
Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

Granularity-based Interfacing between RTC and Timed Automata
Performance Models

Yanhong Liu, Karine Altisen, Matthieu Moy

Abstract: To analyze the complex and heterogenous real-time embedded systems, recent works have
proposed interface techniques between real-time calculus (RTC) and timed automata (TA), in order to
take advantage of the strengths of each technique for analyzing various components. But the time to ana-
lyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion
problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis
of a TA modeled component. First, we abstract the fine models to work with event streams at coarse
granularities. Then based on the RTC theory, we develop a formal mathematical algorithm to derive
lower and upper bounds on the arrival patterns of the fine output streams, by analyzing the component
for multiple runs at coarse granularities. These bounds may be tighter than those simply implied by the
results analyzed from the abstracted models. Our framework can help to achieve the tradeoffs between
the precision and the analysis time.

1 Introduction
Modern real-time embedded systems are increasingly complex and heterogenous. They may be composed
of various subsystems such as hard-disk drives, displays, radio-frequency communication devices and com-
putational elements like general-purpose configurable processors, DSPs or FPGAs etc. It is a general prac-
tice that some of the subsystems may be power-managed [1, 2], in order to reduce energy consumption
and to extend the system life time. Such a subsystem may have multiple running modes, while a mode
with lower power consumption also implies lower performance levels. Due to the real-time requirements,
it is critical to analyze the timing performance of such systems. However, it is challenging to manage the
complexity of such analysis, especially when it is scaled to large and heterogenous systems.

1.1 Related Work

Compositional analysis techniques have been presented as a way of tackling the complexity of accurate
performance evaluation of large real-time embedded systems. The examples include the SymTA/S (Sym-
bolic Timing Analysis for Systems) [3] and modular performance analysis with real-time calculus (RTC)
[4]. Various models and formalisms have also been proposed to specify and analyze heterogenous compo-
nents [5]. Different analysis techniques have their own particular strengths and weaknesses. For example,
SymTA/S or RTC based analysis can provide hard lower/upper bounds for the best-/worst-case perfor-
mance of a system, and has the advantage of short analysis time. But typically they are not able to model
complex interactions and state-dependent behavior and can only give very pessimistic results for such a
system. On the other hand, state-based techniques, e.g. timed automata (TA) [6], construct a model that is
more accurate, and can determine the exact best-/worst-case results. But they face the state space explosion
problem and can possess prohibitively high analysis time even for a system with reasonable size.

Efforts have been paid to couple heterogenous approaches [7, 8, 9], e.g. to combine the functional
RTC-based analysis with state-based techniques. A model, called multi-mode RTC [10], extends the RTC
framework to include state information. In this new framework, system properties within a single mode is
analyzed using the RTC-based technique and state-space exploration is used to piece together the results
for the individual modes. In [11], an interfacing technique is proposed to compose RTC-based techniques
with state-based analysis methods, by transforming between RTC models and a state-based model called
event count automata [12]. A tool called CATS [13] is just at the beginning of its development, which
abstracts TA as a transducer of abstract streams described by RTC.

Verimag Research Report no TR-2009-10 1/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

0 3 9 126
t� ������events

(3) max{ } 7, (3) min{ } 3U Lξ ξ= ∑ = = ∑ =
3{ | 0} {5,5,4,3,4,7}

i i
t t i+∑= − ≥ =

Figure 1: Illustration of the definition of an arrival curve ξ.

1.2 Performance Models: RTC and TA
In this paper, we follow the line of recent development in interfacing between RTC and state-based models,
and focus on speeding up the analysis for a power-managed component (PMC) [14] modeled by TA. In the
following, we first describe the basic concept of RTC performance model and a state-based one TA.
RTC: Suppose that an event stream is processed by a component. The arrival patterns for all possible
streams that can be input to the component are described by an arrival curve ξ = (ξL(k), ξU (k)) for
k ≥ 0. Defined for a class of streams, ξL(k) and ξU (k) respectively provide for any potential stream the
lower and upper bounds on the length of the time interval during which any k consecutive events can arrive.
Let ti denote the arrival time of the i-th event, then we have ξL(k) ≤ ti+k − ti ≤ ξU (k) for all i ≥ 0
and k ≥ 0. Figure 1 shows an example stream and the definition of ξL(3) and ξU (3). Σ records the set
of inter-arrival times between any 3 consecutive events. The minimum and maximum of all elements in
Σ are assigned to ξL(3 and ξU (3) respectively. Similarly, the processing capacity of a component can be
specified by a service curve ψ(k) = (ψL(k), ψU (k)). The length of the time to process any k consecutive
events for any potential stream is at least ψL(k) and at most ψU (k). The process of events can be at the
unit of processing cycle (computation) or bit (communication), which can be transformed into the same
unit as the arrival curve.

In the RTC theory, an arrival curve α = (αL(∆), αU (∆)) (respectively, service curve β) is usually
expressed in terms of number of events, which provides lower and upper bounds on the number of events
that can arrive (respectively, be processed) within any time interval of length ∆. In this paper, we express
the arrival curves (ξ) and service curves (ψ) in terms of length of time interval, in order to better explain
our work. Actually, ξ is a pseudo-inverse of α, satisfying ξU (k) = min∆≥0{∆|αL(∆) ≥ k} and ξL(k) =
max∆≥0{∆|αU (∆) ≤ k}. Throughout the paper, any curve F (x) is assumed to be wide-sense increasing,
meaning that F (x1) ≤ F (x2) for x1 ≤ x2 and F (x) = 0 for x ≤ 0.
TA: A timed automaton is a finite-state machine extended with clock variables. A clock measures the time
elapsed since its last reset. Figure 4 shows an example of a timed automaton. A node represents a state,
and an edge represents a transition from one state to the other. An invariant (guard) may be put on a
state (transition), which is a conjunction of upper (lower and upper) bounds on clocks, differences between
clocks or integer expressions. The automaton can only stay in a state when the invariant is evaluated to
be true. The transition can only happen when the guard is evaluated to be true. The invariant and guard
together determine the bounds on when a transition can be taken. As shown on the transition from “Lower”
to “Upper”, a timed automaton synchronizes with another via sending a signal m! or receiving m? on a
transition (e.g. signal!). After a transition is taken, the values of clocks or variables can be updated (e.g.
v ← 0). The automaton immediately passes a committed state (e.g. “Lower”), with no time elapsed.

1.3 Our Contribution
A PMC interacts with other components or environments via data streams of events. In this paper, we study
the case that the PMC processes a single input stream. It is straightforward to apply our results to the case
of multiple streams, which can be merged into one [15] or treated separately, depending on the semantics
of the PMC. The processing semantics of the PMC is modeled by a processing element (PE), as shown in
Figure 2. We can cluster all the states of the PE modeled by TA into multiple operation modes, based on the

2/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

Generator
(based on arrival curve)

Observer

Service Model
(based on service curves)

Processing

Element

��� ����
ijSyn �����	�
��

Figure 2: Abstracted models for a PMC and its interfaces.

processing capability (and/or power) of each mode. Associated with each mode, a service curve specifies
the lower and upper bound on the time patterns following which the stream of events are processed in
that mode. At an abstract level, the PE selects its running mode, based on the the number of buffered
events waiting for process. In the PMC, we also include a service model, which generates a sequence of
signals ‘serv!’ to indicate when the process of each event is completed, based on the specification of service
curves and the running mode. The arrival patterns of all the potential streams at an input to a component are
characterized by an arrival curve. The generator, generates a sequence of signals ‘req!’ to indicate when
each input event arrives. At the output of the PMC, the signals ‘produce?’ are recorded by the observer,
which can be analyzed to obtain an output arrival curve in order to couple with other components.

The generator (or service model) uses the clock variables to encode the arrival curve (or service curve).
The number of clocks is equal to the length of the curve. Hence, to analyze the TA-modeled PMC, the size
of the state space is dependent on the length of the curves and also the number of events to be explored.
We can abstract the granularity of the event stream into a coarse level, i.e. multiple fine events are regarded
as one coarse event. Intuitively, such abstraction would reduce the length of the curves and the number of
events to be explored, which then reduce the size of the state space and the analysis time for the PMC. In this
paper, we propose a formal framework of granularity-based interfacing between RTC and TA performance
models. The generator, PMC and observer deals with coarse events, which speeds up the analysis of the
PMC.

In the framework, the TA models of the PMC have to be abstracted to deal with the coarse events.
However, it is not straightforward to guarantee that the abstraction is accurate, in the sense that the lower
and upper coarse output curves (analyzed from the abstracted coarse PMC model) always provide lower and
upper bounds on the lower and upper fine curves (analyzed from the original fine PMC model) respectively.
An analyzed coarse output curve already implicitly provides lower and upper bounds on the arrival patterns
of the output stream at the fine granularity. But we find that it is possible to derive tighter fine output curve,
using the resulted coarse output curves from multiple runs of analyzing the component at different coarse
granularity levels, based on the properties of RTC curves. In the proposed interfacing framework, as
shown in Figure 3, we first vary the TA models for a PMC such that the models at a coarse granularity
are guaranteed to be accurate abstraction of those at the fine granularity. Then we conduct the analysis
of the TA models for multiple runs with different granularity levels (g1...gm). Finally, we apply a formal
mathematical algorithm to refine the multiple coarse output arrival curves (ξ̆g1 ...ξ̆gm) to tighter output
arrival curve (ξ̃) at the fine granularity. Our formal algorithm guarantees that the derived fine output curve
still provide valid lower and upper bounds on the output patterns of events processed from the PMC. To the
best of our knowledge, no existing work has worked on a granularity-based scheme with formal validation
on the abstraction. The proposed framework complements the recent works on interfacing between RTC
and TA models.
Organization of the paper: In the next section, we detail the implementation of the existing interfacing
techniques between RTC and TA, and propose our framework of granularity-based interfacing. Then in
section 3, we discuss our targeted PMC, and show its fine and coarse TA models. In section 4 we illustrate
with an example PMC, which is followed by experimental validation in section 5. Finally, we make a

Verimag Research Report no TR-2009-10 3/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

ξ̂ Analysis at Multiple

Granularity Levels
, . . . ,

1 mg g

� �� �

coarse

output curves

1
, . . . ,

m
g g

Mathematical

Refinement

ξ�

��������� ���������	��
��
� �� � ���
Abstracted TA Models

Input

Arrival

Curve

Output

Arrival

Curve

Figure 3: The framework of granularity-based interfacing.

conclusion and present the future work in section 6.

2 Granularity-based Interfacing

2.1 Interfacing between RTC and TA Models

Figure 2 shows the abstracted models for a PMC and its interfaces with RTC curves. As discussed above,
an arrival curve ξ̂ is specified to bound the arrival patterns of the input stream into a PMC. A PE (processing
element), modeled by TA, gives the processing semantics of the PMC. A service curve is associated with
each running mode of the PE, to specify the service time patterns for the stream at that mode. The arrival
patterns of the output event stream are captured by an output arrival curve ξ̆, in order to couple with other
components. Techniques have been proposed to interface between RTC and TA models. In Figure 2, the
generator emits a sequence of signals ‘req’ based on the specification of arrival curve ξ̂, indicating the
arrival of an event. The service model has the same number of modes as the PE and keeps staying in the
same mode as the PE. Whenever the PE switches from mode Mi to Mj , the service model synchronizes
its mode with the PE by the signal ‘Synij’. The service model determines when the process of an event is
completed, based on the service curve specified, and notifies the PE with signal ‘serv’. Whenever the PE
receives a signal ‘serv’, it emits a signal ‘produce’, implying that a new event is added to the output stream.
The observer captures the signals ‘produce’ and records the output events. The output arrival curve can
be obtained by analyzing the TA models of PMC, generator and observer. In the following, we show the
techniques from CATS[13] for modeling the generator, service and observer.

2.1.1 From RTC to TA - Converter

Figure 4 shows a TA model of a Converter(∂L,∂U ,signal), which generates a sequence of signals, the time
patterns of which are lower and upper bounded by a pair of RTC curves (∂L(i), ∂U (i)) for 1 ≤ i ≤ N . A
circular clock array y[0 : N − 1] is defined to record the time patterns between consecutive signals. The
function getIdx(i) returns the index of (λ − i + N)%N . When a signal is emitted, a clock element y[λ]
associated with it will be reset to zero. The value of λ is updated by (λ + 1)%N . Suppose that εk (k > N)
is the next signal to be generated, y[getIdx(i)] is the clock associated with εk−i for 1 ≤ i ≤ N , which
records the time that has elapsed since εk−i was generated. Based on the definition of a RTC curve, we
have ∂L(i) ≤ y[getIdx(i)] ≤ ∂U (i) for 1 ≤ i ≤ N .

In the model, time can only progress in “Upper” state, where an invariant specifies that all the upper
bounds ∂U (i) are satisfied. It can randomly transit out from “Upper”. In “Lower” and “Temp” states, it
checks if all the lower bounds are satisfied by checking how much time has elapsed since the last (v +1)-th
signal was emitted, where 0 ≤ v ≤ min{N − 1, θ}. If less than N signals have been emitted, we do not
need to check for all elements of the clock array. θ is used for that purpose. If y[getIdx(v +1)] is less than
∂L(v + 1) for some v, it then returns to “Upper” to wait longer. When all the lower bounds are satisfied, it
emits a new signal, resets clock y[λ] and continues from state “Upper”.

4/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy����������	
 ���
��� ����[()] (), 1Uy getIdx i i i
≤∂ ∀ ≤ ≤
()

 0
add
ewEvent ,
v←

[(1)] (1)+ ≥∂ +
Ly getIdx v v

v++

v
 v θ≥ ∨ >

v
 v θ< ∧ ≤

[0 : 1] : circular clock array;

: index used to check bounds;

/ : lower and upper bounds;

: index in for next signal! to be generated

L U

y

v

xλ

−

∂ ∂

():add
ewEvent

():getIdx i

Invariant: check upper bounds

Guard: check lower bounds

() 0,
(1)% ,

? 1:

y

λ

λ λ

θ θ θ θ

←

← +

← < +

()%i

λ← − +

[(1)] (1)Ly getIdx v v+ <∂ +

∂ ∂
� �� �� �� �

Converter , ,signalL U

lower bound violated for some v

Figure 4: Model of a converter from RTC to TA.

i
s j

m
ijSyn ?

Converter(, ,)ψ ψ
L U

i i serv

Figure 5: Service model.

2.1.2 Generator

The model of the generator is obtained by instantiating the model shown in Figure 4 with Converter(ξ̂L,ξ̂U ,req).
The arrival curve ξ = (ξ̂L, ξ̂U) specifies the lower and upper bounds on the arrival patterns of the input
stream to the PMC.

2.1.3 Service Model

The service model determines when the process of an event is completed. Since a service curve ψi =
(ψL

i , ψU
i) is specified for each mode of the PE, the service model has the same number of modes and keeps

synchronizing its running mode with that of the PE by a signal Synij . As shown in Figure 5, each mode
mi of the service model is instantiated with Converter(ψL

i ,ψU
i ,serv).

2.1.4 Observer

To capture the arrival patterns of the output stream produced from the PMC, a model of the observer is used,
as shown in Figure 6 (a). The observer non-deterministically transits from the initial state “Idle” to “Busy”.
The variable η records the number of events that have been output from the PE since it enters “Busy” state.
To compute the output arrival curve, we use a model checking tool with cost optimal reachability analysis.
The cost spent in a state is computed to be rate multiplied by the total time spent in that state, where rate
is the cost rate specified in the invariant. The cost spent on a transition is assigned with a pre-specified
constant; by default, it is equal to zero. We set the rate to 1 for “Busy”.

The cost, when reaching a status of “Observer is in “Busy” and η > k and η <= k + 1” for 1 ≤ k ≤
Kmax, is equal to the time for the output of any (k+1) consecutive events since the observer enters “Busy”
state. By verification, we can compute the minimum (and maximum) cost (i.e. time) for the output of any
(k + 1) events. Since the (k + 1) consecutive events are chosen non-deterministically (randomly entering

Verimag Research Report no TR-2009-10 5/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

��������
max
Kη≤�	
��
��

η + +

Kη>

0η←

���� �	
��
��
max

1 1K rateη≤ + ∧ = ��������
max

t ≤∆�	
��
��
cos 1t+ =

max
t >∆

0t←

���� �	
��
��
max

1 0t rate≤∆ + ∧ =

(a) (b)

Figure 6: (a) Model of the observer and (b) its varied model to compute ᾰ(∆).

0
()t

1
t

2
t

3
t

4
t

5
t

6
t

7
t

8
t

9
t

10
t

�
0()T 1T 2T 3T

�� t���� �����	
����� �����	 fine

event

coarse

event

Figure 7: The illustration of a fine stream and its abstraction with g = 3.

“Busy” state), the minimum (and maximum) cost computed provides value to ξ̆L(k) (and ξ̆U (k + 1)) for
1 ≤ k ≤ Kmax. Here we also show a varied model of the observer in Figure 6 (b) where t is a clock, which
can be used to compute ᾰ(∆) for 0 < ∆ ≤ ∆max. ξ̆ can also be computed to be a pseudo-inverse of ᾰ.

2.2 Framework
2.2.1 Definitions and Notations

In this paper, we denote a specific stream at the fine granularity to be τ = (t0)t1t2... and a specific coarse
stream to be > = (T0)T1T2.... ti (Ti) denotes the arrival time of the i-th fine (coarse) event εi (Ei) for
i ≥ 1. t0 (T0) does not indicate a real event, which just records the time when the first fine (coarse) event
starts to be generated. We also use τ̂ (>̂) and τ̆ (>̆) to differentiate between an input stream and an output
one.

As illustrated in Figure 7, we can abstract a fine stream to a coarse one at some granularity of g, by
regarding g consecutive fine events as a coarse one. In this paper, we abstract a fine stream τ to a coarse
one > in such a way that Ti is equal to tgi for i ≥ 0, i.e. sampling the fine stream every g events. We
can also refine a coarse stream > at granularity of g to a fine one. We assume that the (g × i)-th fine event
arrives at the same time as the i-th coarse event, i.e. tgi = Ti for i ≥ 0. The arrival time tj for any other
fine event εj with g × (i− 1) < j < g × i, can be assigned to any value within [Ti−1, Ti]. It is easy to see
that a coarse stream > can be refined to a fine stream τ if and only if τ can be abstracted to >.

2.2.2 Validation of Abstraction

Figure 8 shows the analysis models for a PMC, at both fine and coarse granularities. At the input to the
PMC, it is specified that the inter-arrival time patterns between fine events are lower and upper bounded by
ξ̂(k) for k ≥ 0. Let us see the fine models first. The generator (see [13, 11]) generates an input stream of
events, based on the specification of ξ̂. The PMC P0 processes the input stream of events. Whenever an

6/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

ξ̂ Generator ξ
�

g
ξ
�

g

ˆ
g

ξ

0
P

Fine PMC

Sampler

Coarse PMC

a
b

s
tra

c
t re

fi
n

e

F
in

e
 M

o
d
e
ls

C
o
a
rs

e
 M

o
d
e
ls

Observer

Observer

τ̂ τ�

∧ ∪
Generator

c
P

Figure 8: Analysis models of a PMC at both fine and coarse granularities.

event is output from P0, it is recorded by the observer. Using the model checking tools, the output arrival
curve of the outgoing stream can be computed, denoted by ξ̆.

The coarse models work with a stream at coarse granularity of g. It is easy to see that the arrival patterns
of the input stream >̂ for the coarse PMC Pc are lower and upper bounded by ξ̂g(k) = ξ̂(gk) for k ≥ 0,
which is obtained by sampling the arrival curve ξ̂. Hence, we add a sampler that samples ξ̂ with granularity
of g and specifies a new arrival curve ξ̂g for the generator in the coarse models, as shown in Figure 8.

After we abstract the fine input streams τ̂ to coarse ones >̂ at granularity of g, it only loses information
about the fine events other than εgi. But to work on the coarse input streams, we also have to abstract the
fine model P0 itself, since the exact number of buffered fine events is not known when mode is switched.
which introduces more non-determinism in it.

To validate the proposed framework, we have to guarantee that the coarse models provide accurate
abstraction of the fine models. Firstly, Pc should exhibit at least all the behaviors that the fine model P0

can produce, in the sense of the set of event streams that can be input into and output from the PMC.
Formally, Pc should satisfy,

Proof Obligation 1 Let τ̂ = (t̂0)t̂1t̂2... (τ̆ = (t̆0)t̆1t̆2...) be any fine event stream that is an input to (the
corresponding output stream produced from) P0. We can prove that there always exists some coarse event
stream >̂ (>̆) that can be an input to (the corresponding output stream produced from) Pc, such that >̂ (>̆)
can be refined to τ̂ (τ̆).

It is then followed that we can derive valid coarse output curve ξ̆g , by analyzing Pc.

Lemma 1 If Proof Obligation 1 is satisfied, it is guaranteed that the analyzed ξ̆L
g (k) and ξ̆U

g (k) provide
lower and upper bounds on ξ̆L(gk) and ξ̆U (gk) respectively for k ≥ 0.

Proof: It is followed from Proof Obligation 1 that, for any fine output stream τ̆ fromP0, there always exists
a coarse output stream >̆ such that >̆ can be refined to τ̆ . It follows that the production time of the (g×k)-th
fine event in τ̆ is equal to that of the g-th coarse event in >̆. It is then easy to have ξ̆L

g (k) ≤ ξ̆L(gK) and
ξ̆U
g (k) ≥ ξ̆U (gk). tu

2.2.3 Mathematical Refinement Algorithm

After conducting multiple runs of analyzing the coarse PMC at different granularities of g1, ..., gm, we
obtain output arrival curves ξ̆gi (i = 1, ...,m). From Lemma 1, we have ξ̆U

gi
(k) ≥ ξ̆U (kgi) and ξ̆L

gi
(k) ≤

ξ̆L(kgi) for k ≥ 0. Since ξ̆U (k1) ≤ ξ̆U (k2) with k1 ≤ k2, ξ̆U
gi

(k) provides an upper bound on ξ̆U (j) for any
j ≤ kgi. Similarly, ξ̆L

gi
(k) also provides a lower bound on ξ̆L(j) for any j ≥ kgi. Hence, we can compute

the fine output curve ξ̃ to be ξ̃U (j) = mink≥0{ξ̆U
gi

(k)|kgi ≥ j} and ξ̃L(j) = maxk≥0{ξ̆L
gi

(k)|kgi ≤ j}.
In this section, we propose a formal mathematical algorithm to derive tighter ξ̃ from coarse curves ξ̆gi , but
still satisfying ξ̃U (k) ≥ ξ̆U (k) and ξ̃L(k) ≤ ξ̆L(k). In the following, we show an example to illustrate the
basic rationale behind the algorithm.

Verimag Research Report no TR-2009-10 7/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

Suppose that we obtain output curves ξ̆2 and ξ̆3 after analyzing Pc with g = 2, 3. Simply we can get the
minimum of ξ̆U

2 (1) and ξ̆U
3 (1) as an upper bound on ξ̆U (1). Similarly, we can only get ξ̆U

2 (0) = ξ̆U
3 (0) = 0

as a lower bound on ξ̆L(1). Now let us see if we can get some tighter bounds on ξ̆(1).
Let τ = t0t1t2... denote the trace of the output stream at the fine granularity, where ti denotes the

production time of the i-th fine event (εi) for i ≥ 1. We assume that the stream starts to be generated
from t0 = 0. Recall that ξ̆L(k) and ξ̆U (k) are defined to be lower and upper bounds on the length of
the time interval during which any k consecutive events are output from the PE. For any i ≥ 0, we have
ξ̆L(2) ≤ ti+2 − ti ≤ ξ̆U (2) and ξ̆L(3) ≤ ti+3 − ti ≤ ξ̆U (3), from which we can derive,

ξ̆L(3)− ξ̆U (2) ≤ ti+3 − ti+2 ≤ ξ̆U (3)− ξ̆L(2) (1)

We also have similar constraints of

ξ̆L(2) ≤ t3 − t1 ≤ ξ̆U (2), ξ̆L(3) ≤ t3 − t0 ≤ ξ̆U (3)

ξ̆L(2) ≤ t4 − t2 ≤ ξ̆U (2), ξ̆L(3) ≤ t4 − t1 ≤ ξ̆U (3)

from which we can derive,

ξ̆L(3)− ξ̆U (2) ≤ t1 − t0 ≤ ξ̆U (3)− ξ̆L(2)
ξ̆L(3)− ξ̆U (2) ≤ t2 − t1 ≤ ξ̆U (3)− ξ̆L(2)

(2)

Combining Ineqs. (1) and (2), we know that [ξ̆U (3)− ξ̆L(2)] and [ξ̆L(3)− ξ̆U (2)] respectively provide
upper and lower bounds on the length of the time interval [ti+1− ti] (for all i ≥ 0) during which any single
event is output. From the definition of arrival curve, we have ξ̆U (3)− ξ̆L(2) ≥ ξ̆U (1) and ξ̆L(3)− ξ̆U (2) ≤
ξ̆L(1). It follows from Lemma 1 that ξ̆U (1) is upper bounded by [ξ̆L

3 (1) − ξ̆U
2 (1)] and ξ̆L(1) is lower

bounded by [ξ̆L
3 (1) − ξ̆U

2 (1)]. Similarly, we can also obtain lower and upper bounds on ξ̆(1) from other
pairs of ξ̆3(k1) and ξ̆2(k2), e.g. ξ̆2(2) and ξ̆3(1), ξ̆3(3) and ξ̆2(4), etc. Finally, ξ̃L(1) can be assigned with
the maximum of all computed lower bounds on ξ̆L(1) and ξ̃U (1) be with the minimum of all computed
upper bounds on ξ̆U (1).

Generally, our mathematical refinement algorithm works as follows. Given any k, we compute values
of (νU

k , νL
k) for every pair of coarse granularities (gi, gj),

νU
k = min{ξ̆U

gi
(a1)− ξ̆L

gj
(b)|b ≥ 0}

νL
k = max{ξ̆L

gi
(a2)− ξ̆U

gj
(b)|b ≥ 0}

where a1 = min{k1|k1 × gi − b× gj ≥ k} and a2 = max{k1|k1 × gi − b × gj ≤ k}. ξ̃U (k) and ξ̃L(k)
can then be updated to min{νU

k , ξ̃U (k)} and max{νL
k , ξ̃L(k)} respectively. Clearly, if we analyze the

component with more granularity levels, we may obtain tighter output curves ξ̃. Note that the refinement
algorithm can be easily extended to the case that the bounds are provided on arbitrary ξ̆(k) where k may
not be divisible by any gi.

3 Models of PMC

3.1 Target Model
Given a TA model of the PE (processing element) in a PMC (power-managed component), we can cluster
all its states into a finite set of operational modes M. Each mode Mi ∈ M is characterized with distinct
processing capability (and/or power consumption), which can be captured by a service curve ψi(k) =
(ψL

i (k), ψU
i (k)) for k ≥ 0. All the transitions whose source and destination states are clustered into the

same mode are omitted. Our framework works on such models of a PE. We consider the following cases
when a mode switch happens. We believe that our work can be easily extended to other cases of mode
switch. A mode Mi may be specified with a time constraint in the form of a time interval [Li, Ui]. It

8/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

i
M

j
M

U

i i i
L x U q b≤ ≤ ∧ >��

kM pM

L

i
q b∧ <

ix U=

i iL x U≤ ≤

l
M

Figure 9: Descriptive model of a PE.

U
q b<

L
q b>

S

x U≤

[,]
L U
b b

S

x U≤

REQ

SERV

req
�

q++

serv?
−−q

REQ

SERV

produce!

Figure 10: Simplified notation of a state of the PE.

means that the PE can only stay in Mi for at least Li and at most Ui time units. The PE also switches
its mode based on the buffer fill level (i.e. the number of events stored in the buffer), under the timing
constraints of source mode. It is expected to run in a mode with higher processing capability when there
are more buffered events. The power management policy may also force an immediate switch of the mode
by emitting a signal, without caring the timing constraints.

Figure 9 shows a descriptive model of the PE considering the above possible cases. x denotes the
time that the PE has stayed in mode Mi. q denotes the buffer fill level. Whenever the timing constraints
Li ≤ x ≤ Ui is satisfied, if the buffer fill level q exceeds bU

i , the PE switches to mode Mj ; if q is less
than bL

i , it switches to mode Mk. It may also be forced to switch to model Ml whenever it receives a
signal ‘a?’. When it has stayed in Mi for up to Ui time units, it should transit to another mode Mp. In the
following sections, we describe the details of fine TA models of a PMC (PE plus service model) based on
this descriptive PE model, and then show how to abstract into coarse models.

3.2 Fine Models

When the PE stays in a mode, it receives signals ‘req?’ from the generator indicating an event has arrived
and ‘serv?’ from the service model indicating an event has been processed. Firstly we introduce a simplified
notation of a state, as shown in Figure 10. A state S specified with parameters [bL, bU] can stay in this state
only when the buffer fill level q is within this range. An invariant of x ≤ U specifies an upper bound U on
how long it can stay in this state, where x is a clock. In the state, it updates the buffer fill level whenever
receiving ‘req?’ or ‘serv?’. It also emits a ‘produce!’ to the observer at the same time as a ‘serv?’ is
received.

Figure 11 shows the possible transitions for leaving a mode in PE. A mode Mi consists of two states
Si and Si1. Si is added to guarantee the lower timing constraint Li for this mode. When the PE enters a
mode Mi, it first stays in state Si with the invariant of x ≤ Li. When x = Li, it is time to leave Si. It can
switch to a new mode if some threshold on q is already satisfied. Referring to the descriptive model shown
in Figure 9, it can go to mode Mj if q > bU

i or to Mk if q < bL
i , or else to state Si1. It can stay in Si1 when

q is within the range of [bL
i , bU

i]. Whenever q exceeds bU
i or falls below bL

i , it switches to new mode. When
it has stayed up to Ui time units in mode Mi, it has to transit out to a new mode Mp. Whenever it receives
a signal ‘a?’, it must immediately transit out, no matter whether it is staying in Si or Si1 at that time.

As can be seen in Figure 11, whenever the PE transits from one mode Mi to a new one Mj , it sends a
signal ‘Synij!’ to synchronize with the service model.

Verimag Research Report no TR-2009-10 9/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

U

iq b=

[,]
L U

i ib b

U

i ix L q b= ∧ >

iS
[,]−∞∞

i
x U≤

i
x L≤

1iS jM

i
x U=

ijSyn !L U

i i ix L b q b= ∧ ≤ ≤

k
M

L

iq b=

ikSyn !
p

M

lM

��
ilSyn !

ip
Syn !

L

i ix L q b= ∧ <

ijSyn !

ik
Syn !

0x←

rM

riSyn !

�������
Figure 11: Fine TA model of the PE.

i
s

riSyn ?

Converter(, ,)ψ ψL U

ig ig
serv

trans
s

()ψ≤ U

i
x g

0x←

ijSyn ?

ij
Syn ?

�����(1)ψ≥
L

i
x

0x←

0x←

i
m

j
m

Figure 12: Simple coarse service model.

3.3 Simple Coarse Models

In the coarse models, the fine event stream is abstracted at some granularity of g for g > 1. The generator,
defined by Converter(ξ̂L

g , ξ̂U
g , req) shown in Figure 4, is now generating coarse events, where the fine

arrival curve ξ̂ is replaced with coarse one ξ̂g . The service model emits ‘serv!’ signal in a mode Mi,
indicating a coarse event has been processed, based on the coarse service curve ψig . The fine PE model is
also abstracted to a coarse one, where the coarse buffer fill level is updated based on the number of coarse
events received and processed. When the PE switches to a new mode, we do not know how many number
of fine events have been processed since last ‘serv?’ in previous mode, which has to be within the range
of [0, g). In the new mode, it may need to process another i ∈ (0, g] more fine events to receive the next
‘serv?’. In the service model, as shown in Figure 12, we add a state Strans to capture the service time for
the rest of fine events until the next ‘serv?’ is emitted, which is lower and upper bounded by the fine service
curves [ψL

i (1), ψU
i (g)].

In the following, we show the rationale behind the simple coarse PE model. Suppose that Nr (Ns)
denotes the total number of signals ‘req?’ (‘serv?’) received since the system starts, i.e. Nr (Ns) coarse
events have arrived (been processed). nr (or ns) denotes the corresponding total number of fine events that
have arrived (or been processed). Q (q) denotes the coarse (fine) buffer fill level. At any time, we have the
following constraints,

gNr ≤ nr < g(Nr + 1)
gNs ≤ ns < g(Ns + 1) (3)

Since the fine and coarse buffer fill levels q and Q satisfy q = nr − ns and Q = Nr −Ns respectively, we
have

g(Q− 1) < q < g(Q + 1) (4)

10/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

from which we have q/g − 1 < Q < q/g + 1, which is equivalent to

bq/gc ≤ Q ≤ dq/ge (5)

When q is replaced with bU
i + 1 in Ineq. (5), we can obtain lower and upper bounds [Y L, Y U] on the

value of Q when it is possible to transit from Mi to Mj . Similarly, we can obtain bounds [HL, HU] on the
value of Q when it is possible to transit from Mi to Mk, by replacing q with bL

i − 1. Y L, Y U , HL, HU is
defined in Figure 13.

Figure 13 shows the simple coarse model of the PE. When it enters a mode Mi, it stays in Si first until
x = Li. When it is time to leave Si, it chooses where to go based on the coarse buffer fill level Q. If
Q > Y U (or Q < HL), it can transit to Mj (or Mk) directly; if Q is within [Y L, Y U], it is possible that
q is greater than bU

i and hence moves to Sinc; in state Sinc, it can transit to Mj non-deterministically any
time before Q reaches Y U + 1; if Q is within [HL,HU], it is possible that q is less than bL

i and hence
moves to Sdec. In state Sdec, it can transit to Mk non-deterministically any time before Q falls to HL − 1;
if HU < Q < Y L, q must be within [bL

i , bU
i] and it moves to Si1 to wait. It can switch between Sinc, Si1,

and Sdec based on the update of Q. Figure 13 (b) shows that it should transit out immediately whenever a
signal ‘a?’ is received or it has stayed in mode Mi for up to Ui time units.

Validation: Now we validate that the proposed simple coarse models provide correct abstraction for the
fine models. In other words, the coarse models need to satisfy the proof obligation 1.
Proof: Let τ̂ = (t̂0)t̂1t̂2... be any fine input stream to the fine PMC P0, and τ̆ = (t̆0)t̆1... is the corre-
sponding output stream. Firstly, we construct a coarse input stream >̂ = (T̂0)T̂1T̂2... with T̂j = t̂gj for
j ≥ 0. It is clear that T̂ can be refined to τ̂ , while T̂ can be an input to the coarse PMC Pc due to,

ξ̂L
g (j) = ξ̂L(gj) ≤ t̂gj − t̂0 ≤ ξ̂U (gj) = ξ̂U

g (j), ∀j ≥ 0 (6)

Note that we can always get this coarse input stream >̂ independent of the abstracted PMC model Pc, since
the generator is same for any abstracted Pc.

Then we show how to construct a coarse output stream T̆ from Pc corresponding to the input stream T̂
by comparing the behaviors of P0 and Pc, where T̆ is an abstract of τ̆ . We assume the following lemma is
true, which will be proven by induction.

Lemma 2 Given the behavior of τ̆ for the fine PE, we can build a behavior of the coarse PE where it
switches mode at the same time as the fine PE. Also, the coarse output stream T̆ is an abstract of the fine
output τ̆ .

Firstly, when the system starts, both the PEs can enter the starting mode at the same time.
Suppose that the coarse and fine PE transits to Mi from Mr at the same time. Assume that the coarse

output stream T̆ has been constructed to be T̆ = (T̆0)T̆1...T̆A−1 with T̆j = t̆gj for some A ≥ 1 and all
0 ≤ j ≤ A − 1. Suppose that the fine PE leaves Mi when the (gB + n)-th fine event is processed with
n < g. It can be classified into two cases.
Case 1: B = A − 1. From the service model shown in Figure 12, the time to generate next ‘serv?’ for
the coarse PE is lower and upper bounded by ψL

i (1) and ψU
i (g) respectively. It covers all the possibility of

what can happen in the fine service model. Hence, it is possible that the coarse PE leaves Mi at the same
time as the fine PE.
Case 2: B > A − 1. In mode Mi, we continue to construct T̆ to be ...T̆A−1T̆A...T̆B , with T̆j = t̆gj for
A ≤ j ≤ B. Similar to the explanation in Case 1 above, we can show that T̆A can be an output from Pc.
We can also show that T̆A+1...T̆B can be an output from Pc, due to

ψL
i (g(j −A)) ≤ t̆gj − t̆gA ≤ ψU

i (g(j −A))

and
ψL

gi(j −A) = ψL
i (g(j −A)), ψU

i (g(j −A)) = ψU
gi(j −A)

We can also show that the coarse PE may leave Mi at the same time as the fine PE in Case 2. As shown
in Figure 13, Pc may transit out from Sinc (or Sdec) anytime before Q increases to Y U + 1 (or falls below

Verimag Research Report no TR-2009-10 11/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

(1) +
= 
 

U
L i

b
Y

g
(1) −

= 
 

L
U i

b
H

g
(1) +

= 
 

U
U i

b
Y

g
(1) −

= 
 

L
L i

b
H

g

1

: PE stays in this state when

: PE stays here when and

: PE stays here when it is possible to transit to , . .

: PE stays here when it is possible to transit t

≤

< < ≤ ≤

≤ ≤

i i

U L

i i i

L U

inc j

dec

S x L

S H Q Y L x U

S M ie Y Q Y

S o , . . ≤ ≤L U

kM ie H Q H

L U

ix L Y Q Y= ∧ ≤ ≤

ijSyn !

i
S

i
x U≤

i
x L≤

1i
S

[,]−∞∞

ijSyn !

U L

i
x L H Q Y= ∧ < <

[,]L U
Y Y

ix U≤
incS

LQ Y=

[1, 1]U L
H Y+ −

1L
Q Y= −

jM

U

i
x L Q Y= ∧ >

[,]L U
H H

i
x U≤
dec
S

1UQ H= +

UQ H=

L U

ix L H Q H= ∧ ≤ ≤

ik
Syn !

kM

ikSyn != ∧ <
L

ix L Q H

0x←
rM

ri
Syn !

SERV

REQ

REQ

SERV

(a)

[,]−∞∞

[,]L U
Y Y

[1, 1]U LH Y+ −

[,]L UH H

��
il

Syn !

ipSyn !
i

x U=
p

M

l
M

1iS

ix U≤

ix L≤
i
S

ix U≤
incS

i
x U≤

decS

(b)

Figure 13: Decomposed simple coarse models of the PE [in (a) and (b), two states with same notations just refer to
the same state of the full PE model].

HL − 1). Hence, it is possible that Pc transits out at the same time as P0 in this case. In other cases
of transiting out, the time to transit out is same for both Pc and P0, which is equal to Li, Ui or the time
receiving synchronization signal ‘a?’.

It is also clear that the constructed coarse output stream T̆ is an abstract of the fine one τ̆ . Therefore,
the proof obligation 1 is validated. tu

12/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

i
s

riSyn ?
trans
s

()ψ ω≤ −
U

i
x g0x←

()ψ ω≥ −
L

i
x g

ijSyn ?

ij
Syn ?

����� 0x←

0x←

i
m

Converter(, ,)ψ ψL U

ig ig
serv

j
m

Figure 14: Coarse service model with parameter ω.

3.4 Coarse Models with ω and Its Optimization
When the PE switches from a mode Mr to Mi, we use a variable ω to denote the number of fine events that
have been processed since last ‘serv?’, satisfying 0 ≤ ω < g. In the new mode, (g − ω) more fine events
need to be processed before the next ‘serv!’ is generated. We modify the coarse service model to take into
account the variable ω. As shown in Figure 14, since entering the new mode, the time to generate the next
‘serv!’ is lower and upper bounded by ψL

i (g − ω) and ψU
i (g − ω) respectively. Whenever the PE receives

a signal ‘serv?’, ω is reset to zero.
In Ineq. (3), the total number of fine events ns that has been served at anytime can now be expressed

as gNs + ω ≤ ns < g(Ns + 1). The relationship between the coarse and fine buffer fill levels Q and q, as
shown in Ineq. (5), is now updated to

b(q + w)/gc ≤ Q ≤ dq/ge (7)

If the mode Mi is a sleep mode, i.e. no service is provided, we have ns = gNs + ω. The bounds on Q can
be improved with

b(q + w)/gc ≤ Q ≤ b(q + w)/gc (8)

The values of Y L/U and HL/U are updated following Figure 15.
Since the arrival and service patterns for the corresponding fine stream should also follow the specifi-

cation of the fine curves ξ̂ and ψi, it is possible to optimize the coarse models of the PE. We can estimate a
tighter bound on ω when it switches the modes and then can compute tighter bounds on the time to transit
from Sinc to Mj or from Sdec to Mk, for the decomposed model shown in Figure 13 (a).

Assume that when entering Sinc or Sdec, the coarse PE has received Nr ‘req?’ and Ns ‘serv?’ signals.
We define a clock ta which is reset whenever a ‘req?’ signal is received, and a clock ts which is reset
whenever a ‘serv?’ is received or when it enters a new mode. If no subsequent events arrives since ‘req?’
and the service is stopped since when ts is reset, the fine buffer fill level q is just equal to (gQ−ω). Before
transiting to Mj from Sinc, q should increase by d1 = bU

i + 1− (gQ− ω). Suppose that q reaches bU
i + 1

before the next ‘serv?’ is received and ω′ fine events have been processed since when ts is reset. There
must be (d1 +ω′) more fine events having arrived since last ‘req?’. Considering both the arrival and service
patterns of the fine events, we can estimate a lower and upper bound on ω′.

If ξ̂L(d1 + j) > ψU
i (j)+ ta− ts is true, it implies that the next (d1 + j) fine events cannot arrive before

the next j events are processed in any case, hence it is impossible for q to reach (bU
i + 1) when j more fine

events are processed. Similarly, if ξ̂U (d1 + j) < ψL
i (j) + ta − ts is true, it implies that the next (d1 + j)

fine events always arrive before j more fine events are processed, i.e. q must have reached bU
i + 1 when

(d1 + j) more events arrive. We can then compute (denoted by ω′inc)

is = min0≤j≤g{j|ξ̂L(d1 + j) ≤ ψU
i (j) + ta − ts}

ie = minis≤j≤g{j|ξ̂U (d1 + j) ≤ ψL
i (j) + ta − ts}

(9)

where d1 = bU
i + 1− (gQ− ω). ω′ is lower and upper bounded by is and ie respectively.

Verimag Research Report no TR-2009-10 13/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

(1)ω + +
= 
 

U
L i

b
Y

g
(1) −

= 
 

L
U i

b
H

g
(1)

? :
 +

=  
 i

U
U Li

M

b
Y O
 Y

g
(1)ω − +

= 
 

L
L i

b
H

g

,
in state , are updated whenever value of is updatedωL U

inc
S Y Y

,in state , are updated whenever value of is updatedωL U

decS H H
: is not a sleep mode
iM i

O
 M

ijSyn !

i
S

ix U≤ix L≤
1i
S

[,]−∞∞

ij
Syn !

1
(')ξ ω≤ ∧ ≤ + +U

i r
x U t g	 d

inc
S

jM

(,)= ∧ ∈ ∞U

ix L Q Y

decS ikSyn !
kM

ikSyn !(,)= ∧ ∈ −∞ L

i
x L Q H

0x←

'ω
inc

'ω dec

1(')ξ ω≥ + +L

rt g	 d

2(' 1)ξ ω≤ ∧ < + − +U

i rx U t g	 d

2(')ξ ω≥ + −
L

rt g	 d

'ω t

(')%ω ω ω← + g

'ω inc

'ω
dec

'ω t

,in state whenever receiving serv?, compute ' ;ωinc incS

,
in state whenever receiving serv?, compute ' ;ω

dec dec
S

Figure 15: Optimization of the decomposed simple coarse PE model shown in Figure 13 (a).

Based on a similar rationale, we can compute is and ie when the PE enters Sdec as follows (denoted by
ω′dec),

is = min0≤d2+j≤g{d2 + j|ξ̂U (j) ≥ ψL
i (d2 + j) + ta − ts}

ie = minis≤d2+j≤g{d2 + j|ξ̂L(j) ≥ ψU
i (d2 + j) + ta − ts}

(10)

where d2 = gQ− w − (bL
i − 1).

As shown in Figure 15, the invariant of Sinc becomes a conjunction of x ≤ Ui and t ≤ ξ̂(gNr +d+ω′).
A guard of t ≥ ξ̂L(gNr + d1 + ω′) is imposed on the previously un-guarded transition from Sinc to
Mj . Similarly, an item of t < ξ̂U

i (gNr + ω′ − d2 + 1) is added to the invariant of Sdec and a guard of
t ≥ ξ̂L

i (gNr + ω′ − d2) is put on the previously un-guarded transition from Sdec to Mk.
For the decomposed model in Figure 13 (b), where the time to transit out from Mi is determined (i.e.

when x = Li, x = Ui or receiving a signal ‘a?’), we can compute [is, ie] based on the time ts as follows
(denoted by ω′t):

is = min0≤j≤g{j|ψU
i (j) ≤ ts}

ie = maxis≤j≤g{j|ψL
i (j) ≤ ts} (11)

The value of ω is then updated to be (ω + ω′)%g when it is leaving to a new mode. The optimized
coarse models can also be validated, following a similar procedure of validating the simple coarse models
as shown in section 3.3.

14/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

0
M

1
M

0
1q q> −

1q<

Figure 16: Despcriptive model of the example PE.

0
[0, 1]−q 0 1= −q q

01
Syn !REQ

1
S

[1,]∞

1=q
SERV10Syn !1M

0M
0
S

Figure 17: Fine model of the example PE.

[0, 1]−LY
1S0S
[1,]∞

1= −LQ Y

SERV
10Syn !

[,]L UY Y

01Syn !

1=Q

[0,0]0 0/ , /= =      
L UY q g Y q g

incS

decS1M

0M

0=Q

REQ

REQ

Figure 18: Simple coarse model of the example PE.

[0, 1]−LY

REQ

1S0S [1,]∞

1= −LQ Y

SERV

10Syn !

[,]L UY Y

01
Syn !

1=Q[0, 1]ω∈ −g

REQ

inc
S

decS

[0,0]0()/ω= = +  
U LY Y q g

1
M

0M

Figure 19: Coarse model with ω of the example PE.

4 Illustrative Example
In this section, we illustrate with the fine and coarse models of a simple but common PMC. The PE runs
at two modes: sleep and run. It only processes events and consumes power at run mode. Whenever there
are not enough number of events waiting for processing in the buffer, it tries to stay in sleep mode to save
energy. Initially the input buffer is empty, the PE switches to run mode when the buffer fill level q (i.e. the
number of fine events available in the buffer) reaches a predefined threshold q0. The PE switches to sleep
mode when the buffer becomes empty again. Figure 16 shows the descriptive model of this example PE.

Since the mode switch is only dependent on the buffer fill level, we can simplify the models of the PE.
In all the fine and coarse models, the states Si and Si1 are integrated into a single state Si. Some transitions
can be removed then. Figure 17 shows the fine model of the example PE. The sleep mode M0 consists
of only one state S0 and the run mode M1 consists of only S1. The corresponding simple coarse model,
coarse model with ω and optimized coarse model of the PE are shown in Figures 18, 19 and 20 respectively.

In Figure 21, we take an example input stream and show its execution in the fine and coarse PE models.

Verimag Research Report no TR-2009-10 15/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

[0, 1]−LY
1
S0

S [1,]∞

1= −LQ Y

10Syn !

[,]L UY Y 01Syn !

' [,]ω ∈ s ei i
0()/ω= = +  

U LY Y q g

1
ˆ ()ξ≤ +U

r
t g
 d

1
ˆ ()ξ≥ +L

r
t g
 d

SERV

1=QREQ

2(' 1)ξ ω< + − +U

rt g
 d
2(')ξ ω≥ + −L

rt g
 d

(') % ω ω ω← + g

inc
S

decS

[0,0]

REQ 1M
0M

Figure 20: Optimized coarse model of the example PE.

0

fine model,

1, 5= =g q

simple coarse model,

3, 1, 2= = =L U
g Y Y

1=Q 2=Q

1=Q 0=Q

1=Q
2=Q

1=Q 0=Q

1=Q

0=Q

1=Q

t

t

1
 to S

0
 to S

0
 to S

1
 to S

inc

to S

 decto S

inc

to S

 decto S

1 to S

0 in S

0 in S

������������������5 10 15 20 25 30

0

optimized coarse model,

3,

() /ω
=

= = +  
U L

g

Y Y q g

1=Q 2=Q

1=Q 0=Q

1=Q
2=Q

1=Q 0=Q

1=Q

0=Q

1=Q

t

 incto S

 decto S

inc

to S

 decto S

1 to S

0 in S
���������5 10 15 20 25 30

 decto S

 decto S

1 1() () , 0ψ ψ= = ∀ ≥L Ui i i i

5 10 15 20 25 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18� � � 	
 � � �� �	 �
 �
 �� �� �� �	 �
 �� ���
 � � �� �� �� �
 �� �� �� �� �	 �
 �
 �� �� ��ˆ ()ξL
i

ˆ ()ξU
i

i

Figure 21: An illustrated flow of the example PE.

t ω d1/d2 ta − ts (is, ie) ω′ Nr bounds on
mode switch

3 0 d1 = 2 / (0,0) 0 1 [5, 11]
11 0 d2 = 0 3 (2,3) 2 2 [11, 17)
17 2 d1 = 1 / (0,0) 0 4 [19, 24]
23 0 d2 = 0 6 (3,3) 3 4 [15, 27)
26 0 d2 = 0 2 (1,3) 1 5 [25, 28)

Table 1: The computed values of variables for the illustrated flow.

The threshold q0 is chosen to be 5, and the granularity is 3. It can be observed that the coarse PE always
switches from M0 to M1 when it stays in Sinc and switches from M1 to M0 when it stays in Sdec. It
then illustrates that the non-determinism is introduced in the coarse models. The update of variables for
optimized coarse PE model are also shown in Table 1.

16/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

0 2 4 6 8 10 12
0

5

10

15

20

25

number of events

tim
e

in
te

rv
al

 ∆
 (

m
s) ξU

3

ξU

ξL

ξL
3

Figure 22: Example of fine and coarse input arrival curves
ξ̂L/U and ξ̂

L/U
3 .

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

number of events

tim
e

in
te

rv
al

 ∆
 (

m
s)

ψL
3

ψU

ψU
3 ψL

Figure 23: Example of fine and coarse service curves
ψL/U and ψ

L/U
3 .

5 Experimental Validation

We have conducted experiments to validate our proposed framework, using the example of a PMC pre-
sented in section 4. We applied the TA modeling and verification tool UPPAAL CORA [16, 17], to model
the generator, observer, PMC and to analyze the output arrival curves by model checking. We implemented
the mathematical refinement algorithm in Matlab, which can be simply integrated with the RTC toolbox
[18]. We used Perl scripts to describe the interface between the specification of input arrival curves and
generator, to manage the multiple runs of analyzing the TA models of a PMC at different granularities, and
to pass the analyzed coarse output arrival curves to the mathematical refinement algorithm.

First we show the results for an example event stream, to validate that the abstracted coarse model Pc of
the PMC provides accurate abstraction of its fine one P0. The arrival patterns of the fine stream are lower
and upper bounded by input arrival curves ξ̂L and ξ̂U respectively, as shown in Figure 22. The coarse
arrival curves ξ̂L

g and ξ̂U
g at granularity of g (e.g. g = 3) were obtained by sampling the fine curves, i.e.

ξ̂L
g (i) = ξ̂L(gi) and ξ̂U

g (i) = ξ̂U (gi) for i ≥ 0. Similarly, the execution time patterns of the fine event
stream at the run mode are bounded by service curves ψL/U , which can also be sampled to obtain coarse
service curves ψ

L/U
g , as shown in Figure 23.

Using the UPPAAL CORA tool, we can analyze the minimum cost to reach the “Stop” state of the
observer model, which can be assigned to the lower output curve ξ̆L

g (k) (if g = 1, ξ̆1 just denotes ξ̆
computed from the fine model P0). Since it is still not implemented in the tool to analyze the maximum
cost, we used a varied model of the observer as shown in Figure 6 (b), in order to compute the upper output
curve. Similar to the analysis of ξ̆L

g , we can compute ᾰL
g (∆) for ∆ ≥ 0, which provides the lower bound

on the number of coarse events at granularity of g that can be produced within any time interval of length
∆. We can then compute a pseudo-inverse curve of ᾰL

g (∆) to obtain ξ̆′
U

g (k), which actually provides an
upper bound on ξ̆U (gk − 1).

By setting the threshold q0 to be 5 (i.e. the PE starts to run when the number of fine events in the buffer
reaches 5), we computed output curves ξ̆L

4 -s/ξ̆′
U

4 -s, ξ̆L
4 -ω/ξ̆′

U

4 -ω, ξ̆L
4 -opt/ξ̆′

U

4 -opt using the simple coarse
PMC model Pc-s, coarse PMC model with ω Pc-ω and optimized coarse PMC model Pc-opt respectively,
as shown in Figure 24. It can be observed that Pc-ω helps to obtain tighter coarse output curves than Pc-s,
which are further improved by Pc-opt.

We analyzed the coarse output curves ξ̆L
g /ξ̆′

U

g at granularity of g = 2, 3, 4 from the optimized coarse

PMC Pc-opt and compared with the fine output curves ξ̆L/ξ̆′
U

analyzed from the fine PMC P0, as shown
in Figure 25. It can be observed that ξ̆L

g (k) provides a lower bound on ξ̆L(gk) and ξ̆′
U

g (k) provides an

upper bound on ξ̆′
U

(gk). It then validates lemma 1.

Verimag Research Report no TR-2009-10 17/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

0 5 10 15 20
0

10

20

30

40

50

60

number of events

tim
e

in
te

rv
al

 ∆
 (

m
s)

curve for PS
c
−ω

curve for P
c
−opt

curve for P
c
−s

ξ’U
4

−s

ξ’U
4

−opt

ξL
4
−ω

ξ’U
4

−ω

ξL
4
−opt

ξL
4
−s

Figure 24: Comparison of output arrival curves at g = 4
using simple coarse PMC Pc-s, coarse PMC with ω Pc-ω
and optimized PMC Pc-opt.

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

number of events

tim
e

in
te

rv
al

 ∆
 (

m
s)

ξ’U
4

ξ’U
2

ξ’U
3

ξL
3

ξL

ξ’U

ξL
4

ξL
2

Figure 25: Comparison between fine and coarse output ar-
rival curves computed from fine and optimized coarse PMC
models respectively.

output analysis time at granularity of g [sec]
arrival g = 1 g = 2 g = 3 g = 4
curves P0 Pc-s Pc-ω Pc-opt Pc-s Pc-ω Pc-opt Pc-s Pc-ω Pc-opt
ξ̆L
g (k) 23674.4 56.1 62.9 223.6 7.90 12.9 189.7 0.76 1.21 28.6

ξ̆′
U

g (k) 411515.3 746.2 583.2 4217.7 68.6 120.9 1465.4 7.43 12.5 269.1
distance / 4.17 2.46 0.63 5.50 2.88 0.63 9.08 5.08 1.25

Table 2: Analysis time to compute fine and coarse output arrival curves ξ̆L
g (k) and ξ̆′

U

g (k), plus the distance between
coarse and fine curves.

Table 2 summarizes the total time to compute the fine and coarse output curves ξ̆L
g (k)/ξ̆′

U

g (k) for
g = 1, 2, 3, 4 and k ≤ x24/gy. It also shows the distance measured between coarse and fine curves, which
is computed by

mean(mean(ξ̆L(gk)− ξ̆L
g (k)),mean(ξ̆U

g (k)− ξ̆U (gk)))

where mean is to compute the average of all the elements for 1 ≤ k ≤ x24/gy. It can be generally
observed that for a given granularity, simple model Pc-s has the shortest analysis time and lowest precision
and optimized Pc-opt has the longest analysis time and highest precision. As the granularity is coarser, the
analysis time decreases for a given abstraction model, with less precision too. For different selected coarse
granularities, even the optimized model reduces the analysis time by at least 99% than that for a fine curve.

To demonstrate the advantage of our mathematical refinement algorithm, we show the results for an-
other example of event stream with q0 = 21. We analyzed the optimized coarse PMC Pc − opt at two
granularities of g = 9, 10. We can obtain a fine output arrival curve ξ̃-granu, simply from the bounds given
by ξ̆L

g /ξ̆′
U

g . Using the mathematical refinement algorithm, we can improve on ξ̃-granu and obtain a tighter
curve ξ̃-ref. As shown in Figure 26, we know that the value of ξ̆U (10) (from fine PMC P0) should be at

least ξ̆′
U

10(1) = 91 and at most ξ̆′
U

9 (2) = 108. ξ̃U -granu provides an upper bound of 108 on ξ̆U (10), while
ξ̃U -ref provides 102, which improves by 35.3% relative to the lower bound of 91 on ξ̆U (10). It is expected
to get tighter ξ̃-ref if we analyze with more different granularities.

18/20 Verimag Research Report no TR-2009-10

Granularity-based Interfacing Yanhong Liu, Karine Altisen, Matthieu Moy

0 10 20 30 40 50

80

100

120

140

160

180

number of events

tim
e

in
te

rv
al

 ∆
 (

m
s)

ξU−ref

ξ’U
10

ξU−granu

ξ’U
9

Figure 26: Computed fine upper output arrival curves ξ̃U -granu (with simple scheme) and ξ̃U -ref (with mathematical
refinement algorithm).

5.1 Summary of the Abstraction

When the fine stream is abstracted into a coarse level, we do not know the exact index of the fine event
when the mode switch happens. With the information of coarse buffer fill levels, we add non-determinism
into the coarse PMC models to over-approximate the behavior of the fine PMC. On one hand, the time
(i.e. the number of fine events having arrived or been processed, since the arrival or process of last coarse
event) to leave a mode is approximated. On the other hand, after switching into the destination mode, the
time to complete processing next coarse event cannot be captured by the converter of state si, as shown
in Figure 12 and 14. We have to model the service time for the fine events before next coarse event and
the subsequent coarse events separately, which is over-approximate compared to the corresponding fine
models. Our framework provides various trade-offs based on different granularities. A qualitative result
can be obtained for the precision and analysis time of computing the output curves from coarse models.
However, it is very challenging to quantify them.

6 Conclusion

In this paper, we have proposed a novel framework of granularity-based interfacing between RTC and TA
performance models, which complements the existing work and reduces the complexity of analyzing a
state-based component modeled by TA. We have illustrated with an example to show how the model of
a component is abstracted to work with an event stream at coarse granularity and how the abstraction is
validated. Experimental results show that the time to analyze the coarse models reduces at least 99% of that
for the fine models. It is also demonstrated that our proposed mathematical refinement algorithm improves
on the bounds on the arrival patterns of the fine output stream, by using the results from multiple runs of
analyzing the coarse models at different granularities.

In the future, we will continue to study the problem of speeding up the analysis of a state-based com-
ponent by abstraction. It is interesting to explore the possibility of adopting RTC theory in the state-space
exploration of the TA modeled component. Along this direction, it may refer to the work of multi-mode
RTC [10]. On the other hand, it is interesting, but more challenging, to work on abstraction techniques for
analyzing the energy consumption of a component.

References

[1] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design techniques for system-level dynamic
power management,” IEEE Transactions on VLSI Systems, vol. 8, no. 3, pp. 299–316, 2000.

Verimag Research Report no TR-2009-10 19/20

Yanhong Liu, Karine Altisen, Matthieu Moy Granularity-based Interfacing

[2] A. Bogliolo, L. Benini, E. Lattanzi, and G. D. Micheli, “Specification and analysis of power-managed
systems,” Proceedings of the IEEE, vol. 92, no. 8, pp. 1308–1346, 2004.

[3] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System level performance
analysis - the SymTA/S approach,” IEE Proc. Computers and Digital Techniques, vol. 152, no. 2, pp.
148–166, 2005.

[4] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for analysing system properties in
platform-based embedded system designs,” in DATE, 2003.

[5] S. Perathoner, E. Wandeler, and L. T. etc., “Influence of different system abstractions on the perfor-
mance analysis of distributed real-time systems,” in EMSOFT, 2007.

[6] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol. 126, pp.
183–235, 1994.

[7] L. D. Alfaro and T. A. Henzinger, “Interface theories for component-based design,” in EMSOFT,
2001.

[8] S. Künzli, A. Hamann, R. Ernst, and L. Thiele, “Combined approach to system level performance
analysis of embedded systems,” in CODES/ISSS, 2007.

[9] S. Schliecker, S. Stein, and R. Ernst, “Performance analysis of complex systems by integration of
dataflow graphs and compositional performance analysis,” in DATE, 2007.

[10] L. T. Phan, S. Chakraborty, and P. S. Thiagarajan, “A multi-mode real-time calculus,” in RTSS, 2008.

[11] L. T. Phan, S. Chakraborty, P. S. Thiagarajan, and L. Thiele, “Composing functional and state-based
performance models for analyzing heterogeneous real-time systems,” in RTSS, 2007.

[12] S. Chakraborty, T. X. L. Phan, and P. Thiagarajan, “Event count automata: A state-based model for
stream processing systems,” in RTSS, 2005.

[13] “CATS tool,” www.timestool.com/cats/.

[14] S. M. Yardi, K. Channakeshava, M. S. Hsiao, T. L. Martin, and D. S. Ha, “A formal framework for
modeling and analysis of system-level dynamic power management,” in International Conference on
Computer Design, 2005.

[15] W. Haid and L. Thiele, “Complex task activation schemes in system level performance analysis,” in
CODES/ISSS, 2007.

[16] “UPPAAL CORA,” www.cs.aau.dk/ behrmann/cora/.

[17] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. S. Hune, P. Pettersson, and J. Romijn, “As
cheap as possible: Efficient cost-optimal reachability for priced timed automata,” in Computer-Aided
Verification (CAV), 2001.

[18] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox,”
www.mpa.ethz.ch/Rtctoolbox.

20/20 Verimag Research Report no TR-2009-10

