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Karine Altisen and Matthieu Moy

1 Introduction

The Verimag laboratory has been studying various kinds of embedded systems models for more than 20
years. A model can either be further refined to an implementation, or be used to validate a specification
and evaluate the performances of a system before it is actually built. In the latter case, we call the approach
virtual prototyping. Verimag has already applied such an approach to the various levels of abstraction that
are used to model systems-on-a-chip [Cor08] and sensor networks [Sam08]. In both cases, the approach is
fully based on the executability of models.

In this document, we report on a work done to bridge the gap between computational (or executable)
models, and analytical models. This work has been initiated by discussions with Lothar Thiele’s group at
ETHZ.

1.1 Computational vs Analytical Models

One of the main benefits of executability is that it allows comparing the model with an implementation, and
does not restrict a priori the amount of details that can be put in the model. This helps getting confidence
in the faithfulness of the model.

For instance, in the context of sensor networks, such computational models allow to mimic the behavior
of the hardware parts, with respect to energy consumption. The energy cost of a message sent from one
node and reaching the sink, is computed according to the detailed energy modes of the radio components,
driven by the detailed protocols, and connected to the application code. Conversely, in more abstract models
for sensor networks, a fixed energy cost is associated with each message reaching the sink node, regardless
of what happens when it is transmitted (collisions, retransmissions, etc.). The latter model is easier to
analyze, but when the activity of the network has a high spatial and temporal variability, the two models
start diverging. The model that mimics the behavior of the hardware is more likely to be faithful, than a
model where the cost associated with a message is an average value.

In the context of systems-on-a-chip, early timing performance evaluation may be needed for the dimen-
sioning of the system. A typical source of inefficiency in such systems is what happens on the bus. In order
to be relevant for performance evaluation, a model of the bus has to show at least an abstraction of the
arbitration policy, and this is usually done with a computational model, in methods like transaction-level
modeling.

On the other hand, detailed computational models can be slow to simulate, are hardly compositional
(in the sense that an execution of a individual components are usually not sufficient to get results for the
complete system), and obviously, are limited to a finite number of executions. Worst-cases and best-cases
can only be estimated, not computed exactly.

If detailed computational models can be considered as one end of the full range of models, analytical
models are at the other end. Their respective advantages and drawbacks can be pictured as shown by Fig-
ure 1. The interesting and feasible models are placed on a diagonal (non analyzable and unprecise models
are useless, whereas very detailed and easily analyzable models are hopeless). On this diagonal, an impor-
tant point is the limit between models that have states, and models that have not. Detailed computational
models clearly have states. Abstract analytical models like the Real-Time Calculus do not (see more details
below).

In a lot of embedded systems we would like to model and analyze, the notion of state is important,
because it allows to model various modes of the system. For instance, a multimedia system-on-a-chip will
rely on a component called the power manager, which can turn some other components on and off. A
precise estimation of the energy consumption has to take this behavior into account, otherwise it is too
abstract.

One of the main reasons to try and bridge the gap between analytical and computational models is the
hope to find models in which we can express such mode behaviors, while retaining at least part of the
efficient analysis of pure analytical models.

1.2 Modular Performance Analysis and Real-Time Calculus

The MPA-RTC [TCN00] approach provides a framework for compositional analysis of performances such
as end-to-end delays and buffer sizes. It is able to compose different types of processes, scheduling policies
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Fig. 1. Computational vs Analytical Models

and resource allocations. Each component has an analytic specification which computes upper and lower
bounds on the execution times, given upper and lower bounds on the number of events to be computed and
resources available, in any time interval.

The components are described at a very high level of abstraction. The abstraction on the behaviors of
the inputs and outputs is the notion of arrival curve. An arrival curve is a pair of functions αl(∆), αu(∆)
that give, respectively, the minimum and the maximum number of events in any time interval of length
∆. This abstraction does not allow to consider sequences of different abstract behaviors, since it is based
on some information valid for all intervals of a given length. This also implies that no notion of states is
allowed in RTC components, because an RTC component is an arrival curve transformer.

When using such abstractions for components that have several intrinsic modes, the results obtained are
particularly coarse. For example, a component with an initial mode and then a stationary behavior cannot
be described without unreasonable approximation.

1.3 Related works: connecting MPA-RTC to other formalisms

To overcome these drawbacks, an approach is to individually analyze some state-based or new component
of an MPA framework with tools that support it and to re-inject the results into the MPA framework. This
implies making the interfaces between those tools and the RTC analysis compatible.

An RTC component is specified as a transformer of input arrival curves into output arrival curves.
Depending on the component, the RTC analysis then computes the output curves, given the input ones. To
replace the RTC analysis with other tools that support state-based components (fig. 2), we thus have first
to make the interfaces compatible: the tools should be able to read and produce arrival and service curves.
Second, they should compute the same kind of results.
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Fig. 2. From RTC analysis to other analysis

This approach has already been used successfully to connect RTC to various other formalisms in the
past: ETHZ proposed a connection to a simulation model to allow testing methods where formal methods
are not applicable, or using an actual embedded system [KT06] and a connection to Event-count automata
(ECA) [PCTT07]. Independently, Uppsala university developed a tool called CATS [KMY07,Mok07,DAR07],
which uses a connection from RTC to timed-automata, and allows the use of the Uppaal [LPY97] model-
checking tool for timed automata to compute the arrival curves.

More recently, some work in the Verimag laboratory by Yanhong Liu augmented the CATS approach
with the notion of granularity [LAM09], and another approach for the connection to timed automata has
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been proposed by Kai Lampka from ETHZ [Lam08]. This report uses a comparable approach, but uses
discrete-time, and synchronous languages. These three works are part of the collaboration between Verimag
and ETHZ within the Combest project.

1.4 Structure of the report

The next section presents some basic MPA-RTC notions; section 3 provides the basics of the synchronous
language Lustre that we are using, and the analysis that are possible on this language. Section 4 presents
our contribution in detail.

2 Definition of The MPA-RTC Framework

The framework of Modular Performance Analysis for Real Time Calculus provides a compositional ab-
straction for the modeling and the analysis of real time distributed systems: it mainly allows to compute
best and worst case timing properties on the behavior of the system. It describes a network of connected
components; the basic components (RTC component) are triggered by streams of events and fed by streams
of available resources; those streams are characterized by arrival curves and service curves.

The concrete view of an RTC stream is characterized by a cumulative function R : Time → N, where
Time is the domain of time (positive real numbers or positive integers usually). R(t) represents the cumu-
lative number of events in the stream from date 0 to date t. The abstract view of the same RTC stream is
given by a pair of arrival curves such that:

∀t,∀∆ αl(∆) ≤ R(t+∆)−R(t) ≤ αu(∆)

This means that in any sliding windows of length ∆, the number of events is upper and lower bounded
by the upper αu and lower αu arrival curves (this is illustrated in Figure 3). Upper and lower service
curves βu(∆) and βl(∆) are similarly defined, but give the amount of computing resource available during
windows of time of length ∆.
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Fig. 3. Arrival curves and event streams

An RTC component is a transformer of such curves. In the concrete view, it correlates input and output
cumulative functions, depending on the behavior of the component. The abstract view provides an analytic
correlation between input and output arrival and service curves. This is illustrated in Figure 4, where αu, αl

represent the arrival curves for the input events, βu, βl represent the arrival curves for the processing units
(i.e. available resource). αu′

, αl′ give the output rate of events and βu′
, βl′ give the remaining resource
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(that can be used for example as the service curve of another component sharing the same resource). The
formulas are given for reference but will not be detailed here.

The performance of a given system modeled as MPA network is obtained by computing input and
output arrival and service curves for the whole.

As the method uses analytic models and computations, it provides exact solutions (worst case and best
case bounds) and it usually scales up for large systems. But it is not easily adaptable to new components: a
new analytic study has to be done for each new component or way to connect them. Furthermore there are
strong limitations on the types of components that can be handled: no state dependent components can be
modeled.

3 Using Lustre Programs and Abstract Interpretation

In this work, we propose to write the state-based component with the programming language Lustre [BCH+85]
and to perform the analysis using the abstract interpretation tool nbac [Jea03].

3.1 Lustre programs

Lustre is a synchronous data-flow programming language. It is simple and formally defined .It is well
suited to program (state-based) embedded system or abstractions of it. Lustre programs can be tested,
verified against a property (see [HLR92]). Furthermore (and overall), it also allows to program the adapter
(see fig. 2) and the back adapter/wrapper with same language, by using the techniques of the so-called
synchronous observers [HLR93]. We will discuss this further on paragraph 4.

The idea behind Lustre is to manipulate infinite streams of values. When one writes x = y + 2;,
it should be read as “at each clock tick, the value of x is equal to the value of y plus 2”, so if the stream
of values for x is 1, 5, 12, 42, . . ., then the stream of values for y is 3, 7, 14, 44, . . .. Of course, it is also
possible to refer to past values of a variable, by using the operator pre which means “previous value of”.
Since “previous value” is meaningless at the first instant, the operator pre has to be used together with the
“initialization operator” ->: x -> y means “x at the first instant, and y afterwards”.

For example, the following program implements a counter:

node counter(x: bool) r e t u r n s (y: i n t)
l e t
y = 0 -> ( i f x then pre(y) + 1 else pre(y));

t e l
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This simple Lustre program states that at the first instant, y is equal to 0, and afterwards, when x is
true, the new value of y is equal to its previous value plus one, otherwise, y keeps its previous value. In
short, y gives the number of times x has been true since the origin of time.

3.2 Abstract Interpretation of Lustre Programs

Abstract interpretation [CC77] is a common verification technique that can deal in particular with un-
bounded data-types such as integers. The abstract interpretation theory not only allows checking invariant
on a program, but can also “discover” invariants (for example, give the interval of possible values for a
variable at a point of a program). Abstract interpretation is based on the notion of abstract domain, which
is a way to over-approximate the set of reachable states of the program. It allows a trade-off between
performance and precision by choosing the abstract domain appropriately.

In our case, dealing with numeric variables is a must-have: our approach is based on synchronous
observers which are Lustre programs representing arrival curves, and therefore containing numerical vari-
ables to count the number of occurrences of an event in a time window. These programs can be handled by
abstract interpretation tools: we use the tool nbac [Jea03].

4 Detailed Proposition

Since our goal is to represent arrival curves with Lustre programs, where an event can only arrive at a clock
tick, we restrict ourselves to the discrete time model. Discrete-time arrival curves are less expressive than
continuous time ones, but a continuous-time arrival curve can be approximated with an arbitrarily small
error by choosing the appropriate time granularity.

Our state-based component is now a program written with arbitrary Lustre. The component takes as
input (resp. output) a flow of integers, representing the number of event occurrences at the current clock
tick that the component receives (resp. emits).

For example, the Lustre component representing a component with an infinite processing capacity
would be:

node infinite_capacity (in_seq: i n t) r e t u r n s (out_seq: i n t)
l e t
out_seq = in_seq;

t e l

and a shaper (limited, constant, processing capacity, with a buffer to manage the overload) can be
modeled this way:

node queue_transformer (in_seq: i n t; max_speed: i n t)
r e t u r n s (out_seq: i n t)

var
backlog: i n t; work: i n t; empty_queue: bool;

l e t
−− t h i n g s t o do a t t h e c u r r e n t i n s t a n t
−− ( a c c u m u l a t e d + new work )
work = in_seq -> (in_seq + pre(backlog));

−− whe the r we ’ l l empty t h e queue a t t h e c u r r e n t i n s t a n t .
empty_queue = (work <= max_speed);

−− amount o f work a c c u m u l a t e d i n t h e p a s t .
backlog = i f (empty_queue) then 0 else work - out_seq;

out_seq = i f (empty_queue) then work else max_speed;
t e l

We now focus on the adapters and on the analysis part: our Lustre program is parameterized by a stream
of events as inputs and outputs another stream of events, while the MPA framework provides arrival curves
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for input, and expects arrival curves as output. The adapters will allow converting arrival curves into sets
of possible sequences of events, and the other way around.

4.1 Synchronous Observers

We chose to model the adapter and the back adapter with the same synchronous observers technique,
written in Lustre [HLR93]. Here comes a short summary on what we need about Lustre observers.

Generally speaking, a Lustre observer models a safety property P a Lustre program has to verify. This
property may depend on both the inputs and the outputs of the program.

The properties we are dealing with are, as it is often the case, safety properties in the form “Given an in-
put stream satisfying a precondition, the system outputs a stream satisfying a property”. On the other hand,
Lustre allows us to express properties in the form “at each point in time, given an input satisfying a precon-
dition, the system’s output will satisfy a property”. In other words, we can express: always

(
P (t)⇒ Q(t)

)
,

and we want to prove: always
(
P (t)

)
⇒ always

(
Q(t)

)
which are not equivalent in general. However, the

two formulations become equivalent if the following three conditions are verified [HLR93]:

Permanent failure: if the precondition becomes false, it has to remain false forever.
Causality: the precondition is causal, that is, for any finite sequence F = i0, i1, . . . , it for which the

precondition is true, there exists an infinite sequence prolonging F such that the precondition is always
true.

Determinism: the precondition should be deterministic. It comes from the fact that inputs involved in the
precondition are quantified existentially (since they are on the left of the implication) while observers
use universally quantified inputs.

The first point is easy to work around: once the property becomes false, we keep it false forever. In
Lustre, if ok is the property to be transformed, the transformation is as simple as:

always_ok = ok and (true -> pre(always_ok)).
The second can be solved in general with “non-blocking restriction” [HLR93]. In the particular case

of observers for arrival curves, we can guarantee the causality with a pre-processing of the arrival curves
themselves.

The third gives us a constraint on the way to write the generators: it should not use oracles (input
variables) to model non-determinism.

With the 3 conditions satisfied, if the observer outputs a “false” at time t, it means there’s an execution
for which the precondition has not been falsified up to t and which falsifies the condition. This is equivalent
to saying that the property has a counter-example.

4.2 Adapter: from arrival curves to streams of events

We show how to program an adapter as a deterministic Lustre observer. Given a pair of (lower and upper)
arrival curves, the adapter provides a way to generate an event stream conforming to the arrival curves.
There are two ways to achieve this result: a generator, that will produce such stream, or an observer, that
will read an arbitrary stream and check its conformance. We choose the second approach, and therefore
generate a piece of Lustre code that checks the conformance of an event stream.

As mentioned above, we restrict ourselves to discrete-time, discrete-event, and finite time window. Let
N be the biggest time window that appear in the arrival curve. The observer has to check the number of
events in any window smaller or equal to T . We implement this by checking, at each instant t, that the
number of events received in the time windows [t − 1, t], [t − 2, t], . . . , [t −N, t] are between their lower
and upper bounds.

The trick here to implement this verification with a reasonable number of variables (N counters) is to
re-use the counters from on instant to the next: the number of events in the time window [x, t + 1] is the
number of events in the time window [x, t] plus the number of events received at time t + 1, so the event
counter for a window of size s at time t can be obtained by adding the number of events at the current
instant to the counter for a window of size s− 1 at the previous instant.

An observer is generated by replacing mi and Mi by the values of αl(i) and αu(i).
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−− d e t e r m i n i s t i c o b s e r v e r , w i th 3 c o u n t e r s
−− ( one f o r each s i z e o f i n t e r v a l )
node AC_det (i: i n t) r e t u r n s (OK: bool);
count1, count2, count3: i n t;

l e t
count1 = i;
count2 = i->(pre(count1) + i);
count3 = i->(pre(count2) + i);
OK = m1 <= count1 and count1 <= M1

and m2 <= count2 and count2 <= M2
and m3 <= count3 and count3 <= M3
and ( t rue -> pre(OK)); −− n e v e r become t r u e a g a i n

−− a f t e r b e i n g f a l s e once .
t e l

The actual program is actually slightly more complex: at instants t < N , some time windows would
“cross” the origin of time, so their corresponding counter should actually be ignored. A real observer is
actually as follows:

node input_observer (i: i n t) r e t u r n s (ok: bool)
var

time: i n t;
ok_now: bool;
c1: i n t;
c2: i n t;
c3: i n t;

l e t
time = 0 -> pre(time) + 1;
c1 = i;
c2 = i -> pre(c1) + i;
c3 = i -> pre(c2) + i;
ok = (m1 <= c1 and c1 <= M1)

and ( i f time < 1 then true else (m2 <= c2 and c2 <= M2))
and ( i f time < 2 then true else (m3 <= c3 and c3 <= M3))
and ( t rue -> pre(ok));

t e l

It trivially satisfies the “permanent failure” and “determinism” conditions above, but is not necessarily
causal. In other words, it is possible that at some point in time, the lower bounds forces a number of event
greater that l while the upper bound forces this number to be lower that u with u < l. But this causality
problem actually comes from the way the curves are given. Indeed, given a pair of curves, we can get an
equivalent pair of curves that yields a causal observer. The transformation is done by a few iterations on the
curves, each iteration being O(n2) in complexity. In other words, we can get rid of the causality problem
once and for all by a pre-processing on the curves.

4.3 How to compute output arrival curves?

Given the observer above, we can express the question “for any input sequence complying with (αu, αl),
will the system output a sequence complying with (αu′

, αl′ ) ?”, and ask an abstract interpretation tool to
prove it. On the other hand, our goal is to actually compute (αu′

, αl′) (or at least, a conservative approxi-
mation of it).

The tool we are using for the proofs, nbac, was designed to prove properties, not to discover invariants,
so a little additional work has to be performed to compute the output analytic description based on the input
ones. This step is based on a binary search, with an algorithm which tries different values until it finds the
best ones which are provably correct.

For example, to compute αu(4), we start with the hypothesis αu(4) = 1, generate the observer for this
particular curve (assuming αl = 0 and αu(t) = +∞ for t 6= 4). If the curve is incorrect, we try with
αu(4) = 2, and then 4, 8, 16, . . . until we find one acceptable value. At that point, we have one provably

Verimag Research Report no TR-2009-14 7/10



Karine Altisen and Matthieu Moy

correct value, and the previously tried one (or just 0) which is not, and we can proceed with a binary search
between these two values.

This implies launching the proof engine log(n) times (where n is the value to be computed) instead of
launching an invariant-discovering tool just once, but this has not been a problem in practice.

4.4 The ac2lus Toolbox

The whole approach is implemented in a simple C++ toolbox. The curves are manipulated using arrays of
positive integers.

The algorithms implemented are:

– Parser/pretty printer for a textual format for arrival curves,
– Observers generation,
– Binary search calling the tool nbac directly from within C++,
– Sub-additive and ”causalification” closure.
– Visualization with GNUplot,

As an extension to plain arrival curves, we allow the value “-1” to mean “no constraint for this time
window”, which allow manipulating “sparse” arrival curves (they still consume memory, but the observer
generated is simpler).

When normalizing the curves before generating the observer, our algorithm notices when a point of
the curve can be recomputed from others, and replaces these points with “-1” values. When the last points
are “-1”, the tool trim the curves to the smallest prefix needed. This allows working with a minimal set of
variables in the observers.

5 Conclusion

5.1 Summary

In this task of the Combest project, we are currently exploring an approach similar to the connection of
RTC to timed automata [Lam08], using Lustre to model the components. Our approach is fully based on
the notion of synchronous observers to verify properties.

The connection to the RTC framework is done with a Lustre observer on the inputs of the system, and
another on the output of the system. The well-formedness of observers depends on some properties which
we can ensure on the analytic descriptions. The components are also expressed as Lustre programs taking
streams of integers as inputs and outputs; this allows the modeling of complex behaviors, including state-
based behaviors which are clearly needed to model embedded systems, especially energy-aware systems.

Once the system is modeled and the synchronous observers are set up, one can use all the available
verification techniques for synchronous systems. We are using abstract interpretation which can deal nicely
with integers (which appear naturally in our programs, whose main task is to count events), and can scale
up better than model checking if one accepts to loose some precision. As the tool we are using for the proofs
was designed to prove properties, not to discover invariants, a little additional work has to be performed to
compute the output analytic description based on the input ones. This step is based on a binary search.

We developed an implementation of the complete framework for the connection from RTC to Lustre,
and back from the Lustre world to RTC. This implements the pre-processing on arrival curves, the observer
generation algorithm, and a binary search algorithm calling the external tool nbac.

5.2 Comparison with [Lam08]

As mentioned in the introduction, this work comes from a recent collaboration between Verimag/SG and
ETHZ. It has been motivated by the limitations of the MPA-RTC framework which leads to similar piece
of works in their team and ours. The main differences with their task (A) are:

– use discrete-time instead of continuous time (both within the model and in the analytic description of
the event streams);
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– use of abstract-interpretation instead of model-checking to compute the arrival curves;
– use of a programming language (Lustre) instead of an automata-based formalism.

This work is another attempt to bridge between the RTC frameworks and state-based formalisms and a
particular attempt towards a programming language.

5.3 Perspectives

The work presented here is only at its preliminary stage. A lot is still to be done to be applicable to actual
systems.

First, the approach has only been tested on very small examples of transformers. We plan to write larger
and more realistic examples to test our tool, and compare the results with other approaches. By “result”, we
mean here both the precision, and the performances of the proof engine. The precision can easily be better
than pure RTC-MPA, and we have good hope to scale better than the timed-automata based approaches,
but this claim has to be verified with a benchmark. We plan to write a common benchmark to compare our
work with Lustre, Y. Liu’s work [LAM09] and K. Lampka’s [Lam08].

Then, the approach itself can be improved. One worthy experiment would be to try different proof
engines. Remaining in the domain of abstract interpretation tools, we plan to compare ASPIC [Gon07]
and nbac on the same programs. ASPIC is a tool recently developed in Verimag. It is known to be faster
and more precise than nbac on some programs. We also want to try a version of nbac able to deal with
the “octagon” abstract domain instead of polyhedra as we are doing now, and to experiment with invariant
discovery in nbac to replace our binary search algorithm.

We presented one way to implement an observer for a pair of curves. This algorithm has the advantage
of being general, and can check the conformance of an event stream for any arbitrary finite and discrete RTC
curves. But in some specific situations, different approaches may give better results. We plan in particular
to:

– adapt the algorithm presented in [Lam08] to the case of discrete-time. This could considerably reduce
the number of numerical variables to use for piecewise linear curves;

– implement a non-deterministic observer. We have seen that the observer for the input stream has to be
deterministic, but it would be possible to make the output stream’s observer non-deterministic. Instead
of checking the number of events for all time window, the observer could verify this number for any
time window, choosing the start and the size of the window in a non-deterministic way.

Also, our approach currently uses an observer for the input stream. It would be interesting to allow using a
non-deterministic generator instead. The difference is that an observer checks the conformance of a stream,
while the observer would generate a stream which would be correct by construction. This may change the
performance of the abstract interpretation tool, and would also allow the use of a testing environment in-
stead of formal proofs. Testing wouldn’t give strong upper and lower bounds, but would allow a reasonable
estimation in cases where formal proofs do not work.

Ideally, our toolbox should implement all these strategies, and propose them as option to the user.
In the long run, we would like to introduce state-based behaviors not only in the components, but also

in the abstractions used as interfaces for the components. In other words, we believe that arrival curves
are not universal enough to express all the behaviors that a real system exhibits, and plan working on
alternatives to arrival curves, while keeping the main ideas of this work, namely: compositionality, use of
abstract interpretation.

Also, while this work Lustre allows describing state-based behavior, this is only a first step towards our
initial goal, which is the estimation of energy consumption. With state-based behaviors in MPA-RTC, we
can model the timed behavior of energy-aware systems, but still not the energy itself.
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