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Abstract

This paper intends to clarify recent efforts proposed by the Berkeley school in order
to give a formal semantics to the Ptolemy toolbox. We show that the proposed
semantics is indeed a generalisation of a Kahn semantics based on tag systems. We
make this proposal a precise one by showing for several Ptolemy domains what is
the corresponding tag system and how operators can be defined. We first remark that
this semantics doesn’t need ”absent” values. We also discuss some domains which
do not obey this semantics. We then discuss some advantages of this semantics,
namely that it provides heterogeneity and distribution for free. In particular, we
show that while the semantics is naturally expressed in terms of actors, directors are
not essential for semantical purposes and are only justified by simulation efficiency
purposes. We conclude that in most cases, directors do not play an important part in
the definition of a Model of Computation and Communication.
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Chapter 1

Introduction

The semantics of heterogeneity The need for heterogeneity in modelling and development
tools has been increasing while applications are becoming more and more complex. In view of
this state of matters, pioneering frameworks like Ptolemy which have started addressing the issue
of heterogeneity a long time ago are becoming always more popular and raising an ever grow-
ing interest. Thus, concepts of this framework like models of computation and communication
(MoCC), actors, directors and so on have been getting an increasingly larger acceptance.

Among the problems raised by this subject, the semantic question is important. While homo-
geneous applications are in general well-mastered, problems start at their interfaces when several
subsystems are composed to form a larger application. Ambiguities, semantic inconsistencies
etc. are likely to produce undesired behaviours which can badly impair the overall functioning
of the composed application. To this end, Lee & Sangiovanni have introduced their celebrated
tagged signal model [8] which was meant to provide a precise semantics to such frameworks as
Ptolemy.

Yet, there was still a large gap between this denotational formalism and the behaviour of
Ptolemy which is still largely bound to the operational semantics of the simulation engine. Efforts
have been devoted to filling this gap: for instance BIP which is based on operational semantics [1]
and 42 [13] which provides building blocks for designing MoCCs in a comprehensive way.

The reason why the gap is so large is that tag systems are very general ones and do not
provide any means for executing them. In particular the tag system approach is relational and
composition proceeds by intersection of behaviours described in extension (see for instance [3]).

The application of Scott theory to tag systems For this reason a comprehensive step toward
closing this gap has recently been taken in [9] so as to make things simpler by getting rid of
non determinism, that is to say, by trying to see whether things could get simpler by restricting
from relations to functions. After all, determinism is something designers are fond of, most
simulators like Ptolemy are deterministic and, when non determinism is needed, in most cases it
can be emulated by adding extra inputs to functions, aiming at choosing between several possible
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futures.1

Yet, this was not sufficient: when composing functions, inputs of one function can become
outputs of another one and conversely, creating feedback loops and resulting in the functional
aspect being lost: we get systems of equations which can have no solution as well as several
solutions.

But this is a well-known issue of denotational semantics and well-known solutions exist. The
most widely adopted one is Scott’s semantics [15]: if the domain of interest is a complete partial
order (CPO) and we restrict ourselves to continuous functions, then we know that every system of
equations has a least solution and it is sensible to decide that this is the semantics of the system.
Moreover, the least solution is itself a continuous function of its free inputs and thus can in turn
be composed at will. The framework is thus closed by composition (and even by lifting to higher
orders) and works perfectly well.

But there was another problem. The basic objects of the tagged signal model are signals
which in a deterministic point of view can be seen as functions from tags to values. The way
Scott turns these signals into CPOs is to turn the value set into a CPO because in this way, the
CPO property gets automatically lifted from the image set to the function set. Thus, in this Scott
theory applied to tag systems, the tag set does not need to have any order property. But, in tag
system theory, tag sets are partially ordered ones and basically have a time flavour: in Ptolemy,
computations go from past to future, while in the Scott framework, it does not matter (tags may
not have any order and there may be neither past nor future!).

Towards Kahn semantics Thus [11] had to modify Scott’s order by requiring a prefix ordering
principle in the spirit of the Kahn order [7]: a signal is larger than another one not only if it is
more defined but also if both signals are defined on some initial segment of the tag set. In this
way, a signal s1 is larger than another signal s2 if the initial segment over which s1 is defined
is larger than the initial segment over which s2 is defined. In this way, computations can only
extend the initial segments on which signals are defined and naturally flow from past to future.

There was still a problem due to the fact that some tag sets, for instance associated with the
discrete event (DE) domain, are infinite in several dimensions: in this case, initial segments are
infinite and thus a signal defined over an initial segment has to have an infinity of values. In some
sense, time may not progress in the same way as in the Zeno phenomenon of hybrid systems. But
it is not possible to compute an infinite number of values in a simulator. While [11] solved the
problem based on a Kahn order, [9] proposed instead to borrow the idea of absent value from the
French synchronous language school [2]: thus a signal defined on an initial segment may have
only a finite number of computed non absent values (while absent values need not be computed).

The paper’s goal and content The starting point of this paper was the observation that a the-
ory based on tags does not need to use “absent” values because tags record the time or reaction
index on which computations are performed (for a theory of synchronous reactive systems with-
out “absent” values, see [14]). Our purpose in this paper is thus to show how sticking to the

1This is the way probability theory works: by adding input spaces about which the only knowledge we can have
is their probability measure.
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Kahn semantics helps clarifying this point of view and has valuable consequences. Among these
consequences there is the ability of Kahn networks to be executed in a chaotic and distributed
way. This opens the way for a distributed simulation and execution of heterogeneous systems.
In particular, distribution comes for free and this is a very appealing feature of this semantics.
But another very appealing feature is that heterogeneity itself comes for free: the (categorical)
sum of CPOs is indeed a CPO. This allows freely merging tag sets and, together with the chaotic
property of fixpoints, this generalised Kahn semantics does not require several kinds of directors
but for efficiency purposes.

The rest of this paper is thus organised as follows: In Section 2 we present the Kahn theory
of deterministic tag systems. In Section 3 we provide our application of this theory to several
MoCCs and, in Section 4 we discuss the interest of our proposal. Finally we conclude by drawing
some perspectives and discussing future work.

Verimag Research Report no 2008-6 5/39
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Chapter 2

A Kahn Theory of Deterministic Tag
Systems

2.1 Deterministic Tag Systems
Signals The basic idea of the Tagged Signal Model [8] is to consider a signal s ∈ S as a subset
of pairs “tag, value” which can be formalised as:

S = {s | s ⊆ T× V }

where

• V is a set of values,

• (T,≤) is a partially ordered set of tags

Deterministic Signals These signals are non deterministic ones: several values can be asso-
ciated with the same tag. As we aim at considering deterministic tag systems, we first need to
consider deterministic signals. This amounts to saying that we only consider signals that are
partial functions from tags to values which we denote as:

S = T ↪→ V

Processes In the deterministic setting, processes (or actors, following the Ptolemy terminol-
ogy) are just functions transforming input signals into output signals. For the sake of simplicity,
we do not consider the types of signal values and assume an “universal” type V . Thus, the set of
processes, P , is just the set of total functions from Sm to Sn:

P = Sm 7→ Sn

where m, n are the input and output arities.

7
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Functional Composition In this deterministic setting, things are very simple. Processes are
composed by functional composition and a composed process is just a system of equations, e.g.,

s3 = p1(s1, s2)

s4 = p2(s1, s3)

which can define another process p3 such that

(s3, s4) = p3(s1, s2)

Feedback Loops However, this raises the question of feedback loops: for instance consider
the composed system:

s3 = p1(s1, s2)

s2 = p2(s1, s3)

What does it compute? This system of equations may have no solution or it may have several
solutions. Then determinism can be lost.

2.2 Scott Semantics
Scott semantics [15] provides a well-known solution to this issue. It consists of the following
changes to the previous framework:

1 Add to V an undefined element ⊥ and a partial order relation ≤ such that:

• V ⊥ = V ∪ {⊥}

• ≤ is the least order relation over V ⊥ generated by:

∀v ∈ V,⊥ ≤ v

This makes (V ⊥,≤,⊥) a (flat) CPO. ⊥ is clearly the least element of V ⊥ and any sequence of
ordered elements (a chain) has a least upper bound (

∨
) which is ⊥ if the chain contains only

⊥’s, or some v1 if the chain contains this v1: note that in the latter case the chain cannot contain
another v2 distinct from v1 as the two are incomparable.

2 Redefine S as the set of total functions from T to V ⊥:1

S = T 7→ V ⊥

Then S inherits the CPO property of V ⊥ by defining:
1Obviously, a partial function can be made total by giving it the value ⊥ whenever it is not defined.
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• s ≤ s′ if for any t ∈ T, s(t) ≤ s′(t) which amounts to saying that s is smaller than s′ if it
is less defined,

• the bottom element of S, also denoted ⊥, as the signal which is undefined everywhere:
⊥(t) = ⊥.

Given a chain of signals s0, . . . sn, . . . , and given any tag t, s0(t), . . . sn(t), . . . is chain of
values and ∨

{s0, . . . sn, . . . }(t) =
∨
{s0(t), . . . sn(t), . . . }

3 Restrict processes to continuous functions from input to output signals, which means that,
given a chain of inputs, that is to say a sequence of more and more defined signals, the outputs
should form a chain and∨

{p(s0), . . . p(sn), . . . } = p(
∨
{s0, . . . sn, . . . })

Note that continuity implies order preservation:

s ≤ s′ ⇒ p(s) ≤ p(s′)

and note that this definition for single-input/single-output processes can be extended naturally
to processes of different arities because products of CPOs inherit the CPO structure of their
components. In particular, the order on the product is the component-wise order.

4 Then the Kleene theorem says that any system of equations has a (unique) least solution,
which is in turn a continuous function of its free input signals. Thus composition preserves
determinism.

2.3 The Causality Problem
But this solution is still unsatisfactory because it does not take advantage of the ordering over tags
which have a flavour of time. In particular, a process may as well compute from future to past.
For instance, we can easily design a process which is continuous in the Scott sense but not causal:

Take T = N and the usual order over integers. Then define:

• next(x)(n) = x(n + 1)

• if9(x, y)(n) =

{
x(n) if n ≤ 9
y(n) otherwise

• (x + 1)(n) =

{
x(n) + 1 if x(n) 6= ⊥
⊥ otherwise

Verimag Research Report no 2008-6 9/39
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It is easy to see that these processes are continuous and the same holds for the composite process
defined by the system of equations:

x = if9(next(x) + 1, y)

Indeed, there is a unique solution to this system:

x(n) =


⊥ if n < 10 and y(10) = ⊥
y(10) + 10− n if n < 10 and y(10) 6= ⊥
y(n) otherwise

But it is also easy to see that this solution needs sometimes to be computed “backwards”,
from future to past. Assume y is everywhere defined. Then the first item of x that can be
computed is x(10) = y(10). Then we can compute x(9) = x(10) + 1 and then proceed to x(8)
and so on. Let us intuitively call non causal processes those processes which may need such
backward computations.

2.4 Kahn Theory

Kahn’s world is a special case of Scott’s world. In Kahn’s world, the tag domain is N, which is a
totally-ordered and enumerable set. Signals are partial functions from N to a set of values V . In
addition, all signals are assumed to be prefix-closed, meaning that if they are undefined at some
time n then they remain undefined for all n′ > n.

Note that in Kahn’s original paper [7] signals are elements of V ∞ = V ∗ ∪ V ω where V ∗ is
the set of all finite sequences over V and V ω is the set of all infinite sequences over V . The set of
all prefix-closed signals from N to V is isomorphic to V ∞: partially-defined signals correspond
to finite sequences and totally-defined signals to infinite sequences.

Looking at signals x and y as sequences, x ≤ y means that x is a prefix of y (there exists a
sequence x′ such that y = x · x′, where x · x′ denotes the concatenation of x and x′). With this
order, the set of all signals becomes a poset. It is in fact a CPO: (1)⊥ is the empty sequence ε; (2)
the least upper bound of a chain of increasingly defined signals is either: (2.1) the most defined
one if the chain is finite or: (2.2) the infinite sequence defined by the chain, because an infinite
sequence is a maximal element of the CPO (concatenating a sequence to an infinite sequence
does not change this sequence).

Processes are assumed to be continuous functions from Sm to Sn. Again we can define the
semantics as the least solution of systems of equations. Thus the Kahn theory solves the feedback
loop problem. But it also solves the causality problem: a continuous process is order preserving
and, in terms of Kahn order, this means that if x is a prefix of y, it is also the case that f(x) is a
prefix of f(y). This means that the future of x cannot influence the present of x. Computations
are guaranteed to flow from past to future.

10/39 Verimag Research Report no 2008-6
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2.5 Kahn Generalisation

Kahn signals can be seen as tagged signals over the particular tag set N. In order to get rid
of non-causal processes that can arise from Scott’s theory, we would like to generalise Kahn’s
approach to other tag sets. The technical difficulty here is that in general, tag signals cannot be
prefix closed because prefixes can be infinite. While in [9] this problem is solved by introducing
a special “absent” value, [11] proposes an alternative, more general approach which does not
require introducing absent values while still being compatible with infinite prefixes.

Let S be the set of all functions T 7→ V ⊥, where T is a poset. Following Kahn, let us endow
S with a partial order, defined as:

Definition 2.5.1 (Prefix order over signals). A signal x is a prefix of a signal y, if for all t,
y(t) 6= x(t) implies for all t′ ≥ t, x(t′) = ⊥.

It is easy to see that this is indeed an order relation. Please note also that this definition allows
“holes” in the defined values; for instance we could have:

t 1 2 3 4 5 6 . . .
x 1 ⊥ 2 ⊥ ⊥ ⊥ . . .
y 1 ⊥ 2 ⊥ 3 ⊥ . . .

In the above example we have indeed x ≤ y.

Definition 2.5.2 (Order-Preserving Process). A process p is order-preserving if, for any two
signals, x, y if x is a prefix of y, then p(x) is a prefix of p(y).

This means that only the past can influence the present value of a process.
We can understand now why the example of Section 2.3 is not order preserving: this is due

to the fact that if9 is not order preserving. Take, for instance:

y(n) = n

x1(n) = ⊥

x2(n) =

{
0 if n = 0
⊥ otherwise

Thus, x1 is a prefix of x2. However, by letting

z1(n) = if9(x1, y)(n) = ⊥ if n < 9, n otherwise

z2(n) = if9(x2, y)(n) = ⊥ if 0 < n < 9, n otherwise

we can see that z1 is not a prefix of z2, as z2(0) 6= z1(0) and z1(10) 6= ⊥.

Proposition 2.5.1 (CPO). S endowed with the prefix order is a CPO.

Verimag Research Report no 2008-6 11/39
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Proof. First, take ⊥(t) = ⊥. Then we notice that given x ≤ y in S, for any t, x(t) ≤ y(t)
according to the CPO V ⊥. Thus, if {xn} is a chain, then, for any t, {xn(t)} is a chain and we
can take: ∨

{xn}(t) =
∨
{xn(t)}

Then, restricting to continuous processes allows us to preserve both determinism and causal-
ity.

2.6 From Generalised to Ordinary Kahn Theory
In this generalised Kahn theory, signals are partial functions from a partially ordered tag set T
to a set of values V . These signals can thus be seen as “labelled partial orders” and are thus
fairly general. Yet, in many cases, for instance those which correspond to what is considered
in [11] and which are addressed at chapter 3, this generality is not needed and the approach can
be simplified. This simplification is based on two assumptions and when these assumptions are
in force, signals can be seen as streams and the theory reduces to an ordinary Kahn theory.

2.6.1 Simplifying assumptions
Assumption 1: The tag set is a total order.

Assumption 2: The defined values of a signal can be indexed in non decreasing order.
This means that there is an order preserving isomorphism from the domain of a signal

(dom(x) = {t | x(t) 6= ⊥}) to (an initial segment of) N. We call this a discrete signal.

Combining these two assumptions yields signals whose defined tags are order isomorphic to
(an initial segment of) N.2 In this case we speak of a discrete total order.

An important question arising from the following assumptions is whether the restriction of
signals based on these assumptions still keep the CPO structure defined in 2.5.1. The following
proposition provides a positive answer.

Proposition 2.6.1. The set of discrete signals over a totally ordered tag set (DTOS) endowed
with the prefix order is indeed a CPO.

The proof requires an additional lemma:

Lemma 2.6.2. Infinite DTOS signals (that is to say signals with an infinite number of defined
values) are maximal elements among DTOS signals.

2Note here the importance of requiring an order preserving isomorphism in assumption 2. Rationals are both
totally ordered and countable but not order isomorphic to N.
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Proof. (lemma 2.6.2) Let x be a DTOS signal with an infinite number of defined values and
assume by contradiction a DTOS signal x′ such that x < x′. Then since x 6= x′, there exists a
tag t such that x(t) 6= x′(t) and since x ≤ x′, for all t′ ≥ t, x(t′) = ⊥

Thus, x′(t) is defined and, x′ being DTOS, t has some finite index i in x′. Since x ≤ x′, x has
less defined values than x′ before t and has no defined value after t. Since the tag set is a total
order, it comes that x has less than i defined values and this contradicts the assumption according
to which x has an infinity of defined values.

Proof. (proposition 2.6.1) As previously we take ⊥(t) = ε which obviously belongs to DTOS.
Then we consider a chain {x0 ≤ . . . xn ≤ . . . } of DTOS signals. There are two cases:

1. there is some infinite signal xn in the chain. Then according to the previous lemma, this is
a maximal element and no other signal can be larger in this chain. Thus the chain has only
a finite number of distinct signals and xn is the largest one. The least upper bound of the
chain is thus xn.

2. every signal in the chain is finite. Each of them is indexed over an initial segment of N
thus included into N. The indexing sets form an increasing sequence of initial segments of
N, upper bounded by N. The least upper bound of the chain can thus be indexed on Nand
is therefore a DTOS signal.

2.6.2 DTOS signals as streams
When dealing with DTOS signals, tags associated to defined values can be indexed in increasing
order and signals can be seen as streams of couples (value, tag) that is to say to a DTOS signal x
we can associate its stream sx : (V ×T)∞ where there is no more need to consider an undefined
value.

The tag ordering constraint is then for any s ∈ DTOS such that s = (v1, t1).(v2, t2).s
′,

1. t1 < t2

2. s′ ∈ DTOS

It is then clear that the stream view of DTOS signals enjoys the same properties as the functional
one. Formally the stream transformation is as follows:

St(⊥) = ε

St(x) = (x(t1), t1).St(x[t1 → ⊥])

where:

• t1 is the least tag yielding a defined value in x

• x[t1 → ⊥] means the function x where the value at t1 has been changed to ⊥.

Verimag Research Report no 2008-6 13/39



A. Benveniste, P. Caspi, R. Lublinerman, S. Tripakis Kahn Actors

We can then formally state the property:

Proposition 2.6.3. St is a CPO isomorphism between DTOS signals and streams.

This view is inspired by some previous work due to some of the authors of the present re-
port [3].

14/39 Verimag Research Report no 2008-6



Chapter 3

Examples

3.1 Kahn Process Networks

Kahn Process Networks (KPN) naturally fit into that landscape. N is the tag set and there are no
“holes” between defined values. Thus signals are just streams of defined values. An operator like
the sum operator over numbers can be lifted to streams according to the following Haskell-like
definition:

sumK ε y = ε
sumK x ε = ε
sumK v.x v′.y = (v + v′).sumK x y

where ε denotes the empty stream and “.” denotes concatenation. Basically, the Kahn actor sumK

waits until both its input queues are non-empty. Then, it removes their heads, adds them, puts the
result into its output queue and starts again. Note that waiting until both queues are non-empty
can be implemented using Kahn’s blocking read operator, without having to test both queues
simultaneously: sumK simply blocks on one queue, then on the other. The order in which queues
are read can be arbitrary.

3.2 Discrete Events

3.2.1 A Tagged View of Discrete Event Signals

Discrete event (DE) signals are discrete signals (according to assumption 1) with real-time
stamps.

Tag set: A tag set for DE is:

T = R+ × N

15
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v7

t1 t2 t3 t4

v1 v2

v3

v4 v5

v6

Figure 3.1: A discrete-event signal.

where if τ = (t, n), t denotes a time stamp and n the index of events sharing the same time
stamp.1 This tag set is ordered with the lexicographic order:

(t, n) ≤ (t′, n′) iff either t < t′ or t = t′ and n ≤ n′

This has been called super-dense time by some authors [12, 11]. It is interesting to notice
that this is a total order.

Then a discrete event signal x is a total function x : T 7→ V ⊥ such that the following
constraint holds: for any two tags τ, τ ′ ∈ T, with τ = (t, n) and τ ′ = (t, n′) and n ≤ n′, if
x(τ ′) 6= ⊥ then x(τ) 6= ⊥.

Figure 3.1 shows an example of such a signal. In this example the following table provides
the correspondence between tags and values:

tag t1, 1 t2, 1 t2, 2 t3, 1 t4, 1 t4, 2 t4, 3
value v1 v2 v3 v4 v5 v6 v7

We can remark that in this definition, there are many undefined (or absent) values namely be-
tween two consecutive time stamps holding defined values and after the last defined value sharing
a given time stamp.

3.2.2 A Streamed View of Discrete Events
Since discrete event signals are discrete signals over a totally ordered tag set, they are DTOS
signals and we can apply the results of section 2.6.1, thus providing a streamed view of them:

sx : (V × (R+ × N))∞

where R+ is the set of non-negative reals modeling the physical (or real) time.
Furthermore we can remark that in this definition, the second component of the tag set is not

necessary because we can always rebuild it: it suffices to add increasing indices to consecutive

1This approach could be easily extended to tag sets T = R+ × NN which could account for so-called “nested
oversamplings”. However, for the sake of simplicity, we do not address here such an extension.
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events sharing the same timestamp in the stream. Formally, we can define an index rebuilding
mapping Ir : (V × R+)∞ → (V × (R+ × N))∞ by:

Ir1(t′, n, ε) = ε
Ir1(t′, n, (v, t).sx) = if t == t′

then (v, (t, n + 1)).Ir1(t, n + 1, sx)
else (v, (t, 1)).Ir1(t, 1, sx)

Ir(ε) = ε
Ir((v, t).sx) = (v, (t, 1)).Ir1(t, 1, sx)

3.2.3 An Actor Example

It is interesting to see how to define some primitive actors in DE. Let us start by trying to define
the sum of two signals.

Sum: First Definition

We could define the sum as follows, by considering that DE signals are streams of pairs in
V × R+:

sumDE1 ε y = ε
sumDE1 x ε = ε
sumDE1 (v, τ).x (v′, τ ′).y =

if τ < τ ′

then sumDE1 x (v′, τ ′).y
else if τ = τ ′

then (v + v′, τ).sumDE1 x y
else sumDE1 (v, τ).x y

But this definition is a bit unsatisfactory as, since events are countable, they may appear only
rarely at the same time and the sum will be mostly undefined.
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Sum: Second Definition

To correct the above problem, we attempt the following idea: output any signal which is defined
at a given tag and output their sum when they are both defined:

sumDE2 x ε = x
sumDE2 ε y = y
sumDE2 (v, τ).x (v′, τ ′).y =

if τ < τ ′

then (v, τ).(v′, τ ′).sumDE2 x y
else if τ = τ ′

then (v + v′, τ).sumDE2 x y
else (v′, τ ′)′.(v, τ).sumDE2 x y

But this definition is not correct because it is not order-preserving. Consider, for example,
x = (1, 1), y = (1, 1)(2, 2) and z = (1, 2)(2, 3). We have x ≤ y, so if sumDE2 were order
preserving we should have sumDE2 x z ≤ sumDE2 y z. But sumDE2 x z = (1, 3)(2, 3) and
sumDE2 y z = (1, 3)(2, 5) which are not comparable.

A way to correct this issue is to wait before outputting some item to be sure that it will not
be outdated by a previous one appearing on the other input queue.

sumDE2 x ε = ε
sumDE2 ε y = ε
sumDE2 (v, τ).x (v′, τ ′).y =

if τ < τ ′

then (v, τ).sumDE2 x (v′, τ ′).y
else if τ = τ ′

then (v + v′, τ).sumDE2 x y
else (v′, τ ′)′.sumDE2 (v, τ).x y

Figure 3.2 illustrates this last definition which can be proved to be continuous though it uses,
unlike in KPN, the infamous2 operation that tests values in input queues without removing (con-
suming) them.

Sum: Third Definition

Another solution is to store values of events in registers (i.e., state variables). These registers,
denoted v and v′ below, should hold default values.

2It is called infamous because its undisciplined usage may result in non-continuous processes.
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Figure 3.2: Sum (DE2) of two discrete-event signals.
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sumDE3 (v0, v
′
0) x ε = ε

sumDE3 (v0, v
′
0) ε y = ε

sumDE3 (v0, v
′
0) (v, τ).x (v′, τ ′).y =

if τ < τ ′

then (v + v′0, τ).sumDE3 (v, v′0) x (v′, τ ′).y
else if τ = τ ′

then (v + v′, τ).sumDE3 (v, v′) x y
else (v0 + v′, τ ′).sumDE3 (v0, v

′) (v, τ).x y

Basically, each input event is bufferised and buffers are overwritten by a new occurrence of
the same input. When an input event occurs, and we are sure that no event with the same tag is
present in the other input channel, its value is added to the bufferised value of the other input and
the result is output. When both input events are present with the same tag, their values are added
and the result is output.

3.3 Synchronous Reactive

Synchronous reactive (SR) systems are very similar to discrete event ones, but real-time is re-
placed with a logical integer time. Thus the tag set is3 N × N where the first component gives
the reaction logical time and the second one the multiplicity index in that reaction. The reason
we need both components is to model easily multi-clock systems: in such systems, a signal may
be “absent” in some reactions As with DE signals, we can have a stream view of SR signals as
follows:

sx : (V × N)∞

In this interpretation x(n) = (v, r) means the n-th occurrence of x has value v and takes place
within the r-th reaction.

Thus, ordinary SR actors are very similar to those of DE. Yet in the case of the sum, it is
likely that the first version will be chosen. Indeed, if it is unlikely that two independent events
take place at the same time, it is not the case of synchronous events which can share the same
reaction index.

A special treatment can be used for clock and boolean actors which are likely to follow the
so-called constructive semantics of Berry [4]. For instance, a “logical-or” actor which receives
a “true” value from one input does not need to wait for the other input. Indeed, be it present or
not and whatever be its value, the constructive semantics allows outputting a “true” value at the
corresponding reaction index.

3The same remark on a possible extension to nested oversamplings as stated at section 3.2.1 applies here.
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ε or y = ε
x or ε = ε
(vx, nx).x or (vy, ny).y =

if nx < ny

then if vx

then (vx, nx).(x or (vy, ny).y)
else x or (vy, ny).y

else if nx > ny

then if vy

then (vy, ny).(x or y)
else (vx, nx).x or y

else ((vx ∨ vy), nx).(x or y)

3.4 Continuous Time
The case of continuous time is more involved. We can consider several issues here:

Exact Semantics

The issue of exact semantics is linked to the theory of ordinary differential equations and it
has been addressed in terms of Cauchy-Lipschitz theorems on the existence of solutions [10]
and even in terms of non-standard analysis [5]. Yet it seems to us that exact CT does not fit
into the Kahn landscape: in order to exactly solve a differential equation, this equation has to be
considered globally as a whole and it cannot be decomposed into its components. For instance we
cannot define the exact behaviour of an integrator, independently from the network of operators
which feeds it.4

Approximate Semantics

This is the realm of numerical solvers. There are many solutions and it is not clear which one
fits into the Kahn landscape. Yet, we can claim here that, at least, Euler first order integration
method fits into this landscape by providing the corresponding definition:

Given a differential equation y′ = f(y), y(t0) = y0 which we rewrite as:

y(t) = y0 +
∫ t

t0
x(u)du

x = f(y)

the Euler method proposes the iterative solution

y(t′) = y(t) + x(t)(t′ − t)

with the accuracy a = |x′(t)|(t′ − t)/2.

4Indeed in theory it would need to check whether this network computes a Lipschitz function or not.

Verimag Research Report no 2008-6 21/39



A. Benveniste, P. Caspi, R. Lublinerman, S. Tripakis Kahn Actors

We can propose the following Haskell-like implementation. In this definition, the clock cl
stands for the stream of requests at which the result is asked for, in general but not always a
periodic sampling. The operator sumaux is the running function. It stores the last value of the
integral, the past derivative and the time at which it has taken place. When the new derivative
arrives, it computes the second derivative x′ and compares the requested step with the required
accuracy a. If the accuracy is not met, the step is shortened so as to meet it. In this definition,
we assume a close loop differential equation in such a way that the derivative is a function of
the integral. In this case we know that the derivative cannot run faster than the past value of the
integral.

sumCT (y0) x ε = ε
sumCT (y0) ε cl = ε
sumCT (y0) (x, t).xs t′.cl =

if t′ ≤ t
then (y0, t

′).sumCT (y0) (x, t).xs cl
else let y = y0 + x(t′ − t)

in (y, t′).sumaux(y, t, x) xs cl

where
sumaux (y1, t0, x0) x ε = ε
sumaux (y1, t0, x0) ε cl = ε
sumaux (y1, t0, x0) (x, t).xs t′.cl =

let x′ = |x− x0|/(t− t0)
in if x′(t′ − t)2 < 2a

then let y = y1 + x(t′ − t)
in (y, t′).sumaux(y, t, x) xs cl

else let t′′ = t +
√

2a/x′

y = y0 + x(t′′ − t)
in (y, t′′).sumaux(y, t, x) xs t′.cl

We note that CT streams have exactly the same tag set as the DE domain. This is not surpris-
ing as, indeed, we implicitly work with sampled systems.

Here also we can show that this actor is continuous.

Threshold-Crossing

Zero and threshold crossing raises the problem of adapting the step of computation so as not to
miss, exactly in ideal semantics, or with some precision in approximate semantics, the point in
time where a given signal hits a threshold. Note that step adaptation is what we have performed
in the Euler integrator. But in this previous case we had some accuracy computation method
which allowed us to choose in advance what could be the next step. In the zero-crossing prob-
lem, we hardly have such a way of predicting the step and we in general know that the step was
too large when the threshold has been missed. Then the solution is to recompute the signal with
a shorter step but this recomputation goes backward in time and is not Kahn order preserving.
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Perhaps surprisingly, the problem here is the approximate semantics,as acyclic models (with-
out feedback loops) could be considered Kahnian in exact continuous time semantics. Indeed,
threshold crossing does not seem to raise any difficulty in the ideal semantics because there is no
feedback problem. It suffices that locally, the solution exists and if we move with an infinitely
small step, we are granted to “hit” the threshold.
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Chapter 4

Actors without Directors

4.1 Heterogeneity

Up to now, this Kahn theory applies to actors and signals sharing the same tag set. The question
is then to deal with actors and signals defined on different tag sets. Notice that there is generally
no “golden rule” saying what the meaning of composing actors with different tag sets should be.
Therefore, a first step is to define tag-conversion actors, i.e., heterogeneous actors operating on
different tag sets. Then the problem is to extend the previous Kahn theory to encompass these
heterogeneous actors. But this in our framework comes for free: the sum of CPOs is indeed a
CPO and we will show how to extend each heterogeneous actor to operate on this unique sum
CPO, retrieving in this way the previous theory. Let us first propose some tag-conversion actors.

Tag Conversion Actors

We give now some standard conversion actors to allow the interconnection of signals of different
tags. These are only a few examples and other tag-conversion actors can obviously be defined.

From DE and SR to KPN Going from DE and SR to KPN can be done by “forgetting” the
tag:

forget ε = ε
forget (x, t).xs = x.forget xs

From KPN to DE and SR In the opposite direction, a “timestamping” actor can be used. This
actor uses a clock that specifies the timestamps:

timestamp ε cl = ε
timestamp xs ε = ε
timestamp (x.xs) (t.ts) = (x, t).(timestamp xs ts)
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From DE to CT This can be done by “freezing” or “holding” the DE signal value between the
times it changes. To this end we can define a “latch” actor that uses a sampling clock so as to
know where to hold the DE signal value:

latch x0 ε cl = ε
latch x0 xs ε = ε
latch x0 ((x, tx).xs) (t.ts) =

if t < tx
then (x0, t).(latch x0 ((x, tx).xs) ts
else latch x xs (t.ts)

It is worth noticing here that this actor provides a signal which is tagged on the tags of the clock.
If the clock does not have multiple events sharing the same tag, this will be also the case in the
resulting signal.

Let us see now how these actors can be seen as operating on the sum CPO.

Sum of CPOs

The sum of two CPOs S1 and S2 is a CPO S1 + S2, defined as

S1 + S2 = (S1 − {ε1}) ∪ (S2 − {ε2}) ∪ {ε}

where ε is a “fresh” bottom element. The order on each of S1, S2 is maintained in the sum, but
two elements from the two sets are not comparable. Therefore, chains can only be formed of
elements of a single set and the

∨
s are preserved.

Take for instance an actor f : S1 → S2. It can be extended to an actor f ′ : (S1 + S2) →
(S1 + S2) by:

f ′ε = ε
f ′(in1 x) = fx
f ′(in2 x) = ε

where in1, in2 are the canonical injection of each CPO into the sum.
Thus we can see that, provided these very simple generalisations, the Kahn theory of het-

erogeneous deterministic tag systems works exactly the same. In particular, we can define tag
changing actors allowing one to move from a tag system to another, that is to say from one MoCC
to another. As any other actors, these actors should be continuous and as such preserve the order
structure from the input tag set to the output tag set.

4.2 Distribution
It is well known that Kahn actors are intended to model deterministic distributed systems. In
such distributed systems, each actor runs at its own pace in an unsupervised way. If it does not
have data inputs, it waits. When it has data, it can consume them and can produce data outputs
(Kahn networks). How can it be then that the behaviour is deterministic? This is due to
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1. the communication medium between actors which keeps the production order of data (FI-
FOs),

2. fixpoint iterations which can be executed in a chaotic manner.

We claim here that our Kahn generalisation shares the same property: generalised Kahn actors
can be linked together via FIFOs so as to form generalised Kahn networks and then can be
executed in a chaotic manner, while being granted to produce the same results.

Take for instance the first definition of the discrete event sum. The actor has two input FIFO
queues x and y and an output FIFO queue z. The queues contain pairs (v : V, t : R+). Indeed
the N component of the DE tag set is useless because the FIFO queues preserve the order of
production. Thus an operational version of the sum actor can be defined in C-like syntax as:

void sum(input queue x, input queue y, output queue z) {
if (x.empty() OR y.empty()) return;
if (x.head().tag() < y.head().tag()) {

x.erase_head();
return;

}
if (x.head().tag() == y.head().tag()) {

z.append(x.head().tag(), x.head().val() + y.head().val());
x.erase_head();
y.erase_head();
return;

}
// it must be that: x.head().tag() > y.head().tag()
y.erase_head();
return;

}

Basically, the sum process needs that its two input files be non empty to execute. Otherwise
it waits.

If it can execute, it takes the two tagged heads and compares their tags. If they are equal,
it sums up the two values, tags the result with the common tag, puts it in the output queue and
erases the two heads from the input queues.

If the two tags are different, the earlier tagged value is erased from its input queue (as a matter
of fact we know that, since the input queue values are produced in an orderly manner, it will not
be possible that the other queue will later contain an item matching this earlier tag) and the other
queue is left unchanged. Nothing is produced and the process waits.

Indeed, we could say, adopting the Ptolemy terminology that such networks do not need
directors, i.e., some deus ex machina able to schedule the executions of each actor. In a simulation
engine, the only need is that execution is fairly distributed between actors in such a way that no
actor is infinitely excluded from execution. Please note also that there is no “event queue” like
what is found in most simulation engines like Ptolemy and this feature avoids the burden of
building a distributed event queue. Distributed actors are truly autonomous, they only know of
the heads of their input queues.
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4.3 Hierarchy
It has been advocated that the use of directors enforces a clean separation between several MoCCs
in a hierarchical way: in order to get a communication between two different MoCCs these
have to be encapsulated within a “larger” MoCC which encompasses the former ones. It is true
that this is a good design practice but the “flat” directorless approach we present here is fully
compatible with hierarchy: Kahn actors can be gathered so as to form compound actors and this
hierarchical composition can be extended at will.
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Chapter 5

Conclusion

This paper has intended to clarify some recent efforts proposed by the Berkeley school in order
to give a formal semantics to the Ptolemy toolbox. We have shown that the proposed semantics
is indeed a generalisation of a Kahn semantics based on tag systems and made this proposal a
precise one by showing for several Ptolemy domains what is the corresponding tag system and
how operators can be defined. In particular we have shown that so-called “ absent” values do
not seem to be necessary in the presence of tags. We also discussed some domains which do
not appear to obey this semantics. We emphasized some of the appealing properties of this se-
mantics, namely that it provides heterogeneity and distribution for free. In particular, we showed
that while the semantics is naturally expressed in terms of actors, directors are not essential for
semantical purposes and are only justified by simulation efficiency purposes. We thus can claim
that, at least semantically, directors do not play an important part in the definition of a Model of
Computation and Communication.

An important issue not addressed in the paper is the issue of liveness (also called productivity
in the co-algebraic framework). This issue has already been partially addressed in [11] and its
adaptation to our stream approach will be a subject for future work.

Another semantic theory for stream-based systems, alternative to Kahn, is the co-algebraic
theory of streams (see for instance [6]). Basically, moving to co-algebraic streams would consist,
in the stream programs shown in the paper, to remove the ε cases. Indeed, this is what has
been done in the Haskell prototype we have implemented of our framework. Examining the
consequences of such an alternative choice is also a subject for future work.
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Appendix A

Proofs

A.1 Continuity of the sumDE2 actor
Consider two chains of inputs,

X = {x1 ≤ x2 ≤ . . . xn . . . }
Y = {y1 ≤ y2 ≤ . . . yn . . . }

and the sequence of outputs
Z = {z1, z2, . . . zn . . . }

where zn = sumDE2 (
∨

X) yn

We wish to show that:

1. Z is indeed a chain: {z1 ≤ z2 ≤ . . . zn . . . }

2.
∨

Z = sumDE2 (
∨

X) (
∨

Y )

1: Let us take y ≤ y′. In our stream view, there exists y′′ such that y′ = y.y′′. We wish to show
that sumDE2 (

∨
X) y ≤ sumDE2 (

∨
X) y′. There are two cases:

Either y is infinite. Then y′ = y because concatenating a stream to an infinite stream cannot
change it. Thus, sumDE2 (

∨
X) y = sumDE2 (

∨
X) y′.

Or y is finite. The proof is by induction:
Assume y = ε. Then sumDE2 (

∨
X) y = ε ≤ sumDE2 (

∨
X) y′. y

Assume that the property holds for any y1 ≤ y′1 and consider y = (v, τ).y1. Then y ≤ y′

implies that y′ = (v, τ).y′1 for some y′1 with y1 ≤ y′1. There are then three cases:

•
∨

X = ε. Then we are done

• The maximum tag in
∨

X is smaller than τ . Then we never consume τ and the two outputs
stay equal for ever.
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• There is a tag in
∨

X equal or larger than τ . Then τ is consumed and the induction
hypothesis can be applied.

2: Let |x| denote the length (possibly infinite) of a stream x. It comes from the definition of
sumDE2 that |zn| = |

∨
X| + |yn| − |(

∨
X) ∩ yn|, where |x ∩ y| denotes the number of tags

shared in streams x and y.
It comes then that

|
∨

Z| = lim
n→∞

|zn| = |
∨

X|+ lim
n→∞

|yn|−|(
∨

X)∩yn| = |
∨

X|+|
∨

Y |−|(
∨

X)∩
∨

Y |

Thus
∨

Z and sumDE2 (
∨

X) (
∨

Y ) have equal (possibly infinite) lengths and cannot be but
equal.
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Appendix B

A Haskell Implementation

B.1 The Untimed Library
This corresponds to untagged streams that is to say to Kahn Process Network.

module Untimed
where

-- constant

const_u x = x : (const_u x)

-- unary nodes

unary_u f (x:xs) = (f x) : (unary_u f xs)

-- the Untimed delay operator

delay_u x xs = x : xs

-- binary nodes

binary_u f (x:xs) (y:ys) = (f x y):(binary_u f xs ys)

-- Untimed when

when_u (True:cs) (x:xs) = x:(when_u cs xs)
when_u (False:cs) (x:xs) = (when_u cs xs)

-- Untimed merge

merge_u (True:cs) (x:xs) ys = x:(merge_u cs xs ys)
merge_u (False:cs) xs (y:ys) = y:(merge_u cs xs ys)
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-- display the first n elements

display_u n xs = let disp p (x:xs) =
if p<=0 then []
else ((n-p),x):(disp (p-1) xs)

in (disp n xs)

B.2 The Timed Library
It corresponds to both DE and SR domains, due to the polymorphic properties of Haskell which
allows us to not immediately distinguish between real and integer tags. Note that we use here a
different convention by reversing values and tags.

module Timed -- specialisation to Synchronous Reactive and Discrete Events
-- will follow

where

-- constant

const_t x (t:ts) = (t,x) : (const_t x ts)

-- unary nodes

unary_t f ((t,x):xs) = (t,(f x)) : (unary_t f xs)

-- the Timed latch operator

latch_t xo (t:ts) ((tx,x):xs) = if t<tx
then (t,xo):(latch_t xo ts ((tx,x):xs))
else (latch_t x (t:ts) xs)

-- binary nodes (synchronous)

binary_t f ((tx,x):xs)
((ty,y):ys) = if tx < ty

then binary_t f xs ((ty,y):ys)
else if tx == ty

then (tx,(f x y)):binary_t f xs ys
else binary_t f ((tx,x):xs) ys

-- clock extraction

clock_t ((t,x):xs) = t:(clock_t xs)
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-- latched binary operators

binary_latched f (xo, yo) (xs, ys) =
let tx = clock_t xs

ty = clock_t ys
in binary_t f (latch_t xo ty xs) (latch_t yo tx ys)

-- Interfaces with Untimed

-- From Untimed to Timed

timestamp (t:ts) (x:xs) = (t,x):(timestamp ts xs)

-- From Timed to Untimed

forget ((t,x):xs) = x:(forget xs)

-- display the first n elements

display_t n ((t,x):xs) = if n<=0 then []
else (t,x):(display_t (n-1) xs)

B.3 A Continuous Time Integrator
We provide here an improved version of an Euler integrator. Improvements come from the fact
that it can work in a fully distributed manner.

module Continuous
where

integr1 (to,yo,t1,x1,er) ((tx,x):xs) (t:ts) =
if tx < to
then integral(to,yo,tx,x,er) xs (t:ts)
else let xi = x1 + (x - x1)*(to-t1)/(tx-t1)

xp = abs(xi-x1)/(to - t1)
in if xp*(t-to)**2 < 2*er

then let y = yo + (t-to)*x
in (t,y):integral (t,y,to,xi,er) ((tx,x):xs) ts

else let tn = to + sqrt(er*2/xp)
y = yo + (tn - to)*x

in (tn,y):integral (tn,y,to,xi,er) ((tx,x):xs) (t:ts)
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integral (to,yo,t1,x1,er) xs (t:ts) =
if (to < t)
then integr1(to,yo,t1,x1,er) xs (t:ts)
else if to==t

then (to,yo):integral (to,yo,t1,x1,er) xs ts
else integral (to,yo,t1,x1,er) xs ts

-- a filter that eliminates intermediate values

filter_t xo ((tx,x):xs) (t:ts) =
if t<tx
then (t,xo):filter_t xo ((tx,x):xs) ts
else if tx == t

then (tx,x):filter_t x xs ts
else filter_t x xs (t:ts)

-- A periodic clock generator

incr p (x:xs) = (x + p):incr p xs

p_clock (i,p) = let cl = i:incr p cl
in cl

B.4 Some Test Code
Here is a module in order to test the integrator:

module Test_continuous
where

import Untimed
import Timed
import Continuous

-- a periodic clock for sampling results

p_cl = p_clock(0.0,1.0)

-- a differential equation xdot = -x, x(0) = 1

minus = unary_t (\x->(-x))
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set1 = (0.0, 1.0, -1.0, 0.0, 0.0001) -- settings for the integral

-- simple differential equation

test1 =
let x = integral set1 (minus x) p_cl
in (display_t 10 x)

test3 =
let x = integral set1 (minus x) p_cl
in (display_t 10 (filter_t 0.0 x p_cl))

-- integrating a constant. Note the need for feedback

set2 = (0.0, 0.0, -1.0, 1.0, 0.0001)

test2 =
let y = integral set2 (const_t 1.0 (0.0:clock_t y)) p_cl
in (display_t 10 y)

test4 =
let y = integral set2 (const_t 1.0 (0.0:clock_t y)) p_cl
in (display_t 10 (filter_t 0.0 y p_cl))

-- double integrator

setsin = (0.0, 0.0, -0.1, 1.0, 0.0001)
setcos = (0.0, 1.0, -0.1, 0.1, 0.0001)
p_cl2 = p_clock(0.0,0.1)

test5 = let sin = integral setsin cos p_cl2
cos = integral setcos (minus sin) p_cl2

in display_t 30 (filter_t 0.0 sin p_cl2)

test6 = let sin = integral setsin cos p_cl2
cos = integral setcos (minus sin) p_cl2

in display_t 30 (filter_t 0.0 cos p_cl2)

test7 = let sin = integral setsin cos p_cl2
cos = integral setcos (minus sin) p_cl2

in display_t 20 cos
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