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Abstract. This paper is concerned with the problem of computing the image of a set by a
polynomial function. Such image computations constitute a crucial component in typical tools
for set-based analysis of hybrid systems and embedded software with polynomial dynamics,
which found applications in various engineering domains. One typical example is the computa-
tion of all states reachable from a given set in one step by a continuous dynamics described by
a differential or difference equation. We propose a new algorithm for over-approximating such
images based on the Bernstein representation of polynomial functions. The images are stored
using template polyhedra. Using a prototype implementation, the performance of the algo-
rithm was demonstrated on two practical systems as well as a number of randomly generated
examples.

1 Introduction

Hybrid systems, that is, systems exhibiting both continuous and discrete dynamics, have been an
active research domain, thanks to their numerous applications in chemical process control, avionics,
robotics, and most recently in molecular biology. Due to the safety critical features of many such
applications, formal analysis is a topic of particular interest. A major component in any verification
algorithm for hybrid systems is an efficient method to compute the reachable set of their continuous
dynamics described by differential or difference equations. Well-known properties of affine systems
and other simpler systems can be exploited to design relatively efficient methods! (such as a recently-
developed method can handle continuous systems of 100 and more variables [14]). Nevertheless,
nonlinear systems are much more difficult to analyze.

In this work, we address the following image computation problem: given a set in R™, compute its
image by a polynomial. This problem typically arises when we need to deal with a dynamical system
of the form xp41 = m(xp) where 7 is a multivariate polynomial. Such dynamical systems could
result from a numerical approximation of a continuous or hybrid system. Many existing reachability
computation methods for continuous systems can be seen as an extension of numerical integration.
For reachability analysis which requires considering all possible solutions (for example, due to non-
determinism in initial conditions), one has to solve the above equation with sets, that is zj and
Zk+1 in the equation are subsets of R™ (while they are points if we only need a single solution, as in
numerical integration). In addition, similar equations can arise in embedded control systems, such

! The hybrid systems reachability computation literature is vast. The reader is referred to the recent pro-
ceedings of the conference HSCC.



as some physical system controlled by a computer program, which is the implementation of some
continuous (or possibly hybrid) controller using appropriate discretization.

One reason for which we are interested in the image computation problem for polynomials is that
such systems can be used to model a variety of physical phenomena in engineering, economy and
bio-chemical networks. This problem was previously considered in [7], where a method using Bézier
techniques from Computer Aided Geometric Design (CADG) was proposed. The drawback of this
method is that it requires expensive convex hull and triangulation computation, which restricts
its application to systems of dimensions not higher than 3,4. The essence of the new method we
propose in this paper can be summarized as follows. By using a special class of polyhedra together
with optimization, we are able to reduce the complexity of the required polyhedral manipulation.
Furthermore, by exploiting a technique from CADG, namely the Bernstein expansion, we only need
to solve linear programming problems instead of polynomial optimization problems.

Our method is similar to a number of existing methods for continuous and hybrid systems in the use
of linear approximation. Its novelty resides in the efficient way of computing linear approximations.
Indeed, a common method to approximate a non-linear function by a piecewise linear one, as in the
hybridization approach [2] for hybrid systems, requires non-linear optimization. Our method exploits
the Bernstein expansion of polynomials to replace expensive polynomial programming by linear
programming. Besides constrained global optimization, other important applications of the Bernstein
expansion include various control problems [10] (in particular, robust control). The approximation of
the range of a multivariate polynomial over a box is also used in program analysis and optimization
(for example [26,5]). In the hybrid systems verification, polynomial optimization is used to compute
barrier certificates [22], and the algebraic properties of polynomials are used to compute polynomial
invariants [27].

The paper is organized as follows. In Section 2 we introduce the notion of template polyhedra
and the Bernstein expansion of polynomials. We then formally state our problem and describe an
optimization based solution. In order to transform the polynomial optimization problem to a linear
programming problem, a method for computing bound functions for polynomials is then presented.
Section 4 describes an algorithm summarizing the main steps of our method. Some experimental
results, in particular the analysis of a control and a biological systems, are reported in Section 6.

2 Preliminaries

Notation. Let R denote the set of reals. Throughout the paper, vectors is often written using
bold letters. Exceptionally, scalar elements of multi-indices, introduced later, are written using bold
letters. Given a vector x, x; denotes its i component. Capital letters, such as A, B, X, Y denote
matrices or sets. If A is a matrix, A’ denotes the i*" row of A. An affine function is thus represented
as ¢’x 4 d.

We use B, to denote the unit box anchored at the origin, that is B,, = [0,1]™. We use 7 to denote
a vector of n functions such that for all ¢ € {1,...,n}, m; is an n-variate polynomial of the form
m; : R™ — R. In the remainder of the paper, we sometimes refer to 7 simply as “a polynomial”.

To discuss the Bernstein expansion of polynomials, we use multi-indices of the form i = (iy, i,...,15)
where each i; is a non-negative integer. Given two multi-indices i and d, we write i < d if for all
je{1,...,n}, i; <d;. Also, we write é for (iy/dy,i2/do,...,i,/d,) and (Cll) for (;11)(3122) ((‘iz)



2.1 Template polyhedra

A convex polyhedron is a conjunction of a finite number of linear inequalities described as Ax < b,
where A is a m X n matrix, b is a column vector of size m. Template polyhedra are commonly used
in static analysis of programs for computing invariants. Ranges [6] and the octagon domains [20] are
special template polyhedra. General template polyhedra are used as an abstract domain to represent
sets of states in [23,4].

We now briefly recall template polyhedra and algorithms for their manipulation. The reader is
referred to [23] for a thorough description of template polyhedra. A template is a set of linear
functions over x = (z1,...,7,). We denote a template by an m x n matrix H, such that each row H*
corresponds to the linear function H’x. Given such a template H and a real-valued vector d € R™,
a template polyhedron is defined by considering the conjunction of the linear inequalities of the form
Nizi..om Hix < d;. We denote this polyhedron by (H,d).

By changing the values of the elements of d, one can define a family of template polyhedra
corresponding to the template H. We call d a polyhedral coefficient vector. Given d,d’ € R™, if
Vie {l,....m} : d; <d, we write d < d’. Given an m x n template H and two polyhedral
coefficient vectors d,d’ € R™, if d < d’ then the inclusion relation (H,d) C (H,d’) holds, and we
say that (H,d) is not larger than (H,d’).

The advantage of template polyhedra over general convex polyhedra is that the Boolean operations
(union, intersection) and common geometric operations can be performed more efficiently [23].

2.2 Bernstein expansion

We consider an n-variate polynomial 7 : R — R™ defined as: 7(x) = > ;. aix' where a; is a vector
in R™; i and d are two multi-indices of size n such that i < d; Ig is the set of all multi-indices i < d,
that is Iq = {i | i < d}. The multi-index d is called the degree of 7.

Given a set X C R", the image of X by 7, denoted by n(X), is defined as follows:

7(X) = {(m(x), .., T (x)) | x € R"}.

In order to explain the Bernstein expansion of the polynomial 7, we first introduce Bernstein
polynomials. For x = (z1,...,7,) € R", the i’® Bernstein polynomial of degree d is: Bq;(x) =
Bdy i (21) ... Ba, i, (zn) where for a real number y, Bq,;,(y) = (‘iij)yij(l — y4i=1), Then, for all
x € B, =[0,1]™, the polynomial 7w can be written using the Bernstein expansion as follows: 7(x) =
Zield b;iBq i(x) where for each i € Iq the Bernstein coefficient b; is defined as:

b; = Z: ((j?)aj. (1)

The following properties of the Bernstein coefficients are of particular interest.

1. Convex-hull property: Conv{(x,7(x)) : x € B,} C Conv{(i/d,b;) | i € Ia}. The points b; are
called the control points of 7.

2. The above enclosure yields: Vx € B, : w(x)) € O({b; | i € Iq}) where O denotes the bounding
box of a point set.



3. Sharpness of some special coefficients: Vi € I3 : b; = 7(i/d) where I3 is the set of all the vertices
of [0,d;] x [0,ds]...[0,d,].

Let us return to the main problem of the paper, which is computing the image of a set by a
polynomial. Using the above convex-hull property, we can use the coefficients of the Bernstein ex-
pansion to over-approximate the image of the unit box B, by the polynomial 7. To compute the
image of a general convex polyhedron, one can over-approximate the polyhedron by a box and then
transform it to the unit box via some affine transformation. A similar idea, which involves using the
coefficients of the Bézier simplex representation, was used in [7] to compute the image of a convex
polyhedron. However, the convex hull computation is expensive especially in high dimensions, which
poses a major problem in continuous and hybrid systems verification approaches using polyhedral
representations.

In this work, we propose a new method which can avoid complex convex hull operations over general
convex polyhedra as follows. First, we use template polyhedra to over-approximate the images.
Second, the problem of computing such template polyhedra can be formulated as a polynomial
optimization problem. This optimization problem is computationally difficult, despite recent progress
in the development of methods and tools for polynomial programming (see for example [28,17,9]
and references therein). We therefore seek their affine bound functions for polynomials, in order to
transform the polynomial optimization problem to a linear programming one, which can be solved
more efficiently (in polynomial time) using well-developed techniques, such as Simplex [8] and interior
point techniques [3]. Indeed, the above-described Bernstein expansion is used to compute these affine
bound functions. This is discussed in the next section.

2.3 Bound functions

To compute bound functions, we use the method using the Bernstein expansion, published in [12].
Computing convex lower bound functions for polynomials is a problem of great interest, especially in
global optimization. The reader is referred to [11-13] for more detailed descriptions of this method
and its variants.

Before continuing, it is important to note that the method described in this section only works for
the case where the variable domain is the unit box B,. We however want to compute the images
of more general sets, in particular polyhedra. An extension of this method to such cases will be
developed in Section 3.2.

A simple affine lower bound function is a constant function, which can be deduced from the second
property of the Bernstein expansion: z; < min{b; | i € Iq} = bjo = b’. The main idea of the method
is as follows. We first compute the affine lower bound function whose corresponding hyperplane passes
through this control point b%. Then, we aditionally determine (n — 1) hyperplanes passing through
n other control points. This allows us to construct a sequence of n affine lower bound functions
lo,l1,...1,. We end up with [,,, a function whose corresponding hyperplane passes through a lower
facet of the convex hull spanned by these control points. A summary of the algorithm can be found
in Appendix. Note that we can easily compute upper bound functions of 7 by computing the lower
bound functions for —7 using this method and then multiply each resulting function by —1.



3 Image approximation using template polyhedra

This section is concerned with the main problem of the paper, which can be formulated as follows.
We want to use a template polyhedron (H,d) to over-approximate the image of a polyhedron P
by the polynomial 7. The template matrix H, which is of size m x n is assumed to be given; the
polyhedral coefficient vector d € R™ is however unknown. The question is thus to find d such that

m(P) € (H,d). (2)

It is not hard to see that the following condition is sufficient for (2) to hold: Vx € P : Hw(x) < d.
Therefore, to determine d, one can formulate the following optimization problem:

Vie{l,...,m},d; = max(Xy_, Himp,(x)) subj. to x € P. (3)

where H' is the i'" row of the matrix H and H} is its k' element. Note that the above functions to
optimize are polynomials. As mentioned earlier, polynomial optimization is expensive. Our solution is
to bound these functions with affine functions, in order to transform the above optimization problem
to a linear programming one. This is formalized as follows.

3.1 Optimization-based solution

In Section 2.3 we discussed lower bound functions for polynomials. Note that these bound functions
are valid only then the variables x are inside the unit box B,. To consider more general domains,
we introduce the following definition.

Definition 1 (Upper and lower bound functions). Given a function f : R™ — R, the function
v: R™ — R is called an upper bound function of f w.r.t. a set X CR™ ifvx € X : f(x) <v(x). A
lower bound function can be defined similarly.

The following property of upper and lower bound functions is easy to prove.

Lemma 1. Given two set X, Y CR"™ such that Y C X, if v is an upper (lower) bound function of
f wrt. X, then v is also an upper (lower) bound function of f w.r.t. Y.

For each k € {1,...,m}, let up(x) and I (x) respectively be an upper bound function and a lower
bound function of 7 (x) w.r.t. a bounded polyhedron P C R™. We consider the following optimization
problem:

Vie{l,...,m},d; = X7 Hiwy. (4)
where the term H ,iwk is defined as follows:

— If the element H} >0, Hjwy = Hi maxuy(x) subj. to x € P;
— If the element Hi <0, Hiwy, = H} minlj(x) subj. to x € P.

The following lemma is a direct result of (4).

Lemma 2. If a polyhedral coefficient vector d € R™ satisfies (4). Then n(P) C (H,d).



Proof. Tt is indeed not hard to see that the solution d; of the optimization problems (4) is greater
than or equal to the solution of (3). Hence, if d satisfies (4), then

Vie{l,....m}V¥x€P: X Him(x)<d;.

This implies that Vx € P: Hn(x) < d, that is the image 7(P) is included in the template polyhedron
(H,d). ]

We remark that if all the bound functions in (4) are affine and P is a bounded convex polyhedron,
d can be computed by solving 2n linear programming problems. It remains now to find the affine
bound functions wug and I for m w.r.t. a polyhedron P, which is the problem we tackle in the next
section.

3.2 Computing affine bound functions over polyhedral domains

As mentioned earlier, the method to compute affine bound functions for polynomials in Section 2.3
can be applied only when the function domain is a unit box, anchored at the origin. The reason
is that the expression of the control points of the Bernstein expansion in (1) is only valid for this
unit box. If we over-approximate P with a box B, it is then possible to derive a formula expressing
the Bernstein coefficients of m over B. However, this formula is complex and its representation and
evaluation can become expensive.

We alternatively consider the composition of the polynomial 7 with an affine transformation 7
that maps the unit box B, to B. The functions resulting from this composition are still polynomials,
for which we can compute their bound functions over the unit box, using the formula (1) of the
Bernstein expansion. This is explained more formally in the following.

Let B be the bounding box of the polyhedron P, that is, the smallest box that includes P.

The composition v = (7 o 7) is defined as y(x) = 7(7(x)). The functions 7 and -y can be computed
symbolically, which will be discussed later.

Lemma 3. Let v =7 o 7. Then, 7(P) C v(B,).

Proof. By the definition of the composition v, v(B,,) = {7(7(x)) | x € B, }. Additionally, 7(B,) = B.
Therefore, v(B,) = m(B). Since the polyhedron P is included in its bounding box B, we thus obtain
7(P) C w(B) = v(Buy). [

We remark that the above proof is still valid for any affine function 7. This means that instead
of an axis-aligned bounding box, we can over-approximate P more precisely with an oriented (i.e.
non-axis-aligned) bounding box. This can be done using the following method.

Computing an oriented bounding box

The directions of an oriented bounding box can be computed using Principal Component Anal-
ysis [15]. For a thorough description of the Principal Component Analysis (PCA), the reader is
referred to [18].

We first choose a set S = {s',s%,...,s™} of m points? in the polyhedron P, such that m > n. We
defer a discussion on how this point set is selected to the end of this section. PCA is used to find an

2 By abuse of notation we use m to denote both the number of template constraints and the number of
points here.



orthogonal basis that best represents the point set .S. More concretely, we use § to be the mean of
S, that is § = Z:il s’ and we denote §; ; = s} — §;. For two points s’ and s/ in S, the covariance of
their translated points is: cov(s;,s;) = ﬁ Z?zl Sk,iSk,;. Then, we define the co-variance matrix as
follows:

cov(s
cov(s

[\

C =
cov(s™,s') cov(s¥,s?) ... cov(s™, s™)

The n largest singular values of C' provide the orientation of the bounding box. More concretely,
since C' is symetric, by singular value decomposition, we have C' = UAUT where A is the matrix of
singular values. The axes of the bounding box are hence determined by the first n columns of the
matrix U, and its centroid is s.

We now discuss how to select the set S. When the vertices of P are available, we can include them
in the set. However, if P is given as a template polyhedron, this requires computing the vertices
which is expensive. Moreover, using only the vertices, when their distribution do not represent the
geometric form of the polyhedron, may cause a large approximation error, since the resulting principal
directions are not the ones along which the points inside P are mostly distributed. To remedy this,
we sample points inside P as follows. First, we compute an axis-aligned bounding box of P (this can
be done by solving 2n linear programming problems). We then uniformly sample points inside this
bounding box and keep only the points that satisfy the constraints of P. Uniform sampling on the
boundary of P in general enables a better precision. More detail on this can be found in [8].

4 Image computation algorithm

The following algorithm summarizes the main steps of our method for over-approximating the image
of a bounded polyhedron P C R™ by the polynomial 7. The templates are an input of the algorithm.
In the current implementation of the algorithm, the templates can be fixed by the user, or the
templates forming regular sets are used.

Algorithm 1 Over-approximating m(P)

/* Inputs: convex polyhedron P, polynomial 7, templates H */

B = PCA(P) /* Compute an oriented bounding box */
7 = UnitBoxMap(B) /* Compute the function mapping the unit box B, to B */
Ny=mworT

(u,l) = BoundFunctions(v) /* Compute the affine bound functions */
d = PolyApp(u,l, H) /* Compute the coefficient vector d */
Q= (H,d) /* Form the template polyhedron and return it */
Return(Q)

The role of the procedure PC' A is to compute an oriented bounding box B that encloses P. The
procedure Unit BoxMap is then used to determine the affine function 7 that maps the unit box B,



at the origin to B. This affine function is composed with the polynomial 7, the result of which is the

polynomials . The affine lower and upper bound functions [ and u of v are then computed, using the

Bernstein expansion. The function PolyApp determines the polyhedral coefficient vector d by solving

the linear programs in (4) with w, { and the optimization domain is B,. The polyhedral coefficient

vector d are then used to define a template polyhedron @, which is the result to be returned.
Based on the analysis so far, we can state the correctness of Algorithm 1.

Theorem 1. Let (H,d) be the template polyhedron returned by Algorithm 1. Then n(P) C (H,d).

We remark that u and [ are upper and lower bound functions of v with respect to B,. It is not
hard to see that 7=1(P) C B, where 77! is the inverse of 7. Using the property of bound functions,
u and [ are also bound functions of v with respect to 77!(P). Hence, if we solve the optimization
problem over the domain 7~!(P) (which is often smaller than B,), using Lemma 1, the resulting
polyhedron is still an over-approximation of 7(P). This remark can be used to obtain more accurate
results.

5 Approximation error and computation cost

We finish this section by briefly discussing the precision and complexity of the method. A more
detailed analysis can be found in [8]. The approximation error are caused by the bound functions,
the oriented bounding box approximation, and the use of template polyhedra.

The following lemma states an important property of the Bernstein expansion.

Lemma 4. Let Cr p be the piecewise linear function defined by the Bernstein control points of m
with respect to the box B. Then, for all x € B, |w(z) — Cr p(x)| < K§?(B) where | -| is the infinity
norm on R", §(B) is the box size (i.e. its largest side length), Ky = maTyep.ijeq1,...n}|0i05m(z)],
K =maxgeqa,.. ny K-

From this result it can be proven that in one dimensional case, the error between the bound functions
computed using the Bernstein expansion and the original polynomial is quadratic in the length of
box domains. This quadratic convergence seems to hold for higher dimensional cases in practice, as
shown in [12]. We conjecture that there exists a subdivision method of the box B which allows a
quadratic convergence of the error. This subdivision method is similar to the one used for finding
roots of a polynomial with quadratic convergence [21].

On the other hand, a polyhedron can be approximated by a set of non-overlapping oriented boxes
with arbitrarily small error. Then, for each box, we compute a bounding function, with which we then
compute a coefficient for each template. Finally, for each template, we take the largest coefficient
to define the template polyhedron. Since the boxes are smaller, the bounding functions are more
precise, we can thus improve the coefficients as much as desired.

Concerning the error inherent to the approximation by template polyhedra, it can be controlled
by fine-tuning the number of template constraints. If using this method with a sufficient number of
templates to assure the same precision as the convex hull in our previous Bézier method [7], then the
convergence of both methods are quadratic. However the Bezier method requires expensive convex-
hull and triangulation operations, and geometric complexity of resulting sets may grow step after step.
Combining template polyhedra and bounding functions allows a good accuracy-cost compromise.

Concerning complexity issues, the computation of bound functions and PCA only requires ma-
nipulating matrices and linear equations. Linear programming can be solved in polynomial time.



Hence, one can expect that our method depends polynomially on the dimensions. When iterating
this method to compute the reachable set of a polynomial dynamical system, if the number of tem-
plate constraints is constant, the complexity depends linearly on the number of iterations.

6 Experimental results

We have implemented our method in a prototype tool. The implementaion uses the template polyhe-
dral library developed by S. Sankaranarayanan [24] and the library lpsolve for linear programming.
The tool can be used to analyze hybrid systems with polynomial continuous dynamics. In the follow-
ing, we demonstrate the method with two examples: a control system (modelled as a hybrid system)
and a biological system (modelled as a continuous system). The time efficiency of the tool is also
evaluated by considering using a number of randomly generated polynomials.

6.1 A control system

The control system we consider is the Duffing oscillator taken from [19,9]. This is a nonlinear
oscillator of second order, the continuous-time dynamics is described by §(t) +2¢y(¢) +y(t) +y(t) =
u(t), where y € R is the state variable and u € R is the control input. The damping coefficient
¢ =0.3. In [9], using a forward difference approximation with a sampling period A = 0.05 time units,
this system is approximated by the following discrete-time model:

zo(k +1) = —hay (k) + (1 — 2Ch)zo (k) + hw)k) — hay (k)3

In [9], an optimal predictive control law u(k) was computed by solving a parametric polynomial
optimization problem. In Figure 6.1 one can see the phase portrait of the system under this control
law and without it (i.e. YkgeO u(k) = 0) is shown . We model this control law by the following
switching law with 3 modes:

u(k) =05k if0<k<10
u(k) =5 — 0.5% (k —10)/3 if 10 < k < 40
u(k) -0 if k> 40

The controlled system is thus modelled as a hybrid automaton [1] with 3 discrete states. The result
obtained using our tool on this system is shown in Figure 6.1, which is coherent with the phase
portrait in [9]. The initial set is a ball with radius le — 04. The number of template constraints
is 100. In addition to the reachable set after 120 steps (computed after 3s), in Figure 6.1, we also
illustrate the approximation error by visualizing the template polyhedron after the first step and
a cloud of exact points (obtained by sampling the initial set and applying the polynomial to the
sampled points).

6.2 A biological system

The second example is the well-known Michaelis-Menten enzyme kinetics, taken from [16]. The kinetic
reaction of this signal transduction pathway is represented in Figure 3, where E is the concentration
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Fig. 1. The Duffing oscillator: phase portrait, the reachable set, and the reachable set after the first step.
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Fig. 2. Michaelis-Menten enzyme kinetics

of an enzyme that combines with a substrate S to form an enzyme substrate complex ES. In the
next step, the complex can be dissociated into E and S or it can further proceed to form a product
P. This pathway kinetics can be described by the following ODEs where x1, 2, x3 and x4 are the
concentrations of S, E, ES and P:

&1 = —01z179 + 0223

By = —01x129 + (02 + 03)23
&3 = 012129 + (02 + 03)x3
T4 = 0313



Using a second order Runge Kutta discretization with time step 0.3, we obtain the following 4-variate
polynomial system:

71 (x) = 21 — 0.053838z1 22 + 0.001458z5 2 + 0.001458z, 23 +
—3.9366¢ — 05.27 x5 + 0.00577523 — 0.00202521 23 — 0.000162x2x3 +
5.9049¢ — 05x1x223 — 6.075e — 06x§

m2(x) = @2 — 0.051975z1 22 + 0.001458z5 2 + 0.001458z; 23
—3.9366¢ — 05723 + 0.072187523 — 0.002025z1 73 — 0.000162z233 +
5.9049¢ — 05217273 — 6.075¢ — 0623

m3(x) = 0.051975z1 22 — 0.001458.21% 22 — 0.0014582, 25 +
3.9366e — 05z1%23 4 0.927812x3 + 0.002025z1 3 + 0.000162z92:3
—5.9049¢ — 051 x2x3 + 6.075e — 0623

ma(x) = 0.001863z1x2 + 0.0664125x3 + 4.

The reachable set computed for all the initial states inside a ball centered at (12,12, 0,0) with radius
le —0.4 is shown in Figure 3. The number of template constraints is 60. In order to compare with the
result in [16], the figures depicts the evolution of each variable for the first 10 steps (the horizontal
axis is time). In the vertical axis, the minimal and maximal values of the variables are shown. This
result is conherent with the simulation result in [16]. The computation time for 20 steps is 3.7s.
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a : 45
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Fig. 3. Michaelis-Menten enzyme kinetics. The evolution of the reachable set after 10 steps



6.3 Randomly generated systems

In order to evaluate the performance of our method, we tested it on a number of randomly generated
polynomials in various dimensions and maximal degrees (the maximal degree is the largest degree
for all variables). For a fixed dimension and degree, we generated different examples to estimate an
average computation time. In the current implementation, polynomial composition is done symbol-
ically, and we do not yet exploit the possibility of sparsity of polynomials (in terms of the number
of monomials). The computation time shown in the table in Figure 4 does not include the time for
polynomial composition. Note that the computation time for 7-variate polynomials of degree 3 is
significant, because the generated polynomials have a large number of monomials; however, practical
systems often have a much smaller number of monomials.

As expected, the computation time grows linearly w.r.t. the number of steps. This can be explained
by the use of template polyhedra where the number of constraints can be chosen according to required
precisions and thus control better the complexity of the polyhedral operations, compared to general
convex polyhedra. Indeed, when using general polyhedra, the operations such as convex hull may
increase their geometric complexity (roughly described by the number of vertices and constraints).

7 Conclusion

In this paper we propose a new method to compute images of polynomials. This method combines
the ideas from optimization and the Bernstein expansion. This result can be readily applicable to
solve the reachability analysis problem for hybrid systems with polynomial continuous dynamics.

The performance of the method was demonstrated using a number of randomly generated examples,
which shows an improvement in efficiency compared to our previously developed method using Bézier
techniques [7]. These encouraging results also show an important advantage of the method: thanks
to the use of template polyhedra, the complexity and precision of the method are more controllable
than those using polyhedra as symbolic set representations.

There are a number interesting directions to explore. Indeed, different tools from geometric model-
ing could be exploited to improve the efficiency of the method. For example, polynomial composition
can be done for sparse polynomials more efficiently using the blossoming technique [25]. In addition
to more experimentation on other hybris systems case studies, we intend to explore a new application
domain, which is verification of embedded control software. In fact, multivariate polynomials arise in
many situations when analyzing programs that are automatically generated from practical embedded
controllers.
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A Computing affine bound functions using the Bernstein expansion

We describe the algorithm for computing these functions published in [12]. Let us consider a poly-
nomial 7y (x), which is the k** component of m(x) and for simplicity we denote it simply by p(x).
The Bernstein coefficient of p is denoted by the scalars b;. We shall compute an affine lower bound
function denoted by I(x).

— Tteration 1.
e Define the direction u' = (1,0,...,0).

o Compute the slopes from each b; to b° in the direction u':

by — b°

vie lq:ifl] #1°01], gf = i[1]/d[1] — i°[1]/d[1]

e Let i' be the multi-index with the smallest absolute value of g{. Define the lower bound

function:
I'(x) ="+ ghu'(x —i%/d).
— Iteration j =2,...,n.
e Compute the direction &/ = (f84,...,3;-1,0,...,0) such that @’ "~ _ 0 for all k =
1,...,7 — 1. This requires solving a system of j — 1 linear equations with j — 1 unknown

variables. Then normalize u/ = @/ /||0/||.
o Compute the slopes from each b; to b? in the direction u’:

by — =1(i/d)

. i1 —i°[1] ; j
Vielg: ————u #O,Qijzm

d

o Let i/ be the multiindex with the smallest absolute value of gf Define the lower bound

function: ' _ o
P(x)=1"1x)+ ghu! (x — i%/d).



