definition for the intuitive notion of “unreachable regions”. Curves
have no “unreachable region” if they are sub-additive/super-additive:

Definition 4 (Sub-additivity and Sub-additive Closure). Let f ∈ F , f is said to be sub-additive
iff(def)

∀s, t ∈ T . f(t+ s) ≤ f(t) + f(s)

Well-known results (see [11] for example) characterize sub-additivity:

1. f ∈ F and f sub-additive ⇐⇒ f ⊗ f = f

2. Let f ∈ F . Among all the sub-additive functions g ∈ F that are smaller than f (g ≤ f)
there exists an upper bound called the sub-additive closure of f given by:

f
def= inf
n≥1
⊗nf

where ⊗1f = f,⊗n+1f = f ⊗ (⊗nf).

Proof. of the well-known results

1. Let f ∈ F . By definition of ⊗ this is always the case that f ⊗ f ≤ f . Let then f be
sub-additive: let x ∈ T . Whatever be s ∈ [0, x], f(x) ≤ f(x − s) + f(s) by sub-additivity.
Hence, f ≤ f ⊗ f .
Conversely, let f ∈ F such that f ⊗ f = f . Let t, s ∈ T , f(t + s) =by assumption f ⊗ f(t +
s) ≤by definition f(t) + f(s).

2. It is easy to show that (F ,≤) is a complete lattice and that ⊗ and min are continuous
over (F ,≤). Finding the smallest function g ∈ F such that g ≤ f and g is sub-additive is
equivalent to finding the greatest fix-point of F (g) = min(f, g⊗ g). This fix-point exists and
is equal to infn≥1 F

n(T) = infn≥1⊗nf , where T is the top of (F ,≤).

Definition 5 (Super-additivity and super-additive closure). Let f ∈ F , f is said to be super-
additive iff(def)

∀s, t ∈ T . f(t+ s) ≥ f(t) + f(s)

Well-known results (see [11] for example) characterize super-additivity:

1. f ∈ F and f super-additive ⇐⇒ f ⊗ f = f

2. Let f ∈ F . Among all the super-additive functions g ∈ F that are greater than f (g ≥ f)
there exists an lower bound called the super-additive closure of f given by:

f
def= sup
n≥1
⊗ nf

The definition of ⊗ n is similar as for ⊗n and the proofs are the same as for sub-additivity.

Verimag Research Report no TR-2009-15 5/39

Matthieu Moy and Karine Altisen

2.2 Arrival Curves
2.2.1 Definition of Arrival Curves

Arrival curves defines lower and upper bounds on the amount of event that can occur in a window
of time. It defines a set of possible event streams that satisfy all the bounds: as usual, we represent
such an event stream with a cumulative curve.
Definition 6 (Cumulative curve). R ∈ Ffinite can model a cumulative curve: R(t) represents
the (finite) amount of events that occurred in the interval of time [0, t].
Definition 7. A pair of arrival curves is a pair of functions (αu, αl) in F × Ffinite, such that
αl ≤ αu.

Let R be a cumulative curve and (αu, αl) be a pair of arrival curves. R is said to satisfy
(αu, αl) (we also use “R complies with (αu, αl)”), noted R |= (αu, αl) iff(def)

∀x ∈ T ,∀δ ∈ T , R(x+ δ)−R(x) ∈ [αl(δ), αu(δ)]

We say that an arrival curve (αu, αl) is satisfiable iff(def) there exists a cumulative curve R
that satisfies (αu, αl).

Notice that since αl is a lower bound for cumulative curves, we prevent it from evaluating to
∞.
Definition 8. Let (αu, αl) and (αu′, αl′) be two arrival curves. (αu, αl) and (αu′, αl′) are said to
be equivalent iff(def) for all cumulative curves R ∈ Ffinite,

R |= (αu, αl) ⇐⇒ R |= (αu′, αl′)

As a summary, a pair of arrival curves is a pair of positive wide-sense increasing functions
(αu, αl) such that αl(0) = αu(0) = 0, αl ≤ αu and ∀t > 0 . αl(t) 6= +∞.

2.2.2 Sub-additivity and Super-additivity

As we saw in the introduction, a pair of arrival curves can have unreachable regions. A curve that
does not have any of these is sub-additive if it is an upper curve αu, and super-additive if it is a
lower curve αl. When the curve has unreachable regions, it is possible to remove them, by using
the associated closure operation.
Definition 9. A pair of arrival curves (αu, αl) is Sub-Additive-Super-Additive (denoted SA-SA
for short) iff(def) αu is sub-additive and αl is super-additive.

We call (αu, αl) the SA-SA closure of (αu, αl).
Lemma 2. Let (αu, αl) be a pair of arrival curves. (αu, αl) is a SA-SA pair of arrival curves
equivalent to (αu, αl).
Proof. This is a well-known result [11, 19], and a corollary of lemma 3 and 7 presented below.

2.2.3 Arrival Curves Satisfied “Up To T”

Real-time calculus usually works on infinite event streams, and the relevant properties are the
conformance of the corresponding cumulative functions to arrival curves. In this paper, we need
an additional notion, which is the conformance of a cumulative function up to a certain date.
Instead of checking the number of events in any window of time, we check only windows of time
ending before a given date. The same notation is used, for example in [7].
Definition 10. Let (αu, αl) be a pair of arrival curves and R be a cumulative curve. R satisfies
(αu, αl) up to T (denoted by R |=≤T (αu, αl)) iff

∀t ≤ T, ∀δ ≤ t, R(t)−R(t− δ) ∈ [αl(δ), αu(δ)]
Intuitively, this means R did not yet violate the arrival curves at time T .

Verimag Research Report no TR-2009-15 6/39

Matthieu Moy and Karine Altisen

A relationship between |=≤T and |= can be expressed simply:

Lemma 3. Let R be a cumulative curve over T , and (αu, αl) be a pair of arrival curves. We
have:

(∀T ∈ T , R |=≤T (αu, αl)) ⇐⇒ R |= (αu, αl)

Proof. The proof is trivial once the definition of R |=≤T is expanded in the left hand side of the
equation.

3 Causality: Definition and Characterization
We now define the notion of causality. The problem we are studying is the one of an event stream
that is correct up to a certain time T , but “can not be continued” without violating the pair
of curves. This can be seen as a deadlock of the flow, which could then neither let time elapse
nor emit an additional event. A pair of arrival curves for which this problem can not happen is
called causal. We first give a formal definition for causality, and then give a characterization with
algebraic formulas.

3.1 Definition of Causality
Definition 11 (Causal Arrival Curves). Let (αu, αl) be a pair of arrival curves. (αu, αl) is said
to be causal iff any cumulative curve R that satisfies (αu, αl) up to T can be extended indefinitely
into a cumulative curve R′ that also satisfies (αu, αl). In other words, (αu, αl) is causal iff(def)

∀T ≥ 0,∀R,
(
R |=≤T (αu, αl)

)
=⇒

(
∃R′ | R′ |= (αu, αl) and ∀t ≤ T,R(t) = R′(t)

)
Unlike the sub-additivity and super-additivity properties, the causality is really a property on

a pair of curves; it does not make sense to say that αu alone, or αl alone, is causal since the
impossibility to extend a cumulative curve can come only from a contradiction between an upper
bound and a lower bound.

3.2 An Overview of Theorems to Characterize Causality
Causality reveals new implicit constraints. Informally, we call forbidden regions the points between
αu and αl that are reachable by finite cumulative curves, but for which the cumulative curves can
trivially not be extended into infinite ones.

Let us consider the curve αl, and try to define αl∗, defined informally as “αl without its
forbidden regions”. αl∗(∆) is the smallest value for which a cumulative curve R verifying R(t +
∆) − R(t) ≥ αl

∗(∆) up to some time T is guaranteed to be extensible infinitely by emitting the
maximum amount of events allowed by αu, without violating αl (this the same as saying that if
R(t+ ∆) − R(t) < αl

∗(∆) for some t, then R cannot be extended without violating either αu or
αl, which means that the region below αl

∗ is forbidden). Computing the forbidden region of αl
at abscissa ∆0 means therefore computing the lowest N for which αu(∆) + N would not cross
αl(∆0 + ∆) for some ∆ ≥ 0. This is equivalent to finding the supremum of the N for which the
curves would intersect. Formally, this can be written as αl∗ = sup∆≥0

{
αl(∆0 + ∆)− αu(∆)

}
,

which is the definition of the deconvolution: αl �αu. A similar reasoning would lead to the curve
αu�αl for the forbidden regions of αu.

We can therefore define more formally forbidden region as the area between a curve αu (resp.
αl), and αu�αl (resp. αl � αu): intuitively, computing αu�αl means “removing forbidden
regions from αu”, and computing αl � αu means “removing forbidden regions from αl”. When
αu = αu�αl and αl = αl � αu, we can say that the curves have no forbidden region. The
contribution of this paper is the study of these forbidden regions, giving a formal characterization
and algorithms to detect their presence and to eliminate them.

The implications and equivalences between a few arrival curves properties are given in Figure 2.
Each of them will be proved in the following section.

Verimag Research Report no TR-2009-15 7/39

Matthieu Moy and Karine Altisen

αl = αl � αu
and

αu = αu�αl
(e)=⇒ (αu, αl) is causal

⇐
=(d) ⇐⇒(c)

⇐
⇒(b)

αl = αl � αu
and

αu = αu�αl
(a)⇐⇒ (αu, αl) is causal

Figure 2: Overall view of theorems in this section

The main result is equivalence (c) (theorem 8), which gives an algebraic characterization of
causality for any pair of arrival curves. Intuitively, it states that a pair of curves is causal if and only
if its SA-SA closure has no forbidden region. A weaker version of this theorem is implication (e)
(theorem 12), which gives only a sufficient condition: a pair of arrival curves having no forbidden
region is causal.

One could have expected for the converse to be true, i.e. that a pair of arrival curves is causal
implies that it doesn’t have forbidden regions. This result is indeed false in general: a pair of
causal curves can have forbidden regions if they are included in their unreachable regions (For
completeness, we will give an example in section 3.3.6). The causality implies the absence of
forbidden region for SA-SA curves though, since all unreachable regions have been erased from
them: this is equivalence (a). The remainders (b) and (d) are intermediate results.

The implications and equivalences (a), (b), (c), (d) and (e) in Figure 2 are proved as follows:
(a) will be an application of theorem 5 to (αu, αl).
(b) will be theorem 6, relatively straightforward and based on the fact that (αu, αl) and (αu, αl)

accept the same set of cumulative curves.
(c) gives a necessary and sufficient condition for (αu, αl) to be causal. This characterization is

obtained by transitivity of (a) and (b).
(d) will be theorem 11, proved using recurrence and continuity of deconvolution operators.
(e) is obtained by transitivity of (c) and (d). It gives a sufficient condition for (αu, αl) to be

causal.

3.3 Characterization of Causality: Theorems and Proofs
3.3.1 A First Characterization of Causality

The following lemma states that causal and SA-SA arrival curves are valid executions of themselves.
Intuitively, this means that if the arrival curves have neither “forbidden” nor “unreachable” regions,
then we can follow either the lower or the upper curve to get a valid cumulative curve.

Lemma 4. Let (αu, αl) be a causal pair of arrival curves. If αl is super-additive, then αl |=
(αu, αl). Similarly, if αu is sub-additive and is finite (∈ Ffinite), then αu |= (αu, αl).

Proof. We show that αl |= (αu, αl).
Since αl is super-additive, it complies with itself by definition. The only way to have αl 6|=

(αu, αl) is to violate the constraint on αu. The rest of the proof is done by contradiction:
Let T = supt>0{αl |=≤t (αu, αl)} + 1. If we assume αl 6|= (αu, αl), then T exists and is finite

(by lemma 3).
Then, αl 6|=≤T (αu, αl), and ∃∆ > 0 | αl(T) − αl(T −∆) > αu(∆). By causality of (αu, αl),

as αl |=≤T−∆ (αu, αl), there exists R with ∀t ≤ T − ∆, R(t) = αl(t) and R |= (αu, αl). Hence,
R(T) − R(T − ∆) ≤ αu(∆) < αl(T) − αl(T − ∆). Since αl(T − ∆) = R(T − ∆), this implies
R(T) < αl(T) which is impossible.

Verimag Research Report no TR-2009-15 8/39

Matthieu Moy and Karine Altisen

R′

R

#e

αl

tT
∆

αu

R(x) + αl(t− x)

Figure 3: Extension of a cumulative curve

The proof is similar for αu.

The following theorem gives a characterization of causality, which is valid only for SA-SA pairs
of curves. A more general one will be given in theorem 8, which uses this first one in its proof. It
makes the link between forbidden regions and causality: an SA-SA pair of curves is causal if and
only if it does not have forbidden regions.

Theorem 5 (Characterization of causality for SA-SA curves). Let (αu, αl) be a SA-SA pair of
curves. We have: αl = αl � αu

and
αu = αu�αl

 ⇐⇒ (αl, αu) is causal

Applied to (αu, αl), this is equivalence (a) on Figure 2.

Proof. ⇒: Let (αu, αl) be a pair of SA-SA arrival curves such that αl = αl�αu and αu = αu�αl.
Let R be a cumulative curve such that R |=≤T (αu, αl). The intuition is to construct the execution
R′ that emit the smallest possible number of events that still complies with the lower bounds
imposed by αl and the prefix of R up to T . This execution will be a valid, infinite execution. This
is illustrated on Figure 3. We’ll prove first that R′ is valid with respect to αl, and then that it is
valid with respect to αu.

Formally, let R′ be the cumulative curve defined by

∀t ≤ T,R′(t) =R(t)
∀t > T,R′(t) = sup

x∈[0,T]
{R(x) + αl(t− x)}

We will show that R′ |= (αu, αl). Let t ∈ T ,∆ ∈ [0, t]. If t ≤ T , then by definition of R′,
R′(t)−R′(t−∆) ∈ [αl(∆), αu(∆)]. We now consider t > T , and distinguish two cases on ∆:

• If t−∆ > T , then

R′(t)−R′(t−∆) = sup
x∈[0,T]

{R(x) + αl(t− x)} − sup
x∈[0,T]

{R(x) + αl(t−∆− x)}

For all x ∈ [0, T], we can write

αl(t− x−∆) + αl(∆) ≤ αl(t− x) (by super-additivity of αl)
R(x) + αl(t− x−∆) + αl(∆) ≤ αl(t− x) +R(x)

Verimag Research Report no TR-2009-15 9/39

Matthieu Moy and Karine Altisen

Hence,

sup
x∈[0,T]

{
R(x) + αl(t− x−∆) + αl(∆)

}
≤ sup
x∈[0,T]

{R(x) + αl(t− x)}

sup
x∈[0,T]

{
R(x) + αl(t− x−∆)

}
+ αl(∆) ≤ sup

x∈[0,T]
{R(x) + αl(t− x)}

R′(t−∆) + αl(∆) ≤ R′(t) (def. of R′)

• If t−∆ ≤ T , then

R′(t)−R′(t−∆) = sup
x∈[0,T]

{R(x) + αl(t− x)} −R(t−∆)

≥ R(t−∆) + αl(t− (t−∆))−R(t−∆) (with x = t−∆)
≥ αl(∆)

In both cases, R′(t)−R′(t−∆) ≥ αl(∆), so R′ is valid with respect to αl. Let’s now prove its
validity with respect to αu. We distinguish the same two cases on t−∆:

• If t−∆ > T , then
For all x ∈ [0, T], we can write

αl(t− x−∆) + αu(∆) ≥ αl(t− x) (since αl = αl � αu)
R(x) + αl(t− x−∆) + αu(∆) ≥ αl(t− x) +R(x)

Hence,

sup
x∈[0,T]

{
R(x) + αl(t− x−∆) + αu(∆)

}
≥ sup
x∈[0,T]

{αl(t− x) +R(x)}

sup
x∈[0,T]

{
R(x) + αl(t− x−∆)

}
+ αu(∆) ≥ sup

x∈[0,T]
{αl(t− x) +R(x)}

R′(t−∆) + αu(∆) ≥ R′(t) (def. of R′)

• If t−∆ ≤ T , then

R′(t)−R′(t−∆) = R′(t)−R(t−∆) = sup
x∈[0,T]

{R(x)−R(t−∆) + αl(t− x)}

For all x ∈ [t−∆, T] we can write

R(x)−R(t−∆) ≤αu(x− t+ ∆) (since R |=≤T (αu, αl))
αl(t− x) +R(x)−R(t−∆) ≤αu(x− t+ ∆) + αl(t− x)

As αu = αu�αl, αu(x − t + ∆) + αl(t − x) ≤ αu(∆). Combining with the above, for all
x ∈ [t−∆, T], we get

αl(t− x) +R(x)−R(t−∆) ≤ αu(∆)

On the other hand, for all x ∈ [0, t−∆] we can write

R(t−∆)−R(x) ≥αl(t−∆− x) (since R |=≤T (αu, αl))
αl(t− x) +R(x)−R(t−∆) ≤αl(t− x)− αl(t−∆− x)

As αl = αl � αu, αl(t− x)− αl(t−∆− x) ≤ αu(∆). Hence, for all x ∈ [0, t−∆],

αl(t− x) +R(x)−R(t−∆) ≤ αu(∆)

Verimag Research Report no TR-2009-15 10/39

Matthieu Moy and Karine Altisen

The two subcases lead to the same conclusion:

∀x ∈ [0, T], αl(t− x) +R(x)−R(t−∆) ≤ αu(∆)
sup

x∈[0,T]
{αl(t− x) +R(x)} −R(t−∆) ≤ αu(∆)

R′(t)−R′(t−∆) ≤ αu(∆) (since t−∆ ≤ T ,
R(t−∆) = R′(t−∆)))

So, R′ is valid w.r.t. αu. This concludes the proof for the first implication.

We can notice that our proof used the fact that (αu, αl) is SA-SA, but we will show later that
the implication actually holds for any pair of arrival curves. The same is not true for the second
implication proved below: not only the proof will use the sub-additivity, but the implication would
actually not hold for arbitrary curves.
⇐: Suppose (αu, αl) is SA-SA and causal.

• Let’s show that ∀∆ ∈ T , αl(∆) = (αl�αu)(∆). By definition, (αl�αu)(∆) = supt≥0{αl(∆+
t)− αu(t)}. This supremum is obtained for t = 0 with the value αl(∆):
Since (αu, αl) is SA-SA and causal, applying the lemma 4, we know that αl |= (αu, αl). So
in particular, ∀t ≥ 0, αl(∆ + t)− αl(∆) ≤ αu(t), which leads to the conclusion.

• We can show that αu = αu�αl in a similar way.

3.3.2 Causality and SA-SA closure

The following theorem is the equivalence (b) in Figure 2.

Theorem 6. Let (αu, αl) be a pair of arrival curves.

(αu, αl) is causal⇐⇒ (αu, αl) is causal

The proof will use the following lemma:

Lemma 7. For any pair of arrival curves (αu, αl), any T ≥ 0, and any cumulative curve R, we
have:

R |=≤T (αu, αl)⇐⇒ R |=≤T (αu, αl)

To simplify the notations, we write αl(n) def= ⊗ nαl and αu(n) def= ⊗nαu. The notation is
ambiguous, but we use the shortcut only when it is clear by the context (lower bounds αl always
use the ⊗ operator, while upper bounds αu always use the ⊗ operator).

for lemma 7. • =⇒: We show by induction that ∀N ≥ 1, R |=≤T αu(N). The base case N = 1
is our hypothesis, and assuming R |=≤T αu(N), we have:

∀t ≥ T, ∀∆ ∈ [0, t],∀s ∈ [t−∆, t] R(t)−R(t−∆) = R(t)−R(s) +R(s)−R(t−∆)
≤ αu(N)(t− s) + αu(s− (t−∆))

Therefore, ∀t ≥ T, ∀s ∈ [0, t],

R(t)−R(t−∆) ≤ inf
t−s∈[0,∆]

{αu(N)(t− s) + αu(s− (t−∆))} = αu(N+1)(∆)

Which concludes the induction:

∀N ∈ N ,∀t ≥ T, ∀∆ ∈ [0, t] R(t)−R(t−∆) ≤ αu(N)(∆)

Verimag Research Report no TR-2009-15 11/39

Matthieu Moy and Karine Altisen

and therefore

∀t ≥ T, ∀∆ ∈ [0, t], R(t)−R(t−∆) ≤ inf
N≥1
{αu(N)(∆)} = αu(∆)

This concludes the proof for αu, the proof for αl would be the same.

• ⇐=: trivial since (αu, αl) ≤AC (αu, αl).

for theorem 6. The definition of causality states:

(αu, αl) causal ⇐⇒

 ∀T ≥ 0,∀R,
(
R |=≤T (αu, αl)

)
=⇒

∃R′ | R′ |= (αu, αl) and ∀t ≤ T,R(t) = R′(t)

Lemma 2 applied to R′ gives R′ |= (αu, αl) ⇐⇒ R′ |= (αu, αl), and lemma 7 gives directly
∀T ≥ 0, R |=≤T (αu, αl)⇐⇒ R |=≤T (αu, αl). Therefore, the equation above can be rewritten as

(αu, αl) causal ⇐⇒

 ∀T ≥ 0,∀R,
(
R |=≤T (αu, αl)

)
=⇒

∃R′ | R′ |= (αu, αl) and ∀t ≤ T,R(t) = R′(t)

⇐⇒ (αu, αl) is causal

3.3.3 General Characterization of Causality

The result given below can be summarized as “a pair of arrival curves is causal if and only if its
SA-SA closure has no forbidden region”. This is the equivalence (c) in Figure 2. Formally, this is:

Theorem 8. Let (αu, αl) a pair of arrival curves.

αl = αl � αu
and

αu = αu�αl
⇐⇒ (αu, αl) is causal

This theorem gives a characterization of causality, valid for any pair of curves (unlike theorem 5
which stated an equivalence valid only for SA-SA pairs of curves). The proof for theorem 8 is
basically obtained by transitivity of theorems 6 and 5.

3.3.4 Implication Between Absence of Forbidden Regions and Causality

The main result of the section states that if a pair of curves doesn’t have any forbidden region,
then its SA-SA closure doesn’t have any either.

In the whole section, (αu, αl) is a pair of arrival curves. The goal of the section is to show

that
(αl = αl � αu

and
αu = αu�αl

)
⇒
(αl = αl � αu

and
αu = αu�αl

)
(implication (d) on Figure 2). We will prove this

in several steps, given by the following lemmas:

Lemma 9. αl = αl � αu
and

αu = αu�αl

⇒
 αl = αl � αu

and
αu = αu�αl

Lemma 10. αl = αl � αu

and
αu = αu�αl

⇒
 αl = αl � αu

and
αu = αu�αl

Verimag Research Report no TR-2009-15 12/39

Matthieu Moy and Karine Altisen

Theorem 11. αl = αl � αu
and

αu = αu�αl

⇒
 αl = αl � αu

and
αu = αu�αl

For each lemma/theorem, we show only the implication for the first equality, but the proof for

the second would be similar.

for lemma 9. We first prove by induction that

∀N ≥ 1, αl �
(
αu(N)) = αl

The base case is αl = αl�αu, which is the hypothesis of the lemma, and assuming αl�αu(N) = αl,
we have:

αl � αu(N+1) = αl �
[
αu(N) ⊗ αu

]
(by definition of αu(N))

=
[
αl � αu(N)]� αu (since (f � g)� h = f � (g ⊗ h),

see [11] p. 123)
= αl � αu (by induction hypothesis)
= αl (hypothesis of the lemma)

Which concludes the induction. Now, we can write, ∀t ≥ 0,

αl(t) = sup
N≥1

{(
αl �

[
αu(N)]) (t)

}
= sup
N≥1

{
sup
∆≥0

{
αl(t+ ∆)−

[
αu(N)(∆)

]}}
(definition of �)

= sup
∆≥0

{
αl(t+ ∆)− inf

N≥1

{
αu(N)(∆)

}}
= sup

∆≥0

{
αl(t+ ∆)− αu(∆)

}
(definition of αu)

= (αl � αu)(t) (definition of �)

for lemma 10. We first show, by induction, that:

∀N ≥ 1, αl
(N) = αl

(N) � αu

The base case is αl = αl � αu, which is our hypothesis. For N ≥ 1, we assume αl(N) =
αl

(N) � αu. To prove αl(N+1) = αl
(N+1) � αu, we will show that:

∀t ≥ 0,∀∆ ≥ 0, αl
(N+1)(t) + αu(∆) ≥ αl(N+1)(t+ ∆) i.e:

∀t ≥ 0,∀∆ ≥ 0, αl
(N+1)(t) + αu(∆) ≥ sup

x∈[0,t+∆]
{αl(N)(x) + αl(t+ ∆− x)} i.e:

∀t ≥ 0,∀∆ ≥ 0,∀x ∈ [0, t+ ∆], αl
(N+1)(t) + αu(∆) ≥ αl(N)(x) + αl(t+ ∆− x)

Let t ≥ 0, ∆ ≥ 0 and x ∈ [0, t+ ∆]. We distinguish two cases on x:

Verimag Research Report no TR-2009-15 13/39

Matthieu Moy and Karine Altisen

• If x ≥ t, then we can write:

αu(∆)− αl(∆− x+ t) ≥ αu(x− t) (since αu = αu�αl, hypothesis of lemma)

αl
(N)(x)− αu(x− t) ≤ αl(N)(t) (since αl(N) = αl

(N) � αu,
the induction hypothesis)

The rest of the proof follows from the combination of these equations:

αu(∆)− αl(∆− x+ t) ≥ αu(x− t) ≥ αl(N)(x)− αl(N)(t)

αu(∆) + αl
(N)(t) ≥ αl(N)(x) + αl(∆− x+ t)

Since αl(N+1)(t) ≥ αl(N)(t), we can apply the same reasoning, swapping x− t and t− x:

αu(∆) + αl
(N+1)(t) ≥ αu(∆) + αl

(N)(t) ≥ αl(N)(x) + αl(∆− x+ t)

αl
(N+1)(t) + αu(∆) ≥ αl(N)(x) + αl(t+ ∆− x) (variables reordering)

• If x < t, then we can write:

αl(t+ ∆− x)− αu(∆) ≤ αl(t− x) (since αl = αl � αu, hypothesis of lemma)

αl
(N+1)(t) ≥ αl(N)(x) + αl(t− x) (by definition of αl(N+1))

The rest of the proof follows from the combination of these equations:

αl(t+ ∆− x)− αu(∆) ≤ αl(t− x) ≤ αl(N+1)(t)− αl(N)(x)

αl
(N+1)(t) + αu(∆) ≥ αl(N)(x) + αl(t+ ∆− x)

Both cases prove that αl(N+1)(t) + αu(∆) ≥ αl
(N)(x) + αl(t + ∆ − x), and thus ∀t ≥ 0,∆ ≥

0, αl(N+1)(t) + αu(∆) ≥ αl(N+1)(t+ ∆). This implies by definition of � that ∀t ≥ 0, αl(N+1)(t) ≥
(αl(N+1) � αu)(t). As for any functions f and g, f � g ≥ f , the induction goal is proved.

Hence, ∀N ≥ 1, αl(N) = αl
(N) � αu. The rest of the proof is a simple application of the lower

semi-continuity of the � operator with respect to its left operand, as stated in [11] page 135. To
make this proof self-contained, we detail the steps:

∀t, αl(t) = sup
N≥1

{
αl

(N)(t)
}

(definition of αl)

= sup
N≥1

{(
αl

(N) � αu
)

(t)
}

(applying the result of the induction)

= sup
N≥1

{
sup
∆≥0

{
αl

(N)(t+ ∆)− αu(∆)
}}

(definition of �)

= sup
∆≥0

{
sup
N≥1

{
αl

(N)(t+ ∆)
}
− αu(∆)

}
= αl � αu

for theorem 11. Let (αu, αl) be a pair of arrival curves, such that αl = αl � αu
and

αu = αu�αl

Verimag Research Report no TR-2009-15 14/39

Matthieu Moy and Karine Altisen

From lemma 9 and 10, the following equalities also hold:

αl = αl � αu (1)
αu = αu�αl (2)
αu = αu�αl (3)
αl = αl � αu (4)

Equations 1 and 2 give us the hypothesis to apply apply lemma 10 to (αu, αl) and get αl =
αl � αu. Similarly, equations 3 and 4 allow us to apply lemma 10 to (αu, αl), which gives us
αu = αu�αl.

3.3.5 Sufficient Condition for Causality

The last theorem of this section gives a sufficient condition for the causality of a curve. Informally,
it states that a pair of curves without forbidden regions is causal. This is implication (e) on
Figure 2.

Theorem 12. Let (αu, αl) a pair of arrival curves. αl = αl � αu
and

αu = αu�αl

 =⇒ (αu, αl) is causal

The proof is basically obtained by transitivity of theorems 11 and 5.

3.3.6 Causality does not Imply Absence of Forbidden Regions

We just saw that
αl = αl � αu

and
αu = αu�αl

=⇒ (αu, αl) is causal

The converse is false as shown in the counter-example of Figure 4. The vertically hatched region
is a forbidden region, and we do not have αl = αl�αu, but the curve is still causal. Actually, the
forbidden region is below αl, so it is not reachable.

����
����
����
����

αl

αl
αu

10987654321

2
3
4
5
6
7
events

∆1
0

0

Figure 4: Causal Curve with a Forbidden Region

4 Computing the Causality Closure
The goal of this section is to define the causality closure of a pair of curves (αu, αl): it is a pair of
arrival curves which is causal and equivalent to (αu, αl). The first step is to define the C operator,
which removes the forbidden regions from a pair of curves.

Notice that removing forbidden regions is done on the pair of curves, globally. As a result,
while removing the forbidden regions on αl, one may introduce new ones on αu and vice-versa.

Verimag Research Report no TR-2009-15 15/39

Matthieu Moy and Karine Altisen

��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����

��������������
?

109876543210
0
1
2
3
4
5
6
7
events

∆

αu

αl

αl

(a) Original curve: (αu, αl)
8 9 100 1 2 3 4 5 6 7

events

0
1
2
3
4
5
6
7

∆

αl
αu

(b) SA-SA curve: (αu, αl)

8 9 100 1 2 3 4 5 6 7

events

0
1
2
3
4
5
6
7

∆

C
(
(αu, αl)

)

(c) Causal curve:
C(αu, αl)

Figure 5: Step-by-step causality closure

One natural way to solve this issue is to iterate the forbidden region removal until one reaches the
fix-point (assuming it is reached in a finite number of steps, which is not always the case).

To illustrate this, an example is given in Figure 5. The original curve (a) has both forbidden
regions (vertically hatched) and an unreachable region (horizontally hatched).

One region of interest is the little square between ∆ = 4 and ∆ = 5, marked with a “?” in
curve (a): if we consider the curves (αu, αl) before any transformation, it does not seem to be
a forbidden region. An execution emitting only 1 event in 4 units of time seems to be able to
continue by emitting 3 events right after. Actually, this is impossible, and there are at least two
ways to show it. the first way to remove this “?”-region is to apply the forbidden regions removal
twice: emitting 3 events as suggested above is not possible given the leftmost forbidden region
of αu. So, the “?”-region will have to be removed, as a consequence of the forbidden region on
αu. After the second iteration of the forbidden region removal, we reached the fix-point, and
implication (e) guarantees the causality. This iterative approach will be detailed in Section 5.1.

However, an interesting property of the C operator is that it does not create new forbidden
regions when applied on SA-SA curves (this will be lemma 17). Back to the example in Figure 5,
a second way to show that the “?”-region should be removed from αl is to work on αl instead of
αl: since αl(10) = 8 and αu(6) = 6, an execution has to emit at least two events in 4 units of time.
This illustrates the approach followed in this section: we eliminate the forbidden regions with C
(5.(c)) only after performing an SA-SA closure (5.(b)). The iterative approach will be kept for
cases where the SA-SA closure cannot be applied due to algorithmic and coding limitations.

4.1 Removing Forbidden Regions: the C Operator
We defined pairs of arrival curves as pairs (αu, αl) of functions for which αu ≥ αl. In addition, we
write ⊥AC the set of pairs of functions in F such that the former constraint is false. To simplify
notations, ⊥AC will be used as a single element even if it represents an infinite set of objects. We
note AC the set of all pairs of arrival curves plus ⊥AC.

Definition 12 (Order on AC). Let (αu, αl) and (αu′, αl′) be two pairs of arrival curves. We say
that (αu′, αl′) is tighter (meaning: more precise) than (αu, αl) (noted (αu′, αl′) ≤AC (αu, αl))
iff(def) αl′ ≥ αl and αu′ ≤ αu We extend the ≤AC relation to any object of AC by: ∀e ∈
AC . ⊥AC ≤AC e

This is trivial to show that ≤AC is an order on the set AC.

Definition 13. We define the C operator from AC to AC as:

C (⊥AC) def= ⊥AC and C
(
αl, αu

) def=

 let L = αl � αu, U = αu�αl
if L ≤ U then (L,U)
else ⊥AC

When C
(
αu, αl

)
6= ⊥AC, we note (αu∗, αl∗) def= C

(
αu, αl

)

Verimag Research Report no TR-2009-15 16/39

Matthieu Moy and Karine Altisen

αu∗ and αl∗ are shortcuts for the C operator, but the reader should note that αu∗ is indeed a
function of both αu and αl.

When (αu, αl) is a pair of arrival curves then L = αl � αu and U = αu�αl are functions in
F (i.e. wide-sense increasing and equal to zero at zero). But they may cross each other (it may
happen that L 6≤ U): in these cases, the C operator computes the value ⊥AC. This means that
the pair of arrival curves was not satisfiable (i.e. no cumulative curve satisfies it), as stated in
lemma 14.
Lemma 13. Let (αu, αl) be a pair of arrival curves. When these values are defined (i.e. C

(
αl, αu

)
6=

⊥AC), we have αl∗ ≥ αl and αu∗ ≤ αu.
Proof. Trivial by definition of C.

Lemma 14 (Equivalence of (αu, αl) and C
(
αu, αl

)
). Let (αu, αl) be a pair of arrival curves.

1. if C
(
αu, αl

)
= ⊥AC, then (αu, αl) is non-satisfiable;

2. (αu, αl) and C
(
αu, αl

)
are equivalent.

for lemma 14, point 1. If C
(
αu, αl

)
= ⊥AC, this means that L = αl � αu and U = αu�αl have

crossed, ie that L 6≤ U : ∃x | (αl�αu)(x) > (αu�αl)(x). This implies there exists T1 and T2 such
that:

αu(x+ T1)− αl(T1) < αl(x+ T2)− αu(T2) (5)
If (αu, αl) was satisfiable, there would exist a cumulative curve R that complies with (αu, αl).

We apply the definition to interval [0, T1 + T2 + x]:

R(T1 + x+ T2) ≤ αu(T1 + x+ T2) (definition of αu) (6)
R(T1 + x+ T2) ≤ αu(T2) + αu(T1 + x) (super-additivity of αu) (7)
R(T1 + x+ T2) ≥ αl(x+ T2 + T1) (definition of αl) (8)
R(T1 + x+ T2) ≥ αl(x+ T2) + αl(T1) (sub-additivity of αl) (9)

The two equations 7 and 9 contradict the equation 5. This proves that (αu, αl) is not satisfiable.

for lemma 14, point 2. Let R be a cumulative curve.
R |= C

(
αu, αl

)
=⇒ R |= (αu, αl) is a direct consequence of lemma 13.

We show the counter-part by contrapositive. Let us assume that R 6|= (αu∗, αl∗). Then, either
(a) ∃t,∆ ≥ 0 | R(t)−R(t−∆) < αl

∗(∆) or (b) ∃t,∆ ≥ 0 | R(t)−R(t−∆) > αu∗(∆). We focus
on the case (a) (the case (b) is the same): let t,∆ ≥ 0 such that R(t)−R(t−∆) < αl

∗(∆). Then,
by definition of αl∗,

R(t)−R(t−∆) < sup
t′≥∆
{αl(t′)− αu(t′ −∆)}

∃t′ ≥ ∆ | R(t)−R(t−∆) < αl(t′)− αu(t′ −∆)

To simplify the formulas, we set Ta = t−∆, Tb = t and Tc = t−∆+ t′. The above rewrites to

R(Tb)−R(Ta) < αl(Tc − Ta)− αu(Tc − Tb) (10)

We will now show that R violates either αu or αl. If R 6|= αl then the proof is complete. We
therefore assume it is not the case and prove that αu is violated. We can write:

R(Tc)−R(Ta) ≥ αl(Tc − Ta) (since R |= αl)
R(Ta)−R(Tb) > αu(Tc − Tb)− αl(Tc − Ta) (reordering of equation 10)

summing the two above equations, we get:

R(Tc)−R(Tb) > αu(Tc − Tb)

Verimag Research Report no TR-2009-15 17/39

Matthieu Moy and Karine Altisen

4.2 C(αu, αl): the Canonical Representative and its Properties
This section presents the main result of the paper. It basically states that C(αu, αl) has many
desirable properties: SA-SA, causality, and it is indeed the best possible pair of curves equivalent
to (αu, αl). We will start with some lemma and their demonstration, and will proceed with the
main theorems (easy to prove given the lemmas) in section 4.2.2.

4.2.1 A Few Useful Lemmas

Lemma 15 (SA-SA preservation). Let (αu, αl) be a SA-SA pair of arrival curves. If C(αu, αl)
6= ⊥AC, then C(αu, αl) is SA-SA.

Lemma 16 (Validity of αl∗ and αu∗ with respect to themselves). Let (αu, αl) be a SA-SA pair
of arrival curves. If C(αu, αl) 6= ⊥AC, then

αl
∗ |= (αu∗, αl∗)

αu∗ |= (αu∗, αl∗)

Lemma 17 (Absence of forbidden regions). Let (αu, αl) be a SA-SA pair of arrival curves. If
C(αu, αl) 6= ⊥AC, then (αu∗, αl∗) is a fix-point of C, i.e.

αl
∗ = αl

∗ � αu∗
and

αu∗ = αu∗�αl∗

Applying Theorem 12, this implies that (αu∗, αl∗) is causal. Intuitively, the theorem states
that, removing forbidden regions on SA-SA curves once will not create new forbidden regions. On
the example of Figure 5 page 16, this means that since the curve (b) is SA-SA, then (c) has no
forbidden regions anymore.

for lemma 15. Let t ≥ 0, let s ∈ [0, t]. By definition of αl∗(t− s) and αl∗(s), we have:

αl
∗(t− s) = sup

x≥0
{αl(t− s+ x)− αu(x)}

αl
∗(s) = sup

y≥0
{αl(s+ y)− αu(y)}

Therefore, we have:

αl
∗(t− s)− αl∗(s)

= sup
x,y≥0

{αl(t− s+ x)− αl(s+ y)− αu(x) + αu(y)}

= sup
x,y≥0

{αl(t− s+ x)− αl(s+ y)− (αu(x− y + y)− αu(y))}

≥ sup
x,y≥0

{αl(t− s+ x)− αl(s+ y)− αu(x− y)} (sub-additivity of αu)

≥ sup
x,y≥0

{αl(t− s+ x)− αl(s+ y)− αu(x+ y)}
(
x+ y ≥ x− y ⇒
−αu(x− y) ≥ −αu(x+ y)

)
≥ sup
x,y≥0

{αl((t+ x+ y)− (s+ y))− αl(s+ y)− αu(x+ y)}

≥ sup
x,y≥0

{αl(t+ x+ y)− αu(x+ y)} (super-additivity of αl)

≥ sup
z≥0
{αl(t+ z)− αu(z)} (setting z = x+ y)

≥ αl∗(t) (definition of αl∗)

Verimag Research Report no TR-2009-15 18/39

Matthieu Moy and Karine Altisen

for lemma 16. We’ll prove the first equation (the other is similar).
The key argument is that: αl∗ |= (αu∗, αl∗) ⇐⇒ αl

∗ |= (αu, αl∗). We prove it: the forward
implication, αl∗ |= (αu∗, αl∗) ⇒ αl

∗ |= (αu, αl∗), is obvious since (αu∗, αl∗) ≤AC (αu, αl∗). The
converse, αl∗ |= (αu∗, αl∗) ⇐ αl

∗ |= (αu, αl∗), is also true, since any curve accepted by (αu, αl∗)
is also accepted by (αu, αl) and therefore by (αu∗, αl∗) (lemma 14).

αl
∗ being super-additive (lemma 15), it is valid with respect to itself. We only have to prove

that αl∗ is valid with respect to αu: let t ≥ 0 and s ≤ t

αl
∗(t) = sup

x≥0
{αl(t+ x)− αu(x)} (by definition)

αl
∗(s) = sup

x≥0
{αl(s+ x)− αu(x)}

≥ sup
y≥0
{αl(t+ y)− αu(y + t− s)} (with x = t+ y − s)

Combining those equations,

αl
∗(t)−αl∗(s)

≤ sup
x≥0,y≥0

{αl(t+ x)− αl(t+ y) + αu(y + t− s)− αu(x)}

≤ sup
x≥0
{αl(t+ x)− αl(t+ x) + αu(x+ t− s)− αu(x)} (with y = x)

≤ sup
x≥0
{αu(x+ (t− s))− αu(x)}

≤ sup
x≥0
{αu(t− s) + αu(x)− αu(x)} (sub-additivity of αu)

≤ αu(t− s)

for lemma 17. We’ll prove αl∗ = αl
∗ � αu∗, the other equation could be proved similarly. This is

equivalent to prove that ∀t ≥ 0, s ≥ t, αl
∗(s) − αl∗(t) ≤ αu∗(s − t) which is actually implied by

αl
∗ |= (αu∗, αl∗), itself guaranteed by lemma 16.

4.2.2 Key Theorems

Theorem 18. For any pair of arrival curves (αu, αl),

• C(αu, αl) = ⊥AC iff (αu, αl) is non-satisfiable;

• C(αu, αl) is causal, SA-SA and equivalent to (αu, αl), otherwise.

Proof. Firstly, lemma 2 (stating that (αu, αl) and (αu, αl) are equivalent) and Lemma 14 (stating
that Cαl, αu = ⊥AC =⇒ (αu, αl) is not satisfiable) give the first direction of the equivalence.
Conversely, if (αu, αl) is non-satisfiable, let us assume that C(αu, αl) 6= ⊥AC. By lemma 16, αl∗

complies with C(αu, αl) which is thus satisfiable. Lemma 1 ((αu, αl) and C(αu, αl) are equivalent)
contradicts the assumptions.

Secondly, let (αu, αl) be satisfiable (C(αu, αl) 6= ⊥AC) (αu, αl) is SA-SA, therefore, lemma 17
applies, which gives us the hypothesis for theorem 5, which ensures causality. Lemma 15 gives the
SA-SA property and lemma 1 the equivalence with (αu, αl).

Theorem 19. For any pair of arrival curves (αu, αl),

• when (αu, αl) is satisfiable, C(αu, αl) is the tightest pair of curves equivalent to (αu, αl).

Proof. We note C(αu, αl) = (αu∗, αl∗). Lemma 16 tells that αl∗ |= (αu∗, αl∗) and αu
∗ |=

(αu∗, αl∗).
Any pair of curves equivalent to (αu, αl) would therefore have to accept αl∗ and αu∗. (αu∗, αl∗)

would therefore be tighter than any such pair of curves.

Verimag Research Report no TR-2009-15 19/39

Matthieu Moy and Karine Altisen

These last two theorems give an interesting result: given any pair of curves, one can compute
C(αu, αl), and get either the information that the curves are not satisfiable, or the best possible
pair of curves equivalent to the original one. In addition to this optimality, one also gets the
desirable properties: causality and SA-SA. This result is implementable on top of any algorithmic
toolbox implementing the basic operators: convolution, deconvolution, sub-additive and super-
additive closure.

Theorem 19 also provides the existence and uniqueness of a tightest pair of curves equivalent
to a given one. As a result, the following theorem also holds:

Theorem 20. Let (αu, αl) be a pair of curves. If (αu, αl) is the tightest pair of curves representing
a set of cumulative curves, then (αu, αl) is causal.

Any computation giving the best possible pair of curves also gives a causal pair of curves.
Theorem 20 explains why, in practice, most pairs of arrival curves usually manipulated in Real-
Time Calculus are causal. Indeed, curves obtained for example by measurements on a real system
are causal by construction; furthermore computations made in the RTC framework compute the
optimal solution and thus preserve the causality property. It also probably explains why this
problem received so little attention up to now.

On the other side, non-causal pairs of curves may arise whenever a computation is done in an
inexact manner. This typically occurs using other tools than RTC algebraic solutions. Indeed, the
recent works that interfaces RTC with state-based models face the problem. In [10, 9], the authors
get rid of it by constraining the class of curves they compute which are causal by definition (the
extension to arbitrary curves which is part of their future works will have to deal with it though).
But, in [1], the output curves are computed, one point at a time on an abstract model: this does
result into non causal curves, which are refined after being computed with a causality closure.
The CATS tool [20] relies on exact model-checking, so applied on a causal pair of curves, the tool
would output causal curves (as long as the model-checker never finishes with a timeout). [16]
also uses exact model-checking, but the long-term rate computation uses an approximation, which
could generate non-causal curves.

An example where the procedure described in [16] would produce non-causal pairs of curves
is given in Figure 6. The black curves are the input curves of the system, the system considered
is the identity (i.e. the actual output curves are the same as the input curves). The procedure
computes first a finite set of points at the beginning of the curve. In our example, we compute
(αu, αl) up to ∆ = 3. Then, to estimate the long-term rate, one more point is computed, with a
larger ∆. In our example, we consider ∆ = 9. The actual curve αl has the value 4 for ∆ ∈ [6, 8],
but we didn’t use ECA to compute this value, therefore, the best information we can get using αl
alone is the super-additive closure, represented in dashed red line. As one can see, this curve is
not causal: the big step between αl(8) and αl(9) is greater than αu(1).

#events

0

1

2

3

4

5

6

7

0 1 3 5 6 7422 4

αu

αl

8 9 10
∆t

αl
′

Figure 6: Example of computation of non-causal curve using ECA

On the other hand, computing the causality closure of (αu, αl) would remove the forbidden
region. In this case, we would re-obtain the exact curve for αl′.

Verimag Research Report no TR-2009-15 20/39

Matthieu Moy and Karine Altisen

Finally, in ac2lus [2] we use the abstract interpreter nbac [6], which also does some abstrac-
tions, and hence doesn’t guarantee the causality of the curves computed. The tool applies the
causality closure before the computation, so doesn’t have problem with non-causal input curves,
and can apply the causality operator to the output to possibly increase the precision.

In general, when an algorithm A computes output curves as a function of input curves (O =
A(I)), and if the algorithm do not work on non-causal curves I and/or may produce non-causal
curves O, we can transform this algorithm A into an algorithm A′ which accepts non-causal curves
and produces only causal curves the following way:
Icausal ← ∅
for all (αu, αl) ∈ I do

Icausal ← Icausal ∪ C(αu, αl) // Causality closure on input
end for
Onon-causal ← A(Icausal) // Actual computation
O ← ∅
for all (αu, αl) ∈ Onon-causal do

O ← O ∪ C(αu, αl) // Causality closure on output
end for
return O

In all the approaches combining RTC and another formalism cited above, the line Onon-causal ←
A(Icausal) is by far the most expansive (in time and memory). Hence, the overhead of the causality
closure is small, and makes the algorithm more general (accepting non-causal curves) and more
precise.

5 Application to Special Classes of Arrival Curves
5.1 Algorithms for Discrete Finite Curves
5.1.1 Definitions of Finite Arrival Curves

Up to this point, we dealt with infinite pairs of curves, but, as mentionned in the introduction, the
original work that brought us to studying causality was to connect RTC curves to synchronous
programming languages in the tool ac2lus [2]. The simplest model of ac2lus uses simple computer
representation of arrival curves: we work in discrete-time, discrete-event model, and consider only
finite curves, which makes them easy to represent and manipulate algorithmically speaking. We
consider the infinite extension of the curves to remain in the theoretical framework presented in
the previous sections and to be able to apply the same theorems. Therefore, instead of formalizing
the notion of finite curves, we consider the restriction of infinite curves on a finite interval.

Working with discrete-time (resp. discrete-event) models doesn’t change the above results,
since we considered time (resp. event count) as the set T (resp. E), being either R+ or N .
We now (in this chapter) set T = E = N . On the other hand, working with finite curves will
change the results a bit: the notion of SA-SA-closure doesn’t fit well in the finite model, since the
SA-SA-closure of a finite curve could be infinite.

We will first give some definitions for finite arrival curves, and the finite restriction of the C
operator. Then, we will give an algorithm to compute the causality closure using this restricted
C operator.
Definition 14 (Finite restriction of arrival curves). We denote by (αu∣∣

T
, αl
∣∣
T
) the restriction of

(αu, αl) to [0, T] defined as:

∀t ≤ T, αu
∣∣
T
(t) def= αu(t) and αl∣∣

T
(t) def= αl(t)

∀t > T, αu
∣∣
T
(t) def= +∞ and αl∣∣

T
(t) def= αl(T)

(αu∣∣
T
, αl
∣∣
T
) still applies to infinite event streams, but only gives constraints for finite windows

of time. Intuitively, it could be a pair of curves defined over [0, T]. Defining them as functions

Verimag Research Report no TR-2009-15 21/39

Matthieu Moy and Karine Altisen

over N has the advantage of remaining within the definition of arrival curves given above: αl∣∣
T

and αu∣∣
T
are still functions in F , but they can be represented easily as finite arrays of naturals.

5.1.2 SA-SA Closure for Finite Discrete Curves

The SA-SA closure has the interesting property that α(t) can be computed by looking only at
the fragment of the curve before t. In other words, one can compute an SA-SA closure by looking
only at the past of a curve. As a consequence, working with finite curves works well, since we
can compute the closure of α∣∣

T
without looking at the portion of α beyond T . Since the finite

restriction of a curve is never SA-SA, we need first to define the notion of SA-SA on an interval:

Definition 15 (SA-SA on an interval). A pair of curves (αu, αl) is said to be SA-SA on interval
[0, T] iff

∀t1, t2 ≥ 0, t1 + t2 ≤ T =⇒ αl(t1) + αl(t2) ≤ αl(t1 + t2)
∀t1, t2 ≥ 0, t1 + t2 ≤ T =⇒ αu(t1) + αu(t2) ≥ αl(t1 + t2)

Definition 16 (Finite SA-SA closure). The finite SA-SA closure of (αu, αl) on interval [0, T] is(
αu
∣∣
T
, αl
∣∣
T

)
.

Theorem 21 (SA-SA closure for finite curves). SA-SA closures for the finite restriction of arrival
curves are equivalent to the finite restriction of the SA-SA closures.

(αu)∣∣
T

= (αu∣∣
T
)∣∣

T

(αl)∣∣
T

= (αl∣∣
T
)∣∣

T

Proof. Immediate when expanding the definitions of αu, αl and α∣∣
T
in the equations.

Strictly speaking, the mathematical object (αu∣∣
T
) is still an infinite curve, and we do not want

to have to deal with it. We therefore work directly with its restriction (αu∣∣
T
)∣∣
T
, which is not

subadditive.
This implies in particular that we can compute the SA-SA closure of finite curves by considering

only the finite fragment, with no loss of precision.
Additionally, an efficient way to compute the SA-SA closure in discrete events is given in [4]

page 7.

αu(0) = 0; αu(t) = min
{
αu(t), min

s∈]0,t[
{αu(s) + αu(t− s)}

}
A similar one can be given for αl:

αl(0) = 0; αl(t) = max
{
αl(t), max

s∈]0,t[
{αl(s) + αl(t− s)}

}
This gives a simple, quadratic algorithm to compute (αu, αl).

5.1.3 Causality closure for Finite Discrete Curves

Unfortunately, the valid result for infinite curves, stating that C(αu, αl) was a causal curve equiv-
alent to (αu, αl) is helpless from the algorithmic point of view with finite curves: computing it
would require computing (αu, αl), which is an infinite curve. But lemma 14 and theorem 12

Verimag Research Report no TR-2009-15 22/39

Matthieu Moy and Karine Altisen

43210
0
1
2
3
4

events

∆

αu

αl

(a) Original curve:
(αu, αl)

43210
0
1
2
3
4

events

∆

αl

αu

(b) The curve after one step
without SA-SA
closure: C(αu, αl)

43210
0
1
2
3
4

events

∆

αl

αu

(c) The curve after two steps
without SA-SA
closure: C

(
C(αu, αl)

)

43210
0
1
2
3
4

events

∆

αl

αu

(d) The curve after one full iteration: SA-SA
closure of C(αu, αl)

43210
0
1
2
3
4

events

∆

αl

αu

(e) The curve after two full iterations.

Figure 7: Step-by-step causality closure for finite curves

still hold. In other words, applying the C operator doesn’t change the set of accepted cumulative
curves, and the fix-points of C are causal. So, given the fact that we know how to compute the C
operator, an algorithm will therefore be to apply it repeatedly until a fix-point is reached.

We illustrate the process with an example in Figure 7. The original pair of curves is (a), and
one can see that although the curves are SA-SA on [0, 4] (but clearly not SA-SA because of the
curve αu with +∞ values), one application of C is not sufficient: the curve (b) is not even SA-SA
on interval [0, 4], and still has forbidden regions. We iterate the C operator once more and get
(c), which is causal, but not SA-SA.

Another option which may speed up the algorithm, is to apply a finite SA-SA closure before
applying C again: this gives curves (d) and then (e) by applying C again. Then, neither the
SA-SA closure nor C would change the curve anymore: we reached the fix-point. In this case, the
final curve has both the causality and the SA-SA properties on interval [0, 4].

Theorem 22. For any T > 0 and any pair of arrival curves (αu, αl) with ∀t ∈ [0, T], αu(t) 6= +∞,
the sequence Cn(αu∣∣

T
, αl
∣∣
T
) admits a fix-point (denoted by C∞(αu∣∣

T
, αl
∣∣
T
), which is either ⊥AC

or a causal pair of arrival curves equivalent to (αu∣∣
T
, αl
∣∣
T
).

Proof. By definition, C (⊥AC) = ⊥AC, so if one of the elements of the sequence is ⊥AC, then it is
the fix-point of the sequence.

If none of the elements are ⊥AC, then, since C(αu, αl) ≤AC (αu, αl) (lemma 13), the sequence
is decreasing. The sequence has only a finite set of possible values, and therefore admits a fix-
point. By lemma 14, this pair of curves is equivalent to (αu∣∣

T
, αl
∣∣
T
), and theorem 12 implies the

causality.

The convergence of the iterations can be accelerated by using, in addition to C, other tightening
operators that preserves the set of accepted cumulative curves like the SA-SA closure. This is
expressed in the following theorem and applied in the example in Figure 7.(d) and 7.(e).

Theorem 23. For any T > 0 and any pair of arrival curves (αu, αl) with ∀t ∈ [0, T], αu(t) 6= +∞,
the sequence defined by (αu0, α

l
0) = (αu∣∣

T
, αl
∣∣
T
) and ∀n ≥ 1, (αun+1, α

l
n+1) = C(αun

∣∣
T
, αln

∣∣
T
)

admits a fix-point, which is either ⊥AC or a causal and SA-SA pair of arrival curves equivalent to
(αu∣∣

T
, αl
∣∣
T
).

Proof. Same as theorem 22.

Verimag Research Report no TR-2009-15 23/39

Matthieu Moy and Karine Altisen

We still need a way to compute C efficiently: the definition of C contains the supremum of an
infinite set, which as it is, would not be computable. Fortunately, the operator C applied to finite
restrictions of curves is indeed much simpler.

Theorem 24. Let (αu, αl) be a pair of curves, and Lr and Ur be defined by:

Lr(x) = sup
t∈[0,T−x]

{αl∣∣
T
(x+ t)− αu∣∣

T
(t)}

Ur(x) = inf
t∈[0,T]

{αu∣∣
T
(x+ t)− αl∣∣

T
(t)}

If Lr ≤ Ur, then C(αu∣∣
T
, αl
∣∣
T
) = (Lr, Ur), otherwise, C(αu∣∣

T
, αl
∣∣
T
) = ⊥AC.

Proof. From the definition of C, we reuse the L and U intermediate variables defined as L =
αl
∣∣
T
� αu∣∣

T
and U = αu

∣∣
T
�αl∣∣

T
. By definition of αl∣∣

T
, we have:

∀t > T − x, αl
∣∣
T
(x+ t) = αl

∣∣
T
(T)

therefore

sup
t>T−x

{αl∣∣
T
(x+ t)− αu∣∣

T
(t)} = sup

t>T−x
{αl∣∣

T
(T)− αu∣∣

T
(t)}

= αl
∣∣
T
(T)− αu∣∣

T
(T − x) (since αu∣∣

T
is increasing)

So U can be written as:

U(x) = (αl∣∣
T
� αu∣∣

T
)(x) = sup

t≥0
{αl∣∣

T
(x+ t)− αu∣∣

T
(t)} (by definition)

= sup
t∈[0,T−x]

{αl∣∣
T
(x+ t)− αu∣∣

T
(t)}

= Ur(x)

Similarly for L: ∀t > T − x, αu∣∣
T
(x+ t) is infinite and αl∣∣

T
(t) is finite. Therefore

inf
t≥T−x

{αu∣∣
T
(x+ t)− αl∣∣

T
(t)} = +∞

so L can be written as:

L(x) = (αu∣∣
T
�αl∣∣

T
)(x) = inf

t∈[0,T]
{αu∣∣

T
(x+ t)− αl∣∣

T
(t)} = Lr(x)

Finally, Lr = L and Ur = U , and by definition of C, the theorem holds.

With this theorem, the supremum and infimum used in the expression of the causality clo-
sure C(αu∣∣

T
, αl
∣∣
T
) are used over finite sets. C can now be computed with a simple, quadratic

algorithm.

5.1.4 Algorithm

The full algorithm for computing the causal and SA-SA pair of curves equivalent to the finite pair
of arrival curves A0 defined on [0, T] is given in Figure 8.

The loop terminates but finding a bound on the number of iterations other than the brute-
force (just knowing that the sequence is decreasing and that there is a finite number of possible
curves tighter that the original one) is still an open question. In practice, however, the number
of iterations required is low (one or two in most of the examples we tried, and up to 6 in tricky
corner-cases).

After the loop, A is either ⊥AC or a causal pair of finite discrete curves; it is equivalent to A0,
the original pair of curves; and it is SA-SA on the interval [0, T] if the SA-SA closure was applied
(first line within the loop). In this case, it is the best pair of curves equivalent to the original A0.

Verimag Research Report no TR-2009-15 24/39

Matthieu Moy and Karine Altisen

A← A0
repeat

A← SA-SA-closure(A) // Not mandatory, but speeds up convergence,
// and ensures SA-SA property of the result

A′ ← A
A← C (A)

until A 6= ⊥AC or A′ = A

Figure 8: Computation of causality closure for finite, discrete curves

5.2 Piecewise Affine, Convex/Concave Curves
An interesting class of curves, used for example in [10, 9], is the class of piecewise affine, con-
vex/concave curves (i.e. αl is convex, and αu is concave). An interesting property is that αu
(resp αl) can be expressed as the minimum (resp. maximum) of a set of affine functions. When
reasoning about these curves, the minimum and maximum are naturally translated in conjunction
of conditions. These curves are always causal:

Theorem 25. Let (αu, αl) 6= ⊥AC be a pair of piecewise affine, convex/concave curves. Then
(αu, αl) is causal.

Proof. Let au∆ + bu (resp. al∆ + bl) be the last affine piece of αu (resp. αl).
A direct consequence of the convex/concave property is that ∀0 ≤ ∆1 ≤ ∆2, αu(∆2)−αu(∆1) ≥

au(∆2−∆1) and αl(∆2)−αl(∆1) ≤ al(∆2−∆1), since the slope of αu (resp. αl) keeps increasing
(resp. decreasing) until it reaches au (resp. al). In particular, ∀∆ ≥ 0, αu(∆) ≥ au∆ and
αl(∆) ≤ al∆.

Then, if we set (αu∗, αl∗) = C(αu, αl),

∀∆ ≥ 0,∀t ≥ 0, αu(∆ + t)− αl(t) ≥ αu(∆) + aut− alt
αu∗(∆) = inf

t≥0
{αu(∆) + aut− alt} ≥ inf

t≥0
{αu(∆) + t(au − al︸ ︷︷ ︸

≥0

)}

αu∗(∆) ≥ αu(∆)
αu∗(∆) = αu(∆) (since αu∗(∆) ≤ αu(∆) too)

5.3 Combination of Finite Prefix and Piecewise Affine
We now study the set of curves Upac comprising both a finite prefix given by a set of points and
a long-term rate given by a piecewise-affine, convex/concave pair of curves. This class of curves
is the one used in the tool ac2lus [2], and is a super-set of the class of curves considered in [9]. It
allows a precise description of the initial portion of the curves, as well as a set of constraints on
the long-term rate of the event stream; it may be easily machine-representable: the finite portion
is basically an array and each affine piece is encoding with its slope and its Y -intercept.

We first define formally this class of curves, then present a few intermediate definitions and
lemmas needed to compute the causality closure, presented afterwards.

5.4 The Class of Ultimately Piecewise Affine Curves, Upac
In this section, we are considering only discrete-time, but can consider the fluid event model. Our
implementation is restricted to the discrete-event model.

Definition 17 (Upac). We define the class of curves Upac as the set of pairs of curves (αu, αl)
such that there exists

Verimag Research Report no TR-2009-15 25/39

Matthieu Moy and Karine Altisen

10

9

8

αu(∆)

affine piece:
(∆− 2)/2

affine piece:
(∆ + 12)/2

affine piece:
∆ + 3

αl(∆)

109876543210

7
6
5
4
3
2
1
0

#events

∆

Figure 9: Example curve with explicit points and affine pieces

• P (αu), P (αl) ∈ N : size of the finite prefix (i.e. abscissa of the last point explicitly given in
the representation)

• N(αu), N(αl) ∈ N : number of pieces of the piecewise affine part of the curves.
• a set of values pui ∈ N , i ∈ [0, P (αu)], and a set of rational values auj , buj , j ∈ [1, N(αu)]:

representation of the curve αu
• a set of values pli ∈ N , i ∈ [0, P (αl)], and a set of rational values alj , blj, j ∈ [1, N(αl)]:

representation of the curve αl
such that, ∀∆ ≥ 0:

Fu(∆) = if ∆ ∈ [0, P (αu)] then pu∆ else +∞;
F l(∆) = if ∆ ∈ [0, P (αl)] then pl∆ else 0;
Iu(∆) = if N(αu) > 0 then min

j∈[1,N(αu)]

{
auj∆ + buj

}
else +∞;

I l(∆) = if N(αl) > 0 then min
j∈[1,N(αl)]

{
alj∆ + blj

}
else 0;

with αu(∆) = min {Fu(∆), Iu(∆)} and αl(∆) = max
{
F l(∆), I l(∆)

}
.

The tuple
(
P (αu), P (αl), N(αu), N(αl), {pui }i∈[0,P (αu)], {auj , buj }j∈[1,N(αu)],

{pli}i∈[0,P (αl)], {alj , blj}i∈[1,P (αl)]
)
is called the representation of the pair (αu, αl). It corresponds

to the data-structure to be used in algorithms. We call the set of points pui and pli the finite prefix
and each line aj∆ + bj the affine pieces of (αu, αl).

For simplicity of the notations, we identify the abscissa of the points of the finite prefix with
ther index, but this is not a limitation. Note also that we require the individual points to be
integers (this will be necessary to ensure the convergence of the algorithms later), but remain in
the fluid-event model. Figure 9 shows an example: the upper part is made of 3 points and two
affine pieces; the lower part, 3 points, one affine piece.

5.4.1 Motivation for the Normal Form

As shown above, the causality closure of piecewise affine convex/concave curves is trivial. The
difficulty here comes from the points of αu and αl, which can interact together, or with the affine
pieces of the other curve. The particularity of curves comprising only points was that such curves
were not SA-SA, and could not be made so. This difficulty can be eliminated thanks to the
piecewise affine part of the curves: we can apply the SA-SA closure to the points of the curves,
and only a finite number of points will remain under the affine pieces (if this is not the case, then
it means the affine pieces add no information, and can be removed). This transformation will be
called the normalization, and will be presented in algorithm 1.

Verimag Research Report no TR-2009-15 26/39

Matthieu Moy and Karine Altisen

After this, we will get a SA-SA curve (theorem 30) made of points and affine pieces, and will
be able to apply the C operator on it to get a causal pair of curves. The computation of C will
be made easy by theorem 31, which will reduce the computation of C to a version where all the
operators will be bounded.

5.4.2 Properties of Sub-additive Closure of Finite Curves

Definition 18 (Slope of finite arrival curves). Let (αu, αl) be a pair of arrival curves, and P > 0.
We define the following:

SP (αu) def= min
∆≤P
{αu(∆)/∆} (slope of αu∣∣

P
)

SP (αl) def= max
∆≤P
{αl(∆)/∆} (slope of αl∣∣

P
)

∆P (αu) def= min
∆≤P
{SP (αu)×∆ = αu(∆)} (point of maximal influence of αu ∣∣

P
)

∆P (αl) def= min
∆≤P
{SP (αl)×∆ = αl(∆)} (point of maximal influence of αl∣∣

P
)

dm(αu) def= sup
∆≤∆P (αu)

{αu(∆)− SP (αu)×∆} (maximal drift of αu∣∣
P
)

dm(αl) def= sup
∆≤∆P (αl)

{SP (αl)×∆− αl(∆)} (maximal drift of αl∣∣
P
)

Since we work here in discrete time, the min and max are over finite sets, and are well-defined.
The point of maximal influence defines the linear function SP (αu)×∆. The curve αu remains

above this line, and touches it infinitely often. Also, αu’s distance to the line remains bounded.
Formally, this is expressed by the three following lemmas, illustrated by Figure 10 on αu.

10

9

8

αu

7654310

7
6
5
4
3
2
1
0

#events

∆

∆m

SP (αu)

2

dm(αu)

αu
SP (αu)×∆

Figure 10: Point of maximal influence of αu. The curve (αu, αl) remains in the greyed area, and
touches SP (αu)×∆ at least with period ∆P (αu).

Lemma 26. Let (αu, αl) be a pair of arrival curves and T > 0. Then:

∀∆, αu(∆) ≥ αu∣∣
T
(∆) ≥ SP (αu)×∆

αl(∆) ≤ αl∣∣
T
(∆) ≤ SP (αl)×∆

Lemma 27. Let (αu, αl) be a pair of arrival curves and T > 0. Then:

∀k ∈ N , αu
∣∣
T
(k ×∆P (αu)) = k ×∆P (αu)× SP (αu)

αl
∣∣
T
(k ×∆P (αl)) = k ×∆P (αl)× SP (αl)

Verimag Research Report no TR-2009-15 27/39

Matthieu Moy and Karine Altisen

Lemma 28. Let (αu, αl) be a pair of arrival curves. Then:

∀∆ ≥ 0, αu(∆)− SP (αu)×∆ ≤ dm(αu)
SP (αl)×∆− αl(∆) ≤ dm(αl)

A consequence of this is that affine pieces a∆ + b with a slope steeper than SP (αu) × ∆ do
not add information to the curve (provided the explicit points of αu (resp. αl) are below (resp.
above) the affine piece), and can be removed. This is formalized by the following lemma:

Lemma 29. Let (αu, αl) be a pair of arrival curves in Upac, different from ⊥AC, and J ∈
[1, N(αu)] such that these two conditions are satisfied:

∀i ∈ [0, P (αu)],∀j ∈ [1, N(αu)], pui ≤ auj × i+ buj

auJ ≥ SP (αu)

Then, removing the affine piece auJ + buJ from (αu, αl) yields an equivalent curve.
Similarly for αl, if

∀i ∈ [0, P (αl)],∀j ∈ [1, N(αl)], pli ≤ alj × i+ blj

alJ ≥ SP (αl)

Then, removing the affine piece alJ + blJ from (αu, αl) yields an equivalent curve.

For lemma 26. We prove by induction that ∀n ≥ 1,⊗n
(
αu
∣∣
T

)
≥ SP (αu) × ∆. The base case is

obvious by definition of SP (αu). Assuming ⊗n
(
αu
∣∣
T

)
≥ SP (αu)×∆, we have:

⊗n+1(αu∣∣
T

)
(∆) =

((
⊗n
(
αu
∣∣
T

))
⊗
(
αu
∣∣
T

))
(∆)

= inf
t∈[0,∆]

{(
⊗n
(
αu
∣∣
T

))
(∆− t)︸ ︷︷ ︸

≥SP (αu)×(∆−t)

+
(
αu
∣∣
T

)
(t)︸ ︷︷ ︸

≥SP (αu)×t︸ ︷︷ ︸
≥SP (αu)×∆

}

≥ SP (αu)×∆

which concludes the induction proof. By definition of αu, this proves the first equation of the
lemma. The proof for the αl equation is the same.

For lemma 27. This lemma is also proved by a simple induction on k. The base cases for k = 0
and k = 1 follow from the definition. Assuming αu∣∣

T
(k ×∆P (αu)) = k ×∆P (αu) × SP (αu), we

have:

αu
∣∣
T
((k + 1)×∆P (αu))

≤ αu∣∣
T
(1×∆P (αu)) + αu

∣∣
T
(k ×∆P (αu)) (sub-additivity of αu∣∣

T
)

≤ αu∣∣
T
(∆P (αu)) + k × αu∣∣

T
(∆P (αu)) (induction hypothesis)

≤ (k + 1)× αu∣∣
T
(∆P (αu))

= (k + 1)× αu∣∣
T
(∆P (αu)) (lemma 26 gives

αu
∣∣
T
((k + 1)×∆P (αu)) ≥ (k + 1)× αu∣∣

T
(∆P (αu)))

The proof for the second equation is the same.

Verimag Research Report no TR-2009-15 28/39

Matthieu Moy and Karine Altisen

For lemma 28. The definition of dm states the inequality for ∆ ∈ [0,∆m(αu)]. We need to prove
that the inequality also holds for ∆ ≥ ∆m(αu). We consider such ∆, and define X, difference
between ∆ and the abscissa of the last point of contact between αu and SP (αu)×∆ before ∆, by:

X = ∆−
⌊

∆
∆P (αu)

⌋
×∆P (αu)

By construction, ∆ −X is a multiple of ∆P (αu), hence αu∣∣
T
(∆ −X) = ∆P (αu) × (∆ −X) (by

lemma 27).
Also, 0 ≤ X ≤ ∆P (αu) ≤ P (αu), hence, by definition of dm(αu), we have dm(αu) ≥ αu(X)−

SP (αu)×X (i.e. αu(X) ≤ dm(αu) + SP (αu)×X). Then, we can write:

αu(∆) = αu(∆−X +X)
≤ αu(∆−X) + αu(X) (sub-additivity of αu)
≤ SP (αu)× (∆−X) + (dm(αu) + SP (αu)×X)
≤ SP (αu)×∆ + dm(αu)

αu(∆)− SP (αu)×∆ ≤ dm(αu)

for lemma 29. We denote by α′u the curve obtained by removing the J-th affine piece to αu.
The first hypothesis implies that we can compute SP (αu), dm(αu) and ∆P (αu) based only on

the explicit points pui , hence, SP (αu) = SP (α′u), dm(αu) = dm(α′u) and ∆P (αu) = ∆P (α′u).
The second hypothesis implies that (auJ∆ + bu)− (SP (αu)×∆) is a non-decreasing function,

hence ∀∆ ≥ ∆m(αu),

(auJ∆ + bu)− (SP (αu)×∆) ≥ sup
t≤∆P (αu)

{(auJ t+ bu)− SP (αu)× t}

≥ sup
t≤∆P (αu)

{αu(t)− SP (αu)× t} (first hypothesis)

≥ dm(αu) = dm(α′u) (Definition of dm(αu))
≥ α′u(∆)− SP (α′u)×∆ (lemma 28)

(auJ∆ + bu) ≥ α′u(∆)

In other words, the affine piece auJ∆ + bu remain above α′u, hence the conclusion.

5.4.3 Normal Form of Curves in Upac

Arbitrary curves made of points and affine pieces are hard to deal with (in particular they are not
necessarily SA-SA). To simplify the proofs, we consider only curves obeying a few well-formedness
properties, which we call the normal form. Converting an arbitrary curve into a normal-form is
straightforward (the algorithm is given below), hence we don’t loose generality.

Definition 19 (Normal form of curves in Upac). A pair of arrival curves (αu, αl) in Upac is
said to be in normal form if P (αu) = P (αl) = P and at least one of the following conditions is
satisfied:

1. (αu, αl) = ⊥AC

2. N(αu) = N(αl) = 0 and (αu, αl) is SA-SA up to P

3. N(αu) = 0, αu is sub-additive up to P and αl is super-additive.

4. N(αl) = 0, αl is super-additive up to P and αu is sub-additive.

5. (αu, αl) is SA-SA

Verimag Research Report no TR-2009-15 29/39

Matthieu Moy and Karine Altisen

Case 2 corresponds to the case of discrete, finite curves. In this case, we say that (αu, αl) has
no relevant affine pieces. Cases 3 and 4 correspond to asymetric cases where only one of αu and
αl has relevant affine pieces. In these cases, we consider the SA-SA curves in theory, but the
representation is restricted to the SA-SA set of points on the prefix.

For the common case where both curves have relevant affine pieces (case 5), the transformation
of a pair of curves into normal form is illustrated by Figure 11. It essentially consists in adding
explicit points to the curve until one can be sure all the points are above the affine pieces. In the

10

9

8

109876543210

7
6
5
4
3
2
1
0

#events

∆

αl(∆)

αu(∆)

(a) Original curve.

10

9

8

109876543210

7
6
5
4
3
2
1
0

#events

∆

αl(∆)

αu(∆)

(b) After step 1: pu1 pulled below the affine piece.

10

9

8

109876543210

7
6
5
4
3
2
1
0

#events

∆

αl(∆)

αu(∆)

(c) After step 2: one affine piece removed.

10

9

8

109876543210

7
6
5
4
3
2
1
0

#events

∆

αl(∆)

αu(∆)Mu

M l

(d) After steps 3-6: Curve in normal form.

Figure 11: Step by step transformation into normal form

general case, the transformation is as follows:

Algorithm 1 (Normalization of curves in Upac). For any curve in Upac, we apply the steps:

1. Make sure all the explicit points pui (resp. pli) are under (resp. above) all affine pieces; if not,
modify pui (resp. pli); add points on αu or αl until P (αu) = P (αl) = P . See Figure 11.(b).

2. Eliminate affine pieces of αu (resp. αl) which have a slope greater or equal (resp. lower
or equal) to SP (αu) (resp. SP (αl)). By lemma 29, this does not change the curve. See
Figure 11.(c).

Then, multiple cases can occur:

If N(αu) = N(αl) = 0 then

3. Apply the SA-SA closure up to P .

If N(αu) 6= 0 and N(αl) 6= 0 then

Verimag Research Report no TR-2009-15 30/39

Matthieu Moy and Karine Altisen

3. Compute the abscissa Mu
j of the intersection between SP (αu)×∆ and the affine piece

j of αu (and similarly M l for αl). Set Mu = minj{Mu
j }, M l = minj{M l

j}, M =
max{Mu,M l}.

4. Add explicit points pu and pl to the curves, so that P (αu) = P (αl) = M .
5. Apply the SA-SA closure up to M to (αu, αl). See Figure 11.(d).

If N(αu) 6= 0 and N(αl) = 0 then

3. Compute the abscissa Mu
j of the intersection between SP (αu)×∆ and the affine piece

j of αu. Set M = minj{Mu
j }.

4. Add explicit points pu and pl to the curves, so that P (αu) = P (αl) = M .
5. Apply the SA-SA closure up to M to (αu, αl).

If N(αu) = 0 and N(αl) 6= 0 then apply the same transformation as above, replacing αl by αu
and vice-versa in the text.

The normalization trivially implies SA-SA closure up to M . The SA-SA property is actually
true for the whole curve, when it has some relevant affine pieces:

Theorem 30. Let (αu, αl) be a pair of curves obtained by applying the normalization (algorithm 1)
on a pair of curves in Upac. Then (αu, αl) is in Upac and in normal form. In particular, if αl
(resp. αu) has at least one relevant affine piece, then αl is super-additive (resp. sub-additive).

Proof. We prove the first case (αu is sub-additive), the second being similar, that is:

∀∆1,∆2 ≥ 0, αu(∆1) + αu(∆2) ≥ αu(∆1 + ∆2)

If αu has no relevant affine piece, then by definition of the normal form, αu is sub-additive
(although its representation, αu∣∣

M
, is not).

In the case where αu has at least one affine piece, we consider several cases, depending on the
values of ∆1 and ∆2:

∆1 ≤M and ∆2 ≤M :

αu(∆1) + αu(∆2) = αu
∣∣
M

(∆1) + αu
∣∣
M

(∆2) (Since ∆1 ≤M , ∆2 ≤M

and αu is sub-additive up to M)
≥ αu∣∣

M
(∆1 + ∆2) (Sub-additivity of αu∣∣

M
)

≥ αu(∆1 + ∆2) (Because (αu, αl) is in normal form)

∆1 > M or ∆2 > M : Without loss of generality, we assume ∆1 > M , i.e. ∆1 is in the piecewise
affine part of the curve. In other words, αu(∆1) = ai∆1 + bi where ai∆ + bi is one of the
affine piece of αu.

αu(∆1 + ∆2) ≤ ai(∆1 + ∆2) + bi (Since ∆1 + ∆2 ≥ ∆1)
≤ ai∆1 + bi + ai∆2

≤ αu(∆1) + ai∆2

≤ αu(∆1) + αu(∆2) (See demonstration of theorem 25)

Verimag Research Report no TR-2009-15 31/39

Matthieu Moy and Karine Altisen

5.4.4 C for Upac Curves With at Least one Affine Piece

We now focus on the general case, e.i. curves in normal form in Upac, with either αl or αu having
affine pieces, or both: N(αu) > 0 or N(αl) > 0. We show that we can directly apply the operator
C on the curves and that its computation can be done in low polynomial time.

Theorem 31. Let (αu, αl) be a pair of curves in Upac, in normal form, such that (αu, αl) 6= ⊥AC,
with either αu or αl having relevant affine pieces. Let M = P (αl) = P (αu) be the index of the
last point of (αu, αl) given explicitly (as it was computed in algorithm 1). Let C∣∣

M
=
(
C
∣∣
M
u ,C

∣∣
M
l
)

be the following operator: ∀∆ ≥ 0,
C
∣∣
M
u
(
αu, αl

)
(∆) = inft∈[0,M]{αu(∆ + t)− αl(t)} and

C
∣∣
M
l
(
αu, αl

)
(∆) = supt∈[0,M]{αl(∆ + t)− αu(t)}

1. ∀∆ ≥ 0,C
(
αu, αl

)
(∆) = C

∣∣
M

(
αu, αl

)
(∆)

2. If N(αu) 6= 0 then ∀∆ > M , Cu
(
αu, αl

)
(∆) = αu(∆)

3. If N(αl) 6= 0 then ∀∆ > M , Cl
(
αu, αl

)
(∆) = αl(∆)

As a consequence, the C operator can easily be computed algorithmically: for each point to
compute, the inf{} and the sup{} can be computed with a simple for loop iterating from 0 to
M . The expression of C∣∣

M

(
αu, αl

)
includes a SA-SA closure. When the curve has affine pieces, it

is already SA-SA, hence no SA-SA closure needs to be applied However, for curve with no affine
pieces, since we only use the values of the SA-SA curves for ∆ ≤ 2M , it is sufficient to compute
the SA-SA closure up to 2M . Furthermore, when the curve has at least one affine piece, this
computation has to be done for the points of abscissa from 0 to M , the other points are given by
the original curve itself.

For theorem 31, point 1. We prove only the equation for αu∗ def= C
∣∣
M
u
(
αu, αl

)
, the other proof

would be similar.
If we denote by M the last relevant point of the curve, we have:

C
(
αu, αl

)
= inf
t≥0
{αu(∆ + t)− αl(t)} (11)

= min
{

inf
t∈[0,M]

{αu(∆ + t)− αl(t)}, inf
t∈]M,+∞[

{αu(∆ + t)− αl(t)}
}

(12)

The theorem basically states that the second part of the min{} in equation 12 can be omitted.
We distinguish two cases, depending on whether αu has relevant affine pieces (i.e. whether

N(αu) = 0 or not):
We perform the proof by contradiction. Let’s assume

inf
t∈[0,M]

{αu(∆ + t)− αl(t)} > inf
t∈]M,+∞[

{αu(∆ + t)− αl(t)}

This implies that there is a value of T in]M,+∞[for which:

αu(∆ + T)− αl(T) < inf
t∈[0,M]

{αu(∆ + t)− αl(t)}

∀t ∈ [0,M], αu(∆ + T)− αl(T) < αu(∆ + t)− αl(t)

• If αu has no relevant affine pieces (N(αu) = 0): In this case, since (αu, αl) has at least
one affine piece (hypothesis of theorem), then N(αl) 6= 0 and αl = αl (by definition of the
normal form). Hence,

∀t ∈ [0,M], αu(∆ + T)− αl(T) < αu(∆ + t)− αl(t)

Verimag Research Report no TR-2009-15 32/39

Matthieu Moy and Karine Altisen

We define X, difference between ∆ and the abscissa of the first point of contact between αu
and SP (αu)×∆ following ∆, by:

X =
⌈

∆
∆P (αu)

⌉
×∆P (αu)−∆

By construction, X + ∆ is a multiple of ∆P (αu), hence αu(X + ∆) = ∆P (αu) × (X + ∆)
(by lemma 27). Also, 0 ≤ X ≤ ∆P (αu) ≤M ≤ T .
We set t = X in the above equation and get:

αu(∆ + T)− αl(T) < αu(∆ +X)− αl(X)
αu(∆ + T)− αl(T) < SP (αu)× (∆ +X)− αl(X)

By definition of αl, and since T > M , αl(T) is in the piecewise affine part of αl, which means
there is a n such that αl(T) = (alnT + bln), i.e. αl(T) is in the n-th affine piece:

αu(∆ + T)− (alnT + bln) < SP (αu)× (∆ +X)− αl(X)
αl(X)− (alnT + bln) < SP (αu)× (∆ +X)− αu(∆ + T)

(alnX + bln)− (alnT + bln) < SP (αu)× (∆ +X)− αu(∆ + T) (by definition,
alnX + bln ≤ αl(X))

aln(X − T) < SP (αu)× (∆ +X)− αu(∆ + T)
aln(X − T) < SP (αu)× (∆ +X)− SP (αu)× (∆ + T) (lemma 26)
aln(X − T) < SP (αu)× (X − T)

aln > SP (αu) (Since X − T < 0)

In other words, the slope of one of the affine pieces of αl is steeper than the one of αu. This
is a contradiction since it implies that SP (αu)×∆ will ultimately be strictly below αl, and
since lemma 27 implies that αu will also become strictly smaller than αl, i.e. (αu, αl) = ⊥AC.

• If αu has relevant affine pieces (N(αu) 6= 0): in this case, αu = αu and

∀t ∈ [0,M], αu(∆ + T)− αl(T) < αu(∆ + t)− αl(t)
αu(∆ + T)− αl(T) < αu(∆) (Setting t = 0)

aun(∆ + T) + bun − αl(T) < αu(∆) (∆ + T is in the n-th segment of αu)
aun(∆ + T) + bun − αl(T) < aun∆ + bun (αu(x) ≥ aun(x) + bun by definition)

aun(T) < αl(T) (simple reordering)
aun(T) < SP (αl)× T (By definition of SP (αl))

aun < SP (αl)

Hence the slope of αl is greater than the one of one of the segments of αu, which implies
that (αu, αl) = ⊥AC.

For theorem 31, case 2. The proof is similar to the second case in the above proof. Basically, if
αu has relevant affine piece, then the slope of αl has to be lower than the slope of the affine piece

Verimag Research Report no TR-2009-15 33/39

Matthieu Moy and Karine Altisen

aun∆ + bun of αu with lowest slope. In other words:

∀t ≥ 0,∆ ≥ 0, αl(t) ≤ SP (αl)× t
≤ aunt
≤ αu(∆ + t)− αu(∆)

αu(∆) ≤ αu(∆ + t)− αl(t) (Since αu = αu)
αu(∆) ≤ inf

t≥0
{αu(∆ + t)− αl(t)}

αu(∆) ≤ Cu
(
αu, αl

)
Since by construction, Cu

(
αu, αl

)
≤ αu(∆), we get the result.

The symmetrical proof applies for theorem 31, case 3.
Based on these remarks, the algorithm for the causality closure for Upac curves with at least

one relevant affine piece follows:
Algorithm 2. Given a pair of curves (αu, αl) in Upac in normal form represented by pui , auj , buj ,
pli, alk, blk (i ∈ [0,M], j ∈ [1, N(αu)], k ∈ [1, N(αl)]), we denote by pu∗i , au∗j , bu∗j , pl∗i , al∗k , bl∗k the
representation of the causality closure C

(
αu, αl

)
. This representation is computed as follows:

• In all cases, the affine pieces do not change (this is ensured by cases 2 and 3 of theorem 31):

au∗j = auj , bu∗j = buj , al∗k = alk, bl∗k = blk

• To compute the points pi of the finite prefix, define (αu2M , α
l
2M), a pair of curves: if

N(αu) 6= 0 then αu2M = αu else the finite prefix of αu2M is the subadditive closure of αu
up to 2M and it has no affine pieces (likewise for αl2M). Then:

pui = C
∣∣
M
u (αu2M , αu2M) (i) and pli = C

∣∣
M
l (αu2M , αu2M) (i)

The Figure 12 illustrates the whole causality closure algorithm on an example. The pair of
curves is given in Figure 12.(a): αu has no affine piece, and αl has one. Figure 12.(b) shows an
attempt to use the C operator on the curves without performing a normalization. Since the curves
are not SA-SA, C is able to remove some forbidden regions but misses one (the point αl(4) = 2).
On the other hand, the normalization algorithm (12.(c)) adds some points to the prefix of the
curves, and applying C∣∣

M
on the result yields a causal pair of curves, without further iteration

(12.(d)).

5.4.5 Optimized Causality Closure Algorithm in Upac

The algorithm presented in section 5.4.4 is relatively simple, but its complexity is slightly more
than what is really needed: it requires to compute the SA-SA closure of curves without affine pieces
up to 2M . We show in this section an alternate approach that requires only the computation up
to M .

Curves with up and low affine pieces For curves in normal form in Upac with relevant affine
pieces on αu and αl (case 5 of the normal form), the theorems 18 and 31 can directly be applied.
Indeed, the curves are already SA-SA, hence the application of C on the curves results in their
causal representative and this application is easy to compute. Formally, let (αu, αl) be a pair of
arrival curves in normal form in Upac with up and low affine pieces. The pair of curves (αu∗, αl∗)
computed by:

• ∀∆ ∈ [0,M], αu∗(∆) = C
∣∣
M
u
(
αu, αl

)
, αl∗(∆) = C

∣∣
M
l
(
αu, αl

)
• ∀∆ > M , αu∗(∆) = αu(∆), αl∗(∆) = αl(∆)

is C
(
αu, αl

)
, namely, it is SA-SA, causal and the tightest pair of curves among the ones equivalent

to (αu, αl). The algorithm requires to compute M points, each computation being linear.

Verimag Research Report no TR-2009-15 34/39

Matthieu Moy and Karine Altisen

6
4
3

0
0 3 5 10 15

∆

αu

P (αl) = 5
P (αu) = 3
Finite prefix

αl

events

Affine piece
αl(∆) = ∆− 3

(a) Original curve

��
��
��
��

��������������

9

6
4
3

0
0 3 5 10 15

∆

αu

αl

events

Forbidden region
not found at iteration 1

(b) One C iteration, no normalization

12

9

6
4
3

0
0 3 5 10 15

αu

αl

SP (αl)×∆

∆

M = 15

events

(c) Normalization

��
��
��
��

����

����

������

���
���
���
���

����

����������

����

12

9

6
4
3

0
0 3 5 10 15

∆

αu

αl

events

(d) Result of algorithm 2

Figure 12: Causality Closure on a Upac Curve With One Affine Piece

Curves with up but no low affine pieces (and conversely) We now consider curves in
normal form in Upac with one side having relevant affine pieces but not the other (case 3 and 4
of the normal form). Let us fix for the explanation αu to have no affine pieces: the problem here
is that αu is not SA-SA: the computation of C on the curves will not provide the result. The idea
here is to compute separately the two curves. We begin with the computation of the lower curve
Cl
(
αu, αl

)
: theorem 31 provides an algorithm. We then compute the finite prefix of Cu

(
αu, αl

)
using the operator on αu and Cl

(
αu, αl

)
.

Formally, let (αu, αl) be a pair of arrival curves in normal form in Upac, with αl having affine
pieces, but not αu. LetM = P (αl) = P (αu) be the last abscissa of the finite prefix. The following
algorithm computes the causality closure C

(
αu, αl

)
.

Algorithm 3. 1. Computation of αl∗ given by:
∀∆ ∈ [0,M], αl∗(∆) = C

∣∣
M
l
(
αu, αl

)
and ∀∆ > M , αl∗(∆) = αl(∆)

2. Computation of αu∗ given by:

∀∆ ∈ [0,M], αu∗(∆) = C
∣∣
M
u
(
αu, αl

∗
)

(∆) and ∀∆ > M , αu∗(∆) = +∞

3. Computation of αu∗′ given by the sub-additive closure up to M of αu∗:
∀∆ ∈ [0,M], αu∗′(∆) = αu∗(∆) and ∀∆ > M , αu∗′(∆) = +∞

Theorem 32. Let (αu, αl) be a pair of arrival curves in normal form in Upac, with αl having
affine pieces, but not αu. Let αl∗, αu∗ and αu∗′ be the curves computed by the algorithm 3:

αl
∗ = Cl

(
αu, αl

)
and αu∗′ = αu∗ = Cu

(
αu, αl

)
The first step of the algorithm computes the low part of causal representative. The second

step computes αu∗ such that (αl∗, αu∗) is causal, but αu∗ is not sub-additive up to M . The last
step obtains the sub-additivity up to M for αu∗ while keeping the causality of the pair.

The theorem is proved in [15], it ensures that (αu∗′, αl∗) is the causal representative of (αu, αl)
in Upac: it is causal, super-additive for αl∗, sub-additive upt to M for αu∗′, and the tightest pair
of curves equivalent to (αu, αl).

Those following lemmas prove the above theorem.

Verimag Research Report no TR-2009-15 35/39

Matthieu Moy and Karine Altisen

Lemma 33. αl∗ = Cl
(
αu, αl

)
Proof. αl is super-additive; this implies that αl = αl, hence

∀∆ ∈ [0,M], Cl
(
αu, αl

)
(∆) = Cl

(
αu, αl

)
(∆)

= C
∣∣
M
l
(
αu, αl

)
(∆) (By theorem 31)

For the points between 0 andM , the computation of Cl
(
αu, αl

)
only uses the value of αu between

0 and M : as αu is sub-additive up to M , αu(t) = αu(t), ∀t ∈ [0,M]. Hence,

∀∆ ∈ [0,M], Cl
(
αu, αl

)
(∆) = C

∣∣
M
l
(
αu, αl

)
(∆) = αl

∗

Also, ∀∆ > M , αl∗(∆) = αl(∆) = Cl
(
αu, αl

)
(by theorem 31).

Lemma 34. (αu∗, αl∗) is a fix-point of C, i.e.

αu∗ = Cu
(
αu∗, αl

∗) (13)

αl
∗ = Cl

(
αu∗, αl

∗) (14)

For equation 13. Notice that αu∗(∆) = inft∈[0,M],∆+t≤M αu(∆ + t) − αl
∗(t), if ∆ ≤ M and

αu∗(∆) = +∞ if ∆ > M .
Cu
(
αu∗, αl

∗
)

= αu∗�αl∗ ≤ αu∗

By theorem 31, ∀∆ ≥ 0,

Cu
(
αu∗, αl

∗) (∆) = inf
t∈[0,M]

{αu∗(∆ + t)− αl∗(t)}

= inf
t∈[0,M]

inf
x∈[0,M]

{αu(∆ + t+ x)− (αl∗(t) + αl
∗(x))}

= inf
t+x∈[0,M]

{αu(∆ + t+ x)− (αl∗(t) + αl
∗(x))}

(since for t+ x > M,αu(∆ + t+ x) = +∞)
≥ inf
x+t∈[0,M]

{αu(∆ + t+ x)− αl∗(t+ x)}

(super-additivity of αl∗)
≥αu∗(∆)

For equation 14. By definition of C, αl∗ ≤ Cl
(
αu∗, αl

∗
)
, and by construction of (αu∗, αl∗), it is

equivalent to (αu, αl).
Cl
(
αu, αl

)
is the tightest curve equivalent to (αu, αl), therefore:

αl
∗ = Cl

(
αu, αl

)
≥ Cl

(
αu∗, αl

∗)
αl
∗ ≤ Cl

(
αu∗, αl

∗) ≤ αl∗
αl
∗ = Cl

(
αu∗, αl

∗)

Applying the implication (e) in the causality characterization theorems, this proves that
(αu∗, αl∗) is causal.

Verimag Research Report no TR-2009-15 36/39

Matthieu Moy and Karine Altisen

6 Conclusion
We formally defined the notion of causality for RTC curves, and set up a formal framework to
study it. As already mentioned, and although all along the paper we talk about arrival curves, the
results are applicable to arrival curves as well as to service curves. We started from the intuitive
notion of forbidden region, and the definition of causality based on the possibility to extend a
curve, and stated the equivalence (valid for SA-SA pairs of curves) between absence of forbidden
regions and the definition.

To the best we know, the phenomenon has received little attention and no work has been carried
out on the subject yet except [3]. This is mainly due to the usual way arrival curves were used
within the RTC framework on the one hand and to the restrictions of the studies to some already
causal class of arrival curves in the other hand. We detailed in which conditions causality can
appear and be problematic. Dealing with general causal pairs of curves in a simulator or a formal
verification tool is very often mandatory (unless using, if at all possible, heavyweight roundabout
computations). To avoid non-causal curves, we propose an algorithm that turns a non-causal pair
of curves into a causal one. After application of this algorithm, event generators based on arrival
curves cannot deadlock, and formal verifiers do no more produce spurious counter-examples linked
to causality.

The additional benefit of the transformation is that it gives the tightest pair of curves equivalent
to the original one, which is also a canonical representative of all arrival curve pairs defining the
same set of event streams. Indeed, compared to the “mathematical refinement algorithm” proposed
in [13], our algorithm is more general and potentially more precise. Indeed, the next version of
this work [1] uses directly the causality closure instead.

The theorems and algorithms work for discrete and fluid event model, discrete and continuous
time for infinite curves. Given any subset of these models, one just has to implement the basic
operators (⊗, ⊗ , �, � and SA-SA closure) to be able to use them. They have also been adapted
to discrete time and event model for the case of finite arrival curves, where the sub-additive
and super-additive closure operators do not make sense (this was implemented in the ac2lus [2]
toolbox). We also presented the case of concave/convex piecewise affine curves, which do not have
the problem at all, and a combination of finite discrete curves with this model, which also needed
some adaptation of the general algorithm.

References
[1] Karine Altisen, Yanhong Liu, and Matthieu Moy. Performance evaluation of components using

a granularity-based interface between real-time calculus and timed automata. In QAPL, 2010.
1, 1, 4.2, 6

[2] Karine Altisen and Matthieu Moy. ac2lus: Bringing SMT-solving and abstract interpretation
techniques to real-time calculus through the synchronous language Lustre. In 22nd Euromicro
Conference on Real-Time Systems (ECRTS), Brussels, Belgium, Jully 2010. (document), 1,
4.2, 5.1.1, 5.3, 6

[3] Karine Altisen and Matthieu Moy. Arrival curves for real-time calculus: the causality problem
and its solutions. In TACAS, March 2010. 1, 6

[4] A. Bouillard and É. Thierry. An algorithmic toolbox for network calculus. Discrete Event
Dynamic Systems, 18(1):3–49, 2008. 5.1.1

[5] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111:394–406, 1992. 1

[6] B. Jeannet. Dynamic partitioning in linear relation analysis. application to the verification
of reactive systems. Formal Methods in System Design, 2003. 1, 1, 4.2

Verimag Research Report no TR-2009-15 37/39

Matthieu Moy and Karine Altisen

[7] Bengt Jonsson, Simon Perathoner, Lothar Thiele, and Wang Yi. Cyclic dependencies in
modular performance analysis. In EMSOFT, 2008. 2.2.3

[8] Simon Künzli, Francesco Poletti, Luca Benini, and Lothar Thiele. Combining simulation
and formal methods for system-level performance analysis. In DATE ’06: Proceedings of the
conference on Design, automation and test in Europe, pages 236–241, 3001 Leuven, Belgium,
Belgium, 2006. European Design and Automation Association. 1

[9] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and timed automata:
a hybrid methodology for the performance analysis of embedded real-time systems. Design
Automation for Embedded Systems, pages 1–35, June 2010. (document), 1, 4.2, 5.2, 5.3

[10] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-time analysis and timed
automata: A hybrid method for analyzing embedded real-time systems. In EMSOFT, 2009.
(document), 1, 4.2, 5.2

[11] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus. Springer Verlag, 2001. 1, 4, 5,
2.2.2, 3.3.4

[12] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, 1973. 1

[13] Yanhong Liu, Karine Altisen, and Matthieu Moy. Granularity-based interfacing between RTC
and timed automata performance models. Technical Report TR-2009-10, Verimag, 2009. 6

[14] Leonid Mokrushin. Compositional analysis of timed systems by abstraction. PowerPoint
Slides, 2007. (document)

[15] Matthieu Moy and Karine Altisen. Arrival curves for real-time calculus: the causality problem
and its solutions. Technical Report TR-2009-15, Verimag, 2009. 5.4.5

[16] Linh T.X. Phan, Samarjit Chakraborty, P.S. Thiagarajan, and Lothar Thiele. Composing
functional and state-based performance models for analyzing heterogeneous real-time systems.
In RTSS, 2007. (document), 1, 4.2

[17] Pascal Raymond. Compilation efficace d’un langage declaratif synchrone: Le generateur de
code Lustre-v3. PhD thesis, Institut National Polytechnique de Grenoble - INPG, November
1991. Section 13.7, “Causalité” (pages 119–123). (document), 1

[18] Pascal Raymond. Lustre v4 Manual. Verimag, February 2000. 1

[19] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling
hard real-time systems. In ISCAS, 2000. (document), 1, 2.2.2

[20] Uppsala University. Cats tool, 2007. http://www.timestool.com/cats. 1, 4.2

Verimag Research Report no TR-2009-15 38/39

Matthieu Moy and Karine Altisen

Contents
1 Introduction 1

2 Arrival Curves 3
2.1 Basic Notions in Min-plus and Max-plus Algebra 3
2.2 Arrival Curves . 6

2.2.1 Definition of Arrival Curves . 6
2.2.2 Sub-additivity and Super-additivity . 6
2.2.3 Arrival Curves Satisfied “Up To T” . 6

3 Causality: Definition and Characterization 7
3.1 Definition of Causality . 7
3.2 An Overview of Theorems to Characterize Causality 7
3.3 Characterization of Causality: Theorems and Proofs 8

3.3.1 A First Characterization of Causality . 8
3.3.2 Causality and SA-SA closure . 11
3.3.3 General Characterization of Causality . 12
3.3.4 Implication Between Absence of Forbidden Regions and Causality 12
3.3.5 Sufficient Condition for Causality . 15
3.3.6 Causality does not Imply Absence of Forbidden Regions 15

4 Computing the Causality Closure 15
4.1 Removing Forbidden Regions: the C Operator . 16
4.2 C(αu, αl): the Canonical Representative and its Properties 18

4.2.1 A Few Useful Lemmas . 18
4.2.2 Key Theorems . 19

5 Application to Special Classes of Arrival Curves 21
5.1 Algorithms for Discrete Finite Curves . 21

5.1.1 Definitions of Finite Arrival Curves . 21
5.1.2 SA-SA Closure for Finite Discrete Curves 22
5.1.3 Causality closure for Finite Discrete Curves 22
5.1.4 Algorithm . 24

5.2 Piecewise Affine, Convex/Concave Curves . 25
5.3 Combination of Finite Prefix and Piecewise Affine 25
5.4 The Class of Ultimately Piecewise Affine Curves, Upac 25

5.4.1 Motivation for the Normal Form . 26
5.4.2 Properties of Sub-additive Closure of Finite Curves 27
5.4.3 Normal Form of Curves in Upac . 29
5.4.4 C for Upac Curves With at Least one Affine Piece 32
5.4.5 Optimized Causality Closure Algorithm in Upac 34

6 Conclusion 37

Verimag Research Report no TR-2009-15 39/39

	Introduction
	Arrival Curves
	Basic Notions in Min-plus and Max-plus Algebra
	Arrival Curves
	Definition of Arrival Curves
	Sub-additivity and Super-additivity
	Arrival Curves Satisfied ``Up To T''

	Causality: Definition and Characterization
	Definition of Causality
	An Overview of Theorems to Characterize Causality
	Characterization of Causality: Theorems and Proofs
	A First Characterization of Causality
	Causality and SA-SA closure
	General Characterization of Causality
	Implication Between Absence of Forbidden Regions and Causality
	Sufficient Condition for Causality
	Causality does not Imply Absence of Forbidden Regions

	Computing the Causality Closure
	Removing Forbidden Regions: the C Operator
	C(u, l): the Canonical Representative and its Properties
	A Few Useful Lemmas
	Key Theorems

	Application to Special Classes of Arrival Curves
	Algorithms for Discrete Finite Curves
	Definitions of Finite Arrival Curves
	SA-SA Closure for Finite Discrete Curves
	Causality closure for Finite Discrete Curves
	Algorithm

	Piecewise Affine, Convex/Concave Curves
	Combination of Finite Prefix and Piecewise Affine
	The Class of Ultimately Piecewise Affine Curves, Upac
	Motivation for the Normal Form
	Properties of Sub-additive Closure of Finite Curves
	Normal Form of Curves in Upac
	C for Upac Curves With at Least one Affine Piece
	Optimized Causality Closure Algorithm in Upac

	Conclusion

