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Abstract

We study a methodology for checking incrementally deadlock-freedom of component-based
systems. A system is obtained as the composition of atomic components by using interactions.
Each interaction expresses strong synchronization (rendezvous) between actions of the com-
ponents. We improve the heuristic verification method applied by the D-Finder tool to BIP
components. The method consists in computing symbolicallyglobal invariants for composite
components by solving a set of boolean behavioral constraints.
The new incremental verification method allows the computation of these global invariants by
using a decomposition of the constraints based on the structure of a composite component. We
formalize the construction process of a composite component from a set of atomic components.
We provide results relating invariants of constituent components used in the construction pro-
cess, to global invariants. In particular, we show how the boolean behavioral constraints of the
composed components are related to those of the product system.
Experimental results by using the D-Finder tool for checking deadlock-freedom show signifi-
cant gains in performance with respect to the global verification technique.
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1 Introduction

Component-based design techniques confer numerous advantages, in particular through reuse of ex-
isting components. A key issue is the existence of composition frameworks ensuring the correctness of
composite components. In particular, we need frameworks allowing not only reuse of components but also
reuse of their properties for establishing global properties of composite components from properties of
their constituent components. This should help cope with the complexity of global monolithic verification
techniques.

Compositionality allows inferring global properties of complex systems from properties of their com-
ponents. One approach to compositional verification is by assume-guarantee where properties are decom-
posed into two parts. One is an assumption about the global behavior of the environment of a component;
the other is a property guaranteed by the component when the assumption about its environment holds. This
approach has been extensively studied (see for example [2, 1, 11, 9, 15, 17, 19, 22]). Many issues make
the application of assume-guarantee rules difficult. Theseare discussed in detail in [12] which provides an
evaluation of automatedassume-guarantee techniques. The main difficulties are finding decompositions
into sub-systems and choosing adequate assumptions for a particular decomposition.

A different verification method is presented in [5, 6]. It allows computing invariants of a composite
system by using a n-ary composition operation parameterized by a set of interactions. The computed in-
variants are the conjunction of individual invariants of the composed components and invariants induced by
interactions. These invariants can be computed automatically from a set ofboolean behavioral constraints
specifying the effect of interactions on the global state space. This method has been implemented in the
D-Finder [6] verification tool. It has been successfully applied for checking deadlock-freedom of complex
systems described in the BIP (Behavior, Interaction, Priority) [4] language.

In this paper, instead of computing boolean constraints globally, we study a significant improvement
of this method based on a construction process leading to a composite component through a sequence of
constituent components. The sequence starts from a set of atomic components and applies incrementally
synchronization constraints to preserve the global invariants.Incremental verificationrelates the verifica-
tion process to system construction, which covers the casesof the increasing number of interactions and
the tighter of synchronizations. It takes advantage of the system structure for coping with complexity of
monolithic verification.

Besides reusing the invariants from lower levels, the incrementality can also be obtained by the sep-
arated computation of boolean behavioral constraints for every increment, then the generation of global
invariants from the partial solutions generated from the boolean behavioral constraints. It shows a signifi-
cant speedup over deadlock-freedom checking. The contribution opens the way for step-wise and modular
verification methodologies tightly coupled with system construction methodologies.

The organization of the paper is as follows.

In Section2, we use a subset of BIP to formalize the incremental construction process. A composite
component is obtained as the composition of a set of atomic components. Composition is by synchroniza-
tion between specified atomic components. We also present the symbolic method used by D-Finder for
computing global invariants for composite components.

In Section3, the main contribution of the paper, we formalize the process of incremental construction
based on the operation of increment of a connector. At some stage of the construction, a component can
be transformed only by an increment operation which enforces synchronization between interactions of
its connectors. The construction is hierarchical: increments can be applied either at the same level or at
different levels. We associate with incremental construction, a method for incremental computation of
global invariants of a composite component from the invariants of its constituent components.

In Section4, we present the symbolic implementation of the incrementalverification method. The
experimental results show significant improvement of performance for incremental verification with respect
to existing techniques.

Finally we discuss related works in Section5 and conclude in Section6.
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2 Preliminaries

BIP is a component framework for constructing systems by superposing three layers of modeling:
Behavior, Interaction, and Priority. In BIP, component behavior is described by transition systems. In-
teractions express coordination and communication between independent components. In this section, we
present basic definitions for BIP used in the paper, and its verification methodology.

2.1 Basic Model for BIP

We provide a formalization of atomic components in BIP.

Definition 1 (Atomic Component) An atomic component is a tupleB = (L, P, T ), where:

• L = {l1, l2, . . . , lk} is a set of states,

• P is a set of ports, and

• T ⊆ L × P × L is a set of transitions.

Given a transitionτ = (l, p, l′) ∈ T , l and l′ are respectively, thesourceand thetarget state denoted
respectively by•τ andτ•. We extend this notation for ports:•p = {•τ |τ = (l, p, l′)} andp• = {τ•|τ =
(l, p, l′)} are respectively the set of source and target states of the transitions with portp.

Definition 2 (Path) Let B = (L, P, T ) be a component and two statesl, l′ ∈ L. We say there is a path

from l to l′, denoted byl
∗
−→
B

l′, if there exists a sequenceσ = l0
p0
−→ l1

p1
−→ · · ·

pn−1
−−−→ ln such thatl = l0

andl′ = ln, wherepi ∈ P andli
pi
−→ li+1 ∈ T for 0 ≤ i < n. The set of states of the pathσ is denoted by

L|σ.

A component is said to have a deadlock, if there exists somel ∈ L such that no outgoing transitions froml
can be executed.

Next we define parallel composition for components parameterized by a set of interactions.

Definition 3 (Interactions) Given a set of componentsB1, B2, . . . , Bn, where
Bi = (Li, Pi, Ti), an interactiona is a set of ports, i.e., a subset of

⋃n
i=1 Pi, such that∀i = 1, . . . , n.

|a ∩ Pi| ≤ 1.

Definition 4 (Parallel Composition) Givenn componentsBi = (Li, Pi, Ti), we define the parallel com-
positionB = γ(B1, . . . , Bn) as the component(L, γ, T ), where:

• L = L1 × L2 × . . . × Ln is the set of states,

• γ is a set of interactions, and

• T ⊆ L×γ×L contains all transitionsτ = ((l1, . . . , ln), a, (l′1, . . . , l
′
n)) obtained by synchronization

of sets of transitions{τi = (li, pi, l
′
i) ∈ Ti}i∈I such that{pi}i∈I = a ∈ γ andl′j = lj if j 6∈ I.

Notation: We useγ⊥(B) to denote the interleaving of individual components, whereγ⊥ =
⋃n

i=1 Pi.

Example 1 [Client-Server] Figure1 gives the simplified model for Client-Server system for one server
and two clients. Every client has to send a request (ri) to the server then wait for an acknowledgement (ai)
from the server for every action, where0 ≤ i ≤ 2. We require the synchronization of sending and receiving
actions between the clients and the server. The interactions for this model are{r0, r1}, {r0, r2}, {a0, a1},
{a0, a2}.

To avoid heavy set-theoretic notation, we define a simple algebraic notation for representing connectors
on a set of portsP .

2/14 Verimag Research Report no TR-2009-12
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Figure 1: Client-Server example

Definition 5 (Connectors) [7] Let P be a set of ports, the syntax of the algebra of connectors,AC(P ),
is defined by

γ ::= p | γ | γ · γ | γ + γ

for p ∈ P , where+ and· are binary operators.

Definition 6 (Semantics of Connectors)The semantics of connectors is given by the function|| · || :

AC(P ) → 22P

, defined by

||p|| = {{p}} for anyp ∈ P,

||γ1 + γ2|| = ||γ1|| ∪ ||γ2||, ||γ1 · γ2|| = {{a1 ∪ a2} | a1 ∈ ||γ1||, a2 ∈ ||γ2||}

whereγ1, γ2 ∈ AC(P ), anda1, a2 are interactions.

We omit fusion operator· to simplify notation. For example, the connector{{r0, r1}, {r0, r2}, {a0, a1}, {a0, a2}}
is represented by the termr0 r1 + r0 r2 + a0 a1 + a0 a2.

2.2 Boolean Behavioral Constraints

In [5] we have presented the verification method for component-based systems in BIP. The method
uses a heuristic to compute symbolically invariants of a composite component. These invariants are used in
particular for proving deadlock-freedom. For this, it is sufficient to find an invariant that does not contain
deadlock states. The method is iterative. It allows computing progressively stronger invariants as the result
of an iterative process.

Definition 7 (Invariants) GivenB = (L, P, T ), a state predicateI is an invariant ofB, denoted by
inv(B, I), if for any statel ∈ L and any portp ∈ P , I(l) andl

p
−→
B

l′ ∈ T implyI(l′).

Clearly, if I1, I2 are invariants ofB thenI1 ∧ I2 andI1 ∨ I2 are invariants ofB.
In the rest of the paper we consider states of components as boolean variables. We useBool[L] to de-

note the free boolean algebra generated by the set of statesL. We extend the notation•p, p• to interactions.
If a = p1 · · · pm is an interaction we take•a =

⋃m
i=1

•pi anda• =
⋃m

i=1 p•i .

Definition 8 (Boolean Behavioral Constraints (BBCs))Letγ be a connector over a tuple of components
B = (B1, · · · , Bn). The boolean behavioral constraints for a componentγ(B) with set of statesL, are
defined by a function| · | : γ(B) → Bool[L] such that:

|γ(B)| =
∧

a∈γ |a(B)|, |a(B)| =
∧

li∈•a(li ⇒
∨

l′
j
∈a• l′j)

If γ = ∅, then|γ(B)| = true, which means that no interactions between the components ofB will be
considered. In Figure2, if a = p1 · · · pi · · · pm ∈ γ is an interaction between transitionsli

pi
−→ l′i for

i = 1, · · · , m, the corresponding constraint is
∧m

i=1(li ⇒
∨m

j=1 l′j).

Theorem 1 LetB = (B1, · · · , Bn) be a set of components,γ be a connector, andv : L → {true, false}
be a boolean valuation different from false, whereBi = (Li, Pi, Ti) andL =

⋃n
i=1 Li. If v is a solution of

|γ(B)|, i.e. |γ(B)|(v) = true then
∨

v(l)=true l is an invariant ofγ(B).
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Figure 2: Interactions and implications
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Figure 3: Example for global invariants

Proof 1 According to Definition8, the constraints are the conjunction of all the implications for interac-
tions ofγ. Consider a valuationv such that|γ(B)|(v) = true. In order to prove that

∨
v(l)=true l is an

invariant, assume that for some global statel = (l1, · · · , ln), there existsli such thatv(li) = true. If from
li there is an interactiona such thatli ∈ •a, then there existsl′j ∈ a•, such thatv(l′j) = true by Definition
8. So any successor state ofl by an interactiona satisfies the invariant.

This theorem allows the computation of invariants ofγ(B) that we call BBC-invariants. We call global
invariant ofγ(B) the conjunction of all its BBC-invariants.

Definition 9 (Positive Mapping) Given two set of variablesX, Y such thatX ⊆ Y , and a boolean
functionf ∈ Bool[L] expressed as the disjunction of monomials. We define the function that deletes all the
negative variables that do not belong toX , denoted byfp(X):

(
V

li∈Y
li ∧

V

lj∈X
l̄j

V

lk∈Y −X
l̄k)p(X) =

V

li∈Y
li ∧

V

lj∈X
l̄j , (f1 ∨ f2)

p(X) = f
p(X)
1 ∨ f

p(X)
2

WhenX is empty, the positive mapping will remove all the negative variables inf , which is denoted by
fp. If all the variables are negative inf , we havefp = false.

Theorem 2 For any connectorγ applied to a tuple of componentsB = (B1, · · · , Bn), the global invari-

ant ofγ(B) can be obtained as the dual of the positive mapping of|γ(B)|, denoted by˜|γ(B)|p.

Proof 2 (Sketch).|γ(B)| can be written as the disjunction of monomials, that is|γ(B)| =
∨

i∈I mi, where
mi is of the formmi =

∧
j∈I lij

∧
∧

k∈K lik
. For eachmi, the set of positive literals defines a solution of

BBC. Andm̃p
i is the corresponding invariant according to Theorem1.

Example 2 We use Figure3 to illustrate the computation of invariants, whereB = (B1, B2) andγ =
a1a2+b1b2. The boolean behavioral constraint forγ(B) is |γ(B)| = (l1 ⇒ l2∨l4)∧(l2 ⇒ l1∨l3)∧(l3 ⇒
l2∨ l4)∧(l4 ⇒ l1∨ l3) = (l̄1∧ l̄2∧ l̄3∧ l̄4)∨(l1∧ l2)∨(l2∧ l3)∨(l1∧ l4)∨(l3∧ l4). The positive mapping

deletes negative variables. Thus the global invariant is̃|γ(B)|p = (l1∨ l2)∧ (l3 ∨ l4)∧ (l1 ∨ l4)∧ (l2 ∨ l3).

3 Incremental Construction and Verification

In component-based systems, the construction of a composite component is hierarchical and step-wise.
We assume that a system is obtained from a set of atomic components represented by their behavior by
adding progressively interactions. At some stage of the construction we have a componentγ(B) and a set
of established invariants. We want to make sure that for eachnew interaction - an incremental modification
of the behavior - the already established invariants are preserved.

3.1 Looser Synchronization Preorder

In this subsection, we will formalize thelooser synchronization preorderbetween connectors. Then,
we present properties for invariant preservation for this preorder.

Definition 10 (Looser synchronization Preorder) Given a set of portsP , we define the looser synchro-
nization relation4 ⊆ 22P

× 22P

. For two connectorsγ1, γ2, γ1 4 γ2 if for any interactionb ∈ γ2, there
exists some interactiona ∈ γ1, such thata ⊆ b. We simply say thatγ1 is looser thanγ2.

4/14 Verimag Research Report no TR-2009-12
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Proposition 1 The looser synchronization relation4 is a preorder. Furthermore, ifγ1, γ2, γ3, γ4 are
connectors such thatγ1 4 γ2, andγ3 4 γ4, then we haveγ1 · γ3 4 γ2 · γ4 andγ1 + γ3 4 γ2 + γ4.

Proposition 2 Letγ1, γ2 be two connectors overB. If γ1 4 γ2, we haveinv(γ1(B), I) ⇒ inv(γ2(B), I).

Proof 3 If inv(γ1(B), I), for anyl ∈ L|
l

∗−−−−→
γ1(B)

l′
, we haveI(l). Becauseγ1 4 γ2, we haveL|

l
∗−−−−→

γ2(B)
l′
⊆

L|
l

∗−−−−→
γ1(B)

l′
. We can conclude that for anyl ∈ L|

l
∗−−−−→

γ2(B)
l′

, I(l) is true. Henceinv(γ1(B), I) ⇒ inv(γ2(B), I).

In the next subsection, we propose a method for building composite components from simpler ones by
incremental transformations. These transformations merge connectors and build new ones that synchronize
stronger than the connectors of the constituents.

3.2 Incremental Construction

In the incremental construction of component-based systems, layers of connectors are applied to build
the system bottom-up.γ⊥(B) can be viewed as the initial system obtained as the interleaving of individual
components, whereB = (B1, . . . , Bn). If at some stage of the construction, we have obtained a system
γ(B). We transform this system by enforcing new synchronizations between elements ofγ. We call
these synchronizationsincrements. In doing this bottom-up construction, it is essential thatsome already
enforced synchronizations are not relaxed. For this we needthe notion of forbidden interactions for a
connectorγ.

Definition 11 (Closure and Forbidden Interactions) Letγ be a connector.

• The closureγc of γ, is the set of the non empty interactions contained in some interaction ofγ. That
is γc = {a 6= ∅ | ∃b ∈ γ. a ⊆ b}.

• The forbidden interactionsγf of γ is the set of the interactions strictly contained in all the interac-
tions ofγ. That isγf = γc − γ.

Clearly, for connectorsγ1 andγ2 we have(γ1 +γ2)
c = γc

1 +γc
2 and(γ1 +γ2)

f = (γ1 +γ2)
c−γ1−γ2.

Definition 12 (Incremental Construction) Given a connectorγ, an incrementδ is any set of interactions
obtained by fusion of interactions ofγ. For δ ⊆ 2γ , we defineδγ = (γ − δf ) + δ the incremental
modification ofγ byδ.

The above definition describes one-layer incremental construction. By the successive application of incre-
ments, we can construct the system with multiple layers.

The following proposition shows the looser synchronization relation between the connectors involved
in the incremental construction process, which preserves the invariants.

Proposition 3 Letγ be a connector overB andδ be an increment ofγ, then we haveγ 4 δγ.

Proof 4 Asδ ⊆ 2γ , for every interactiona ∈ δ, there exists at least one interactionb ∈ γ, such thatb ⊆ a.
Therefore, it follows thatγ 4 δ. Becauseγ 4 γ − δf , we haveγ 4 (γ − δf ) + δ = δγ.

The independent application of two incrementsδ1 andδ2 on the same connectorγ may lead to in-
consistencies. For example, ifδ1 enforces synchronizationab that isa andb alone are forbidden, it may
happen thatδ2 allows one of the forbidden interactions. Given two incrementsδ1 andδ2, if δ1 ∩ δ

f
2 6= ∅ or

δ2 ∩ δ
f
1 6= ∅, there isinterferencebetweenδ1 andδ2. In case of interference betweenδ1 andδ2, the invari-

ants induced byδ1 may not be preserved byδ2. We define the operation⊕ of superposition of increments
which eliminates the interference between increments.

Definition 13 (Superposition) Given two incrementsδ1, δ2 ⊆ 2γ , the operation of superposition between
δ1 and δ2, denoted byδ1 ⊕ δ2, is defined by:δ1 ⊕ δ2 = (δ1 − δ

f
2 ) + (δ2 − δ

f
1 ).
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Remark 1 Asδ ∩ δf = ∅, we have(δ1 − δ
f
2 ) + (δ2 − δ

f
1 ) = (δ1 + δ2) − (δf

1 + δ
f
2 ). In caseδ1 ∩ δ

f
2 = ∅

andδ2 ∩ δ
f
1 = ∅, we haveinterference-free superpositionδ1 ⊕ δ2 = δ1 + δ2.

Proposition 4 For δ1, δ2, δ3 three increments, we have: (1)(δ1 ⊕ δ2)
f = δ

f
1 + δ

f
2 , (2) associativity:

(δ1 ⊕ δ2) ⊕ δ3 = δ1 ⊕ (δ2 ⊕ δ3), and (3) commutativity:δ1 ⊕ δ2 = δ2 ⊕ δ1.

Proof 5 The third proposition can be proved from the definition of superposition. We provide the proofs
for the first and the second propositions.

1. According to the definition of forbidden interactions,(δ1 ⊕ δ2)
f = (δ1 ⊕ δ2)

c − (δ1 ⊕ δ2). By the
definition of superposition, we have(δ1⊕ δ2)

f = ((δ1 + δ2)− (δf
1 + δ

f
2 ))c − ((δ1 + δ2)− (δf

1 + δ
f
2 )).

According to Definition11, for any interactiona ∈ δ1 (or δ2), there always exists some interaction
b ∈ (δ1 + δ2)− (δf

1 + δ
f
2 ) such thata ⊆ b. Therefore we have((δ1 + δ2)− (δf

1 + δ
f
2 ))c = (δ1 + δ2)

c.
Then we have(δ1 ⊕ δ2)

f = (δ1 + δ2)
c − ((δ1 + δ2) − (δf

1 + δ
f
2 )) = δ

f
1 + δ

f
2 .

2. According to the definition of superposition, we have(δ1 ⊕ δ2) ⊕ δ3 = ((δ1 ⊕ δ2) − δ
f
3 ) + (δ3 −

(δ1 ⊕ δ2)
f ). As (δ1 ⊕ δ2)

f = δ
f
1 + δ

f
2 , we have(δ1 ⊕ δ2) ⊕ δ3 = (((δ1 + δ2) − (δf

1 + δ
f
2 )) +

δ3) − (δf
1 + δ

f
2 + δ

f
3 ) = (δ1 + δ2 + δ3) − (δf

1 + δ
f
2 + δ

f
3 ). Similarly, we haveδ1 ⊕ (δ2 ⊕ δ3) =

(δ1 + ((δ2 + δ3) − (δf
2 + δ

f
3 ))) − (δf

1 + δ
f
2 + δ

f
3 ) = (δ1 + δ2 + δ3) − (δf

1 + δ
f
2 + δ

f
3 ). Then we

conclude that(δ1 ⊕ δ2) ⊕ δ3 = δ1 ⊕ (δ2 ⊕ δ3) and⊕ is associative.

Since⊕ is associative, it can be extended to the superposition of any finite number of increments.

Lemma 1 Givenn increments{δi}1≤i≤n, the superposition ofn increments is

⊕n
i=1δi =

n∑

i=1

(δi −
∑

j 6=i

δ
f
j ) (1)

Proof 6 The proof can be constructed by the induction ofn.
If n = 1, δ1 is unchanged. Suppose that⊕k−1

i=1 δi =
∑k−1

i=1 (δi −
∑

j 6=i δ
f
i ) for n = k − 1. We try to prove

that⊕k
i=1δi =

∑k
i=1(δi −

∑
j 6=i δ

f
j ) for n = k.

By the definition of superposition, we have(⊕k−1
i=1 δi) ⊕ δk = (⊕k−1

i=1 δi − δ
f
k ) + (δk − (⊕k−1

i=1 δi)
f ). By the

assumption above and Proposition4, we obtain(⊕k−1
i=1 δi) ⊕ δk = (

∑k−1
i=1 (δi −

∑
j 6=i δ

f
i ) − δ

f
k ) + (δk −

∑k−1
i=1 δ

f
i ). By movingδf

k into
∑k−1

i=1 (δi −
∑

j 6=i δ
f
i ), we have(⊕k−1

i=1 δi)⊕ δk =
∑k−1

i=1 (δi − (
∑

j 6=i δ
f
i +

δ
f
k )) + (δk −

∑k−1
i=1 δ

f
i ) =

∑k
i=1(δi −

∑
i6=j δ

f
i ).

Proposition 5 Letγ be a connector overB, the incremental construction by the superposition ofn incre-
ments{δi}1≤i≤n is

(⊕n
i=1δi)γ = (γ −

n∑

i=1

δ
f
i ) +

n∑

i=1

(δi −
∑

j 6=i

δ
f
j ) (2)

Proof 7 (Sketch). By application of Definition12and Lemma1, we get the correctness of the formula.

Example 3 In Example1, if we consider the components together, the initial connector is the set of ports in
Figure1, this isγ⊥ = r0+r1+r2+a0+a1+a2. Two incrementsδ1, δ2 ⊆ 2γ⊥ are the set of interactions for
the two clients to access to the server and get the response, whereδ1 = r0 r1 + a0 a1, δ2 = r0 r2 + a0 a2.
Asδ1 ∩ δ

f
2 = ∅ andδ2 ∩ δ

f
1 = ∅, we haveγ′ = (δ1 ⊕ δ2)γ⊥ = r0 r1 + r0 r2 + a0 a1 + a0 a2.

3.3 Incremental Computation of BBCs

The conjunction between the invariants of the constituentsof a composite component fails to take into
account the effect of superposition. Therefore, we providean incremental method to obtain global BBCs
in this subsection.
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Lemma 2 Given two connectorsγ1, γ2 overB, we have

|(γ1 + γ2)(B)| = |γ1(B)| ∧ |γ2(B)|

Proof 8 By Definition8, we have|(γ1 +γ2)(B)| =
∧

a∈(γ1+γ2)
|a(B)| =

∧
a∈γ1

|a(B)|∧
∧

a∈γ2
|a(B)| =

|γ1(B)| ∧ |γ2(B)|.

The following proposition provides the methods for obtaining the boolean behavioral constraints taking
into account component structure.

Proposition 6 Letγ be a connector overB, the boolean behavioral constraint for the system obtainedby
superposition ofn increments{δi}1≤i≤n can be written as

|(⊕n
i=1δi)γ(B)| = |(γ −

n∑

i=1

δ
f
i )(B)| ∧

n∧

i=1

|(δi −
∑

i6=j

δ
f
j )(B)| (3)

Proof 9 By Equation2, the union ofγ −
∑n

i=1 δ
f
i and

∑n
i=1(δi −

∑
i6=j δ

f
j ) is the set of interactions

from the superposition of increments{δi}1≤i≤n overγ. The proof can be concluded by the application of
Lemma2.

Example 4 For Example1, consider the componentsδ1γ⊥(B) and δ2γ⊥(B) where δ1 = r0 r1 +
a0 a1, δ2 = r0 r2 + a0 a2.

The composite component isγ′(B) whereγ′ = (δ1 ⊕ δ2)γ⊥ = r0 r1 + a0 a1 + r0 r2 + a0 a2.

1. The BBC for interactions ofδ1 (involvingClient1) are:

r0 r1 : (l1 ⇒ l2 ∨ l4) ∧ (l3 ⇒ l2 ∨ l4); a0 a1 : (l2 ⇒ l1 ∨ l3) ∧ (l4 ⇒ l1 ∨ l3)

2. The BBC for interactions ofδ2 (involvingClient2) are:

r0 r2 : (l1 ⇒ l2 ∨ l6) ∧ (l5 ⇒ l2 ∨ l6); a0 a2 : (l2 ⇒ l1 ∨ l5) ∧ (l6 ⇒ l1 ∨ l5)

Becauseγ⊥ − (δf
1 + δ

f
2 ) = ∅, δ1 ∩ δ

f
2 = ∅ andδ2 ∩ δ

f
1 = ∅, we have|(δ1 ⊕ δ2)γ⊥(B)| = |δ1γ⊥(B)| ∧

|δ2γ⊥(B)| where|δ1γ⊥(B)| and|δ2γ⊥(B)| are the BBCs above.
By application of Theorem2, we can obtain the invariants forγ′(B). For example,l1 ∨ l4 ∨ l6 is one

of the computed invariants.

3.4 Incremental Computation of Global Invariants

In the previous section we have shown how to compute incrementally BBC. The BBC of a composite
component can be obtained as the conjunction of BBCs of constituent components. For incremental com-
putation of global invariants, we try to apply Theorem2 to each one of the conjuncts. The computation of
the positive mapping of all the variables over the conjunction of multiple BBCs can also be partitioned into
two steps:

1. the positive mapping over the variables shared by more than one BBC for the partitioned interactions,
that is, all the negative variables belonging to only one BBCwill be removed.

2. removing all remaining negative variables over the conjunction of all BBCs.

To distinguish the shared variables within BBCs, we define the common state variables shared by
multiple connectors as follows:

Definition 14 (Common State VariablesLc) Given{γi}1≤i≤n, a set of connectors , we define the set
of common state variables byLc =

⋃
i,j∈[1,n]∧i6=j support(γi) ∩ support(γj), wheresupport(γ) =⋃

a∈γ
•a ∪ a•, the set of states involved in some interactiona of γ.
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Proposition6 provides the way to decompose the computation of positive mappings over common state
variables for boolean behavioral constraints. Decomposition is based on the fact that different increments
describe the interactions between different components.

Proposition 7 Given a componentγ(B), {δi}1≤i≤n a set of increments ofγ, andLc the set of common
state variables for the set of connectorsγ −

∑n
i=1 δ

f
i , {δi −

∑
i6=j δ

f
j }1≤i≤n, we have

|(⊕n
i=1δi)γ(B)|p = (|(γ −

n∑

i=1

δ
f
i )(B)|p(Lc) ∧

n∧

i=1

|(δi −
∑

i6=j

δ
f
j )(B)|p(Lc))p (4)

Each non common variable occurs only in one of the BBCs. This allows deleting the non common negative
variables separately, which drastically reduces complexity of computation.

4 Symbolic Implementation and Experimental Results

In this section, we explain the symbolic implementation of incremental verification. Experimental
results show the benefits from the partitioned interactionsin computing the invariants.

4.1 Boolean Representation

As shown in [7], interactions and connectors can be represented by boolean functions on the set of ports
P . Boolean representations can facilitate the comparison between the connectors and their implementation.

AC(P ) can be bijectively mapped to the free boolean algebraBool[P ] generated byP , which is shown
in the following definition.

Definition 15 (Boolean Representation for Connectors)We define a mappingβ : AC(P ) → Bool[P ]
by setting:

β(p1 . . . pk) =
∧k

i=1 pi ∧
∧

j /∈[1,k] p̄j, β(γ1 + γ2) = β(γ1) ∨ β(γ2)

for γ1, γ2 ∈ AC(P ), p1, . . . , pk ∈ P , where, in the right-hand side, the elements ofP are considered to be
boolean variables.

The mappingβ is an isomorphism between the set the interactions and the boolean algebra onP [7]. Any
boolean expression onP defines a set of interactions. The interactionp1 · · · pk is possible if the expression
is true for the valuation that makes true all the ports belonging to the interaction and makes false all the ports
do not belonging to the interaction. Each expressionγ ∈ AC(P ) represents exactly the set of interactions
corresponding to boolean valuations ofP satisfyingβ(γ). With this mapping, other related concepts can
also be given boolean representations, which are defined as follows.

1. The boolean function for the closure of the interactions is defined by

βc(p1 · · · pk) =

k∨

i=1

pi ∧
∧

j /∈[1,k]

p̄j , βc(γ1 + γ2) = βc(γ1) ∨ βc(γ2).

2. The boolean function for the forbidden interactions is defined by

βf (p1 . . . pk) = βc(p1 · · · pk) ∧ β(p1 · · · pk), βf (γ1 + γ2) = βc(γ1 + γ2) ∧ β(γ1) ∧ β(γ2).

Example 5 For the connectorγ = pqr + pq + q, the boolean representations are:β(γ) = p ∧ q ∨ q ∧
r̄,βf (γ) = ((p ∨ q ∨ r) ∨ (p ∨ q) ∧ r̄ ∨ q ∧ p̄ ∧ r̄) ∧ p ∧ q ∧ r ∧ p ∧ q ∧ r̄ ∧ q ∧ p̄ ∧ r̄.

With these boolean representations, the boolean representation for the incremental construction with n-ary
superposition is

β((⊕n
i=1δi)γ) = β(γ) ∧

n∧

i=1

βf (δi) ∨
n∧

i=1

(β(δi) ∧
∧

i6=j

βf (δj)) (5)

As BBCs are boolean constraints, we have a fully symbolic representation of connectors and BBCs.
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4.2 Experimental Results

We have implemented the incremental computation method in the D-Finder tool by using the CUDD
package [21].

To compare the performance of incremental method with otherverification methods, we take Gas Sta-
tion and Dining Philosophers as benchmarks by increasing the scale of component-based systems, which
cover deadlock and deadlock-free cases. The details of the two cases, together with their way of incremen-
tal verification, are shown in Appendix.
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Figure 4: The comparison between the incremental verification and global verification
Figure4 shows timing performance for deadlock-freedom verification of two scalable examples by us-

ing: incremental symbolic computation of BBC-invariants,global symbolic computation of BBC-invariants
and verification by the NuSMV [10] model-checker. Incremental symbolic computation improves perfor-
mance dramatically.

For Gas Station, D-Finder proves that it is deadlock-free. The verification time is a function of the
numberN , where ifN increases by one, 50 pumps and 500 customers are added. For Dining Philosophers,
D-Finder detects the potential deadlocks. When the number of philosophers is odd, we can detect exactly
one deadlock. However, we get two more false deadlocks when the number of philosophers is even. The
time shown in the figure is the total consumption after obtaining all the potential deadlocks. Besides these
two examples, we have applied incremental symbolic verification to industrial case studies. For instance,
the verification of the NDD module in the Robot system [3] is completed within 5 minutes, while 3 hours
are needed for global symbolic computation. Detailed results for case studies are available athttp://www-
verimag.imag.fr/˜ thnguyen/tool.

5 Related Work

Many works have focused on deadlock detection. It is well known that model checking approaches
suffer from state space explosion problem. Compositional verification is one of the ways to alleviate the
state space explosion. However, within compositional verification methodologies, the main difficulties of
assume-guarantee techniques are to find decompositions into sub-systems and choose adequate assump-
tions for a particular decomposition.

Some works such as [8, 14], apply machine learning during assume-guarantee reasoning to make the
method complete, but the algorithms are complex [12].

The work based on split invariance [13] addresses the incompleteness problem by adding auxiliary
variables in case of property violation. However, the premise of the work is that the conjunction of local
assertions is an inductive invariant of the composite system, which is not always true in synchronous
systems. And no explicit claims on the completeness of deadlock detection is mentioned.

The least fixpoint approximation method proposed in [18] computes the tighter upper bound of the
reachable states locally, by repeated image computation ofa set of boolean functions from some initial
states. However, the decomposition of state space is an important issue to get the tighter approximation of
reachable states. The structure of the system will influencethe approximation and the iteration times.

A recent paper [20] proposes a compositional deadlock detection technique for a kind of concurrent
language. The method composes tasks one by one explicitly todetect deadlocks. Both the time and
memory consumption will increase greatly with the increasing number of tasks.
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Earlier work in [5, 6] is primarily on global computation of boolean behavior constraints to obtain the
global invariants. During the system construction, the invariants for every stage have to be re-computed
to check the deadlock-freedom. The incremental method proposed in the paper is capable of reusing
the available invariants, and computing the global invariants incrementally from its increments. As the
approximation of the reachable state space, both methods are sound but not complete. If we obtain some
potential deadlocks, we are not sure whether they are real deadlocks without checking their reachability.

During the incremental construction process, the feature of the incremental method is to compute in-
variants incrementally in a totally symbolic way. The computed invariants will not differ from different
partition of connectors.

6 Conclusion
The paper studies a method for checking deadlock-freedom ofa component-based system. The method

takes advantage of properties of the construction process based on the assumption that composite compo-
nents can be obtained from a set of atomic components by superposition of increments.

The method is an adaptation of a heuristic for computing invariants of component-based systems. Its
implementation is fully symbolic. In addition to boolean behavioral constraints it also uses boolean repre-
sentations for connectors, for their increments. The benchmarks obtained with D-Finder show significant
performance improvements with respect to global verification.

The application of incremental verification methods to systems with data will require the use of abstrac-
tions for atomic components, following the same approach asin [5, 6]. Although our method is explained in
the environment of BIP, it can be broadly applied to the verification of concurrent systems. The proposed
view opens the way for step-wise and modular verification methodologies tightly coupled with system
construction methodologies.

Currently, the deadlocks obtained from D-Finder are potential deadlocks. To remove these potential
deadlocks, we should start from the potential deadlocks andfind constraints to strengthen the global invari-
ants. We plan to investigate this issue in the future.
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A Examples

A.1 Gas Station

Gas Station [16] consists of an Operator with a computer, a set of pumps, and aset of customers. Each
pump can be used by a fixed number of customers. The set of the atomic components involved in a system
with n pumps andm customers for each pump is denoted byB[n, m] = { Operator, {pumpi}1≤i≤n,
{customerij}1≤i≤n,1≤j≤m}.

Before using a pump, each customer has to prepay for the transaction. Then the customer uses the
pump, collects his change and goes to a state from which he maystart a new transaction.

Before being used by a customer, the pumps have to be activated by the Operator. When a pump is shut
off, it can be re-activated for the next operation.

Figure5 gives the model for Gas Station system for one pump and two customers. The Operator has
two states and three ports.The transition labelled withprepay accepts a customer’s prepay and activates the
pump for the customer. When a customer is served, the transition labelled withfinish will synchronize
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Figure 5: Sketch of Gas Station

the pump and the customer. A pump has three states and three ports. Besides the synchronization between
the Operator and customer throughactivate andfinish ports, a pump and a customer are synchronized
throughstart ports.

We abbreviate port names by using only their first three letters. The interactions for a system of
n pumps, each one used bym customers, areγ[n, m] = Σn

i=1(Σ
m
j=1(pre acti preij + stai staij +

fin fini finij + cha chaij)). For instance, the interactions forcustomer1 are pre act1 pre11 +
sta1 sta11 + fin fin1 fin11 + cha cha11.

if we consider the two customers together, the initial connector is the set of ports in Figure5, that is
γ⊥ = pre+fin+cha+act1+sta1+fin1+pre11+sta11+fin11+cha11+pre12+sta12+fin12+cha12.
Two incrementsδ1, δ2 ⊆ 2γ⊥ are the set of interactions for the two customers to access tothe pump and
get the service, where

δ1 = pre act1 pre11 + sta1 sta11 + fin fin1 fin11 + cha cha11

δ2 = pre act1 pre12 + sta1 sta12 + fin fin1 fin12 + cha cha12

As δ1 ∩ δ
f
2 = ∅ and δ2 ∩ δ

f
1 = ∅, we haveγ′ = (δ1 ⊕ δ2)γ⊥ = pre act1 pre11 + sta1 sta11 +

fin fin1 fin11 + cha cha11 + pre act1 pre12 + sta1 sta12 + fin fin1 fin12 + cha cha12.
The composite component isγ′(B) whereγ′ = (δ1 ⊕ δ2)γ⊥ = pre act1 pre11 + sta1 sta11 +

fin fin1 fin11 + cha cha11 + pre act1 pre12 + sta1 sta12 + fin fin1 fin12 + cha cha12.

1. The BBC for interactions ofδ1 (involving customer1) are:

pre act1 pre11 : (lo0 ⇒ lo0 ∨ lp1 ∨ lc11) ∧ (lp0 ⇒ lo0 ∨ lp1 ∨ lc11) ∧ (lc10 ⇒ lo0 ∨ lp1 ∨ lc11)
sta1 sta11 : (lp1 ⇒ lp2 ∨ lc12) ∧ (lc11 ⇒ lp2 ∨ lc12)
fin fin1 fin11 : (lo0 ⇒ lo1 ∨ lp0 ∨ lc13) ∧ (lp2 ⇒ lo1 ∨ lp0 ∨ lc13) ∧ (lc12 ⇒ lo1 ∨ lp0 ∨ lc13)
cha cha11 : (lo1 ⇒ lo0 ∨ lc10) ∧ (lc13 ⇒ lo0 ∨ lc10)

2. The BBC for interactions ofδ2 (involving customer2) are:

pre act1 pre12 : (lo0 ⇒ lo0 ∨ lp1 ∨ lc21) ∧ (lp0 ⇒ lo0 ∨ lp1 ∨ lc21) ∧ (lc20 ⇒ lo0 ∨ lp1 ∨ lc21)
sta1 sta12 : (lp1 ⇒ lp2 ∨ lc22) ∧ (lc21 ⇒ lp2 ∨ lc22)
fin fin1 fin12 : (lo0 ⇒ lo1 ∨ lp0 ∨ lc23) ∧ (lp2 ⇒ lo1 ∨ lp0 ∨ lc23) ∧ (lc22 ⇒ lo1 ∨ lp0 ∨ lc23)
cha cha12 : (lo1 ⇒ lo0 ∨ lc20) ∧ (lc23 ⇒ lo0 ∨ lc20)

Becauseγ⊥ − (δf
1 + δ

f
2 ) = ∅, δ1 ∩ δ

f
2 = ∅ andδ2 ∩ δ

f
1 = ∅, we have|(δ1 ⊕ δ2)γ⊥(B)| = |δ1γ⊥(B)| ∧

|δ2γ⊥(B)| where|δ1γ⊥(B)| and|δ2γ⊥(B)| are the BBCs above.
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Figure 6: Incremental construction of Gas Station
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Figure 7: Dining Philosophers

By application of Theorem2, we can obtain the invariants forγ′(B). For example,lo1 ∨ lp1 ∨ lc10 ∨
lc12 ∨ lc20 ∨ lc22 is one of the computed invariants.

The incremental construction of Gas Station, withn1 + n2 pumps andm1 + m2 customers for each
pump, can be described as follows:

γ[n1 + n2, m1 + m2](B[n1 + n2, m1 + m2])
= (δ1[n1, m1 + m2] ⊕ δ2[n2, m1 + m2])γ⊥(B[n1 + n2, m1 + m2])
= (δ11[n1, m1] ⊕ δ12[n1, m2] ⊕ δ21[n2, m1] ⊕ δ22[n2, m2])γ⊥(B[n1 + n2, m1 + m2])

whereδ[n, m] is the set of interactions forn pumps andm customers for each pump in Gas Station. Figure
6 shows the principle for incremental construction for Gas Station with n1 + n2 pumps andm1 + m2

customers for each pump.Since there is no interference between the incrementsδij [ni, mj ] for 1 ≤ i, j ≤
2, we have|(⊕i,j∈[1,2]δij [ni, mj ])γ⊥(B[n1 + n2, m1 + m2])|p = (

∧
i,j∈[1,2] |δij [ni, mj ](B[n1 + n2,

m1 + m2])|p(Lc))p.

A.2 Dining Philosophers

Figure7 shows the model for Dining Philosophers. Givenn philosophers andn forks, the interactions
are:

γ[n] =
n∑

i=1

(lefti usei + righti use(i mod n)+1 + finishi freei free(i mod n)+1)

These interactions can be obtained from the superposition of the following increments

δ[1,m] =

m∑

i=1

(lefti usei + righti usei+1 + finishi freei freei+1)
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and

δ[m+1,n] =
n∑

i=m+1

(lefti usei + righti use(i mod n)+1 + finishi freei free(i mod n)+1)

whereδ[1,m] are the interactions between the firstm philosophers, andδ[m+1,n] are the interactions between
the lastm + 1 to n philosophers.

For example, the set of interactions for a system of 4 philosophers is the superposition of the incre-
ment δ[1,2] = left1 use1 + right1 use2 + finish1 free1 free2 + left2 use2+ right2 use3 +
finish2 free2 free3 and the incrementδ[3,4] = left3 use3 + right3 use4 + finish3 free3 free4 +
left4 use4 + right4 use1 + finish4 free4 free1.
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