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Abstract

Every notion of a component for the development of embedded systems has to take hetero-
geneity into account: components may be hardware or software or OS, synchronous or asyn-
chronous, deterministic or not, detailed w.r.t. time or not, detailed w.r.t. data or not, etc. A
lot of approaches, following Ptolemy, propose to define several “Models of Computation and
Communication” (MoCCs) to deal with heterogeneity, and a framework in which they can
be combined hierarchically. This paper presents the very first design of a component model
for heterogeneous embedded systems called 42. We aim at expressing fine-grain logical tim-
ing aspects and several types of concurrency as MoCCs, but we require that all the MoCCs
be described in terms of more basic primitives, as small programs. 42 also enforces precise
specifications of components, in the form of control contracts. 42 is meant to be an abstract
description level, appropriate for the system-level description of embedded systems, not for
the development of the embedded software itself. 42 is meant to be connected to existing
validation tools (formal validation, automatic testing, etc.).
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1 Introduction

1.1 Component-Based Approaches for Heterogeneous Embedded Systems

The notion of a component for embedded systems has been discussed for some years now, and there are a lot
of proposals. The main motivations are the following: as time-to-market decreases, it becomes unavoidable
to reuse a lot of previous work when designing new systems. Reusing parts of a previous system requires
that these parts be properly defined as components, equipped with some form of a specification (informal
or formal). The specification groups all information needed for using the component, without knowing in
details how it is built. This includes both functional and non functional aspects, like timing performances,
or energy consumption. There seems to be a wide agreement on the fact that the main difficulty is due
to the intrinsic heterogeneity of embedded systems. We list the main causes below, including intrinsic
heterogeneity of the components that exist in the final product, and design heterogeneity that occurs during
the design flow:

• A typical embedded system may be built from hardware and software components;
• It is usually made of concurrent objects, but the concurrency model varies from pure synchrony (e.g.,

a mono-clock synchronous circuit) to pure asynchrony (e.g., a multi-computer system). Globally-
Asynchronous-Locally-Synchronous (GALS) systems are an interesting intermediate case.

• The description of an embedded system may range from the high levels of abstraction where the
timing and the structure of the data is not detailed, to the low levels of abstraction often called
“cycle-accurate, data-accurate”. The emerging “Transaction-Level-Modeling” paradigm [19] is a
component framework for embedded systems, allowing to develop virtual prototypes of systems-on-
a-chip at various levels of abstraction.

• At the higher levels of description, components may also be non-deterministic, because they are
known as specifications only (contracts for instance, in the sense of [32]), not as detailed descriptions
yet.

• An embedded system that is the implementation of some control law benefits a lot from the possibil-
ity of describing the physical environment as a component that lives in parallel of its controller.

1.2 System-Level Modeling

Despite these causes of heterogeneity, the design of embedded systems requires that we be able to reason
precisely on timing, atomicity and concurrency. For instance, in embedded control applications, it is very
important to know about the input sampling rate, for the validity of the control laws that are implemented
by the computer system. It is also important to be able to express that several computations should be done
with the same values of the inputs, before considering new ones. The latter implies that we be able to
reason on the atomicity of partial behaviors.

System-Level modeling concerns the task that has to be done when assembling various components
in order to build a system. Even if the individual hardware and software components are of very good
quality, and have already been validated by testing and intensive use, problems may happen when they are
put together to form a system.

System-Level modeling enables the description of the system as a assemblage of components, and
concentrates on what happens at the system-level, for instance synchronizations. A system-level model
is often executable, and thus usable as a virtual prototype of the system, on which various functional and
non-functional properties can be evaluated long before the actual system is available. In some particular
approaches, a system-level model can also serve as a guide for the implementation, in a model-driven
approach.

The hardware industry, facing the complexity of modern systems-on-a-chip, has proposed the notion
of transaction-level modeling, or TLM, for the system-level descriptions of such objects. The language
SystemC and its simulation engine are becoming a de facto standard of this industry, to develop virtual
prototypes of complex hardware platforms, on which the embedded software can be developed.

The potential lifetime of wireless sensor networks, made of thousands of small nodes powered by
a battery and communicating by radio, is often estimated by building virtual prototypes with dedicated
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simulators. It is compulsory to observe the effects that are visible only at the system-level, when the effects
of hardware, the protocols, and the application interfere.

SysML [45], an extension of UML, has also been proposed to tackle specific system-level modeling
problems. For the moment it is not executable, and the semantics is not formalized, so it has limited uses.

Metropolis [4] is a formally defined methodology for the development of embedded systems. It allows a
separation between the functional model (software components that synchronize by events, plus scheduling
constraints) and the architecture model (abstract hardware model considered as an API for the software).
The two models are used jointly to define a mapping model. Components communicate via functions calls.
Metropolis is a system-level approach, where the MoCCs are fixed, to allow automatic mapping of the
software onto the hardware.

More related work can be found in section 6.

1.3 Programming vs Architecture-Description Languages
A cause of heterogeneity may be the fact that several styles are used to describe embedded systems, rang-
ing from pure imperative languages or explicit automata (Statecharts, Stateflow in Simulink, UML activity
diagrams) to pure dataflow (Simulink1, Lustre/SCADE [20], Signal [28]), with notable combinations like
the joint use of Simulink and Stateflow. In this paper, we would like to concentrate on semantical notions,
not on the multi-paradigm programming problems. We will give a definition of a component that is inde-
pendent of the programming language, i.e, the language that is used to describe the detailed behavior of
the individual components. In a component-based framework, there is usually an architecture description
language, which has little to do with the programming language. It often has a dataflow style.

1.4 Ptolemy
Since 42 is inspired by Ptolemy [10], we recall here the main characteristics of this component framework.
Components are actors in the sense of [24]; it is possible to form a new actor by putting a set of actors
together, with connections between them, and a local director that defines how they behave together and
what the connections mean. The director is the implementation of a so-called Model of Computation and
Communication (MoCC). Heterogeneous designs are obtained by using distinct directors, depending on
the position in the hierarchy of components. The available MoCCs are formalized independently of each
other.

In Ptolemy, the notion of MoCC is somewhat extreme: given a picture made of boxes and arrows,
it is possible to consider it, either as a dataflow diagram, or as an automaton, just by changing MoCCs.
This means that even the interpretation of the architecture-description (ADL) part is left to the MoCC:
the ADL, used to group components at a given level of the hierarchy, may be dataflow (in which case the
components are implicitly in parallel), or given as an explicit automaton (in which case the components
execute sequentially), or anything else that could be expressed in a new MoCC. This is a key point in
Ptolemy for building the family of modal models, in which an automaton is used to control several activities
associated with its states, and described with other MoCCs.

Another important aspect of Ptolemy is to allow the combination of discrete and continuous models
in the same system description, which is really useful for embedded systems that may include digital and
analog parts.

1.5 Component-Based Virtual Prototyping with the Synchronous Technology
42 is also inspired a lot by more than 10 years of experiments on using a dataflow synchronous language
(Lustre [20] or Signal [28]) as a very expressive component-based executable modeling language.

The dataflow style makes it very natural to use the language as an architecture description language, and
it is also a programming language for individual components. Lustre is used to specify safety properties
by means of so-called observers [22]. A notion of logical-time contract for a synchronous component has
been proposed [30]. The Lustre toolbox offers verification tools that can be used to answer the classical

1Simulink and Stateflow are trademarks of The MathWorks
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questions about components: is a component detailed description a correct implementation of a contract?,
does an assemblage of components make sense, based on the combination of their contracts?, etc.

The synchronous approach is adequate for modeling software and hardware (the register-transfer-level
hardware description languages used for the description of synchronous circuits are equivalent to a syn-
chronous language).

Since the work by Milner [33] in the early 80s, we also know that synchronous formalisms can be used
to model asynchronous parallelism. In fact, the synchronous paradigm may be used to model all kinds
of intermediate behaviors, between pure synchrony and pure asynchrony [11, 21]. The main idea is as
follows: for modeling purposes, all the components are equipped with activation conditions and they do
nothing when this condition is false. Everything is composed synchronously, the activations conditions
being global additional inputs. If there is no constraint at all on these inputs, the synchronous composi-
tion adequately describes the pure asynchrony between the components. If the activation conditions are
equal, the same composition describes pure synchrony. More complex conditions correspond to interme-
diate cases. In order to give executable models, such a modeling principle requires that the context in
which components evolve be described as additional code that generates the activation conditions. This
additional code is usually non-deterministic (which, again, has to be encoded into the deterministic syn-
chronous formalisms by adding inputs). The most interesting instance of this principle is the so-called
quasi-synchronous approach, to describe systems made of several processors that are not explicitly syn-
chronized. Their respective clocks may differ, but not in a completely unknown way. These systems are
modeled by a quite liberal constraint on the clocks, namely: there are never more than two ticks of one
clock between two ticks of the other one. Considering the two processors as perfectly asynchronous would
be useless. Robust control laws can indeed be implemented on such a distributed architecture, exploiting
the knowledge about the clocks.

1.6 Operational Description of Various MoCCs

Part of the approach described in the previous section relies on the fact that several models of concurrency
and several synchronization mechanisms can indeed be encoded into a more expressive formalism. A
synchronous language can serve as the unifying formalism, but there are others.

42 belongs to a family of works on the operational descriptions of MoCCs, usually with the objective
of giving their semantics in some common framework so that they can be compared.

1.7 Motivations for 42, and contributions

The main motivations for the definition of 42 are the following:
• There is a crucial need for system-level descriptions, i.e., descriptions of how individual hardware

or software components — or even models of the physical environment — are assembled, and how
they behave together. There are several proposals in industrial or academic contexts, but it is quite
recent. 42 allows to focus on how heterogeneous components can be assembled.

• There is probably little hope to define and impose the universal formalism for such a need, in partic-
ular because of very important cultural differences between the domains of embedded system design
(critical domains like avionics, consumer electronics, smart cards, etc.); but, in any context where
such a formalism is needed, its definition must include the answer to some very crucial questions,
among which the type of concurrency and communication/synchronization that should be consid-
ered. These questions are fortunately less numerous than the languages of formalisms that already
exist or will be designed in the future. 42 is a way of concentrating on such questions, independently
of any particular language.

• Assembling components, especially when they may be as heterogeneous as a processor, an operating
system, and a model of a radio channel, requires that we be able to specify precisely their “instruc-
tions for use”. Most of the problems that appear at the system level are due to a bad use of some
component; checking assemblages relies on precise specifications of the components. 42 proposes
a notion of protocol for a rich description of the component contract (in the sense of the contracts
of [32]).
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• Reusing components in the development of embedded systems also means that the components have
indeed been developed with this idea in mind. This means that there is a clear understanding of
encapsulation, in all the domains considered. For instance, there is a very clear definition of a
component in the hardware industry, at the RTL level; IPs (for “intellectual properties”) are currently
being bought and assembled. For software components this is less generic. 42 is designed with the
idea of enforcing the FAMAPASAP principle (“Forget As Much As Possible As Soon As Possible”);
this means a systematic analysis of the details that can be hidden in a component, vs the details that
have to be exposed; this usually depends on the MoCC in which the components will be used: a
component has to be prepared for one or more MoCCs; sometimes it can be made MoCC-generic,
sometimes it cannot.

42 is essentially a tool for reasoning on the questions listed above. However, we designed it in such
a way that it easily gives solutions, at least in the existing frameworks we know best, and that cover a
significant part of the domain: embedded control implemented by distributed systems; systems-on-a-chip
used in consumer electronics; virtual prototyping of complex systems like wireless sensor networks. In
particular, we will be able to import existing software or hardware components, and to wrap them into 42
components. 42 is also executable, to serve as a virtual prototyping tool.

The last important point to be made clear is the following: a language or formalism that tackles all the
points given above as motivations does not already exist yet.

Software components designed for a particular MoCC do exist (for instance, software components to
be used in a client-server context); these models may serve as implementation guides on hardware architec-
tures that offer the support for this MoCC; client-server models are a programming model, implementation
methods have been developed, and the way the software components have to be prepared for such a use if
well defined.

However, when the architectures (or execution platforms) have some variability, there is no unifying
programming model. For system-on-a-chip design, there are clearly two situations: 1) a class of archi-
tectures is defined, offering a standardized interface to software; it is associated with a programming
component-based model, and automatic mapping of the software onto the hardware is possible; see, for
instance [36]; 2) the executions platforms are not standardized; in this case, we need a model of the hard-
ware, to be combined with the model of the software, at least for simulation purposes. Such combined
models need several MoCCs.

1.8 Structure of the paper
The paper is structured as follows: in Section 2 we define 42 informally; Section 3 details three examples
(Kahn Networks [27], synchronous circuits or programs, a heterogeneous system); Section 4 formalizes the
semantics of the MoCCs, expressed as controllers; Section 5 formalizes the semantics of the components’
specifications, or protocols; Section 6 lists some related work, and summarizes the main choices that we
made for 42; Section 7 is the conclusion.

2 Informal Definition of 42
We first give an example-oriented informal definition of 42: the individual components and their protocols,
the way components are assembled; the compatibility questions that can be studied in such a framework.

2.1 Components
Figure 1 shows a 42 component. A component is a black-box that has input and output data ports, and
input and output control ports. The input control ports are used to ask it to perform one finite-execution
computation step. Since there may be several input control ports, there may be several entry-points that
toggle a step. A step corresponds to a terminating (non-necessarily deterministic) piece of code. A compo-
nent has some internal memory. The input and output data ports are used to communicate data between the
components. The output control ports will be used by the components to send information to the controller
(see below). Allowing non-deterministic components means that 42 allows to mix code with specifications.
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Figure 1: A 42 Component

Component C (
control input ic1, ic2 : bool;
data input id1, id2, id3 :int;
data output od1, od2 ,od3 :int;
control output oc1, oc2: bool)

{
var m : some_type

:= some_init_value ;
for ic1 do : {
int cpt = 0 ;
if (id1 < 0) id1 = -id1 ;
while m >= 0
{ m = m - id1 ; cpt ++ ; }
od1 = cpt ; oc1 = (m == 0) ;
m = m+cpt ;

}
for ic2 do : {
if (m ...) { ... }

}
}

Figure 2: Example component

Figure 2 is an example code for such a component, written in some imperative style. For each control
input, the component executes a program that corresponds to its computation step. It should terminate in
finite time. The memory m is initialized when the component is instantiated somewhere, is persistent across
the successive activations of the component, and is common to the various activations. A component does
not necessarily use all its data inputs for a given activation, and does not necessarily produce all the control
and data outputs (see the specification part in section 2.4 below).

42 does not impose a particular language for the individual components. When importing existing
components (for instance the C code produced by the compiler of a synchronous language), they have to be
wrapped so that the data ports correspond to some of their internal variables, and the input control ports to
the activation of a piece of code (methods in an object-oriented language, functions in C, ...). For hardware
components, the 42 ports usually correspond to wires.

2.2 Connections and the Architecture Description Language

Components are connected by directed wires. An input data port can be connected to an output data port
of the same type (we will assume this is always true in the sequel). The control ports are connected to the
controller, not directly to each other. A wire does not mean a priori any synchronization, nor memorization.

A system is made of components connected by wires (the architecture) plus a controller that activates
the components and decides what happens on the wires. The model is hierarchic: an architecture plus a
controller form a new component. It exposes new input and output control ports, and new input and output
data ports.

Figure 3 is an example connection. The components A, B, C, D are connected with the wires
named a, b, c, d, e, f. Some of the data input and output ports of the subcomponents are con-
nected to the input and output ports of the assemblage. All the components have input and output control
ports (vertical arrows) implicitly connected to a controller.

The restrictive constraints on the connections for the data and control ports are meant to enforce the
identification of such a data/control classification for the components, as illustrated in the examples of
section 3. Notice that, if the controller has to take decisions that depend on a data output od of some
component C, the od wire can be connected to the input data wire of some special component cond that
produces a control output for the controller. Similarly, if a global data output is in fact produced by the
controller (and so cannot be connected to a data output of some component), we can just add a special
component activated by the controller, and producing the desired data output.
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Controller1 is
var m : bool = true ;
for xx do : {
m_a, m_b, m_c: FIFO(1,int);
m_d, m_e, m_f: FIFO(4,int);
if (m) {

m_a.put ; // reads i1
m_a.get ; D.z ; m_f.put ;
m_f.get ; A.u; m_b.put;
m_d.put; m_b.get; B.v;
m = m or p ;
m_c.put ;
m_c.get ; // defines o1
m_d.get ; C.w ; m_e.put ;
C.y ; m_e.put ;
m_e.get ; D.k ; m_e.get ;
D.k ; m = ! m ;

} else { ... }
yy = true ;

}

Figure 4: Example controller
code

2.3 The Controller

Once the components have been connected, we need to specify how they behave together. The controller is
in charge of translating an activation request on one control input port of the encapsulated system (e.g., xx,
also referred to as a macro-step in the sequel), into a sequence of activations of the subcomponents, and
data exchanges between them (also called micro-steps); it also reports on the activity of the subcomponents,
through output control ports like yy. To achieve this, the controller may use some temporary variables
explicitly associated with the wires (because, if there is no connection between a port p1 on a component
A, and a port p2 on a component B, the controller may not transmit directly the data produced on A.p1
to B.p2). The memory associated with the wires serves only as temporary storage, to build a macro-step,
because not all MoCCs describe situations in which the values produced by a component are immediately
consumed by another one. Hence the lifetime of the wires’ memory is limited to the macro-step. If there
is a need for storing information between two macro-steps, then there should be an explicit component
behaving as a memory.

Figure 4 is an example code for the controller, in some simple imperative style. The choice of the
temporary memory associated with the wires, and a piece of code for each global control input port like
xx, constitute a particular MoCC.

The controller associates a bounded FIFO with each wire. On Fig. 3, a, b, c are associated with
the one-place int FIFOs m a, m b, m c, while the wires d, e, f are associated with the 4-places
int FIFOs m d, m e, m f. A FIFO M offers three methods: M.get gets a value in M and puts it into
the consumer port connected to the wire; M.put gets a value in the producer port connected to the wire
and puts it into M; M.init initializes M to an empty FIFO. It is the responsibility of the controller to avoid
writing in a FIFO when it is full, or reading from an empty FIFO.

The programs of the controller may activate the individual components, through their control input
ports (e.g., A.u, B.v). They may copy the data outputs of the components into the wires, or copy the
wires’ contents into the data inputs. The program of the controller may also copy the control outputs of the
individual components, into some memory local to the controller (m), and whose life span may exceed the
reaction to xx (inter-macro-step memorization). Finally, it may set a value for the global output ports (e.g.,
yy).

On the example code, the controller executes D.z without providing an input on the wire m e. This is
because a component does not necessarily need all of its inputs (resp. produce all of its outputs) at all times
(see below). m e receives 2 values before they are consumed by D.
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(id1) ic1/
α:=oc1 (od1)

[α = a] (id2) ic2/β:=oc2
(od2,od3)

(id2,if ¬β then id3) ic3/oc2
(od2,od3)

() ic2 ()

() ic2 ()
[α = b]

() ic2/β:=oc2 ()

Figure 5: Example protocol for the component of Figure 1

2.4 Specifying Components: Control Contracts
2.4.1 General notions

The example has shown that there is some need for a precise specification of the components, in particular
for declaring which of the inputs are needed for each control input, and which of the data and control
outputs are produced.

In 42, we adopt the notion of protocol widely used in object-oriented designs (see, for instance [47]).
When specifying a class in an object-oriented framework, a protocol can be used to specify, for instance,
that method m1 should always be called before method m2, unless method m3 has been called at least
twice. The idea in 42 is similar: protocols will be used to specify complex sequential constraints between
the control inputs and outputs by a finite state machine. A protocol can be viewed as a control contract for
a component, because it expresses how the component should be activated, but tells nothing on the values
that it may accept or deliver. A 42 protocol is also very similar to the notion of conditional dependency
that can be expressed between inputs and outputs in Signal [28]; although Signal does not have a built-in
distinction between control and data ports, control ports correspond more or less to clocks.

Figure 5 shows a protocol for the component C of Figures 1 and 2. It is an automaton with an initial
state (pointed to by the little arrow). Each transition has a label of the form:
[condition] (data req) control input / control outputs (data prod).
The variables denoted by Greek letters are used to store the value of control outputs, and may be used later
on in the protocol itself; let us note the set of such variables V . The [condition] part is built from the
variables in V . The (data req) part expresses conditional data dependencies; the conditions are built
on V too. For instance (id2,if ¬β then id3) means that the transition needs id2 and, if the value
stored in variable β is false, it also needs id3. The (data prod) is built similarly, and expresses which
outputs are indeed produced. The control input is a single control input. the control outputs
gives the control outputs that are indeed produced, and may indicate that their values are stored in variables
of V . The variables in V should not be used before they are assigned a value.

Initially, the protocol is in its initial state, and then it evolves according to the sequence of activations
produced by the controller in response to a sequence of macro-steps. Each macro-step is considered to start
in the state where the protocol was at the end of the previous macro-step.

2.4.2 Specifying accepting states

We could enrich this notion of protocol with accepting states, in order to enforce macro-steps made of
several activations of the same components, in a given order. In this case, each macro-step should place the
protocol in an accepting state. We do not use this extension in the examples of the paper.

2.4.3 Talking about fresh values of the inputs

The protocols we defined in the previous section can also be enriched by distinguishing two ways of
requiring inputs. A component may specify that it is ready to deal with new inputs or, conversely, that he
would like to keep the same inputs as last time it was activated.

Verimag Research Report no TR-2009-1 7/31
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An example of such a need will be given in the example of synchronous circuits or programs below
(section 3.2).

The notation will be as follows: for each data input id, two forms of it may appear in the conditional
specification of the inputs required: id, or id. id means the component requires the input id to be the
same as the previous time it was activated (or it is the beginning of time); id means that it does not care
about inputs being new or not.

2.5 Compatibility Issues
2.5.1 Compatibility between a component and its protocol

The code of a component should be compatible with its protocol: for instance, if the protocol declares that
only input id is required, the component should not make use of the other inputs. Checking this property
statically, in the general case, is a complex program analysis problem. In most programming languages,
determining which variables are read by a particular piece of code is undecidable. The compatibility
property can be checked dynamically if the protocol is used to generate defensive code in the component
(as it is done for the contracts of the language Eiffel [32]).

Designing a correct pair (component, protocol) is the responsibility of the component provider.

2.5.2 Compatibility of a controller with the components’ protocols

When several components are assembled, with a controller, to form a new component, the controller should
be compatible with the protocols of the components. In particular, it cannot activate a component with a
control input ic that requires input id without first providing a value for id. While responding to a
sequence of macro-steps, it should not produce a sequence of activations for a component C that does not
respect the protocol of C (does not belong to the language described by the protocol of C, see section 5 for
a formal definition).

We will formalize this controller/protocol compatibility property. It can be checked dynamically, con-
sidering the protocols as monitors that run “in parallel”: at each macro-step, the controller makes the
protocols of the subcomponents evolve according to the control inputs it chooses. If the controller is about
to make a move that is not consistent with the current states of the components’ protocols (for the avail-
ability of data for instance), then the macro-step is incorrect. The decidability of a static check of the same
property depends on the expressive power of the language used for the controller.

3 Detailed Examples

3.1 Kahn Networks
The description of Kahn Networks in 42 is an interesting exercise which shows the main difference be-
tween: 1) the potential memory present as a component, and the volatile memory associated with the wires
for a particular MoCC; 2) the code of a component, and the piece of program that is used to describe the
controller in a particular MoCC.

To describe a Kahn Network in 42, we need to use explicit infinite FIFO queues between the processes.
These FIFO components have an explicit control input test that allows to test them for emptiness; the
answer r is an explicit control output. The idea is that this information may be used by the controller
(which describes the semantics of KPN) but not by the components themselves, as defined by the KPN
model. The FIFO components also have two control inputs in (to accept a value) and out (to deliver a
value).

The processes are 42 components with a single control input GO.
The controller selects a process to be executed, and verifies that all its inputs are available, by testing

the input FIFOs. If yes, it takes the inputs in the corresponding FIFOs, the process is activated with GO,
and it produces all its outputs, that are stored in the corresponding FIFOs.

The protocols are illustrated Figure 9. The protocol of a component representing the process P3 is given
Figure 9-(a): for any activation by GO, it needs all its inputs, and produces all its outputs; the protocols of
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Figure 6: An Example Kahn Process Network
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Figure 7: The 42 View of the KPN Exam-
ple

controller is {
var x1,x2,y1,y2,z1,z2,i,o : FIFO(1,int)
var alphax,alphay,alphaz : boolean;
for go do: {
int process =random(1,3);

switch(process){
case 1: i.put; i.get; P1.go;

x1.put; x1.get; X.in;
y1.put; y1.get; Y.in;

case 2: Y.test;
alphay:=ry;
if(alphay) then{
Y.out;
y2.put; y2.get; P2.go;
z1.put; z1.get; Z.in;

}

case 3: X.test; Z.test;
alphax:=rx; alphaz:=rz;
if(alphax && alphaz) then{
X.out; x2.put; x2.get;
Z.out; z2.put; z2.get;
P3.go; o.put; o.get;

}}

Figure 8: The programs of the controller

the others processes are similar. Figure 9-(b) is the protocol of the FIFO X. At any time, the FIFO may be
activated with in, since it is unbounded, and by test, to tell whether it is empty. It may be activated by
out only after a test activation that has answered true. The protocols of the other FIFO’s are similar.

3.2 Mono-Clock Synchronous Circuits or Programs
In a pure synchronous model of computation (for describing synchronous circuits for instance), the con-
troller should be able to express the fact that, at each instant of a global clock, all the components of the
circuit take their inputs, and compute their outputs. It may take some physical time to stabilize, but for
non-cyclic circuits, it does stabilize. In the context of a component model like 42, with components and
interactions between them, being able to express pure synchrony means that we should be able to describe
the steps of the stabilization phase; it is not a simple interaction.

3.2.1 Example

Figures 10, 11 and 12 illustrate the componentization of a Lustre program. We chose Lustre because its
graphical form (as used in the commercial tool SCADE) is very close to the diagrammatic view used in

Verimag Research Report no TR-2009-1 9/31



Florence Maraninchi, Tayeb Bouhadiba A short title

(a)

(x2, z2)go(o) ()test/α := rx()

(b)

(x1)in()

[α]()out(x2) ()test/α := rx()
(x1)in()

Figure 9: Protocols of the components. (a) Process P2; (b) FIFO X

node DoubleIntegr (i: i n t )
returns (o: i n t ) ;
var x, y : i n t ;
l e t
x = Integr (i + (0->pre y)) ;
y = Integr (x) ;
o = y ;

t e l.
node Integr (i : i n t )
returns (o : i n t ) ;
l e t
o = i -> pre(o) + i ;

t e l.

Figure 10: An Example Synchronous Program (in textual
Lustre)

+

pre

i
o yx

pre

+
i

+

pre

i
o

o

0

Figure 11: The same program in a
graphical form

synchronous hardware design. The program of Fig. 10 is made of two instances of a basic integrator
Integr. “o = i -> pre(o) + i” means: the output o is equal to the input i at the first instant,
and then, forever, it is equal to i plus its previous value pre(o). The two copies are connected in the
node DoubleIntegr, with another addition operator. Figure 11 is a flat and graphical view of the node
DoubleIntegr, where the two copies of Integr have been expanded.

3.2.2 Individual Components

Figure 12 is the component view of the program. The level of controller1 is the level of
DoubleIntegr. The details of the instance integr1 are hidden, integr1 is considered as a ba-
sic component, as +, pre (a flip-flop, or elementary memory point) or the duplicator Dup. The instance
integr2 is described as a 42 assemblage of more primitive components.

In order to obtain the normal behavior of a Lustre program (or a synchronous circuit) with such a
component view, the components should be designed in such a way that they offer two control inputs geto
and go. When asked with geto, the component delivers its outputs, depending on the internal memory
and its data inputs, but without changing internal states; go asks it to change internal states. In this simple
case, there is no need for control outputs. The combinational components (the +, and the duplicator) have
an empty go function. Figure 17 is the code of the pre component (for integers).

3.2.3 The controller

At the two levels of the hierarchy, the controllers associate one-place buffers with all wires. The “programs”
they play when the global geto or go control inputs are activated are given in Figures 13 and 14, in some
imperative style.

When a component (DoubleIntegr or Integr2) is activated with geto, the inputs are supposed
to be available. The controller asks each subcomponent to produce its outputs, according to the values
that are available on its input wires. This is done in an order compatible with the partial order of data
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go

controller2
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Figure 12: A component view

controller1 is { var u, v, w, x, y, z, t : FIFO(1,int)

for geto do: {
pre.geto ; z.put ; z.get ;
u.put // reads i
u.get ; plus.geto ;
t.put ; t.get ; integr2.geto ;
x.put ; x.get ; integr1.geto ;
y.put ; y.get ; dup.geto ;
v.put ; v.get ; } // defines o

for go do: {
w.put ;w.get ;
pre.go ;
integr1.go ;
dup.go ;
integr2.go ;
plus.go ;
}}

Figure 13: The programs of the controller ’controller1’

controller2 is { var a, b, c, d, e : FIFO(1,int)

for geto do: {
pre.geto ; b.put ; b.get ;
a.put // reads t
a.get ; plus.geto ;
c.put ; c.get ; dup.geto ;
d.put ; d.get ; } // defines x

for go do: {
e.put ;e.get ;
pre.go ;
plus.go;
dup.go ;
}}

Figure 14: The programs of the controller ’controller2’

(a) (b)

(i)geto(o)

(i)go()

()geto(o) (i)go()

(i)geto(o)

Figure 15: Protocols of the components for the synchronous MoCC

(i)geto(o) ()go()

Figure 16: Protocols of the combinatorial components
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Component Pre (
control input geto,go : bool;
data input id:int;
data output od:int) {

var m : int = 0 ;
for geto do :
{ od = m ; }
for go do :
{ m = id ; }

}

Figure 17: Code of the PRE Component

initializations ;
while true {

// read input into i
i.put (read()) ;
// write the value produced
DoubleIntegr.geto;
write(o.get) ;
DoubleIntegr.go;

}

Figure 18: Structure of a program using the
main component DoubleIntegr

dependencies. For controller1, the only component that can start is the pre component, because
its output does not depend on its input. Then the plus can play, then Integr2, then Integr1, then the
duplicator Dup. At the end of this sequence, all the wires have a value, the circuit has stabilized. Respecting
the data dependencies means that each x.get is preceded by a x.put.

When the component is activated with go, the input i is supposed to be available. The controller asks
each subcomponent to change states according to its input. The go activations of all the subcomponents
can be called in any order.

The programs of the controllers are very similar to the code generated by the Lustre or SCADE com-
pilers (except that copying the values on the wires is not efficient and can be avoided in most cases). The
component view of a Lustre program requires that there is indeed a possible computation order, meaning
that each cycle in the data dependency graph is cut by a pre component, at each level of abstraction. On
the contrary, if the sub-components are expanded (see Figure 11), it is sufficient to have all the cycles
broken somewhere, but it could be inside the subcomponents.

3.2.4 The Protocols

In the simple case described above, the protocols for the components are those of Figure 15. (a) describes
the protocol of any component in which the output may depend on the input; (b) is the protocol of the
pre component: od can be obtained without input; the first geto needs no inputs because it delivers the
default value hardwired in the component. i means that go has to be performed with the same value of i
than the previous geto activation.

The protocols of the combinational components (+, Dup, ...) are very simple. See Figure 16. go is
ignored, and geto is always accepted; it needs all inputs, and produces all outputs.

3.2.5 Partial Computation of the Outputs

In general, components have more than one input and one output. There are two choices: either we consider
that all the outputs depend on all the inputs, and in this case we can apply the previous scheme. Or we can
accept more complex designs, in which an output does not necessarily depend on all the inputs. In this case,
each component has to specify the dependency between its outputs and its inputs, and each component has
to be equipped with a go activation, and one geto activation per data output. The control contracts we
presented in section 2.4 are perfectly adequate to express the dependency between the inputs and outputs.
A transition (id1) geto1 / ... (o1,...) in such a protocol means that only the data input id1
is required for the component to be activated with geto1, and it produces o1.

The controller can then ask the components to produce specific outputs, not all at a time, and interleave
the computations of the outputs of the subcomponents.
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3.2.6 Comments

This example shows that the expressive power of the controllers in 42 is sufficient to express pure syn-
chrony, which hides a fix-point computation (the stabilization phase). It is easy to componentize Lustre
or a diagrammatic description of synchronous circuits, and the model is exactly the same at all levels of
abstraction. The code of a main program using the component DoubleIntegr is given Figure 18.

The protocols of the subcomponents, plus the architecture that gives the data dependencies, are suffi-
cient to generate the controller: we only need to find a partial order for the computation of the outputs in
the geto function.

The simple example extends to conditional dependencies between outputs and inputs, as shown above,
and also to multi-cycle synchronous programs (in which a subprogram should be run at speed s1, and
another at speed s2 much slower than s1). The principle of the component view can be used for separate
compilation of Lustre/SCADE programs, with some optimizations in memory management.

3.3 A Heterogeneous System
This example of Figure 19 is intended to demonstrate how heterogeneity is dealt with in 42. We consider
a system made of two processors connected to a memory via a bus. When a processor is engaged in some
READ or WRITE access to the memory, the second one may also wish to start a READ or WRITE. It
requests access to the bus, but the bus will make it wait until the end of the ongoing transfer.

For one of the processors we describe the embedded software (it is a software component, whose
interface complies with the model of section 3.2 above). For the other processor, we ignore the details
of the embedded software, and only provide a very abstract and non-deterministic model of its behavior.
This example covers various sources of heterogeneity mentioned in the introduction: software vs hardware,
synchronous vs asynchronous, detailed vs abstract.

For sake of clarity in the rest of this section, each tuple of interconnected ports and the wire connecting
them have the same name.

3.3.1 Example, highest level of hierarchy

The highest level of the model of Figure 19 is a simple modeling of a hardware architecture, very much
in the spirit of so-called transaction-level modeling [19]. The connections between the hardware elements
(the two processors, the memory, and the bus) are not given in full details as it would be the case at
the register-transfer level (RTL). The exchanges between components are transactions, encapsulating the
synchronizations that are necessary for one data exchange. We do not assume any synchronization between
the two processors, which may access the memory at any time. The bus performs arbitration if necessary.

The 42 controller needed at this level is a hardware transaction-level simulation controller, i.e., a con-
troller that simulates the potential physical parallelism between the hardware parts in a non-deterministic
way. A hardware model at this level of abstraction concentrates on the synchronization points between
components. A simulation controller should animate all the components and make data available for them.
Since it does not know about the precise behavior and needs of the components involved (it is entirely
generic), it relies on the components’ protocols in order to know whether components are indeed ready to
play.

Components and their protocols At this level of hierarchy, each component has a single control input
GO, to be activated by the simulation controller. The idea is that, for each activation, a component rep-
resenting a piece of hardware performs some internal computation, until the next access to the memory.
Each component also has a wsh control output to report to the controller the kind of exchange operation
it is engaged in (READ or WRITE). This assumption is part of the general guidelines on how to prepare
components for their use in such a hardware simulation framework. Below we give more details for the
processors, the memory and the bus, and we summarize these points in paragraph 3.3.1. The protocol of a
particular component explains what data is needed for each simulation activation by the controller.

The component M models a memory which has two input data ports a and wd for the address and the
data to be written. The rw data port is used to specify whether the memory will be engaged in a read or
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write transaction. The output data ports rd and res are used to deliver the data read and the result of this
memory operation (SUCCESS or ERROR).

Figure 21-(b) gives the protocol of the memory component. For the first activation, it needs an address
a and the specification rw of the type of operation to be performed. Depending on the type of operation,
the next activation either needs a data to be written, or produces a data read.

We assume that the memory component reproduces on its output control port wsh the value received
on the data input port rw.

The components representing the processors have the same interface and the same protocol. The data
inputs and outputs are as follows: rd is a data read, a is an address, wd is a data to be written, req is the
request for the bus, g is the access-granted information from the bus, and res is the information from the
memory, via the bus, signaling that the requested transfer is finished. Figure 21-(a) gives the protocol of
the processor components. For the first activation, the processor performs some computation, and finally
delivers a memory access req1 request and an address a1. The next activation needs the grant input;
depending on the type of operation stored in α, it either needs a data rd1, or delivers a data wd1. It cannot
engage in another memory access before being activated with res1 available.

Such a processor component reproduces on its output wsh the value produced on the data output port
req.

The bus B manages concurrent accesses to the memory; it also delivers an output control port to define
whether the current memory access is a read or write. Figure 21-(c) gives the protocol of the bus component.
In each state, the bus may receive a request from any of the processors. It may either proceed with this
request, if it is available (states 6, 7 for processor 1, and 2, 3 for processor 2), or remember this request
for later treatment, if it is already engaged in a data exchange (in states 4, 5, processor 1 waits; in states
8, 9 processor 2 waits). Starting from the states where no processor is waiting, the bus terminates the data
exchange, and goes to its initial state. If a processor is waiting, it will be taken into account just after the
ongoing data exchange is finished.

Notice that, if they were more than 2 processors connected to the bus, the protocol could no longer be
described with explicit states for the processes that are waiting. We should then use a protocol language
allowing more easy-to-use data structures like FIFOs.

The bus component reproduces on its control output port wsh the value produced on the data output
port rw.

The controller The hardware transaction-level simulation controller needed at this level activates one
processor at a time, to simulate the asynchronous behavior of the two processors. The controller of Fig-
ure 24 is a possible description.

It is mainly an interpreter of the components’ protocols. It maintains a memory of the protocols’
states, initialized with the initial states of these protocols. For each GO, it chooses one of the components
randomly. from the current state of this protocol, several transitions exist. The controller chooses (if
possible) a transition for which the input data requirements are met. It provides the component with its
required inputs, taking them in the components that produce them, via the FIFOs associated with the wires.
expliquer remove.

Then it activates the component with go, stores its control outputs in its memory, and remembers that
all its data outputs are now available. Finally, it changes states in the protocol, according to the transition
chosen.

Guidelines for a hardware model The first level of hierarchy described above shows that for modeling
hardware we need to have consistent components, protocols, and controller. The controller ignores the
details of the components; it only knows about their protocols. The components expose in their protocols
how they should be activated to produce their output control and data ports, and what input data they con-
sume for that. The last important point in this modeling framework is a guideline for writing components:
they should always reproduce on their wsh port the information about the type of data exchange they are
engaged in, which is given either by a data input or by a data output.
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3.3.2 Example, details of the processor components

The model of processor 2 is very abstract. We do not give more details than what is specified in its protocol.
Consequently, it simulates the behavior of a processor that makes read/write transactions with the memory
non-deterministically.

The model of processor 1 is further detailed (see Figure 20). The way transactions happen is determined
by the embedded software. We consider a simple synchronous software component synch, which needs
inputs and provides outputs. The component wrap deals with the memory accesses.

The protocol of the synch component is the same as in section 3.2, for the components whose output
may depend on the input instantaneously.

The protocol of the wrap component (see Figure 22) describes the access to the bus both for the READ
and for the WRITE operations (request, wait for grant, and then wait for the end of the data exchange).

At this level, the 42 controller is not a simulation controller (see figure 23). It is some abstraction of
what happens in a real processor when it runs a piece of embedded software, taking its inputs from the
memory, and writing its outputs to the memory. This MoCC shows how the processor writes to, and reads
from the memory; it also transmit the data to and from the software.

The controller describes a cyclic behavior: first a read access, then a write access, and so on. Each
access needs three activations, hence the controller has six states. State 0 describes the request for a
memory read; in state 1 we wait for the grant access; in state 2 we wait for the end of the memory read;
state 3 prepares the memory write; state 4 waits for the grant access, and computes the output by activating
the software; in state 5 we wait for the end of the write access.

3.3.3 Comments

This example illustrates how we deal with heterogeneity in 42, with hierarchic levels, each level using a
particular MoCC. The example could be extended by describing several processes on the same processor.
This could be done in several ways: either with a level of the hierarchy where the controller describes a
scheduler; or with an explicit component representing the operating system (in some abstract way), and a
controller describing the interaction between an OS and the processes.

The example chosen is representative of a large class of embedded systems. This kind of applications is
very similar to those used in automotive applications where different ECUs, or Electronic Computing Units
are distributed and communicate over a particular communication medium. The ECUs may be hardware
blocks or processors running several processes.

The type of system-level model we describe in 42 for this kind of embedded system has one major
use. It allows to observe the interleavings of the software activities that are produced via their execution
on a particular hardware platform. This is something that cannot be captured by very abstract semantic
models like pure synchronous or pure asynchronous process compositions; for instance the precise way in
which the software components access the memory, and the order in which it happens, depend a lot on the
behavior of the hardware platform. Notice that the details we gave in our model of the bus places it in a
more precise category than the so-called TLM-programmer’s view advocated for SoC design (see [14] for
a discussion on these levels).

4 Semantics of the Controllers
In this section, we formalize the components, the architectures and the controllers. Formalizing the proto-
cols and the compatibility notions of section 2.5 is given in next section.

The semantics does not express any error detection mechanism. The micro-steps and the macro-steps
are supposed to terminate in bounded time; we assume that the controller is compatible with the protocols
of the components. As a consequence, it never reads in an empty FIFO, nor write in a full one. We express
the fact that a component does not always need all its inputs, nor produce all its outputs, by considering
partial valuations of the inputs and outputs. See below. This formal semantics allows a precise definition
of the controller actions, independently of any concrete programming style. In particular, it defines the life
span of all the variables involved.
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Figure 19: A multiprocessor system
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Figure 20: Details of component P1
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Figure 21: Protocols of the components at the highest level of hierarchy. (a) processor components; (b)
memory; (c) bus.
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(res)GO()

(g)GO()

()R(req, a)
()W (req, a)

Figure 22: The wrapper protocol

Controller1 is
var state : int;

state := 0;
for GO do : {
a, in, out, res, req, g : FIFO(1,int);
switch (state){
case 0 :

wrap.R; wh1:="R"
a.put; a.get; req.put;
req.get; state :=1;

case 1 :
g.put; g.get ;
wrap.go; state := 2;

case 2 :
res.put; res.get;
Wrap.go; state := 3;

case 3 :
wrap.W; wh1:="W"
a.put; a.get; req.put;
req.get; state :=4;

case 4 :
g.put; g.get ; wrap.go;
in.put; in.get;
synch.geto; synch.go;
out.put; out.get;
state := 5;

case 5 :
res.put; res.get;
Wrap.go; state := 0;

}}

Figure 23: Controller for the processor component P1
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ControllerM is {
tab ={ (P1,p1), (P2,p2), (B,b), (M,m)} // set of (Component,Protocol)
available = {} // The set of wires whose producers have available

// new values in their output ports
T: Transition ; // complete transition of a protocol
memory : some_type ; // variables necessary to store the

// control outputs of the components

for GO do : {
i := random(1,4); // a random value in 1..4
(cpt,pro) := tab[i]; // the component i and its protocol
// try to find a fireable transition sourced
// in the current state of the protocol:
T := pro.Transition () where(for each id in T.required,

id in available);
// if such a transition exists:
if (T <> NULL) {

for each id in T.required {
id.put; id.get;
available.remove (id);

}
cpt.go ;
// update memory according to the control output:
memory.update (oc) ;
for each od in T.provided { available.add (od);}
// take the transition of the protocol :
pro.move_to_next_state(T.target);

}} }

Figure 24: Controller for the highest level of hierarchy
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4.1 Individual Components and Architectures

A component has an interface: the sets of input and output data signals, the sets of input and output control
signals. The signals take their values in some domain that can contain Boolean values, numerical values,
etc. A component has an internal “state”, belonging to a set Σ. The most general definition of the behavior
of a component is a set of relations corresponding to its possible activations through its control inputs. For
each control input, the component behavior (which may be non-deterministic) is given as a relation that
relates values for some of the data inputs, the current state, values for some of the control and data outputs,
and a new state. Let us note D the union of all data types. The partial valuations of the interface signals
are represented by partial functions to D. We note dom(f) the domain of such a partial function.

Definition 1 : Components
A component is a tuple: C = (Σ,Σinit, IC, OC, ID, OD,B) where Σ is the set of internal states, Σinit ⊆ Σ
is the set of initial states, (one initial value is chosen when the component is instantiated) and IC, OC, ID,
OD are the sets of names for the control inputs, control outputs, data inputs, data outputs, respectively.
B is the behavior of the component, it is a total function B : IC −→ R where R ∈ R is a relation:
R ⊆ (Σ× (ID −→ D)× (OD −→ D)× (OC −→ D)× Σ). �

Definition 2 : Architectures
Let us consider a set of components:
{Ci = (Σi,Σinit

i , IDi, ODi, ICi, OCi,Bi)}I . An architecture for combining them is a tuple
(IDg, ODg, ICg, OCg, L) where the first two fields describe the data ports of the assemblage, the two
successive fields describe the control ports of the assemblage, and L is the set of directed links between
the data ports of the components, or between the data ports of the assemblage and the internal ones: L ⊆
(
⋃

I ODi)×(
⋃

I IDi)∪IDg×(
⋃

I IDi)∪(
⋃

I ODi)×ODg . Note that (x, y) ∈ L∧(x, z) ∈ L =⇒ y = z
because links are point-to-point. Similarly (y, x) ∈ L ∧ (z, x) ∈ L =⇒ y = z. The input and output con-
trol ports are implicitly linked to the controller. �

4.2 Controllers

Let us consider a set of components {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I , and an architecture

A = (ICg, OCg, IDg, ODg, L), defining a new component C.
The controller has some internal memory in the set ΣC that can be used across the various activations

of C (on the examples of section 3, this corresponds to a control point in the program, and to the controller
variables which are not attached to the links). It also has some internal memory associated with the wires
ΣL : L −→ M that is reinitialized for each new activation. M is the union of the FIFO types.

The controller associates with each global control input icg ∈ ICg a program that activates the sub-
components through their control inputs, stores their data outputs into ΣL, and gives them data inputs taken
in ΣL. These programs may be non-deterministic, and they have a final state. The controller may store the
control outputs in its state ΣC , and all its actions depend on ΣC .

Definition 3 : controller
A controller for an architecture A = (ICg, OCg, IDg, ODg, L) and a set of components {Ci =
(Σi,Σinit

i , ICi, OCi, IDi, ODi, Bi)}I is a tuple (ΣC ,Σinit
C ⊆ ΣC ,Σfinal

c ⊆ ΣC , ICg −→ Progs, S). A
program in Progs is a tuple (Tput, Tget, Tact, F ) where Tput ⊆ ΣC×L×ΣC (resp. Tget ⊆ ΣC×L×ΣC)
is the set of all possible “put” actions (resp. “get” actions) of the controller, from a state, on a link ` ∈ L;
Tact ⊆ ΣC ×

⋃
I ICi×ΣC is the set of all component activations the controller may execute, from a state.

F ⊆ Σfinal
c × (OCg −→ D) associates final states of the controller with partial valuations for the control

outputs. S ⊆ ΣC × (
⋃

I OCi −→ D)× ΣC defines how the controller stores partial valuations of control
outputs of the components into its state. �
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4.3 Combining Components
Combining components means considering a finite sequence of subcomponents activations and memory
storage on the internal links (micro-steps), as a macro-step corresponding to a global activation. In order
to describe how this is done, we will first describe the micro-steps and how they can be combined into
sequences. Then we will define which of these micro-step sequences are the macro-steps of the new
component.

In all the section below, we consider a controller (ΣC ,Σinit
C ⊆ ΣC ,Σfinal

c ⊆ ΣC , ICg −→
Progs, S) for an architecture A = (ICg, OCg, IDg, ODg, L) and a set of components {Ci =
(Σi,Σinit

i , ICi, OCi, IDi, ODi,Bi)}I .
We also consider a particular control input icg ∈ ICg , and its associated program (Tput, Tget, Tact, F ).

4.3.1 State of an assemblage

The state of an assemblage of components is made of: the state of the controller (an element of ΣC), the
states of the components (ΣI =

∏
I Σi), the states of the links (ΣL : L −→ M , where M is the union of

all FIFO types associated with the links), the states of the data ports (ΣP : (
⋃

I IDi∪
⋃

I ODi∪
⋃

I OCi∪
IDg ∪ODg ∪OCg −→ D)). For sake of simplicity, we assume a unique naming of all ports.

Notice that we need a state of the data ports to express the fact that a component makes some of its
outputs available (resp. consumes some of its data inputs), but does not copy them onto the links (resp. from
the links). The put and get operations of the FIFOs associated with the links do the job (see section 2.3).
The method put will be represented in the semantics by a function put : M × D −→ M where the
assigned value is explicit and put(m, v) is the new value of m after the action m.put(v). Similarly, the
method get will be represented by a function get : M −→ D ×M .

We will denote such a global state by a tuple (σC , σI , σP , σL).

4.3.2 Micro-steps

For a given icg , the micro-steps that corresponds to what the controller does with the components and the
links are described by the following three rules.

The rule [put] expresses that, if from its state σC , the controller may put a value on a link ` between
ports P1 and P2, then the global state evolves with a change in σC and σL only: the link ` receives a new
value computed by put with the value of its producer port P1.

(σC , ` = (P1, P2), σ′
C) ∈ Tput

(σC , σI , σP , σL) −→ (σ′
C , σI , σP , σL[put(σL(l), σP (P1)) / `])

[put]

The rule [get] expresses that, if from its state σC , the controller may get the value of link ` between
ports P1 and P2, then the global state evolves with a change in σC , σP and σL: the consumer port P2 of
link ` receives the value taken from the link.

(σC , ` = (P1, P2), σ′
C) ∈ Tget, (d, m′) = get(σL(`))

(σC , σI , σP , σL) −→ (σ′
C , σI , σP [d/P2], σL[m′/`])

[get]

The rule [act] expresses that, if from its state σC , the controller may activate the component γ through
its control input icγ , then the first three fields of the global state evolve. The state of the controller is
modified because it stores the control outputs of the component that is activated; the state of the component
that is activated is modified; the state of the ports is modified, because some of the output ports of the
activated components take new values.

(σC , icγ , σ′
C) ∈ Tact,

∃vod, voc, vid, σ′
γ such that (σγ , vid, vod, voc, σ′

γ) ∈ B(icγ)
and ∀x ∈ dom(vid).vid(x) = σP (x)

(σ′
c, voc, σ′′

C) ∈ S
σ′

P = σP [vod(x)/x][voc(y)/y],∀x ∈ dom(vod),∀y ∈ dom(voc)
(σC , σI = (σ1, σ2, ...σγ , ..., σn), σP , σL) −→

(σ′′
C , σ′

I = (σ1, σ2, ...σ
′
γ , ..., σn), σ′

P , σL)

[act]
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The transitions in B(icγ) that can be taken are those whose input valuation vid : ID −→ D corresponds
to what’s available in the ports. σ′′

C is the modification of σ′
C by storing the values of oc; In σ′

P the outputs
ports in dom(voc)∪dom(vod) are modified according to the valuations vod and voc of the transition; there
are the ports on which the component writes during the transition.

4.3.3 Macro-steps

The global component is of the form (Σg,Σinit
g , ICg, OCg, IDg, ODg,Bg).

Σg = ΣC ×ΣI ×ΣP , where ΣI represents the states of the components, and ΣP the state of the ports
(see section 4.3.1). Notice that the state of the links does not appear here, because the links’ values are not
persistent across global activations.

Σinit
g = Σinit

C ×
∏

I Σinit
I ×σinit

P . The initial configuration is made of the initial state of the controller, the
initial states of the components, and some initial state for the ports, that we may leave undefined. Indeed,
the initial state is irrelevant because, if the controller is compatible with the components’ protocols, then a
port is never read before being written to. Hence ∀p.σinit

P (p) =??.
The behavior Bg(icg) of the composed component for the particular control input icg we’ve been con-

sidering so far is a relation R ⊆ Σg × (IDg −→ D)× (ODg −→ D)× (OCg −→ D)× Σg .
The rule [mac] shows that the tuples of this relation R are deduced from the sequences of micro-steps

that end in a final state of the controller. A macro-step only “remembers” the initial state and the final
state of this sequence, the valuations of the data inputs and outputs are deduced from the state of the global
ports, and the valuation of the control outputs is given by the values associated with the final state σn

C of
the controller, via the function F of the program associated with icg .

The states of links are not persistent across the activations of the composed component. It means that
each macro-step starts with the initial value of the links ∀l ∈ L.σ0

L(l) = m where m is the new value of m
after m.init (see section 2.3).

(σ0
C , σ0

I , σ0
P , σ0

L) −→ (σ1
C , σ1

I , σ1
P , σ1

L) −→ ... −→ (σn
C , σn

I , σn
P , σn

L)
and σn

C ∈ Σfinal
c and (σn

C , vocg) ∈ F

((σ0
C , σ0

I , σ0
P ), σ0

P (IDg), σn
P (ODg), vocg, (σn

C , σn
I , σn

P )) ∈ Bg(icg)
[mac]

5 Semantics of the Protocols

5.1 Formal Definition of the Protocols
The protocols used in the examples are finite-state automata, whose transitions are labeled with various
elements, including conditional data dependencies. The variables denoted by Greek letters are used to
store the values of output control information, and may be used in conditions later on in the protocol; let
us note V the set of such variables, and use D as their domain. See figure 25-(a) for an example.

For a component C = (Σ,Σinit, IC, OC, ID, OD,B), the protocol is an automaton P = (S, Sinit ⊆
S,V, IC, OC, ID, OD, T ⊆ S × LAB × S). LAB is the set of transition labels, of the form:
([C](CI)ic/AOC(CO)) where:

• [C] is a condition on the variables of V , i.e., a function (V −→ D) −→ B
• (CI) is the description of conditional input data dependencies; since we need to distinguish between:

the inputs we need, for which we can accept a fresh value, and the inputs we need, but without being
able to accept a fresh value, the set of input variables is ID ∪ ID. For each i among those variables,
and for each valuation of the variables in V , (CI) tells whether i is needed. Hence (CI) is a function
(V −→ D) −→ (ID ∪ ID) −→ B.

• ic is a control input in IC
• AOC describes the control outputs and the way they are stored in the variables of V . It is a set of

tuples (α, oc) where α ∈ V and oc ∈ OC.
• (CO) describes the conditional outputs; it is a function (V −→ D) −→ OD −→ B.
Using the variables in V is a convenient way to write protocols, but if the types of the output control

variables are finite, this does not add to the expressivity of the protocol language. In order to express the
compatibility relation between the protocols and the controller, we first expand the protocols so that the
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variables in V disappear. The simplified protocol is also a state machine where the valuations of V are
added to the state: P ′ = (SV = S× (V −→ D), Si ⊆ SV, IC,OC, ID,OD, TV ⊆ SV ×LAB’×SV ),
but now the labels LAB’ are of the simpler form (I)ic(O) where ic ∈ IC, I ⊆ ID ∪ ID and O ⊆ OD.

The rule [exp] describes the expansion of a general protocol P into a simpler protocol P ′. It gives the
transitions of P ′ in terms of the transitions of P . See Figure 25-(b). Notice that it generates one transition
per value in the type of each control output, leading to a combined state in which these values are stored.

The initial states are defined by: Si = Sinit × (V −→ D). Any valuation of the variables in V may be
considered, since there should be no read operation on such a variable before it has been assigned a value.

(s, [C](CI)ic/AOC(CO), s′) ∈ T
C(σ) is true
I = {id | CI(σ)(id)}, O = {od | co(σ)(od)}
σ′ = σ[d1/α1, d2/α2, ...dn/αn] where
AOC = {(αk, ock)}k=1..n, and ∀k ∈ 1..n, dk ∈ type of(ock)

((s, σ), (I)ic(O), (s′, σ′)) ∈ TV
[exp]

5.2 Compatibility Semantics
The compatibility is a relation between:

• A set of components {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I

• The set {Pi}I of their simplified protocols
• An architecture A = (ICg, OCg, IDg, ODg, L)
• A controller (ΣC ,Σinit

C ⊆ ΣC ,Σfinal
c ⊆ ΣC , ICg −→ Progs, F, S)

It expresses that, given the way the components are assembled with the architecture, and given their proto-
cols, the controller is correct, i.e., it uses the components according to their protocols. Since the controller
activity happens only in response to the activations of the global component (the big box around the Cis),
we may define two compatibility relations: either we require that the controller respect the protocols Pis
for any sequence of global activations, or we require that it respect the protocols only for those sequences
of global activations that are indeed allowed by the protocol of the global component. The second one is
weaker than the first one. We define the strongest one below.

The definition of the compatibility relation can be split into two sub-properties, that should be both
true. Let us consider a sequence of macro-steps SM , and the sequence Sm of the micro-steps and FIFO
management operations that are produced by the controller as a response to SM .

• first, each protocol Pi can be seen as a recognizer of the language of correct activation sequences
of Ci; we can just erase anything in the labels of Pi but the control input, and we get a language
recognizer in the form of a non-deterministic finite automaton Ai, on which all states have to be
considered as accepting states. The words to be tested are obtained by keeping only the activations
of Ci, in the sequence Sm. For each possible SM , the corresponding Sm projected on the activations
of Ci has to be accepted by Ai, for all Ci.

• second, the protocol Pi can be seen as a transducer, taking a sequence Sm, and producing a sequence
of input port assignments and required inputs. The operation get on the FIFO associated with the
wire connected to the input port a is considered as an assignment to this port (we note it geta in
figure 26). The required inputs are taken from the transitions of Pi, in the order in which they are
fired by Sm.
The controller respects the protocol of Ci is, for any SM , the result of the transducer is accepted by
the language recognizer of figure 26. This automaton expresses the temporal property: an occurrence
of geta cannot be followed immediately by an occurrence of a; there should be an occurrence of a
in between.

6 Related Work and Main Choices for 42
We already mentioned some related work in the introduction. A lot of approaches have been proposed for
heterogeneous modeling frameworks based on the notion of model of computation and communication.
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1

2

(a)

2

γ=b

α=F

β=ONE

2

α=F

γ=b

(id2,id3)
ic3

(od2)

(id2,if ¬α then id3)
ic3/β:=oc2
(od2,if α then od3)

[γ = b]

(b)

1

α=F

β=...

γ=b

(id2,id3)ic3(od2)

β=TWO

Figure 25: An example protocol: (a) simple form; (b) expanded form, if the type of oc2 is { ONE, TWO
}; α is a Boolean, and γ any type.

geta a

a

a

geta

Figure 26: Recognizing correct sequences of input port assignments and required inputs

Moreover, related work includes component-based approaches in other domains than embedded systems,
contract-based specification of all kinds, etc. We first give a (non-exhaustive) list of such works, and then
we insist on some of the choices that have been made for the definition of 42.

6.1 Related Approaches
6.1.1 Component-Based Modeling or Programming Frameworks

ForSyDe (Formal System Design) [43] uses various MoCCs for the various modeling and design phases
of embedded systems; the way MoCCs interact is not formalized; the initial specification model uses a
synchronous model of computation. In 42, the choice of the MoCC, depending on the modeling phase, is
not decided a priori.

Other proposals, like the reactive modules [3], do not introduce MoCCs as a solution to the problem
of modeling heterogeneity, but address almost the same questions, and are entirely formalized. However,
reactive modules are a language in which a number of choices are built-in, while 42 is a general modeling
framework in which new MoCCs can be described.

There are a lot of approaches for software components, not dedicated to embedded systems. Some
models are hierarchical models such as Fractal [18] and SOFA [38]. CORBA is a software architecture
where heterogeneous (programming language and execution platforms) are deployed. Models such as
Enterprise Java Beens(EJB) [17] and CORBA Component model (CCM) [12] do not allow for hierarchic
organization of components.

6.1.2 Contracts

Component-Based approaches for embedded systems often classify contracts into four types: basic, be-
havioral, synchronization, and quality-of-service contracts. Basic contracts are concerned with the types of
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the ports; behavioral contracts may specify sequences of activations; synchronization contracts are not al-
ways clear; they depend on the synchronization primitives of the underlying component language. Finally,
quality-of-service contracts may equip components with a specification of what resources they need, and
what resources they consume.

A contract-based component model for embedded systems is presented in [25]. It targets specification
of embedded software using contracts, including all of the four kinds of contracts, but has limited MoCCs.
42 deals with the first three types only.

Protocols, usually given as state machines, are used to specify components with a behavioral descrip-
tion. In SOFA, components come with a behavioral specification [39]. Each transition is labeled by a
message suffixed by a symbol defining whether the message is passed or received.

Other approaches (see, for instance [15]) express multiple protocols for one component, each protocol
being related to a specific component interface. Protocols described as behaviors are usually exploited to
determine some properties over a set of components such as compatibility, composability and substitutabil-
ity.

The PACC (Predictable Assembly from Certifiable Components) initiative [35] has the same objectives
of predicting the behavior of a component-based system, based on known properties of components.

Session types [46] express sequential (or behavioral) contracts as types.

6.1.3 Expressing the Semantics of, or Programming MoCCs

[23] is very close to the motivations of 42, offering a kind of programming language in which the MoCCs
can be described and executed; it is quite recent and not entirely formalized yet; for the moment it seems
less adequate than 42 for describing fine grain temporal behaviors.

The most relevant and recent work in this category is the family of TAG semantics [6]. In some sense,
42 is an intermediate point of view, between the way MoCCs are programmed but not fully formalized in
Ptolemy, and the way they are formalized but far from programming purposes in the TAG semantics. A
precise comparison between 42 and the TAG semantics is still to be done.

Coordination languages are used to describe systems of parallel software entities. We can distinguish
between data-oriented ones such as Linda [16], and control-oriented ones such as the very first definition of
the Architecture Description Language Darwin [34]. They can be compared to the controller in 42. They
are not associated with a clear hierarchical component-based framework, however. A more recent definition
of Darwin [29] is a configuration language that allows for hierarchical description of component-based
distributed systems.

BPEL (Business Process Execution Language) [8] is used to define business process behaviors based
on Web Services; it is executable. BPEL describes asynchronous processes, and insists on the specification
of Web services so that they can be used as components.

SML-sys [31] (not to be confused with SysML) is a framework based on the functional programming
language standardML, to model heterogeneous models of computation. It is very close to 42 controllers.

6.2 Comments on specific points
A lot of other works can be considered as related work, and it would be very difficult to be exhaustive. As
a complement to the above references, we discuss the main choices that have been made for the design of
42, and we compare them to the choices made in other component frameworks.

6.2.1 Continuous vs discrete models

42 is limited to the discrete case. When we need to include the physical environment in a model, we can
consider components that are non-deterministic discretized versions of some continuous models, but we do
not study how to mix continuous and discrete MoCCs. Ptolemy addresses this problem. Other proposals,
like VHDL-AMS (IEEE norm 1076-1999) or SystemC-AMS concern the modeling of mixed digital-analog
systems, but they do not address the component aspects. Moreover, they concentrate on the collaboration
between a numerical solver and a discrete simulation engine, from a quite operational point of view, without
trying to define the semantics of this heterogeneous combination. Similarly, Matlab/Simulink designs can
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mix continuous and discrete parts, but the notion of a component is not dealt with specifically. In both
cases, if the collaboration between a numerical solver and a discrete simulation engine involves a fixed-
step sampling of the continuous part, the result can be expressed easily in a discrete framework, where
one of the components is a discretized version of a continuous object; this is what we provide with 42.
Nevertheless, there is a need for mixed discrete/continuous models, but the problem is the semantics, not
the implementation.

6.2.2 Strict Hierarchy

A basic component, or a composed component built as an assemblage of other components, are perfectly
undistinguishable in any 42 context. This is true also for Ptolemy, Fractal [9], and to some extent SystemC-
TLM [19] (used for the description of systems-on-a-chip at the so-called transactional level), but not for
other component models like BIP [5], in which there is no dedicated notion of encapsulation that could hide
the details of an assemblage and allow to consider it as a basic component. In some formalisms developed
in the architecture description languages community, there is also a clear distinction between the set of
elementary components, and the object obtained by combining them with an ADL. Sometimes there is no
way to consider that we can “close the box” around this assemblage, obtaining a new component.

We consider this strict hierarchy property to be a key property of component-based frameworks, be-
cause it allows to forget as much as possible about the details of the components, as soon as possible.
Moreover, the hierarchy is essential for the modeling of heterogeneity, since we do not allow to use several
MoCCs at the same level.

6.2.3 Oriented connections vs non-oriented ones

42 adopts a dataflow style architecture description language, with oriented connections. In Ptolemy, in the
modeling tool Spice [44] for electronic circuits, or in the bond graph formalism [26], this is not necessarily
the case, allowing the modeling of various physical behaviors. Even for modeling computer behaviors,
some models choose symmetric synchronization primitives like rendez-vous, thus relying on non-oriented
connections (see for instance the “Architectural Interaction Diagrams”, or AIDs [40]). In 42, we concen-
trate on computer systems, and we claim that rendez-vous-like mechanisms are not adequate for modeling
reactive systems in which the notion of inputs and outputs is a central one. In particular, time is essentially
an input (the system has no influence on it) and is naturally modeled as an input. Hence we choose oriented
wires.

6.2.4 What should a modeling framework encompass?

We think that a modeling framework for heterogeneous embedded systems should be usable to describe
pure synchrony, because this is what exists in synchronous hardware components. It is a quite strong
requirement, because it means that the definition of the MoCCs should allow to describe the fix-point com-
putation which is the basis of any synchronous formalism (the stabilization phase illustrated in section 3.2,
which corresponds to what electricity does in synchronous circuits). A lot of component-based frameworks
based on a set of available connections (blocking, non-blocking, ...) between components do not have this
expressive power. See next point.

6.2.5 Do connections express some behavior?

In 42, the connections only express that some information may flow from one component to another. There
is no synchronization nor memory attached to the connections, a priori. The controller may decide to
manage some temporary memory corresponding to the wires in order to describe complex communication
patterns, but this does not mean that the wire behaves as memory for the connected components, since the
lifetime of this memory is limited to the macro-step. Moreover, the choice of the memory attached to the
wires is part of a particular MoCC, this is not built in the 42 general modeling framework. [23] adopts the
same point of view.

Some component frameworks rely on communication patterns expressed directly by the connections,
for instance point-to-point connections with a finite (small) set of synchronization effects made available,
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like: blocking write on one side, non-blocking read on the other side; this is quite restrictive. The need for
more complex communications patterns usually leads to the following solution: if a communication pattern
has a complex behavior, it is a component, not a connection. This is the case for SystemC-TLM [19], where
buses, or even networks-on-a-chip, are considered as components. In this case, the remaining connections
between components (including the communication components) are only links between ports, as in 42.
Notice, however, that in SystemC, the meaning of the connection between ports is built in the definition of
the SystemC execution engine, while in 42 it is programmed freely in the controller.

6.2.6 Architecture Description Languages and MoCCs

In 42, the ADL has a dataflow style. Since the connections have no meaning until the MoCC is defined as
a controller, this only means that we express data dependencies explicitly in the ADL, and control aspects
in the MoCC. As we mentioned in section 1.4, Ptolemy is more liberal. For 42, we chose only one style of
architecture description language, because we want a simple formal semantics.

6.2.7 Atomicity

42 is built in such a way that the operation that encapsulates subcomponents Ci to build a new component
C also defines what atomicity is, for C: starting from a notion of atomicity as viewed by the Cis (their
various activations), the controller defines the activations of C by considering a sequence of actions as
atomic. The activations of C can be viewed as macro-steps, corresponding to a sequence of micro-steps.
In other words, forgetting details about the internals of a component also means that we should be able to
consider its activations as atomic. It is compulsory to be able to reason locally on a component, without
caring about potential interrupts from the context in which it will be used.

Atomicity is also related to the notion of “fresh” inputs. In 42, we are able to express that a component
needs several steps to finish dealing with a set of inputs, before being able to accept new ones.

6.2.8 Time and temporal granularity

It may seem at first sight that 42 does not allow to deal with time. In fact, it adopts the principle called
multi-form time first introduced by G. Berry for Esterel [7]: physical time is nothing special but a sequence
of events (seconds, milliseconds, ...), and any sequence of events (meters, or beacons on a track) can be
considered as a time scale for the reactive system that perceives these events. Using timed automata [2] to
deal with time in 42 would limit drastically the manipulation of time-related notions. For instance, in TAID
(a timed extension of the AIDs already mentioned above), it is impossible to model distributed systems,
because the way time is modeled implies a notion of global clock.

The multi-form time principles also allows to consider several related time scales (seconds and mil-
liseconds, ...).

In 42, time is discrete and logical; if “real time” is needed, it is represented by a particular clock
input. This allows descriptions of distributed systems in which the various clocks of the processors may be
unrelated (or partially constrained) clock inputs. It is very important to be able to de-correlate the clocks
of the computing units in a distributed system, to represent systems faithfully. A formalism where time is
a single dedicated event, like timed automata, makes it quite difficult to describe systems with several time
events.

6.2.9 Specifying components, and the notion of a contract

42 has very expressive control contracts, i.e., protocols that talk only about the control inputs/outputs and
the availability of data, not about the values of the data exchanged. In Signal, the powerful notion of
constraint can mix control (clocks) and data values in the same expression. It is also the case in Lustre,
with a reduced expressive power. The choice we made for 42 is to distinguish between control and data
(it is also the principle of the LAAS architecture for intelligent robots [1]), because the control between
subcomponents, and the moments when data is available, have a lot to do with the MoCC described, while
the values of data have not.
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42 could be equipped with data contracts, following the ideas of [30]. But the most interesting extension
is towards quality-of-service contracts (see conclusion).

7 Conclusion and Further Work

7.1 Summary on 42
We have defined the general framework 42 for component-based modeling of heterogeneous systems, and
shown its use for Kahn Networks, pure synchronous systems, or heterogeneous systems. Heterogeneity
is dealt with as in Ptolemy, by using various MoCCs at the various levels of hierarchy. The synchronous
example shows that we can include hardware descriptions in a 42 model. The heterogeneous example
shows that 42 may be used to show how an quite abstract model of a hardware architecture (very much in the
spirit of “transaction-level-modeling) can be mixed with a detailed view on several pieces of synchronous
software that run on separate processors.

42 is meant to be used as an abstract description level for describing the concurrent and timed be-
havior of heterogeneous embedded systems components. It concentrates on a precise modeling of logical
time and concurrency for functional “system-level” descriptions of embedded systems, where the main and
more serious errors appear. It is dedicated to discrete systems, and offers a support for the types of hetero-
geneity we have encountered in a large number of cases-studies. It does not deal with quality-of-service,
or performance evaluation, of embedded systems.

42 is not meant to become another language for the programming of embedded systems. We concentrate
on system-level descriptions. We are developing a proof-of-concept tool for allowing graphical descriptions
of 42 architectures, specification of controllers, and the use of existing code as a 42 components (for
instance, the C code produced by the Lustre compiler, or the code of a thread in java, with appropriate
wrappers). The tool will allow the simulation of a 42 model by interpreting the controller code, and it will
propose a number of verifications based on the definition of the protocols.

7.2 Further Work
Concerning semantical issues, we will compare our quite operational semantics with the family of TAG
semantics [6]. The idea is to relate the operational view of MoCCs implemented by controllers, with the
fully declarative view of MoCCs as expressed in the TAG semantics. Expressing the semantics of MoCCs
by operational means has been proposed by several teams. It is related to the idea of “abstract semantics”,
in which the semantics of MoCCs could be described without taking concrete language details into account,
as the abstract syntax is used to forget about concrete syntax details.

In 42, the language of the controller plays a central role, with respect to the definition of (abstract)
semantics. We have to study how to characterize the expressive power of the controller. For the moment,
we have tried to characterize the type of memory it needs, but we should also look at its general expressive
power.

An interesting question (orthogonal to the previous remarks) is whether we need parallelism in the
controller. Since the controller is there to express the semantics of parallelism and communication between
the components, it seems that this would just move the problem to another level. In fact, for modeling
purposes, we conjecture that a non-deterministic controller that produces interleavings of the components’
activities is enough. For implementation purposes, it might not be the case.

In order to use 42 as a high-level modeling framework, we need to define concrete languages for the
controller. For the examples we have used an imperative style with calls to a random function when
needed, but we could think of a language based on constraints, to avoid explicit calls to random. Reusing
the language Lutin [41] that has been defined for the generation of test scenarios or the simulation of
non-deterministic systems, could be an idea. It could also answer the above question about expressing
parallelism in the controller: potential parallelism is easier to describe in a constraint-based framework
than in some imperative style.

Finally, in order to extend 42 with the modeling of non-functional aspects, we will study how to in-
tegrate into 42 the ideas that we used for the modeling of energy consumption in sensor networks [42]:
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each component has a non-functional model (an automaton with consumptions attached to the states) and
the parallel composition of two such models defines precisely what are the consumptions attached to the
combined states. In 42, the components could have a functional and a non-functional parts, and the con-
troller could also have a functional part (as described in this paper) and a non-functional part describing
how the non-functional models of the components are composed, depending on the MoCC. We will first
look at MPA (Modular Performance Analysis) [13]. Some recent work [37] has shown that the traditional
models of performance analysis should be enriched with behavioral information; extending 42 with models
of this kind could be a way of finding a compromise between very detailed behavioral models on which
performances can be assessed by simulation methods only, and quite abstract analytical models, on which
performances can be given by analytical solutions, but which are often overly approximate.
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