Unité Mixte de Recherche 5104 CNRS - INPG - UJF

Centre Equation
2, avenue de VIGNATE
= F-38610 GIERES
erlmaG tel : +33 456 52 03 40
fax : +33 456 52 03 50

http://lwww-verimag.imag.fr

Incremental Component-based
Construction and Deadlock Checking

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis
Rongjie Yan

Verimag Research Report 1 TR-2009-12

September 09, 2009

Reports are downloadable at the following address
http://ww-verimg.inmg. fr

http://www-verimag.imag.fr

Incremental Component-based Construction and Deadlock Cécking

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

September 09, 2009

Abstract

We study a methodology for checking incrementally deadiivsekdom of component-based
systems. A system is obtained as the composition of atomipoaents by using interactions.
Each interaction expresses strong synchronization (zvodis) between actions of the com-
ponents. We improve the heuristic verification method aupby the D-Finder tool to BIP
components. The method consists in computing symboligdtligal invariants for composite
components by solving a set of boolean behavioral conssrain

The new incremental verification method allows the companiatf these global invariants by
using a decomposition of the constraints based on the steucf a composite component. We
formalize the construction process of a composite compdnan a set of atomic components.
We provide results relating invariants of constituent comgnts used in the construction pro-
cess, to global invariants. In particular, we show how theléan behavioral constraints of the
composed components are related to those of the produetisyst

Experimental results by using the D-Finder tool for chegkiieadlock-freedom show signifi-
cant gains in performance with respect to the global vetiioaechnique.

Keywords: component-based, BIP, connectors, incremental congtnjatcremental verification, deadlock-
freedom.

How to cite this report:

@techrepor{ Verimag-TR-2009-12,

title = { Incremental Component-based Construction and Deadloeklding},

authors ={ Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Rongjig Y
institution ={ Verimag Research Repadyt

number ={TR-2009-12,

year ={ 2009},

}

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

1 Introduction

Component-based design techniques confer numerous adeasntin particular through reuse of ex-
isting components. A key issue is the existence of compusitiameworks ensuring the correctness of
composite components. In particular, we need framewotks/alg not only reuse of components but also
reuse of their properties for establishing global propsrtf composite components from properties of
their constituent components. This should help cope wighcttmplexity of global monolithic verification
techniques.

Compositionality allows inferring global properties ofraplex systems from properties of their com-
ponents. One approach to compositional verification is Bym&-guarantee where properties are decom-
posed into two parts. One is an assumption about the globaMim of the environment of a component;
the other is a property guaranteed by the component whessiegotion about its environment holds. This
approach has been extensively studied (see for exampie {1, 9, 15, 17, 19, 27]). Many issues make
the application of assume-guarantee rules difficult. Tlaesealiscussed in detail iri] which provides an
evaluation of automatedssume-guarantee techniquéghe main difficulties are finding decompositions
into sub-systems and choosing adequate assumptions faieufsa decomposition.

A different verification method is presented i, []. It allows computing invariants of a composite
system by using a n-ary composition operation parametébyea set of interactions. The computed in-
variants are the conjunction of individual invariants cf tomposed components and invariants induced by
interactions. These invariants can be computed autonfigiticam a set ofboolean behavioral constraints
specifying the effect of interactions on the global statacgp This method has been implemented in the
D-Finder [5] verification tool. It has been successfully applied foraktirg deadlock-freedom of complex
systems described in the BIP (Behavior, Interaction, Ryipf4] language.

In this paper, instead of computing boolean constraintbajlg, we study a significant improvement
of this method based on a construction process leading tongpasite component through a sequence of
constituent components. The sequence starts from a satrofatomponents and applies incrementally
synchronization constraints to preserve the global iavdsi. Incremental verificatiomelates the verifica-
tion process to system construction, which covers the cafséne increasing number of interactions and
the tighter of synchronizations. It takes advantage of ftstesn structure for coping with complexity of
monolithic verification.

Besides reusing the invariants from lower levels, the imaetality can also be obtained by the sep-
arated computation of boolean behavioral constraints eryencrement then the generation of global
invariants from the partial solutions generated from theléan behavioral constraints. It shows a signifi-
cant speedup over deadlock-freedom checking. The cotitibapens the way for step-wise and modular
verification methodologies tightly coupled with system sioaction methodologies.

The organization of the paper is as follows.

In Section2, we use a subset of BIP to formalize the incremental contsruprocess. A composite
component is obtained as the composition of a set of atormpoaents. Composition is by synchroniza-
tion between specified atomic components. We also presersytimbolic method used by D-Finder for
computing global invariants for composite components.

In Section3, the main contribution of the paper, we formalize the preadsncremental construction
based on the operation of increment of a connector. At soagegif the construction, a component can
be transformed only by an increment operation which en®sy@mchronization between interactions of
its connectors. The construction is hierarchical: increthean be applied either at the same level or at
different levels. We associate with incremental constoucta method for incremental computation of
global invariants of a composite component from the invasaf its constituent components.

In Section4, we present the symbolic implementation of the incremevgafication method. The
experimental results show significant improvement of penfnce for incremental verification with respect
to existing techniques.

Finally we discuss related works in Sectisand conclude in Sectiof
Verimag Research Report TR-2009-12 1714

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

2 Preliminaries

BIP is a component framework for constructing systems byesugsing three layers of modeling:
Behavior, Interaction, and Priority. In BIP, component &ébr is described by transition systems. In-
teractions express coordination and communication betwetependent components. In this section, we
present basic definitions for BIP used in the paper, and iification methodology.

2.1 Basic Model for BIP
We provide a formalization of atomic components in BIP.
Definition 1 (Atomic Component) An atomic componentis a tuple = (L, P, T), where:
o L ={ly,ls,...,l;} is aset of states,
e Pisaset of ports, and
e 7 C L x P x Lisasetof transitions.

Given a transitionr = (I,p,l’) € 7,1 andl’ are respectively, theourceand thetarget state denoted
respectively by’ andr*. We extend this notation for port§ = {*r|7 = (I,p,!')} andp® = {°|7 =
(I,p,1")} are respectively the set of source and target states ofahsitions with porp.

Definition 2 (Path) Let B = (L, P,7) be a component and two states’ € L. We say there is a path

from{ to !, denoted by %» I/, if there exists a sequenee= [, 2% ; 25 ... 2221, | such thatl = [,
and!’ = [, wherep; € P andl; KA liv1 € T for 0 < i < n. The set of states of the pathis denoted by
Liy.

A component is said to have a deadlock, if there exists domé such that no outgoing transitions frdm
can be executed.
Next we define parallel composition for components pararizete by a set of interactions.

Definition 3 (Interactions) Given a set of component, B, ..., B, where
B; = (L;, P;,T;), an interactiona is a set of ports, i.e., a subsetlof’_, P;, such thatvi = 1,...,n.
lan P;| < 1.

Definition 4 (Parallel Composition) Givenn component®; = (L;, P;, 7;), we define the parallel com-
positionB = (B, ..., B,) as the componerf, v, 7), where:

o [=Ly xLyx...x L, isthe setof states,
e v is a set of interactions, and

e 7 C Lxvyx Lcontainsall transitions = ((l1,...,1,),a, (I}, ...,1,)) obtained by synchronization
of sets of transition$r; = (I;,p;, ;) € Ti}icr such that{p;},.; = a € v andl;- =1 ifj &1

Notation: We usey, (B) to denote the interleaving of individual components, where= | " ; P;.

Example 1 [Client-Server] Figurel gives the simplified model for Client-Server system for @mees
and two clients. Every client has to send a requesttp the server then wait for an acknowledgemen} (
from the server for every action, wheye< 7 < 2. We require the synchronization of sending and receiving
actions between the clients and the server. The interasfmnthis model ardrg, 1}, {ro, m2}, {ao, a1},

{CLQ, CLQ}.

To avoid heavy set-theoretic notation, we define a simpletakgjc notation for representing connectors
on a set of port$.

2/14 Verimag Research Report TR-2009-12

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

rif \/ \ 72
" @ To @)
B, By B
aiq ap a9
Clientl Server Qlientz

CL1L\ éo\ /ag

Figure 1: Client-Server example

Definition 5 (Connectors) [7] Let P be a set of ports, the syntax of the algebra of connectd¢s,P),
is defined by

yu=plylyylv+y
for p € P, where+ and- are binary operators.

Definition 6 (Semantics of Connectors)The semantics of connectors is given by the funciiiorj| :
AC(P) — 22" defined by

lpll = {{p}} foranyp € P,
v +2ll = [l Ullvell, -2l = {{e1 Uaz} | a1 € [l a2 € [|2l[}

wherey,v2 € AC(P), anday, as are interactions.

We omit fusion operatorto simplify notation. For example, the connectérg, 1 }, {ro, 2}, {ao, a1}, {ao, a2}}
is represented by the terrg 1 + 7o 72 + ag a1 + ag as.

2.2 Boolean Behavioral Constraints

In [5] we have presented the verification method for compones¢dhaystems in BIP. The method
uses a heuristic to compute symbolically invariants of aposite component. These invariants are used in
particular for proving deadlock-freedom. For this, it idfiient to find an invariant that does not contain
deadlock states. The method is iterative. It allows conmguprogressively stronger invariants as the result
of an iterative process.

Definition 7 (Invariants) GivenB = (L, P,7), a state predicatd is an invariant of B, denoted by
inv(B, 1), if for any state € L and any porip € P, I(I) and! % I"eTimplyI(l").

Clearly, if I;, I are invariants oB thenl; A I, andl; V I are invariants of3.

In the rest of the paper we consider states of componentsasarovariables. We usBool[L] to de-
note the free boolean algebra generated by the set of étaWe extend the notatidh, p°® to interactions.
If a = p1---pn is an interaction we tak® = (J.", *p; anda® = .-, p¢ .

Definition 8 (Boolean Behavioral Constraints (BBCs))Let~ be a connector over a tuple of components
B = (By,---,By,). The boolean behavioral constraints for a compone(i) with set of stated, are
defined by a functioh- | : v(B) — Bool[L] such that:

VB = Aaey la(B)]s a(B)l = Njcaali = Vipcae 1)

If v = 0, then|vy(B)| = true, which means that no interactions between the componentswill be
considered. In Figur&, if a = p1---p;---pm € 7 iS an interaction between transitiohs 2 1/ for

i =1,---,m, the corresponding constraintAg™ , (I; = V/j_, 1}).
Theorem 1 LetB = (By,---, B,) be a set of componentshe a connector, and : L — {true, false}

be a boolean valuation different from false, whéte= (L;, P;, 7;) andL = |J;-_, L;. If v is a solution of
[v(B)], i.e.|y(B)|(v) = true thenV/, ;.. lis an invariant ofy(B).

Verimag Research Report TR-2009-12 3/14

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

T1 T
p p pl...pi...mefy
Figure 2: Interactions and implications Figure 3: Example for global invariants

Proof 1 According to Definitior8, the constraints are the conjunction of all the implicasdor interac-
tions ofy. Consider a valuatiow such thaty(B)|(v) = true. In order to prove thad/,), [is an
invariant, assume that for some global state (11, - -- ,1,), there existg; such thaw(l;) = true. If from
l; there is an interactiom such that; € °a, then there existl;‘]- € a®, such thatv(l.;-) = true by Definition
8. So any successor stateldfy an interactior satisfies the invariant.

This theorem allows the computation of invariantsy¢3) that we call BBC-invariants. We call global
invariant ofy(B) the conjunction of all its BBC-invariants.

Definition 9 (Positive Mapping) Given two set of variableX', Y such thatX C Y, and a boolean
functionf € Bool[L] expressed as the disjunction of monomials. We define theédnticat deletes all the
negative variables that do not belong.is, denoted by ?(X):

- - - X X
(Asey li A /\ljex i Nipev—x I)P) = Nijey li A /\ljex I, (v f2)r®) = fre0y o

When X is empty, the positive mapping will remove all the negatiagiables inf, which is denoted by
fP. If all the variables are negative jfy we havef? = false.

Theorem 2 For any connectoty applied to a tuple of componens= (B, - - - , B,,), the global invari-
ant ofy(B) can be obtained as the dual of the positive mapping 6B)|, denoted by~(B)|?.

Proof 2 (Sketch)|v(B)| can be written as the disjunction of monomials, thatis3)| =/, ; mi, where
m; is of the formm,; = /\jel li; A /\keK Z For eachm;, the set of positive literals defines a solution of

BBC. AndnAz? is the corresponding invariant according to Theorém

Example 2 We use Figure to illustrate the computation of invariants, wheke = (B, B;) andy =
araz+b1by. The boolean behavioral constraint fo(B) is |y(B)| = (I1 = l2VIs)A(la = 11 VI3)A(l3 =
lo \/l4) A (l4 =1 \/l3) = (ll Nla Al3 /\l4) \Y (ll /\lg) V (lg /\l3) V (ll /\l4) V (13 /\l4). The positive mapplng

deletes negative variables. Thus the global invariaf{$B) P = (11 VI2) A (I3 Vi) A (L VI A (2 V3).

3 Incremental Construction and Verification

In component-based systems, the construction of a conggmmitponent is hierarchical and step-wise.
We assume that a system is obtained from a set of atomic canorepresented by their behavior by
adding progressively interactions. At some stage of thetrtoation we have a componentB) and a set
of established invariants. We want to make sure that for aashinteraction - an incremental modification
of the behavior - the already established invariants aresgpved.

3.1 Looser Synchronization Preorder

In this subsection, we will formalize tHeoser synchronization preorddretween connectors. Then,
we present properties for invariant preservation for tiéopder.

Definition 10 (Looser synchronization Preorder) Given a set of port$, we define the looser synchro-
nization relation< C 22" « 22" For two connectorsy, 2, 11 < 72 if for any interactionb € ~, there
exists some interactiam € ~1, such thats C b. We simply say that; is looser thanys.

4/14 Verimag Research Report TR-2009-12

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

Proposition 1 The looser synchronization relatiog is a preorder. Furthermore, if;;, 2, v3, 74 are
connectors such that;, < 72, andys < 4, then we have; - v3 < 72 - y4 andvy; + 3 < 72 + V4.

Proposition 2 Let~;, - be two connectors ove3. If y1 < 72, we havenv(y;(B), I) = inv(vy2(B), I).

Proof 3 If inv(y1(B), 1), foranyl € L; ., we havel(l). Because; < 72, we havel| | C
T e
L, ., .Wecanconcludethatforame L; , ,I(l)istrue. Hencénv(yi(B), 1) = inv(y2(B),I).
T ! e !

In the next subsection, we propose a method for building amite components from simpler ones by
incremental transformations. These transformations enemgnectors and build new ones that synchronize
stronger than the connectors of the constituents.

3.2 Incremental Construction

In the incremental construction of component-based systkayers of connectors are applied to build
the system bottom-upy, (B) can be viewed as the initial system obtained as the intérigaf individual
components, wher8 = (By,..., B,). If at some stage of the construction, we have obtained arsyst
~v(B). We transform this system by enforcing new synchronizatibatween elements of. We call
these synchronizationiscrements In doing this bottom-up construction, it is essential thamne already
enforced synchronizations are not relaxed. For this we ieedotion of forbidden interactions for a
connectory.

Definition 11 (Closure and Forbidden Interactions) Let~ be a connector.

e The closurey® of v, is the set of the non empty interactions contained in soteeaction ofy. That
isv={a#0|3be~v.a b}

e The forbidden interactions’ of ~ is the set of the interactions strictly contained in all théeirac-
tions ofy. Thatisy/ = ¢ — ~.

Clearly, for connectors; andy,; we have(y; +72)¢ = v§ +75 and(y; +42)7 = (71 +72)¢ =71 — 2.

Definition 12 (Incremental Construction) Given a connector, an incremend is any set of interactions
obtained by fusion of interactions of For § C 27, we defineyy = (y — §/) + § the incremental
modification ofy by 4.

The above definition describes one-layer incremental coctivn. By the successive application of incre-
ments, we can construct the system with multiple layers.

The following proposition shows the looser synchronizatielation between the connectors involved
in the incremental construction process, which presehegvariants.

Proposition 3 Let~y be a connector oveB andé be an increment of, then we have < 4.

Proof 4 Asé C 27, for every interactior € §, there exists at least one interactibre ~, such that C a.
Therefore, it follows thay < §. Becausey < v — 6/, we havey < (y — /) + 0 = 7.

The independent application of two incremetitsand > on the same connectar may lead to in-
consistencies. For examplejif enforces synchronizatiarb that isa andb alone are forbidden, it may
happen thad, allows one of the forbidden interactions. Given two incretsé; andd,, if 61 N 5{ # (or
02 N 5{ # (), there isinterferencenetweerny; andd,. In case of interference betweénandd,, the invari-
ants induced by; may not be preserved . We define the operatiop of superposition of increments
which eliminates the interference between increments.

Definition 13 (Superposition) Given two increments;, 62 C 27, the operation of superposition between
&, and &,, denoted by}, @ 65, is defined bys, @ 6, = (6, — 63) + (5, — 7).

Verimag Research Report TR-2009-12 5/14

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

Remark 1 Asé N6/ = (), we have(d; — 6]) + (62 — 67) = (61 + d2) — (6] + 63). In cased; N6 =0
andéd, N 5{ = (), we haventerference-free superpositién @ dy = d; + da.

Proposition 4 For &1, d2, 83 three increments, we have: (1); @ §2)f = 6{ + 5{, (2) associativity:
(01 ® 92) ® 63 = 01 @ (02 ® J3), and (3) commutativityd; @ da = o @ d1.

Proof 5 The third proposition can be proved from the definition ofesppsition. We provide the proofs
for the first and the second propositions.

1. According to the definition of forbidden interactiofi, @ 62)7 = (6; © 02)¢ — (61 @ J2). By the
definition of superposition, we hay& @ d,)f = ((8; +d2) — (67 +64)) — (61 +02) — (67 +63)).
According to DefinitiorL1, for any interactiorn € 6; (or d2), there always exists some interaction
b e (814 05) — (67 +67) such thatw C b. Therefore we havi(s; + 65) — (67 +64))¢ = (61 + 62)°.
Then we havés; @ 0,) = (81 + 62)° — (61 + 02) — (87 + 61)) = &7 + 6].

2. According to the definition of superposition, we hé¥e® &) @ 03 = ((51 @ d2) — 84) + (d35 —
(01 ® 62)F). As(61 @ 62) = 67 + 6, we have(s; @ 62) @ 05 = (((61 + 82) — (6] + 64)) +
83) — (8] + 64 +6)) = (61 + 82 + 03) — (8] + &5 + 8f). Similarly, we havel; © (5, @ d3) =
(61 + ((62 + 03) — (63 + 1)) — (6] + 64 + 6]) = (6, 4 02 + 83) — (6] + 6 + 61). Then we
conclude thatd; @ d2) @ 3 = 01 @ (d2 @ d3) and® is associative.

Since® is associative, it can be extended to the superpositionyofiaite number of increments.

Lemma 1 Givenn increments{d; }1<i<n, the superposition af increments is

n

D0 =Y (6 — >) (1)

i=1 J#i

Proof 6 The proof can be constructed by the inductiom of

If n = 1, 6, is unchanged. Suppose thaf~'s; = Zf;ll(zii =D i 6{) forn = k — 1. We try to prove
thatel_, 4, = Zle(éi — D 5;) forn = k.

By the definition of superposition, we hae:~6;) @ 6, = (&F=16; — 1) + (6, — (®"=16:)7). By the
assumption above and Propositiénwe obtain(@~!6;) & &, = (X7 (6; — >t 8y — &) + (6 —
SoiS1 6))- By movings into 371 (8 — 37, o), we have(@(=6) @ 0 = 3TiL (0 — (0] +
60)) + (0 = X015 8)) = Sy (0 = iy).

Proposition 5 Let~y be a connector oveB, the incremental construction by the superposition afcre-
ments{d; }1<i<n IS

n n

(@118:)y = (v =D D)+ > (6: = >) @)

i=1 i=1 j#i
Proof 7 (Sketch). By application of Definitick?2 and Lemmél, we get the correctness of the formula.

Example 3 In Examplél, if we consider the components together, the initial cotores the set of portsin
Figurel, thisisy, = ro+ri+re+ao+ai+as. TWo increments,, 6o C 27+ are the set of interactions for
the two clients to access to the server and get the respoiseedy = ro vy +ag a1, d2 = 19 r2 + ag az.
AS51 n 5% =0 and52 n 5{ = @, we have}// = (51 D 62)’Yl =1rgr1+179 72+ apai + ag as.

3.3 Incremental Computation of BBCs

The conjunction between the invariants of the constituehéscomposite component fails to take into
account the effect of superposition. Therefore, we prosigdéncremental method to obtain global BBCs
in this subsection.

6/14 Verimag Research Report TR-2009-12

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

Lemma 2 Given two connectorsg,, vo over B, we have

|1 +72)(B)] = m(B)| A [2(B)]

Proof 8 By Definition8, we have(y1 +72)(B)| = Aue(yy42) [2(B)] = Aues, [a(B)INA e, la(B)] =
71 (B)| A |y2(B)].

The following proposition provides the methods for obtaghthe boolean behavioral constraints taking
into account component structure.

Proposition 6 Let~ be a connector oveB, the boolean behavioral constraint for the system obtalmed
superposition ofi increments{d; }1<i<, can be written as

(@118 (B) = (v = Y81) B A N\ 16 =Y 6])(B)] (3)
i=1

i=1 i#j

Proof9 By Equation2, the union ofy — 37, &/ and 37" (6; — Dot 6{) is the set of interactions
from the superposition of incremen{ts; }, <;<,, overy. The proof can be concluded by the application of
Lemma2.

Example 4 For Examplel, consider the componentsy, (B) and d27v, (B) whered, = ro m +
ag ay, 62 =ro T2 + aop as.
The composite componenti§ B) wherey’ = (61 ® d2)v.L =70 71 + ag a1 + 19 12 + ag as.

1. The BBC for interactions @ (involvingClient,) are:

rTo T1: (ll =1V l4) A (13 = [V 14); ap ai : (lz =LV l3) A (l4 =1LV l3)

2. The BBC for interactions @, (involvingClient,) are:

ro T2 : (l1 :>lz\/l6)/\(ls :>l2\/la); ap a2 : (l2 :>l1\/l5)/\(l6 :>l1\/l5)

Becausey, — (6] +61) = 0,6, N6 = 0 andd, N6/ = 0, we have (6, @ 62)v. (B)| = |617.(B)| A
|02v1 (B)| where|d,v, (B)| and|d27y, (B)| are the BBCs above.

By application of Theorer, we can obtain the invariants for' (B). For example]; V I V [is one
of the computed invariants.

3.4 Incremental Computation of Global Invariants

In the previous section we have shown how to compute incréatig®BBC. The BBC of a composite
component can be obtained as the conjunction of BBCs of itoest components. For incremental com-
putation of global invariants, we try to apply Theorero each one of the conjuncts. The computation of
the positive mapping of all the variables over the conjurctf multiple BBCs can also be partitioned into
two steps:

1. the positive mapping over the variables shared by moredha BBC for the partitioned interactions,
that is, all the negative variables belonging to only one B&ICbe removed.

2. removing all remaining negative variables over the cocijion of all BBCs.

To distinguish the shared variables within BBCs, we defireedbmmon state variables shared by
multiple connectors as follows:

Definition 14 (Common State VariablesL.) Given{~;}i1<i<n, @ Set of connectors , we define the set
of common state variables by, = Uide[l’n]m# support(y;) N support(y;), wheresupport(y) =
e~ "aUa®, the set of states involved in some interactioof .

Verimag Research Report TR-2009-12 7114

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

Propositior6 provides the way to decompose the computation of positiygaings over common state
variables for boolean behavioral constraints. Decomjuwsis based on the fact that different increments
describe the interactions between different components.

Proposition 7 Given a component(B), {J; }1<Z<n a set of increments of, and L. the set of common
state variables for the set of connectars- >, 4] 67 {6, — > it 0 " cicn, We have

(@180 (B)P = Zaf IPED A /\| (6 = > 6By 4)
i#£]
Each non common variable occurs only in one of the BBCs. Titie/a deleting the non common negative
variables separately, which drastically reduces compl@ficomputation.

4 Symbolic Implementation and Experimental Results

In this section, we explain the symbolic implementation mfremental verification. Experimental
results show the benefits from the partitioned interactiom®mputing the invariants.

4.1 Boolean Representation

As shown in [], interactions and connectors can be represented by bofuleations on the set of ports
P. Boolean representations can facilitate the comparistwd®n the connectors and their implementation.
AC(P) can be bijectively mapped to the free boolean algéhsal[P] generated by, which is shown
in the following definition.

Definition 15 (Boolean Representation for Connectors)Ve define a mapping : AC(P) — Bool[P]
by setting: .

Bpr---pe) = Nz Pi A Njgp Pis Bl +72) = B(n) V B(72)
for y1,v2 € AC(P), p1,...,pr € P, where, in the right-hand side, the element$adre considered to be
boolean variables.

The mapping? is an isomorphism between the set the interactions and thiedmalgebra o® [7]. Any
boolean expression af defines a set of interactions. The interactign- - py is possible if the expression
is true for the valuation that makes true all the ports betogtp the interaction and makes false all the ports
do not belonging to the interaction. Each expressian . AC(P) represents exactly the set of interactions
corresponding to boolean valuations@fsatisfying5(~). With this mapping, other related concepts can
also be given boolean representations, which are definedlaws$.

1. The boolean function for the closure of the interacti@nddfined by
B(p \/ pin N\ B B +2) = B(m) V B (1)
JE[1,K]
2. The boolean function for the forbidden interactions iiroka by
BHp1-.pr) = 81 -pr) ABp1---pr), BT (1 +72) = B +72) A B(n) A B(y2)-

Example 5 For the connectory = pqr + pq + ¢, the boolean representations aré{(v) = p A gV g A
FOI(Y)=((pVaVvr)V(pVQAFVGADPAT) ADAGATADAGATAGADPAT.

With these boolean representations, the boolean repeggantor the incremental construction with n-ary
superposition is

>3

B(@F=18:)y /\ YANEIC))) (5)
i=1 1 i#j
As BBCs are boolean constraints, we have a fully symbolicaggntation of connectors and BBCs.

8/14 Verimag Research Report TR-2009-12

2

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

4.2 Experimental Results

We have implemented the incremental computation methoklerbtFinder tool by using the CUDD
package?1].

To compare the performance of incremental method with otbefication methods, we take Gas Sta-
tion and Dining Philosophers as benchmarks by increasimgcthle of component-based systems, which
cover deadlock and deadlock-free cases. The details ofithedses, together with their way of incremen-
tal verification, are shown in Appendix.

70
—~ 250 ‘ " Global symbolic Verification —— | —_ " Global sy‘mboli(‘: verification ——
[Incremental symbolic verification [60 Incremental symbolic verification i
% Model-Checking: NUSMV -+~ %--- % Model-Checking: NUSMV ---%---
£ 200 [1 £ g5ff ,
E E T
@ L - © 40 ¢ E
g 150 g :
- - H
c c 30 [-
S 100 - g S
3 8 20
£ sof g £ 3
o o 10 1
> x > A
0 L i I 0 1 ! ! o #= h 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10 0 1000 2000 3000 4000 5000 6000 7000 8000
Gas Station: size = N x (50 pumps + 500 customers) Number of Philosophers
(a) Gas Station (b) Dining Philosophers

Figure 4: The comparison between the incremental verifinatnd global verification
Figure4 shows timing performance for deadlock-freedom verifigatbtwo scalable examples by us-

ing: incremental symbolic computation of BBC-invariammbal symbolic computation of BBC-invariants
and verification by the NuSMV1[0] model-checker. Incremental symbolic computation imgsperfor-
mance dramatically.

For Gas Station, D-Finder proves that it is deadlock-frebe Verification time is a function of the
numberN, where if N increases by one, 50 pumps and 500 customers are added.ring Bhilosophers,
D-Finder detects the potential deadlocks. When the numighitosophers is odd, we can detect exactly
one deadlock. However, we get two more false deadlocks wienumber of philosophers is even. The
time shown in the figure is the total consumption after olitgjmll the potential deadlocks. Besides these
two examples, we have applied incremental symbolic vetiioao industrial case studies. For instance,
the verification of the NDD module in the Robot systethif completed within 5 minutes, while 3 hours
are needed for global symbolic computation. Detailed tedal case studies are availablehétp://www-
verimag.imag.fr/~ thnguyen/tool.

5 Related Work

Many works have focused on deadlock detection. It is welikmsohat model checking approaches
suffer from state space explosion problem. Compositioréfigation is one of the ways to alleviate the
state space explosion. However, within compositionalfieation methodologies, the main difficulties of
assume-guarantee techniques are to find decompositiansubtsystems and choose adequate assump-
tions for a particular decomposition.

Some works such as3[14], apply machine learning during assume-guarantee reagonimake the
method complete, but the algorithms are compie®.[

The work based on split invariancéd] addresses the incompleteness problem by adding auxiliary
variables in case of property violation. However, the psanof the work is that the conjunction of local
assertions is an inductive invariant of the composite systehich is not always true in synchronous
systems. And no explicit claims on the completeness of de&dletection is mentioned.

The least fixpoint approximation method proposedifil computes the tighter upper bound of the
reachable states locally, by repeated image computati@nset of boolean functions from some initial
states. However, the decomposition of state space is arriarmdssue to get the tighter approximation of
reachable states. The structure of the system will influéme@pproximation and the iteration times.

A recent paperij(] proposes a compositional deadlock detection techniquea tand of concurrent
language. The method composes tasks one by one explicidetiect deadlocks. Both the time and
memory consumption will increase greatly with the incregsiumber of tasks.

Verimag Research Report TR-2009-12 9/14

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

Earlier work in [5, 6] is primarily on global computation of boolean behavior straints to obtain the
global invariants. During the system construction, theifants for every stage have to be re-computed
to check the deadlock-freedom. The incremental methodgsexh in the paper is capable of reusing
the available invariants, and computing the global inv@gancrementally from its increments. As the
approximation of the reachable state space, both methedsoand but not complete. If we obtain some
potential deadlocks, we are not sure whether they are realaeks without checking their reachability.

During the incremental construction process, the featfithevincremental method is to compute in-
variants incrementally in a totally symbolic way. The cortgglinvariants will not differ from different
partition of connectors.

6 Conclusion

The paper studies a method for checking deadlock-freed@eomponent-based system. The method
takes advantage of properties of the construction processdoon the assumption that composite compo-
nents can be obtained from a set of atomic components by mogigon of increments.

The method is an adaptation of a heuristic for computingriavés of component-based systems. Its
implementation is fully symbolic. In addition to boolearhia@ioral constraints it also uses boolean repre-
sentations for connectors, for their increments. The beracks obtained with D-Finder show significant
performance improvements with respect to global verifizati

The application of incremental verification methods tosyst with data will require the use of abstrac-
tions for atomic components, following the same approadh s 6]. Although our method is explained in
the environment of BIP, it can be broadly applied to the veation of concurrent systems. The proposed
view opens the way for step-wise and modular verificationhm@ologies tightly coupled with system
construction methodologies.

Currently, the deadlocks obtained from D-Finder are paédeadlocks. To remove these potential
deadlocks, we should start from the potential deadlockdiadatonstraints to strengthen the global invari-
ants. We plan to investigate this issue in the future.

References

[1] M. Abadi and L. Lamport. Conjoining specificatioACM Transactions on Programming Languages
and Systemd.7(3):507-534, 19951

[2] R. Alur and T. Henzinger. Reactive modules.Aroceedings of the 11th Annual Symposium on LICS
pages 207-208. IEEE Computer Society Press, 1996.

[3] A. Basu, S. Bensalem, M. Gallien, F. Ingrand, C. LesireHT Nguyen, and J. Sifakis. Incremen-
tal component-based construction and verification of a tiolsystem. In18th European Conf. on
Artificial Intelligence (ECAI)2008.4.2

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogersa@al-time components in bip. BEFM
'06, pages 3—12, Washington, DC, USA, 20Q6.

[5] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. Cositppnal verification for component-
based systems and application ARVA pages 64—79, Seoul, 200B.2.2, 5, 6

[6] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. Beler: A tool for compositional deadlock
detection and verification. I6AV, Grenoble, France, 2009, 5, 6

[7] S.Bliudze and J. Sifakis. The algeba of connectors firing interaction in BIPLEEE Transactions
on Computers57:1315-1330, October 2008.4.1, 4.1

[8] S. Chaki, E. Clarke, N. Sinha, and P. Thati. Automatediagsguarantee reasoning for simulation
conformance. IICAV, volume 3576, pages 534-547. Springer-Verlag, 2805.

10/14 Verimag Research Report TR-2009-12

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

[9] K. Chandy and J.MisraParallel program design: a foundatiorAddison-Wesley Publishing Com-
pany, 19881

[10] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. BMV: a new symbolic model checkelnt.
Journal on STTJT2:2000, 20004.2

[11] E. Clarke, D. Long, and K. McMillan. Compositional mda#ecking. InProc. of the 4th Annual
Symposium on LIGPages 353—-362. IEEE Press, 1989.

[12] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking is hard to do: An evaluation of
automated assume-guarantee reasord@M Trans. Softw. Eng. Methodpl.7(2):1-52, 20081, 5

[13] A. Cohen and K. S. Namjoshi. Local proofs for global sgferoperties. In W. Damm and H. Her-
manns, editorsCAV, volume 4590 ofLecture Notes in Computer Sciengages 55-67. Springer,
2007.5

[14] D. Giannakopoulou and C. S. Pasareanu. Learning-bas®dne-guarantee verification. $iPIN
volume 3639, pages 282-287, 2065.

[15] O. Grumberg and D. E. Long. Model checking and modulaifieation. ACM Transactions on
Programming Languages and Systey(3):843-871, 19941

[16] D. Heimbold and D. Luckham. Debugging Ada tasking peogs. IEEE Softw,. 2(2):47-57, 1985.
Al

[17] K. L. McMillan. A compositional rule for hardware desigefinement. INCAV '97, pages 24-35.
Springer-Verlag, 19971

[18] I.-H. Moon, J. Kukula, T. Shiple, and F. Somenzi. Leaspfiint approximations for reachability
analysis. INCCAD '99: Proceedings of the 1999 IEEE/ACM internationahéerence on Computer-
aided designpages 41-44, Piscataway, NJ, USA, 1999. IEEE Peess.

[19] A. Pnueli. In transition from global to modular tempbraasoning about programd.ogics and
models of concurrent systenmages 123-144, 19845.

[20] B. Shao, N. Vasudevan, and S. A. Edwards. Compositideatilock detection for rendezvous com-
munication. INEMSOFT 2009.5

[21] F. Somenzi. CUDD: CU decision diagram package releaz®24.2

[22] E. W. Stark. A proof technique for rely/guarantee pndigs. In FSTTCS: proceedings of the 5th
conferencevolume 206, pages 369-391. Springer-Verlag, 1985.

A Examples
A.1 Gas Station

Gas Station]6] consists of an Operator with a computer, a set of pumps, aed @f customers. Each
pump can be used by a fixed number of customers. The set oftimécatomponents involved in a system
with n pumps andn customers for each pump is denotedB., m] = { Operator, {pump;}1<i<n,

Before using a pump, each customer has to prepay for theatBos. Then the customer uses the
pump, collects his change and goes to a state from which hestagtya new transaction.

Before being used by a customer, the pumps have to be activatibe Operator. When a pump is shut
off, it can be re-activated for the next operation.

Figure5 gives the model for Gas Station system for one pump and twimieess. The Operator has
two states and three ports.The transition labelled witthpay accepts a customer’s prepay and activates the
pump for the customer. When a customer is served, the timm&ibelled with finish will synchronize

Verimag Research Report TR-2009-12 11/14

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

hod Nod
prepay finish
((i) [
@ finish
prepal
Operator
change chang
changa e ey,
start: % prepay, finish:
startu start
finishi
Customerl Customer2
activiate, finish,

Figure 5: Sketch of Gas Station

the pump and the customer. A pump has three states and thtseesides the synchronization between
the Operator and customer througftivate and finish ports, a pump and a customer are synchronized
throughstart ports.

We abbreviate port names by using only their first three rgtteThe interactions for a system of
n pumps, each one used by customers, areg[n,m] = X7, (X7, (pre act; pre;; + sta; sta;; +
fin fin; fin,; + cha cha;j;)). For instance, the interactions fetustomer; arepre act: preii +
stay stay; + fin finy finigy + cha chay;.

if we consider the two customers together, the initial catoeis the set of ports in Figurg that is
v, = pre+ fin+cha+act;+stai+ fin,i+prejy+stair+ fing1+charr+prero+staro+ finio+chays.
Two increments);, do C 27+ are the set of interactions for the two customers to accettetpump and
get the service, where

01 = pre acty preiy + stay stai1 + fin finy fing, + cha chaiy
b9 = pre acty preis + stay staiz + fin finy finio + cha chais

As 61 N 55 = (anddy N 5{ = (), we havey’ = (§; & d2)y. = pre acty preyy + stay stai; +
fin finy fini1 + cha chai + pre acty preis + stay stais + fin finy finio + cha chais.

The composite component i8(B) wherey’ = (d; @ d2)yL = pre acty prei; + stay stai; +
fin finy fini1 + cha chai + pre acty preis + stay stais + fin fing finio + cha chais.

1. The BBC for interactions af; (involving customery) are:

preacty pre1r i (log = log Vipy Ve) Allpg = log Vipy Ve) A (lery = log Vip Vi)
stay staii : (lpy = lpy Viey) A (ley, = lpy Viey,)
fin fing finir: (log = loy Vipg Vieys) Allpy = loy Vipg Vieys) Al = loy Vipg Vieys)
cha chaii : (loy = log Vi) A (leys = log Vleyy)

2. The BBC for interactions af, (involving customers) are:

pre acty preiz ;. (log = log Vipy Vieg) A (lpg = log Vipy Vies) A (leag = log Vi Vi)
stai stais : (Ipy = lpy Vi) A (legy = lpy Viey,)
fin finy finia : (log = log Vipg Vlegs) A (lpy = log Vipg Vieys) A (leay = log Vipg Vieys)
cha chas : (loy = log Viegg) A (legs = log V leg)

Becausey, — (6] +6J) = 0,6, N6 = 0 ands, N6 = 0, we havel (61 @ 82)v. (B)| = |617.(B)| A
|02, (B)| where|é,v, (B)| and|d2y, (B)| are the BBCs above.

12114 Verimag Research Report TR-2009-12

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

(®4,5e11,2195 [ni, my]) e (Bl 4+ na, ma + ma)

511[”177711] 512[”177712] 521[”277711] 522[71277712]
7L (B) 7L (B) 7L (B) v.L(B)

Figure 6: Incremental construction of Gas Station

use
use
freey Fork

Philg

left, righg

left, finish
)| e
finish.
finisky
freeg
usey
fregg Forlg

Figure 7: Dining Philosophers

By application of Theoren, we can obtain the invariants fof (B). For examplel,, V I, Vi, V
ley, Vleyy V ey, is One of the computed invariants.

The incremental construction of Gas Station, with+ ny pumps andn; + mo customers for each
pump, can be described as follows:

vy + ng, my + meo](Blni + na, m1 + ma))
= (61[n1, m1 + ma] © d2[n2, m1 + ma])yL (Blny 4 n2, m1 + ma)
= (811[n1,m1] & d12[n1, ma] @ da1[n2, M1] S d22[n2, ma])yL (B[ni + ne, mi + ma))

whered[n, m] is the set of interactions for pumps andr customers for each pump in Gas Station. Figure
6 shows the principle for incremental construction for GaatiSh withn; + ny pumps andn; + meo
customers for each pump.Since there is no interferencedeetthe increments;[n;, m;] for1 <4, j <

2, we have|(®;,je(1,2)0i; [ni, m;])vL (Blna + na,ma + ma])|P = (A, jep g 1035 [ni, m;l(Blna + na,

my +mo])[PE))P.

A.2 Dining Philosophers

Figure7 shows the model for Dining Philosophers. Givephilosophers and forks, the interactions
are:

n

~y[n] = Z(lefti use; + right; use(; mod n)+1 + finish; free; freeq mod ny+1)
i=1

These interactions can be obtained from the superposititredollowing increments

m

Op,m) = Z(lefti use; + right; use;11 + finish; free; free;+1)

=1

Verimag Research Report TR-2009-12 1314

Saddek Bensalem Thanh-Hung Nguyen Joseph Sifakis Roagjie Y

and

n

Ofm+41,n] = Z (left; use; + right; use(; mod ny+1 + finish; free; free; mod ny+1)
1=m-+1

whered|, ,,, are the interactions between the firsphilosophers, and,,, , 1 ,,) are the interactions between
the lastm + 1 to n philosophers.

For example, the set of interactions for a system of 4 phpbses is the superposition of the incre-
menté[m] = left1 use; + right; uses + finishy freey frees + lefty uses+ rights uses +
finishy frees freesz and the increments 4y = lefts uses + rights useq + finishz frees freeq +
lefty useq + rights usey + finishy freey free;.

1414 Verimag Research Report TR-2009-12

	Introduction
	Preliminaries
	Basic Model for BIP
	Boolean Behavioral Constraints

	Incremental Construction and Verification
	Looser Synchronization Preorder
	Incremental Construction
	Incremental Computation of BBCs
	Incremental Computation of Global Invariants

	Symbolic Implementation and Experimental Results
	Boolean Representation
	Experimental Results

	Related Work
	Conclusion
	Examples
	Gas Station
	Dining Philosophers

