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Abstract

The Algebra of Connectors AC(P ) is used to model structured interactions in the BIP com-
ponent framework. Its terms are connectors, relations describing synchronization constraints
between the ports of component-based systems. Connectors are structured combinations of
two basic synchronization protocols between ports: rendezvous and broadcast.

In a previous paper, we have studied interaction semantics forAC(P ) which defines the mean-
ing of connectors as sets of interactions. This semantics reduces broadcasts into the set of
their possible interactions and thus blurs the distinction between rendezvous and broadcast.
It leads to exponentially complex models that cannot be a basis for efficient implementation.
Furthermore, the induced semantic equivalence is not a congruence.

For a subset of AC(P ), we propose a new causal semantics that does not reduce broadcast
into a set of rendezvous and explicitly models the causal dependency relation between triggers
and synchrons. The Algebra of Causal Trees CT (P ) formalizes this subset. It is the set of the
terms generated from interactions on the set of ports P , by using two operators: a causality op-
erator and a parallel composition operator. Terms are sets of trees where the successor relation
represents causal dependency between interactions: an interaction can participate in a global
interaction only if its father participates too. We show that causal semantics is consistent with
interaction semantics. Furthermore, it defines an isomorphism between CT (P ) and the set of
the terms of AC(P ) involving triggers.

Finally, we define for causal trees a boolean representation in terms of causal rules. This
representation is used for their manipulation and simplification as well as for synthesizing
connectors.
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1 Introduction
Component-based design is based on the separation between coordination and computation. Systems are
built from units processing sequential code insulated from concurrent execution issues. The isolation of
coordination mechanisms allows a global treatment and analysis.

One of the main limitations of the current state-of-the-art is the lack of a unified paradigm for describing
and analyzing information flow between components. Such a paradigm would allow system designers and
implementers to formulate their solutions in terms of tangible, well-founded and organized concepts instead
of using dispersed coordination mechanisms such as semaphores, monitors, message passing, remote call,
protocols etc. A unified paradigm should allow a comparison of otherwise unrelated architectural solutions
and could be a basis for evaluating them and deriving implementations in terms of specific coordination
mechanisms.

A number of paradigms for unifying interaction in heterogeneous systems have been studied in [BWH+03,
BGK+06, EJL+03]. In these works, unification is achieved by reduction to a common low-level semantic
model. Interaction mechanisms and their properties are not studied independently of behavior.

We propose a new causal semantics for the Algebra of Connectors studied in [BS07]. This algebra
considers connectors as the basic concept for modelling coordination between components.

The term “connector” is widely used in the component frameworks literature with a number of different
interpretations. In general, connectors have two main aspects: in the data flow setting, connectors define the
way data is transferred between components; alternatively, in what we call control flow setting, connectors
rather define synchronization constraints, while pushing to the second plan or completely abstracting the
data flow.

Control flow connectors are often specified in an operational setting, usually a process algebra. In
[BCD00], a process algebra is used to define an architectural type as a set of component/connector instances
related by a set of attachments among their interactions. In [SG03], a connector is defined as a set of
processes, with one process for each role of the connector, plus one process for the “glue” that describes
how all the roles are bound together. A similar approach is developed by J. Fiadeiro and his colleagues in
a categorical framework for CommUnity [Fia04] .

All the above models define connectors that can exhibit complex behavior. That is computation is not
limited to the components, but can be partly performed in the connectors. In [BLM06], an algebra of
connectors is developed that allows, in particular, an algebraic translation of the categorical approach used
in CommUnity. This algebra allows to construct stateless connectors from a number of basic ones.

Reo [Arb04, Arb05] is a channel-based exogenous coordination model, which presents both data and
control flow aspects. It uses connectors compositionally built out of different types of channels formalized
in data-stream semantics and interconnected by using nodes. The connectors in Reo allow computation,
but it is limited to the underlying channels. The nodes of connectors realize coordination between these
channels.

Our approach is closest to that of [BLM06], as it focuses on stateless connectors in a control flow
setting. We consider connectors as relations between ports with synchronization types, which allows to
describe complex coordination patterns with an extremely small set of basic primitives.

In a previous paper [BS07], we have studied an interaction semantics for the Algebra of Connectors
AC(P ), which is used to model interactions in the BIP component framework [BBS06, Sif05]. Terms of
AC(P ) are connectors. The interaction semantics defines the meaning of a connector as the set of the
interactions it allows.

AC(P ) is defined from a set P of ports. Its terms represent sets of interactions which are non empty sets
of ports. Within a connector, an interaction can take place in two situations: either an interaction is fired
when all involved ports are ready to participate (strong synchronization), or some subset of ports triggers
the interaction without waiting for other ports. Thus, connectors are generated from the ports of P by using
a binary fusion operator and a unary typing operator. Typing associates with terms (ports or connectors)
synchronization types: trigger or synchron.

A Simple (or flat) connector is an expression of the form p′1 . . . p′kpk+1 . . . pn, where primed ports p′i are
triggers, and unprimed ports pj are synchrons. For a flat connector involving the set of ports {p1, . . . , pn},
interaction semantics defines the set of its interactions by the following rule: an interaction is any non
empty subset of {p1, . . . , pn} which contains some port that is a trigger; otherwise (if all the ports are
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Figure 1: Connectors and causal trees representing a rendezvous (a, e), a broadcast (b, f), an atomic
broadcast (c, g), and a causal chain (d, h).

synchrons), the only possible interaction is the maximal one, that is p1 . . . pn. As usual, we abbreviate
{p1, . . . , pn} to p1 . . . pn.

In particular, two basic synchronization protocols can be modelled naturally: 1) rendezvous, when all
the related ports are synchrons, and the only possible interaction is the maximal one containing all ports
of the connector; 2) broadcast, when the transmitting port is a trigger, receiving ports are synchrons, and
possible interactions are those containing the trigger. Connectors, representing these two protocols for
a sender s and receivers r1, r2, r3, are shown in Figure 1(a, b). Triangles represent triggers, and circles
represent synchrons.

Hierarchical connectors are expressions composed of typed ports and/or typed sub-connectors. Fig-
ure 1(c) shows a connector realizing an atomic broadcast from a port s to ports r1, r2, r3. The sender port
s is a trigger, and the three receiver ports are strongly synchronized in a sub-connector itself typed as a syn-
chron. The correspondingAC(P ) term is s′[r1r2r3], and the possible interactions are: s and sr1r2r3. Here
the term in brackets [·] is a sub-connector typed as a synchron. Primed brackets [·]′ denote a sub-connector
typed as a trigger. The connector shown in Figure 1(d) is a causal chain of interactions initiated by the port
s. The corresponding AC(P ) term is s′[r′1[r

′
2r3]], and the possible interactions are s, sr1, sr1r2, sr1r2r3 :

a trigger s alone or combined with some interaction from the sub-connector r′1[r
′
2r3], itself a shorter causal

chain.
As shown in the above examples, interaction semantics reduces a connector into the set of its interac-

tions. This leads to exponentially complex representations. Furthermore, it blurs the distinction between
rendezvous and broadcast as each interaction of a broadcast can be realized by a rendezvous. In [BS07],
we have shown that this also has deep consequences on the induced semantic equivalence: broadcasts may
be equivalent to sets of rendezvous but they are not congruent.

The deficiencies of interaction semantics have motivated the investigation of a new causal semantics
for a subset of connectors of AC(P ), formalized as the Algebra of Casual Trees CT (P ). This semantics
distinguishes broadcast and rendezvous by explicitly modelling the causal dependency relation between
triggers and synchrons in broadcasts. The terms of CT (P ) represent sets of interactions, generated from
atomic interactions on the set of ports P , by using two operators:

• A causality operator → which defines the causal relationship. The term a1 → a2 → a3 is a causal
chain meaning that interaction a1 may trigger interaction a2 which may trigger interaction a3. The
possible interactions for this chain are a1, a1a2, a1a2a3.

• An associative and commutative parallel composition operator⊕. A causal tree can be considered as
the parallel composition of all its causal chains. For instance, the term a1 → (a2 ⊕ a3) is equivalent
to (a1 → a2)⊕(a1 → a3) (both describing the set of four interactions: a1, a1a2, a1a3, and a1a2a3).

Terms of CT (P ) are naturally represented as sets of causal trees where ‘→’ corresponds to the parent/son
relation. Figure 1(e− h) shows the causal trees for the four connectors discussed above.

The main results of the paper are the following:
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• We define causal semantics for AC(P ) in terms of causality trees, as a function AC(P ) → CT (P ).
Causal semantics is sound with respect to interaction semantics. An important result is that the
algebra of causal trees CT (P ) is isomorphic to classes of causal connectors ACc(P ) and causal
sets of interactions AIc(P ). A causal set of interactions is closed under synchronization. A causal
connector has a trigger in each sub-connector (including itself). We have shown that the equivalence
and the congruence of AC(P ) coincide for the set of causal connectors ACc(P ).

• We define for causal trees, CT (P ) a boolean representation by using causal rules. Terms are rep-
resented by boolean expressions on P . The boolean valuation of port p is interpreted as the pres-
ence/absence of a port in an interaction. This representation is used for their symbolic manipulation
and simplification as well as for performing boolean operations on connectors. It is applied for the
efficient implementation of BIP, in particular, to compute the possible interactions for a given state.
We also provide a method for synthesizing a set of connectors realizing any boolean constraint on
variables from P .

The paper is structured as follows. Section 2 provides a succinct presentation of the basic semantic
model for BIP and in particular, its composition parameterized by interactions. Section 3 presents the
Algebra of Connectors and its global interaction semantics. Section 4 presents the Algebra of Causal
Trees and its properties as well as causal semantics for AC(P ). The last section studies causal rules for
representing causal trees and computing their intersection.

2 The BIP component framework
BIP is a component framework for constructing systems by superposing three layers of modelling: Behav-
ior, Interaction, and Priority. The lower layer consists of a set of atomic components representing transition
systems. The second layer models interactions between components, specified by connectors. These are
relations between ports equipped with synchronization types. Priorities are used to enforce scheduling
policies applied to interactions of the second layer.

The BIP component framework has been implemented in a language and a tool-set. The BIP language
offers primitives and constructs for modelling and composing layered components. Atomic components
are communicating automata extended with C functions and data. Their transitions are labelled with sets
of communication ports. The BIP language also allows composition of components parameterized by sets
of interactions as well as application of priorities.

The BIP tool-set includes an editor and a compiler for generating from BIP programs, C++ code exe-
cutable on a dedicated platform (see [BBS06, bip]).

We provide a succinct formalization of the BIP component model focusing on the operational semantics
of component interaction and priorities.

Definition 2.1. For a set of ports P , an interaction is a non-empty subset a ⊆ P of ports. To simplify
notation we represent an interaction {p1, p2, . . . , pn} as p1p2 . . . pn.

Definition 2.2. A transition system is a triple B = (Q,P,→), where Q is a set of states, P is a set of
ports, and →⊆ Q× 2P ×Q is a set of transitions, each labelled by an interaction.

For any pair of states q, q′ ∈ Q and interaction a ∈ 2P , we write q
a→ q′, iff (q, a, q′) ∈→. When the

interaction is irrelevant, we simply write q → q′.
An interaction a is enabled in state q, denoted q

a→, iff there exists q′ ∈ Q such that q
a→ q′.

In BIP, a system can be obtained as the composition of n components, each modelled by a transition
system Bi = (Qi, Pi,→i), for i ∈ [1, n], such that their sets of ports are pairwise disjoint: for i, j ∈ [1, n]
(i 6= j), we have Pi ∩ Pj = ∅. We take P =

⋃n
i=1 Pi, the set of all ports in the system.

The composition of components {Bi}n
i=1, parameterized by a set of interactions γ ⊂ 2P is the transition

system B = (Q,P,→γ), where Q =
⊗n

i=1 Qi and →γ is the least set of transitions satisfying the rule

a ∈ γ ∧ ∀i ∈ [1, n], (a ∩ Pi 6= ∅ ⇒ qi
a∩Pi→ i q′i)

(q1, . . . , qn) a→γ (q′1, . . . , q
′
n)

, (1)
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Figure 2: A system with four atomic components.

where qi = q′i for all i ∈ [1, n] such that a ∩ Pi = ∅. We write B = γ(B1 . . . , Bn).
Notice that an interaction a ∈ γ is enabled in γ(B1, . . . , Bn), only if, for each i ∈ [1, n], the interaction

a∩Pi is enabled in Bi; the states of components that do not participate in the interaction remain unchanged.
Several distinct interactions can be enabled at the same time, thus introducing non-determinism in

the product behavior. This can be restricted by means of priorities [bip, BS07]. Throughout this paper,
whenever two interactions, a and a′, such that a ⊂ a′, are possible, we always choose a′.

Example 2.3 (Sender/Receivers). Figure 2 shows a component π γ(S, R1, R2, R3) obtained by composi-
tion of four atomic components: a sender, S, and three receivers, R1, R2, R3 with a set of interactions γ
and priorities π. The sender has a port s for sending messages, and each receiver has a port ri (i = 1, 2, 3)
for receiving them. The following table specifies γ for four different interaction schemes.

Interaction scheme Interactions

Rendezvous sr1r2r3

Broadcast s, sr1, sr2, sr3, sr1r2, sr1r3, sr2r3, sr1r2r3

Atomic Broadcast s, sr1r2r3

Causal Chain s, sr1, sr1r2, sr1r2r3

Rendezvous means strong synchronization between S and all Ri. This is specified by a single interaction
involving all the ports. This interaction can occur only if all the components are in states enabling
transitions labelled respectively by s, r1, r2, r3.

Broadcast means weak synchronization, that is a synchronization involving S and any (possibly empty)
subset of Ri. This is specified by the set of all interactions containing s. These interactions can occur
only if S is in a state enabling s. Each Ri participates in the interaction only if it is in a state enabling
ri.

Atomic broadcast means that either a message is received by all Ri, or by none. Two interactions are
possible: s, when at least one of the receiving ports is not enabled, and the interaction sr1r2r3,
corresponding to strong synchronization.

Causal chain means that for a message to be received by Ri it has to be received by all Rj , for j < i.
This interaction scheme is common in reactive systems.

Example 2.4 (Modulo-8 counter). Figure 3 shows a model for the Modulo-8 counter presented in [MR01],
obtained by composition of three Modulo-2 counter components. Ports p, r, and t correspond to inputs,
whereas q, s, and u correspond to outputs. It can be easily verified that the interactions pqr, pqrst, and
pqrstu happen, respectively, every second, fourth, and eighth occurrence of an input interaction through
the port p.

Notice that the composition operator can express usual parallel composition operators [BS07], such
as the ones used in CSP [Hoa85] and CCS [Mil89]. By enforcing maximal progress, priorities allow to
express broadcast.
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3 The algebra of connectors
In this section, we introduce the algebra of connectors AC(P ), which formalizes the concept of connector,
supported by the BIP language [BBS06]. For the sake of simplicity, we consider the subset of terms of
AC(P ) that do not involve union, that is the subset of monomial connectors (cf. [BS07]).

3.1 The algebra of interactions
We introduce the algebra of interactions AI(P ), used to define the interaction semantics of AC(P ).

Let P be a set of ports, such that 0, 1 6∈ P . Recall (Definition 2.1) that an interaction is a non-empty
subset a ⊆ P . We abbreviate {p1, p2, . . . , pn} to p1 p2 . . . pn.

Syntax. The algebra of interactions AI(P ), is defined by the following syntax

x ::= 0 | 1 | p ∈ P | x · x | x + x | (x) , (2)

where ‘+’ and ‘·’ are binary operators, respectively called union and synchronization. Synchronization
binds stronger than union.

Axioms.

1. Union ‘+’ is idempotent, associative, commutative, and has an identity element 0;

2. Synchronization ‘·’ is associative, commutative, has an identity element 1, and an absorbing element
0; synchronization distributes over union. Furthermore, it is idempotent for monomial terms (terms
without +).

Semantics. The semantics of AI(P ) is given by the function ‖ · ‖ : AI(P ) → 22P

, defined by

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
{
{p}
}

,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,
‖x1 · x2‖ =

{
a1 ∪ a2

∣∣∣ a1 ∈ ‖x1‖, a2 ∈ ‖x2‖
}

,

‖(x)‖ = ‖x‖,

(3)

for p ∈ P , x, x1, x2 ∈ AI(P ). Terms of AI(P ) represent sets of interactions between the ports of P .

Note 3.1. Interactions, in the sense of Definition 2.1, correspond to singleton subsets {a} ⊂ 2P with
a 6= ∅. In the following, we lift this restriction to include the singleton subset {∅} ⊂ 2P represented by
1 ∈ AI(P ). The term 0 ∈ AI(P ) corresponds to an empty subset of 2P and, consequently, does not
represent any interaction. Thus interactions correspond to non-zero monomial terms of AI(P ).

Proposition 3.2 ([BS07]). The axiomatization of AI(P ) is sound and complete, that is, for any x, y ∈
AI(P ), x = y iff ‖x‖ = ‖y‖.

Example 3.3 (Sender/Receiver continued). The second column of Table 1 shows the representation in
AI(P ) for the four interaction schemes of Example 2.3.
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Table 1: AI(P ), AC(P ), and CT (P ) representations of four basic interaction schemes.
AI(P ) AC(P ) CT (P )

Rendezvous s r1 r2 r3 s r1 r2 r3 s r1 r2 r3

Broadcast s (1 + r1) s′ r1 r2 r3 s → (r1 ⊕ r2 ⊕ r3)

(1 + r2) (1 + r3)

Atomic Broadcast s (1 + r1 r2 r3) s′ [r1 r2 r3] s → r1 r2 r3

Causal Chain s (1 + r1 (1+ s′ [r′1 [r′2 r3]] s → r1 → r2 → r3

+ r2 (1 + r3)))

Table 2: Correspondence between AI({p, q}) and boolean functions with two variables.

AI(P ) B[P ]

0 false

1 p q p q p q p q p q p q

p + 1 q + 1 p q + 1 p + q p + p q q + p q q p p q ∨ p q p q ∨ p q p q

p + q + 1 p q + p + 1 p q + q + 1 p q + p + q p ∨ q p ∨ q p ∨ q p ∨ q

p q + p + q + 1 true

3.2 Correspondence with boolean functions

AI(P ) can be bijectively mapped to the free boolean algebra B[P ] generated by P . We define a mapping
β : AI(P ) → B[P ] by setting:

β(0) = false , β(x + y) = β(x) ∨ β(y) ,

β(1) =
∧
p∈P

p , β(pi1 . . . pik
) =

k∧
j=1

pij ·
∧
i 6=ij

pi ,

for pi1 , . . . , pik
∈ P , and x, y ∈ AI(P ), where in the right-hand side the elements of P are considered

to be boolean variables. We denote by false (resp. true) the least (resp. greatest) element in B[P ]. For
example, consider the correspondence table for P = {p, q} shown in Table 2.

The mapping β is an order isomorphism, and consequently techniques specific to boolean algebras can
be applied to the boolean representation of AI(P ) (e.g. BDDs).

Any interaction a ∈ 2P defines a valuation on P with, for each p ∈ P , p = true iff p ∈ a. Notice that
the constant valuation false is associated to the interaction 1, which corresponds to the empty set of ports
∅ ∈ 2P (cf. Note 3.1 and Table 2).

Definition 3.4. An interaction a ∈ 2P satisfies a formula R ∈ B[P ] (denoted a |= R) iff the corresponding
boolean valuation satisfies R. A term x ∈ AI(P ) satisfies R (denoted x |= R) iff all interactions belonging
to x satisfy R, that is

x |= R
def⇐⇒ ∀a ∈ ‖x‖, a |= R .

Note 3.5. Let R1 and R2 be two equivalent formulae. They are satisfied by the same interactions:

∀a ∈ 2P , a |= R1 ⇐⇒ a |= R2 .

Technical Report no TR-2008-4 7/25



Simon Bliudze and Joseph Sifakis Causal Semantics for the Algebra of Connectors

Proposition 3.6. An interaction belongs to the set described by an expression x ∈ AI(P ) if and only if it
satisfies β(x):

‖x‖ =
{

a ∈ 2P
∣∣∣ a |= β(x)

}
. (4)

Note 3.7. As ‖0‖ = ∅, according to Definition 3.4, it satisfies all formulae in B[P ], and in particular
0 |= false. This is the only term in AI(P ) satisfying the constant predicate false. Recall (Note 3.1) that
0 6∈ 2P .

The advantage of AI(P ) over its boolean representation is that it provides a more intuitive description
of sets of interactions. For example, the term p+ pq ∈ AI(P ) represents the set of interactions {p, pq} for
any set of ports P containing p and q. The boolean representation of p + pq depends on P : if P = {p, q}
then β(p + pq) = p, whereas if P = {p, q, r, s} then β(p + pq) = p r s.

Synchronization of two interactions in AI(P ) is by simple concatenation, whereas for their boolean
representation there is no simple context-independent composition rule.

Example 3.8. Let P = {p, q, r, s}. The representation of p is β(p) = p q r s, the representation of q is
β(q) = p q r s, and the representation β(pq) = p q r s of the synchronization pq is obtained by combining
the “positive” variables p and q from β(p) and β(q) respectively with the “negative” variables r and s
belonging to both.

To formalize the above example, let x, y ∈ AI(P ) be two terms represented respectively by boolean
functions

β(x) =
∧

p∈Px

p ·
∧

q∈Qx

q , and β(y) =
∧

p∈Py

p ·
∧

q∈Qy

q , (5)

where Px, Py ⊆ P and Qx, Qy ⊆ P are respectively the sets of positive and negative variables in β(x) and
β(y), then the synchronization xy corresponds to

β(xy) =
∧

p∈Px∪Py

p ·
∧

q∈Qx∩Qy

q (6)

In the general case, when the boolean representations of x and y contain multiple summands of the
form (5), the representation of their synchronization xy can be obtained by applying the above operation
pairwise to the summands of β(x) and β(y) and taking the sum of the obtained conjunctions.

On the other hand, the interactions belonging to the intersection of x and y, that is to ‖x‖ ∩ ‖y‖, are
clearly characterized by β(x) ∧ β(y).

Thus, we have a correspondence between AI(P ) equipped with union, synchronization, and intersec-
tion, and B[P ] equipped with disjunction, the operation above described by (5) and (6), and conjunction.

3.3 Syntax and interaction semantics for AC(P )

Syntax. Let P be a set of ports, such that 0, 1 6∈ P . The syntax of the algebra of connectors, AC(P ), is
defined by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | (x) ,

(7)

for p ∈ P , and where ‘·’ is a binary operator called fusion, and brackets ‘[·]’ and ‘[·]′’ are unary typing
operators.

Fusion is a generalization of synchronization in AI(P ). Typing is used to form connectors: ‘[·]′’
defines triggers (which can initiate an interaction), and ‘[·]’ defines synchrons (which need synchronization
with other ports).

Definition 3.9. In a system with a set of ports P , connectors are elements of AC(P ).
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Notation 3.10. We write [x]α, for α ∈ {0, 1}, to denote a typed connector. When α = 0, the connector is
a synchron, otherwise it is a trigger.

In order to simplify notation, we will omit brackets on 0, 1, and ports p ∈ P , as well as ‘·’ for the fusion
operator.

The algebraic structure of AC(P ) inherits most of the axioms of AI(P ).

Axioms. 1. Fusion ‘·’ is associative, commutative, distributive, idempotent, and has an identity element
[1].

2. Typing satisfies the following axioms, for x, y, z ∈ AC(P ) and α, β ∈ {0, 1}:

(a) [0]′ = [0],

(b)
[
[x]α

]β
= [x]β .

Semantics. The semantics ofAC(P ) is given by the function | · | : AC(P ) → AI(P ), defined by the rules

|p| = p , (8)∣∣∣ n∏
i=1

[xi]
∣∣∣ =

n∏
i=1

|xk| , (9)

∣∣∣ n∏
i=1

[xi]′ ·
m∏

j=1

[yj ]
∣∣∣ =

n∑
i=1

|xi|
∏
k 6=i

(
1 + |xk|

) m∏
j=1

(
1 + |yj |

)
, (10)

for p ∈ P ∪ {0, 1} and x, x1, . . . , xn, y1, . . . , ym ∈ AC(P ). The sum in (10) is the union operator of
AI(P ).

Example 3.11. Consider a system consisting of two Senders with ports s1, s2, and three Receivers with
ports r1, r2, r3. The meaning of s′1 s′2 r1 [r2 r3] is

|s′1 s′2 r1 [r2 r3]| =
(10)
= |s1| (1 + |s2|) (1 + |r1|) (1 + |r2 r3|) + |s2| (1 + |s1|) (1 + |r1|) (1 + |r2 r3|)
(9)
=

(
|s1| (1 + |s2|) + |s2| (1 + |s1|)

)
(1 + |r1|) (1 + |r2| |r3|)

(8)
=

(
s1 (1 + s2) + s2 (1 + s1)

)
(1 + r1) (1 + r2 r3) ,

which corresponds to the set of the interactions containing at least one of s1 and s2, and possibly r1 and a
synchronization of both r2 and r3.

Proposition 3.12 ([BS07]). The axiomatization of AC(P ) is sound, that is, for x, y ∈ AC(P ), the equality
x = y implies |x| = |y|.

Example 3.13 (Sender/Receiver continued). The third column of Table 1 shows the connectors for the four
interaction schemes of Example 2.3.

Notice thatAC(P ) allows compact representation of interactions and, moreover, explicitly captures the
difference between broadcast and rendezvous. The typing operator induces a hierarchical structure.

Example 3.14 (Modulo-8 counter continued). In the model shown in Figure 4, the causal chain pattern
is applied to connectors p, q r, s t, and u. Interactions are modelled by a single structured connector
p′
[
[q r]′ [[s t]′ u]

]
: ∣∣∣p′ [[q r]′

[
[s t]′ u

]]∣∣∣ = p + p q r + p q r s t + p q r s t u .

These are exactly the interactions of the Modulo-8 counter of Figure 3.
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Figure 4: Modulo-8 counter.

Definition 3.15. Two connectors x, y ∈ AC(P ) are equivalent (denoted x ' y), iff they have the same
sets of interactions, i.e. x ' y if and only if |x| = |y|.

Notice that, in general, two equivalent terms are not congruent. For example, p′ ' p, but p′q '
p + pq 6' pq, for p, q ∈ P . Furthermore, the following terms are equivalent, but not congruent: pqr, p[qr],
and [pq]r, as different sets of interactions are obtained, when these terms are fused with a trigger. For
instance, s′[pq]r ' s + spq + sr + spqr, whereas s′p[qr] ' s + sp + sqr + spqr.

Definition 3.16. We denote by ‘∼=’ the largest congruence relation contained in', that is the largest relation
satisfying

x ∼= y =⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) ' E(y/z) , (11)

where x, y ∈ AC(P ), z 6∈ P , E(x/z), and (resp. E(y/z)) denotes the expression obtained from E by
replacing all occurrences of z by x (resp. y).

Theorem 3.17 ([BS07]). For x, y ∈ AC(P ), we have

x ∼= y ⇐⇒


x ' y

x · 1′ ' y · 1′

#x > 0 ⇔ #y > 0 ,

(12)

where, for x =
∏n

i=1[xi]αi , we denote by #x the number of triggers in this fusion, that is #x
def
= #{i ∈

[1, n] |αi = 1}.

Corollary 3.18. For x, y ∈ AC(P ), holds [x]′ [y]′ ∼=
[
[x]′ [y]′

]′
.

4 Causal semantics for connectors
In this section, we propose a new causal semantics for AC(P ) connectors. This allows to address two
important points:

1. (Congruence) As we have shown in the previous section, the equivalence relation ' on AC(P )
is not a congruence. The causal semantics allows to define a subset ACc(P ) ⊂ AC(P ) of causal
connectors such that a) every equivalence class onAC(P ) has a representative inACc(P ); and b) the
equivalence ' and congruence ∼= relations coincide on ACc(P ).

2. (Boolean representation) In [BS07], we have shown that efficient computation of boolean opera-
tions (e.g. intersection, complementation) is crucial for efficient implementation of some classes of
systems, e.g. synchronous systems. In this section, we present a method for computing boolean rep-
resentations forAC(P ) connectors through a translation into the algebra of causal trees CT (P ). The
terms of the latter have a natural boolean representation as sets of causal rules (implications). This
boolean representation avoids the complex enumeration of the interactions of connectors entailed by
the method in Section 3.2.
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The key idea for causal semantics is to render explicit the causal relations between different parts of
the connector. In a fusion of typed connectors, triggers are mutually independent, and can be considered
parallel to each other. Synchrons participate in an interaction only if it is initiated by a trigger. This
introduces a causal relation: the trigger is a cause that can provoke an effect, which is the participation of a
synchron in an interaction.

There are essentially three possibilities for connectors involving ports p and q:

1. A strong synchronization pq.

2. One trigger p′q, i.e. p is the cause of an interaction and q a potential effect, which we will denote in
the following by p → q.

3. Two triggers p′q′, i.e. p and q are independent (parallel), which we will denote in the following by
p⊕ q.

This can be further extended to chains of causal relations between interactions. For example, (p⊕q) →
rs → t corresponds to the connector p′q′ [ [rs]′ t]. It means that any combination of p and q (i.e. p, q, or pq)
can trigger an interaction in which both r and s may participate (thus, the corresponding interactions are p,
q, pq, prs, qrs, and pqrs). Moreover, if r and s participate then t may do so, which adds the interactions
prst, qrst, and pqrst.

Causal trees constructed with these two operators provide a compact and clear representation for con-
nectors that shows explicitly the atomic interactions (p, q, rs, and t in the above example) and the de-
pendencies between them. They also allow to exhibit the boolean causal rules, which define the necessary
conditions for a given port to participate in an interaction. Intuitively, this corresponds to expressing arrows
in the causal trees by implications.

A causal rule is a boolean formula over P , which has the form p ⇒
∨n

i=1 ai, where p is a port and ai

are interactions that can provoke p. Thus, in the above example, the causal rule for the port r is r ⇒ ps∨qs,
which means that for the port r to participate in an interaction of this connector, it is necessary that this
interaction contain either ps or qs.

A set of causal rules uniquely describes the set of interactions that satisfy it (cf. Section 3.2), which
provides a simple and efficient way for computing boolean representations for connectors by transforming
them first into causal trees and then into a conjunction of the associated causal rules.

In the following sub-sections we formalize these ideas.

4.1 Causal trees
Syntax. Let P be a set of ports such that 0, 1 6∈ P . The syntax of the algebra of causal trees, CT (P ), is
defined by

t ::= a | (t → t) | (t⊕ t) , (13)

where a ∈ AI(P ) is 0, 1, or an interaction from 2P , and ‘→’ and ‘⊕’ are respectively the causality and
the parallel composition operators. Causality binds stronger than parallel composition.

Although the causality operator is not associative, for t1, . . . , tn ∈ CT (P ), we abbreviate t1 → (t2 →
(. . . → tn) . . .)) to t1 → t2 → . . . → tn. We call this construction a causal chain.

Axioms. 1. Parallel composition, ‘⊕’, is associative, commutative, idempotent, and its identity element
is 0.

2. Causality, ‘→’, satisfies the following axioms:

(a) t → 1 = t,

(b) t1 → (1 → t2) = t1 → t2,

(c) t → 0 = t,

(d) 0 → t = 0.

3. The following axioms relate the two operators:
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(a) (t1 → t2) → t3 = t1 → (t2 ⊕ t3),

(b) t1 → (t2 ⊕ t3) = t1 → t2 ⊕ t1 → t3,

(c) (t1 ⊕ t2) → t3 = t1 → t3 ⊕ t2 → t3.

Semantics. The interaction semantics of CT (P ) is given by the function | · | : CT (P ) → AI(P ), defined
by the rules

|a| = a , (14)

|a → t| = a
(
1 + |t|

)
, (15)

|t1 ⊕ t2| = |t1|+ |t2|+ |t1| |t2| , (16)

where a is an interaction of 2P , and t, t1, t2 ∈ CT (P ), and the rules induced by axioms (3a) and (3c). The
set semantics of a causal tree t ∈ CT (P ) is obtained by applying the semantic function ‖·‖ : AI(P ) → 22P

to |t|. We denote ‖t‖ def
= ‖ |t| ‖.

Example 4.1 (Causal chain). Consider interactions a1, . . . , an ∈ 2P and a causal chain a1 → a2 → . . . →
an. Iterating rule (15), we then have

|a1 → a2 → . . . → an| = a1

(
1 + |a2 → . . . → an|

)
= a1 + a1a2

(
1 + |a3 → . . . → an|

)
= . . .

= a1 + a1a2 + . . . + a1a2 . . . an .

Proposition 4.2. The axiomatization of CT (P ) is sound with respect to the semantic equivalence, i.e. for
t1, t2 ∈ CT (P ), t1 = t2 implies |t1| = |t2|.

Proof. This proposition is proved by verifying that the semantics of left- and right-hand sides coincide
for all axioms above. For most axioms, this trivially follows from the properties of AI(P ), such as, in
particular, the idempotence of both union and synchronization. Let us show this, for instance, for axiom
(3b).

By axioms (3a) and (3c) and the induced semantic rules, it is sufficient to consider the case t1 = a, for
some interaction a ∈ 2P . We compute the semantics of both sides:

|a → (t2 ⊕ t3)| = a
(
1 + |t2 ⊕ t3|

)
= a

(
1 + |t2|+ |t3|+ |t2| |t3|

)
,

and

|a → t2 ⊕ a → t3| = |a → t2|+ |a → t3|+ |a → t2| |a → t3| =

= a
(
1 + |t2|

)
+ a

(
1 + |t3|

)
+ a

(
1 + |t2|

)
a
(
1 + |t3|

)
= a

(
1 + |t2|+ |t3|+ |t2| |t3|

)
,

where the last equation follows from the idempotence of operations on AI(P ).

Note 4.3. According to the axioms of CT (P ) any causal tree can be represented as a parallel composition
of its causal chains (see Figure 5). Thus an interaction belonging to a causal tree is a synchronization of
any number of prefixes (cf. Example 4.1) of the corresponding causal chains, i.e. branches of this tree.

Example 4.4 (Sender/Receiver continued). The fourth column of Table 1 shows the causal trees for the
four interaction schemes of Example 2.3.

Definition 4.5. Two causal trees t1, t2 ∈ CT (P ) are equivalent, denoted t1 ∼ t2, iff |t1| = |t2|.
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Figure 5: A causal tree is the parallel composition of its causal chains.

4.2 Correspondence with AC(P )

In order to provide the transformation from AC(P ) to CT (P ), we introduce two helper functions root :
CT (P ) → AI(P ) and rest : CT (P ) → CT (P ) defined by

root(a) = a , rest(a) = 0
root(a → t) = a , rest(a → t) = t ,

root(t1 ⊕ t2) = root(t1) + root(t2) , rest(t1 ⊕ t2) = rest(t1)⊕ rest(t2) ,

for a ∈ 2P and t, t1, t2 ∈ CT (P ). In general t 6= root(t) → rest(t). The equality holds only if t is of the
form a → t1, for some interaction a and t1 ∈ CT (P ).

We define the function τ : AC(P ) → CT (P ) associating with a connector a causal tree (the following
three equations are sufficient by Corollary 3.18):

τ

(
[x1]′ [x2]′

n∏
i=1

yi

)
= τ

(
[x1]′

n∏
i=1

yi

)
⊕ τ

(
[x2]′

n∏
i=1

yi

)
, (17)

τ

(
[x]′

n∏
i=1

[yi]

)
= τ(x) →

n⊕
i=1

τ(yi) , (18)

τ

(
n∏

i=1

[yi]

)
=

m⊕
j=1

(
aj →

n⊕
i=1

rest
(
τ(yi)

))
, (19)

where x, x1, x2, y1, . . . , yn ∈ AC(P ), and, in (19), aj are such that

m∑
j=1

aj =
n∏

i=1

root
(
τ(yi)

)
.

We also define the function σ : CT (P ) → AC(P ), which associates with a causal tree a connector:

σ(a) = a , (20)
σ(a → t) = [a]′ [σ(t)] , (21)

σ(t1 ⊕ t2) = [σ(t1)]′ [σ(t2)]′ . (22)

Proposition 4.6. The functions σ : CT (P ) → AC(P ) and τ : AC(P ) → CT (P ), satisfy the following
properties

1. ∀x ∈ AC(P ), |x| = |τ(x)|,

2. ∀t ∈ CT (P ), |t| = |σ(t)|,

3. τ ◦ σ = id,

4. σ ◦ τ ' id (that is ∀x ∈ AC(P ), σ(τ(x)) ' x).

Sketch of the proof. The first three properties can be demonstrated by comparing definitions (8)–(10) and
(14)–(16) of the semantic function |·| and (17)–(22) for functions τ and σ. The fourth property then follows
trivially from the first two.

Technical Report no TR-2008-4 13/25



Simon Bliudze and Joseph Sifakis Causal Semantics for the Algebra of Connectors

AC

ACc

AI

AIc

CT

-

-

H
H

H
HHj

H
H

H
HHj

�
�

�
���

6 6

�� ��

| · |

| · |

| · |

τ

σ

Figure 6: A diagram relating the algebras.

The above proposition says that the diagram shown in Figure 6 is commutative except for the loop
AC(P ) τ→ CT (P ) σ→ ACc(P ) ↪→ AC(P ).

In this diagram, ACc(P ) ⊂ AC(P ) is the set of causal connectors, which is the image of CT (P ) by σ.
Note that any connector has an equivalent representation in ACc(P ). Similarly, AIc(P ) ⊂ AI(P ) is the
set of causal interactions, the image of CT (P ) by the semantic function | · |. The following proposition
provides a characteristic property of the set of causal interactions.

Proposition 4.7. The set of the causal interactions is closed under synchronization, that is x ∈ AIc(P )
iff ∀a, b ∈ ‖x‖, ab ∈ ‖x‖.

Proof. Consider x ∈ AIc(P ) and interactions a, b ∈ ‖x‖. There exists t ∈ CT (P ) such that x = |t|.
Hence, according to Note 4.3, both a and b can be represented as unions of a number of prefixes of branches
of t, which implies automatically that ab can also be represented in this form, and therefore ab ∈ ‖x‖.

To prove that the condition of the proposition is sufficient, consider x ∈ AI(P ) satisfying this property,
and take t =

⊕
a∈‖x‖ a. Clearly, |t| = x, which, by definition, implies x ∈ AIc(P ).

Proposition 4.8. ∀t1, t2 ∈ CT (P ), t1 ∼ t2 ⇒ σ(t1) ∼= σ(t2).

Proof. This proposition follows directly from Proposition 4.6(4) and Theorem 3.17.

Corollary 4.9. The AC(P ) equivalence restricted to ACc(P ) is a congruence, that is, for x1, x2 ∈
ACc(P ), x1 ' x2 implies x1

∼= x2.

Proof. By definition of ACc(P ), there exist t1, t2 ∈ CT (P ) such that x1 = σ(t1) and x2 = σ(t2). By
Proposition 4.6(1,3), t1 ∼ t2, which, by Proposition 4.8, implies x1

∼= x2.

4.3 Boolean representation of connectors
Definition 4.10. A causal rule is a B[P ] formula E ⇒ C, where E (the effect) is either a constant, true, or
a port variable p ∈ P , and C (the cause) is either a constant, true or false, or a disjunction of interactions,
i.e.
∨n

i=1 ai where, for all i ∈ [1, n], ai are conjunctions of port variables.

Causal rules without constants can be rewritten as formulas of the form p ∨
∨n

i=1 ai and, consequently,
are conjunctions of dual Horn clauses, i.e. disjunctions of variables whereof at most one is negative.

In line with Definition 3.4, an interaction a ∈ 2P satisfies the rule p ⇒
∨n

i=1 ai, iff p ∈ a implies
ai ⊆ a, for some i ∈ [1, n], that is for a port to belong to an interaction at least one of the corresponding
causes must belong there too.

Example 4.11. Let p ∈ P , a ∈ 2P , and x ∈ AI(P ). Three particular types of causal rules can be set
apart:

1. For an interaction to satisfy the rule true ⇒ a, it is necessary that it contain a.

2. Rules of the form p ⇒ true are satisfied by all interactions.

3. An interaction can satisfy the rule p ⇒ false only if it does not contain p.
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Figure 7: Graphical representation of the causal tree t = p → (q → r ⊕ qs).

Note 4.12. Notice that a1 ∨ a1 a2 = a1, and therefore causal rules can be simplified accordingly:

(p ⇒ a1 ∨ a1 a2) ; (p ⇒ a1) . (23)

We assume that all the causal rules are simplified by using (23).

Definition 4.13. A system of causal rules is a set R = {p ⇒ xp}p∈P t , where P t def
= P ∪ {true}. An

interaction a ∈ 2P satisfies the system R (denoted a |= R), iff a |=
∧

p∈P t(p ⇒ xp). We denote by |R|
the union of the interactions satisfying R :

|R| def
=

∑
a|=R

a .

A causal tree t ∈ CT (P ) is equivalent to a system of causal rules R iff |t| = |R|.

We associate with t ∈ CT (P ) the system of causal rules

R(t)
def
= {p ⇒ cp(t)}p∈P t , (24)

where, for p ∈ P t, the function cp : CT (P ) → B[P ] is defined as follows. For a ∈ 2P (with p 6∈ a) and
t, t1, t2 ∈ CT (P ), we put

cp(0) = false , (25)
cp(p → t) = true , (26)

cp(pa → t) = a , (27)
cp(a → t) = a cp(t) , (28)

cp(t1 ⊕ t2) = cp(t1) ∨ cp(t2) , (29)

Similarly, we define ctrue(t) by

ctrue(0) = false ,

ctrue(1 → t) = true ,

ctrue(a → t) = a ,

ctrue(t1 ⊕ t2) = ctrue(t1) ∨ ctrue(t2) .

Note 4.14. It is important to observe that, for any t ∈ CT (P ), the system of causal rules R(t), defined
by (24), contains exactly one causal rule for each p ∈ P t (i.e. each p ∈ P and true). For ports that do
not participate in t, the rule is p ⇒ false. For ports that do not have any causality constraints, the rule is
p ⇒ true.

Proposition 4.15. For any causal tree t ∈ CT (P ), |t| = |R(t)|.

Proof. This proposition follows from Note 4.3 and a similar observation for the system R(t). Indeed,
according to the rules (25)–(29) and the simplification rule (23), the cause in a causal rule p ⇒ cp(t) is the
union of all the shortest prefixes in t, containing p.
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Example 4.16. Consider the causal tree t = p → (q → r ⊕ qs) shown in Figure 7. The associated system
R(t) of causal rules is

{true ⇒ p , p ⇒ true , q ⇒ p , r ⇒ pq , s ⇒ pq} .

Notice that cq(t) = p
(
cq(q → r) ∨ cq(qs)

)
= p ∨ ps = p.

The corresponding boolean formula is then

(true ⇒ p) ∧ (p ⇒ true) ∧ (q ⇒ p) ∧ (r ⇒ pq) ∧ (s ⇒ pq) = p q ∨ p r s .

5 Constructing causal trees from boolean functions

5.1 Expressing boolean functions as causal rules
In the previous section, we have introduced the causal rules providing a straightforward way for computing
boolean representations of connectors (and causal trees). This section deals with the reverse procedure:
given a boolean function on P , we construct a causal tree model (and consequently an AC(P ) connector).
We proceed in two steps: given a boolean formula, we translate it into an equivalent one, which is the
disjunction of the corresponding causal rules, from which we construct an equivalent causal tree. This
translation leads, in particular, to the definition of a normal form for causal trees. We also derive a simple
algorithm for computing the intersection of causal trees directly on the corresponding systems of causal
rules.

In order to compute the causal rules for a given boolean function ϕ ∈ B[P ], we take its conjunctive
normal form (CNF)

ϕ = C1 ∧ C2 ∧ . . . ∧ Cn

with, for k ∈ [1, n],
Ck =

∨
i∈Ik

pi ∨
∨

j∈Jk

pj ,

where Ik ∩ Jk = ∅, and pi, pj ∈ P for all i ∈ Ik and j ∈ Jk. We can now rewrite every clause Ck, with
Jk 6= ∅, as a disjunction of dual Horn clauses.

Ck =
∨

j∈Jk

(
pj ∨

∨
i∈Ik

pi

)
.

By distributivity, we obtain a representation of ϕ as a disjunction of dual Horn formulae and, after combin-
ing the clauses with the same negative variable,

ϕ = R1 ∨R2 ∨ . . . ∨Rm (30)

with, for k ∈ [1,m],

Rk =
∧

i∈eIk

pi ∨
∨

j∈ eJk,i

aj

 =
∧

i∈eIk

pi ⇒
∨

j∈ eJk,i

aj

 ,

where, for all i ∈ Ĩk, pi ∈ P t and, for all j ∈ J̃k,i, aj is false, true, or a conjunction of positive
variables. Recall (Example 4.11) that for a positive clause Ck we have Ck = (true ⇒ Ck), whereas
p = (p ⇒ false). Thus, each Rk in (30) is a system of causal rules as defined in Section 4.3.

Proposition 5.1. For a given boolean function ϕ ∈ B[P ], the representation (30) is defined uniquely.

The next section presents an algorithm for constructing a causal tree for a system of causal rules,
thus completing the chain of transformations necessary for constructing the causal tree corresponding to a
boolean function.

This algorithm also allows to normalize and compute intersections of causal trees by transforming them
into systems of causal rules and back. These two operations are also presented in the subsequent sections.
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5.2 Constructing causal trees from causal rules
Definition 5.2. A system of causal rules {pi ⇒ xi}n

i=1 is saturated iff, for all i ∈ [1, n], xi = xi[xj/pj ],
where xi[xj/pj ] is obtained by substituting xj for pj in xi, for all j 6= i. We denote by CR(P ) the set of
saturated systems of causal rules over P .

For a given system of causal rules R = {pi ⇒ xi}n
i=1, we denote by Rsat = {pi ⇒ x∗i }n

i=1, the
saturated system of rules, where {x∗i }n

i=1 is the unique fixpoint iteratively computed by

x0
i = xi, xk+1

i = xk
i [(pjx

k
j )/pj ] , for i = 1, . . . , n .

Clearly, this computation terminates within a bounded number of iterations.

Lemma 5.3. Let R be a system of causal rules, and Rsat be the corresponding saturated system. Then
|R| = |Rsat|.

Proof. This lemma follows directly from the observation that the substitution, used to compute the fixpoint
in the definition of saturation, preserves boolean equivalence of systems of causal rules.

Example 5.4. Consider the system of causal rules {p ⇒ ap, q ⇒ paq}, where p, q ∈ P are two ports, and
ap, aq ∈ 2P . To saturate it, we substitute pap for p in the second rule to obtain {p ⇒ ap, q ⇒ papaq}.

Clearly, the corresponding boolean formulae are equivalent:

(p ⇒ ap) ∧ (q ⇒ paq) = (p ∨ ap) ∧ (q ∨ paq) =
= p q ∨ apq ∨ papaq = (p ∨ ap) ∧ (q ∨ papaq) = (p ⇒ ap) ∧ (q ⇒ papaq) .

Note 5.5. Observe that, for any t ∈ CT (P ), the system of causal rules R(t), defined by (24), is saturated.

Lemma 5.6. Let X = {p ⇒ xp}p∈P t be a saturated system of causal rules simplified by absorption (23),
with xp =

∨mp

i=1 ap
i . The set Y = {pap

i | p ∈ P, i ∈ [1,mp]} ∪ {atrue
i | i ∈ [1,mtrue]} consists exactly of

all interactions satisfying X and minimal in the following sense:

1. Any interaction a, such that a |= X , can be decomposed as a = b1 . . . bk, with b1, . . . , bk ∈ Y .

2. No a ∈ Y can be further decomposed in this way, i.e. a = b1 . . . bk, with 1 6= bj ∈ Y for j ∈ [1, k],
implies k = 1.

Proof. 1. Consider a |= X , and a port p1 ∈ a. We then have a |=
∧

p∈P t(p ⇒
∨mp

i=1 ap
i ), and therefore,

for some i1 ∈ [1,mp1 ], ap1
i1
⊆ a. Hence, a = b1a1, with b1 = p1a

p1
i1

and a1 = a \ b1. Idempotence of
synchronization in AI(P ) allows us to proceed by picking some p2 ∈ a1 and applying the same reasoning
to obtain a = b1b2a2, where bj = pja

pj

ij
, for j = 1, 2, and a2 = a1 \ b2, and so on. As at each step we

select pj ∈ aj−1, we have aj  aj−1, and therefore, for some k, ak = 1, which implies a = b1 . . . bk, with
bj = pja

pj

ij
∈ Y , for j ∈ [1, k].

2. Consider a = b1 . . . bk ∈ Y . As a ∈ Y , for some p ∈ P t, we have a = pap, where ap is a summand
in xp. If k > 1, there exists l ∈ [1, k] such that p ∈ bl and bl  a. As bl ∈ Y , we have bl = qaq, for some
q ∈ P t and aq a summand in xq. The assumption that all rules are simplified by absorption (23) implies
that p 6= q. As X is saturated, we have

xq = xq

[
(pxp)/p

]
=

mq∨
i=1

mp∨
j=1

aq
i [(pap

j )/p] =
∨
i∈I

mp∨
j=1

aq
i a

p
j

 ∨
∨
i 6∈I

aq
i ,

where I ⊆ [1,mq] is the subset indexing the summands of xq containing p, i.e. i ∈ I iff p ∈ aq
i . As aq

is a summand in xq and p ∈ aq, there exist i ∈ [1,mq] and j ∈ [1,mp], such that aq = aq
i a

p
j . Hence,

ap
j ⊆ aq  ap (recall that q ∈ ap, but q 6∈ aq). However, both ap

j and ap are summands in xp, which
contradicts the assumption that all rules are simplified by absorption (23).

Theorem 5.7. Given a saturated system of causal rules X = {p ⇒ xp}p∈P t , the algorithm shown in
Figure 8, constructs an equivalent causal tree t.
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Input: A saturated system of causal rules X = {p ⇒ xp}p∈P t with xp =
∨mp

i=1 ap
i .

Output: A causal tree t ∈ CT (P ) equivalent to X .

1. Y := {pap
i | p ∈ P, i ∈ [1,mp]} ∪ {atrue

i | i ∈ [1,mtrue]};
2. Z := min Y ; // the subset of interactions of minimal cardinality in Y
3. t :=

⊕
Z;

4. W := min(Y \ Z);
5. for each w ∈ W and z ∈ Z
6. if z ⊂ w

// add a son labelled by w to the node z in t
7. replace the subtree z → tz of t rooted in z by z → (tz ⊕ w);
8. Y := Y \ Z;
9. Z := W ;
10. if Y 6= ∅ goto Step 4;
11. clean-up: starting from the leaves of t, for all nodes a1 → a2 replace a2 by a2 \ a1.

Figure 8: Algorithm for constructing a causal tree from a saturated system of causal rules.

Proof. Consider the set Y defined in Lemma 5.6. By Lemma 5.6(2), the elements of Y correspond exactly
to all the prefixes in the causal tree constructed by the algorithm shown in Figure 8. Thus, denoting by ‖X‖
the set {a ∈ 2P | a |= X}, Lemma 5.6(1) implies ‖X‖ ⊆ ‖t‖. As X is saturated, Y ⊂ ‖X‖. Therefore,
by Proposition 4.7, ‖t‖ ⊆ ‖X‖, which finalizes the proof.

5.3 Normal form for causal trees
Lemma 5.8. Let R1, R2 be two saturated systems of causal rules. Then ‖R1‖ = ‖R2‖ implies R1 = R2

(equal as sets of causal rules that cannot be simplified by absorption).

Proof. Suppose that R1 6= R2, and all rules are simplified by absorption (23). Then there exists p ∈ P
such that the rules (p ⇒

∨n
i=1 ai) ∈ R1 and (p ⇒

∨m
j=1 bj) ∈ R2 do not coincide. Without loss of

generality, for some i ∈ [1, n], we have bj 6⊆ ai simultaneously for all j ∈ [1,m]. This implies that the
interaction pai does not satisfy the rule (p ⇒

∨m
j=1 bj) ∈ R2, and therefore pai 6∈ ‖R2‖. At the same time

pai ∈ ‖R1‖, as R1 is saturated.

Corollary 5.9. Let t1, t2 ∈ CT (P ) be two equivalent causal trees. The corresponding systems of causal
rules R(t1) and R(t2) (cf. (24)) are identical.

Proof. t1 ∼ t2 implies ‖R(t1)‖ = ‖t1‖ = ‖t2‖ = ‖R(t2)‖. Hence, by Lemma 5.8, R(t1) = R(t2).

Definition 5.10. Let t ∈ CT (P ) be a causal tree. The normal form of t is the causal tree obtained by
applying the algorithm in Figure 8 to the system R(t).

Proposition 4.15, Theorem 5.7 and Corollary 5.9 guarantee that the definition above is well founded
and, indeed, defines a normal form.

Example 5.11. Consider again the causal tree t = p → (q → r ⊕ qs) from Example 4.16 (also shown in
Figure 9(a)). We have seen that the associated system R(t) of causal rules is

{true ⇒ p , p ⇒ true , q ⇒ p , r ⇒ pq , s ⇒ pq} .

The set, defined in Step 1 of the algorithm in Figure 8, is therefore Y = {p, pq, pqr, pqs}. The sets
of minimal cardinality interactions (represented by Z) at subsequent iterations of Steps 2–10 are then
respectively {p}, {pq}, and {pqr, pqs}. Thus, the intermediate tree constructed in Steps 2–10 is that shown
in Figure 9(b), whereas the final tree is shown in Figure 9(c).
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Figure 9: Construction of the normal form of causality trees example: initial (a), intermediate (b), and
normal form (c) trees.

Input: Causal trees t1, t2 ∈ CT (P ).
Output: A causal tree t ∈ CT (P ) such that ‖t‖ = ‖t1‖ ∩ ‖t2‖.

1. compute systems of causal rules R(t1) and R(t2) defined by (24);
2. X := {p ⇒ cp(t1) ∧ cp(t2) | p ∈ P t};
3. compute Xsat by saturating X;
4. apply the algorithm in Figure 8 to Xsat;

Figure 10: Algorithm for computing an intersection of two causal trees.

6 Examples
For the examples of this section we will need the notions of interconnected systems and multi-shot seman-
tics introduced in [BS07].

6.1 Multi-shot semantics
Definition 6.1. An interconnected system is a pair ({Bi}n

i=1, {Cj}m
j=1), where Bi = (Qi, Pi,→i) with

→i⊆ Qi × 2Pi ×Qi, are components, and Cj ∈ AC(P ) with P =
⋃n

i=1 Pi.
For an integer parameter 0 < d ≤ m, the d-shot semantics of the interconnected system ({Bi}n

i=1, {Cj}m
j=1)

is the system γd(B1, . . . , Bn) defined by applying the rule (1) with γ = γd, where γd =
∑∏

i∈I [Ci]′,
where the summation is performed over all subsets I ⊆ [1,m] of cardinality d.

Multi-shot semantics corresponds to the case, where d is maximal (i.e. d = m), and, in particular,
γm =

∏m
i=1[Ci]′.

Notice that, for an interconnected system, d-shot semantics entails simultaneous firing of interactions
from at most d connectors.

The application of rule (1) for the d-shot semantics with d > 1, requires the nontrivial computation of
all the possible interactions. For this the following proposition can be used.

Proposition 6.2. Let S = ({Bi}n
i=1, {Cj}m

j=1) be an interconnected system. For i ∈ [1, n], we denote by
Gi =

∑
qi∈Qi

Gqi , with Gqi =
∑

qi
a→ a, the set of all interactions offered by the component i alone. Let

G =
∏n

i=1[Gi]′. The set of the possible interactions for d-shot semantics of S is G ∩ γd.

Notice that G =
∏n

i=1[Gi]′ is the set of all the interactions offered by the components, whereas γd is the
set of the interactions allowed by d-shot semantics. Therefore, the intersection of the two sets characterizes
all the possible interactions in the system.

To compute efficiently the intersection of two causal connectors we use their boolean representation. It
follows trivially from Proposition 4.7 that an intersection of two causal sets of interactions is itself causal.
To simplify presentation, we reason on causal trees. The mapping between AC(P ) and CT (P ) is given by
functions σ and τ defined in Section 4.2.

Lemma 6.3. For t1, t2 ∈ CT (P ), the algorithm in Figure 10 computes the unique causal tree in normal
form t ∈ CT (P ) (denoted t1 ∩ t2), such that ‖t‖ = ‖t1‖ ∩ ‖t2‖.
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Figure 11: Multi-shot modulo-8 counter

Table 3: Causal trees and rules for Example 6.5.
G γm

(p → q)⊕ (r → s)⊕ (t → u) p ⊕ qr ⊕ st ⊕ u

true ⇒ p + r + t

p ⇒ true r ⇒ true t ⇒ true

q ⇒ p s ⇒ r u ⇒ t

true ⇒ p + qr + st + u

p ⇒ true

q ⇒ r r ⇒ q s ⇒ t t ⇒ s

Example 6.4. Consider two causal trees with opposite causal relations: t1 = p → q (possible interactions:
p and pq) and t2 = q → p (possible interactions: q and pq). Let us compute t1 ⊕ t2 and t1 ∩ t2.

The systems of causal rules corresponding to t1 and t2 are respectively {true ⇒ p, p ⇒ true, q ⇒ p}
and {true ⇒ q, q ⇒ true, p ⇒ q}.

1. To compute t1 ⊕ t2, we apply (29) from the definition of the function cp to obtain the system of
causal rules {true ⇒ p ∨ q, p ⇒ true ∨ q, q ⇒ true ∨ p}, which is simplified to {true ⇒ p ∨ q, p ⇒
true, q ⇒ true} by absorption (23). This corresponds to the causal tree p⊕ q.

2. To compute t1 ∩ t2, we apply Lemma 6.3 to obtain the system {true ⇒ pq, p ⇒ q, q ⇒ p}, which
saturates to {true ⇒ pq, p ⇒ pq, q ⇒ pq}, and produces therefore the causal tree with a single node pq.

Example 6.5 (Modulo-8 counter continued). Consider the interconnected system in Figure 11. The set of
the possible interactions for multi-shot semantics is the intersection of G = [p′q]′ [r′s]′ [t′u]′ and γm =
p′ [qr]′ [st]′ u′, and corresponds to the modulo-8 counter from Example 2.4. As in Proposition 6.2, G
represents the interactions offered by the components, whereas γm represents those offered by atomic
connectors. The causal trees for G and γm are shown in Table 3, as well as the corresponding systems of
causal rules.

Applying Lemma 6.3 and absorption (23), we compute the system of causal rules for G ∩ γm:

{ true ⇒ p + qr + st + ru + tu , p ⇒ true , q ⇒ pr , r ⇒ q , s ⇒ rt , t ⇒ s , u ⇒ t } .

After saturation, we obtain

{ true ⇒ p , p ⇒ true , q ⇒ pqr , r ⇒ pqr , s ⇒ pqrts , t ⇒ pqrts , u ⇒ pqrts } .

By applying the algorithm of Figure 8, we obtain the causal tree p → qr → st → u, which represents the
connector of Example 3.14.

6.2 Two tasks with preemption
Let T1 and T2 be two tasks running on a single processor. We assume that each one of these tasks can
preempt the other. No interactions other than preemption are possible.

Tasks can be modelled by the generic atomic component shown in Figure 12(a). Its behavior has
three states: 1 – the task is running, 2 – the task is waiting to begin computation, and 3 – the task has been
preempted and is waiting to resume computation. The transitions are labelled b, f , p, and r for begin, finish,
preempt, and resume respectively, and can be synchronized with external events through the corresponding
ports of the behavior.

Mutual preemption is described by two statements:
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Figure 12: Three behaviors modelling a preemptable task.
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Figure 13: A causal tree (a) and an interconnected system (b) modelling two mutually preempting tasks.

1. A running task is preempted, when the other one begins computation.

2. A preempted task resumes computation, when the other one finishes.

In order to compute the connectors ensuring these interactions, we rewrite these statements as causal
rules on {bi, fi, pi, ri}i=1,2 :

true ⇒ b1 ∨ f1 ∨ b2 ∨ f2,

p1 ⇒ b2, p2 ⇒ b1,

r1 ⇒ f2, r2 ⇒ f1 .

(31)

The first rule in (31) means that at any moment at least one task must execute a begin or finish action. It
can be easily verified that this system of causal rules is saturated. Applying the algorithm in Figure 8, we
obtain the causal tree shown in Figure 13(a), and, furthermore,

σ
(
b1 → p2 ⊕ f1 → r2 ⊕ b2 → p1 ⊕ f2 → r1

)
=
[
b′1p2

]′[
f ′1r2

]′[
b′2p1

]′[
f ′2r1

]′
. (32)

Figure 13(b) shows an interconnected system consisting of two tasks and four connectors forming the
right-hand side of (32). The multi-shot semantics of this system realizes the desired interaction model.

Different behaviors can be used to model a preemptable task. In addition to behavior in Figure 12(a),
other possible behaviors for tasks are given in Figure 12(b, c).

1. The behavior in Figure 12(b) has two states: 1 – the task is running, 2 – the task is waiting, with the
four transitions labelled by b, f , p, and r.

2. The behavior in Figure 12(c) has four states. States 1–3 are the same as those of the behavior in
Figure 12(a), whereas in state 4 the task is sleeping, and the two additional transitions s and w
correspond respectively to actions sleep and wake-up.

Independently of which behavior in Figure 12 is used to model the tasks, the interactions offered by
each task are Gi = bi + fi + pi + ri, for i = 1, 2 (cf. Proposition 6.2). Thus, the interactions possible in
the multi-shot semantics of the system in Figure 13(b) are described by[
b1 + f1 + p1 + r1

]′[
b2 + f2 + p2 + r2

]′
∩
[
b′1p2

]′[
f ′1r2

]′[
b′2p1

]′[
f ′2r1

]′
' b′1p2 + f ′1r2 + b′2p1 + f ′2r1 .

Hence, the multi-shot and single-shot semantics of this system coincide.
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Figure 14: A causal tree (a) and two interconnected systems (b, c) modelling a sequential execution of two
mutually preempting tasks.

Notice, however, that the connectors computed above define the set of allowed interactions. The actual
interactions, as well as the order of their execution, depend on the behavior that is used to model the tasks.
For example, when the behavior in Figure 12(b) is used, the following trace is acceptable in the composed
system

b1(b2p1)(b1p2)(b2p1) . . . ,

whereas, when the behavior in Figure 12(a) is used, an interaction f2r1 must follow b2p1:

b1(b2p1)(f2r1)b1(b2p1) . . . .

6.3 Sequential execution of two tasks
In a setting, similar to that of the previous section — that is two tasks T1 and T2 running on a single
processor and mutually preempting each other —, we now additionally require that each execution of T1

be followed by one of T2, and, conversely, each execution of T2 be preceded by one of T1. In other words,
we impose the sequential execution T1;T2.

The corresponding causal rules can therefore be obtained by adding to (31) the boolean constraint
b2 = f1, expressed as the conjunction of two causal rules f1 ⇒ b2 and b2 ⇒ f1:

true ⇒ b1 ∨ f1 ∨ b2 ∨ f2,

p1 ⇒ b2, p2 ⇒ b1,

r1 ⇒ f2, r2 ⇒ f1,

f1 ⇒ b2, b2 ⇒ f1 ,

which saturates to
true ⇒ b1 ∨ b2f1 ∨ f2,

p1 ⇒ b2f1, p2 ⇒ b1,

r1 ⇒ f2, r2 ⇒ b2f1,

f1 ⇒ b2, b2 ⇒ f1 .

(33)

The causal tree computed by the algorithm in Figure 8 is shown in Figure 14(a), and the corresponding
AC(P ) connector is

σ
(
b1 → p2 ⊕ b2f1 → (r2 ⊕ p1)⊕ f2 → r1

)
=
[
b′1p2

]′[
[b2f1]′r2p1

]′[
f ′2r1

]′
,

which corresponds to the multi-shot semantics of the interconnected system (with tree connectors) in Fig-
ure 14(b). (Notice that the ports b2 and r2 are interchanged in this figure, as compared to Figure 13(b).)

The above systems of causal rules represent boolean constraints on the interactions of the composed
system, derived from the required interaction model (i.e. sequential execution with preemption). Other
boolean constraints can also be considered. When we model the two tasks as atomic components given in
Figure 12, we can derive additional constraints from their behavior: two ports from the same component
cannot participate together in the same interaction. Hence one can, for instance, add to the system (33) the
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Figure 15: An illustration (a), a causal tree (b), and an interconnected system (c) for the example of three
sequential tasks.

boolean constraints p1 ⇒ b1 f1 r1 and r2 ⇒ b2 f2 p2, which modifies the existing causal rules for p1 and
r2, giving p1 ⇒ false and r2 ⇒ false. Thus, the resulting causality tree is b1 → p2 ⊕ b2f1 ⊕ f2 → r1,
and the corresponding AC(P ) connector is (see Figure 14(c))

σ
(
b1 → p2 ⊕ b2f1 ⊕ f2 → r1

)
=
[
b′1p2

]′[
b2f1

]′[
f ′2r1

]′
.

6.4 Three sequential tasks running on two processors

We now further develop the example of the previous sections, by introducing one more task, although
running on a different processor. Thus our system is composed of three tasks T1, T2, and T3, with T1 and
T3 running on the same processor and preempting each other as in Section 6.2 (cf. Figure 15(a)). The
second task is running on a separate processor and, consequently, cannot be preempted. Therefore ports p
and r are irrelevant for T2, and will not be considered in the sequel.

We want to ensure the following execution protocol:

1. Each execution of T2 must be immediately preceded by an execution of T1. However, T1 can be
executed without being immediately followed by an execution of T2 (dashed arrow in Figure 15(a)).
(One can assume, for example, that T1 represents a producer serving multiple consumers, whereof
only one, represented by T2, has to be considered. Thus several executions of T1 can happen before
an execution of T2 is triggered.)

2. Each execution of T2 must be immediately followed by an execution of T3, and, conversely, each
execution of T3 must be immediately preceded by an execution of T2 (solid arrow in Figure 15(a)).

As in the previous sections, we represent the constraints characterizing this protocol as causal rules on
ports of the three components:

true ⇒ b1 ∨ f1 ∨ b2 ∨ f2 ∨ b3 ∨ f3,

p1 ⇒ b3, p3 ⇒ b1,

r1 ⇒ f3, r3 ⇒ f1,

b2 ⇒ f1,

f2 ⇒ b3, b3 ⇒ f2 .
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By saturating this system, we obtain

true ⇒ b1 ∨ f1 ∨ f2b3 ∨ f3,

p1 ⇒ f2b3, p3 ⇒ b1,

r1 ⇒ f3, r3 ⇒ f1,

b2 ⇒ f1,

f2 ⇒ b3, b3 ⇒ f2 .

The corresponding causal tree is shown in Figure 15(b) and the interconnected system in Figure 15(c).

7 Conclusion
The paper provides a causal semantics for the algebra of connectors. This semantics leads to simpler and
more intuitive representations which can be used for efficient implementation of operations on connectors
in BIP. In contrast to interaction semantics equivalence, the induced equivalence is compatible with the
congruence on AC(P ). Causal semantics allows a nice characterization of the set of causal connectors,
which is isomorphic to the set of causal trees. The set of causal connectors also corresponds to the set of
causal interactions, which are closed under synchronization. The relation between the different algebras is
shown in Figure 16.

CT (P ) breaks with the reductionist view of interaction semantics as it distinguishes between symmetric
and asymmetric interaction. It allows structuring global interactions as the parallel composition of chains of
interactions. This is a very intuitive and alternate approach to interaction modeling especially for broadcast-
based languages such as synchronous languages. Causal trees are very close to structures used to represent
dependencies between signals in synchronous languages, e.g. [Now06]. This opens new possibilities for
unifying asynchronous and synchronous semantics.

CT (P ) is a basis for computing boolean representations for connectors, adequate for their symbolic
manipulation and computation of boolean operations. These can be used for efficient implementations of
component-based languages such as BIP. The examples provided in the previous section show that causal
rules can be used for the specification of interactions from which connectors can be synthesized by using
the algorithm given in Figure 8. Synthesis of connectors is similar to synthesis of circuits from boolean
specifications. This idea seems very interesting and deserves further investigation.
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[Fia04] José Luis Fiadeiro. Categories for Software Engineering. Springer-Verlag, April 2004. 1

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International Series in
Computer Science. Prentice Hall, April 1985. 2

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall International Series in Com-
puter Science. Prentice Hall, 1989. 2
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