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Abstract

We present a method for proving representation correspondences in the Common Criteria (CC)
certification of smart-card applications. For security policy enforcement, the CC defines a
chain of requirements: a security policy model (SPM), a functional specification (FSP), and a
target-of-evaluation design (TDS). In our approach to the CC certification, these requirements
are models of applications that can have different representations. A representation correspon-
dence (RCR) describes a correlation between the representations of two adjacent requirements.
One task in the CC certification is to demonstrate formal proofs of RCRs. We first develop a
modelling framework by which the representations of SPM, FSP and TDS can be described
uniformly as models of an application. We then define RCRs as mutual simulations between
two application models over sets of observable events and variables. We describe a proof tech-
nique for proving RCRs and providing certificates about thembased on assertions relating two
models at specific locations. We show how RCRs can help us prove property preservation
from the SPM to the FSP and the TDS.
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1 Introduction

The use of smart card and smart-card applications has been pervasive in our everyday lives. Smart-card
applications are programs embedded in the chip on the smart cards. These application have mainly been
used to provide security functions, in particular user authentication and authorization. These functions are
specified by a security policy. Since the fulfillment of this policy is paramount for a smart-card application,
to give high confidence to the users, smart-card applicationvendors need to provide an assurance that an
implementation of the application satisfies the policy. Theprocess of providing such an assurance is often
referred to as certification process.

We describe in this report our work on developing a method forformal certification of smart-card
applications in the framework of Common Criteria (CC)Com [2007]. This work is part of an industrial
project calledEDEN2.1 The CC is an international standard for the evaluation of security related systems.
It guarantees that a target of evaluation (TOE), or a system,enforces security policies by means of an
assurance architecture. For assurances in the developmentprocess, this architecture consists of a chain of
requirements starting from the model of the policies at the start of the chain, to the low-level design and
the implementation of the system at the end of the chain.

At the highest level of the CC certification, which is called evaluation assurance level 7 (or EAL7),
the following chain of requirements are needed in the assurance architecture: (1) a formal security model
(SPM), (2) a formal functional specification of security functions (FSP), and (3) a TOE design (TDS). The
SPM models the policy independently of the implementation,the FSP describes input-output relationships
of security functions, and the TDS is a low-level design thatis close to the implementation. A representation
correspondence (RCR) demonstrates the correlation between each two adjacent requirements in the chain.
The CC EAL7 certification consists of proving that the SPM, the TDS, and the FSP satisfy the security
policies, and providing certificates about this satisfaction. In addition, the CC EAL7 also requires formal
proofs of RCRs between the SPM and the FSP, and between the FSPand the TDS.

In this report we are concerned with proving RCRs and providing certificates about them. We present
a method for proving RCRs in the context of smart-card applications. First, we develop a framework for
modelling smart-card applications such that the formal models capture the operations of the applications,
in particular our model allows one to reason about card tears(or power loss) and transaction mechanism
that are present in smart-card applications. In this framework, a model of an application consists of a set
of command procedures (or simply command). Each command is presented by two transition graphs (or
control-flow graphs), one describes the normal behavior of the command and the other describes what the
command has to perform when a card tear occurs. The FSP and theTDS are essentially models of an
application. InEDEN2, the SPM consists of two entities: one entity is a model of theapplication and the
other is a set of assertions (or formulas) in some logic such that the assertions describe security properties.
In the sequel, we refer to the former entity when we speak about SPM. Card readers communicate with
a smart-card application by sending a sequence of commands.We model this interaction with a main
procedure that takes as the only input a sequence of commands, and for each command, the procedure
calls the corresponding command procedure in the application. The semantics of an application is then
characterized by the set of the main procedure’s runs.

We define RCRs between two application models as bisimulation equivalence consisting of mutual
simulations between the models over observable events and variables. To this end, given two modelsS and
T of an application, we associate withS andT the same set of observable events and for each event we
associate a mapping between observable variables. Intuitively, we say that there is an RCR betweenS and
T if for every run ofS, there is a run ofT on the same input, and vice versa, such that (1) both runs exhibit
the same sequence of observable events, and (2) for each two equal events, the values of corresponding
observable variables coincide. Having a unified model for smart-card applications allows us to have only
a single definition of RCRs such that the definition is applicable for RCRs between the SPM and the FSP,
and between the FSP and the TDS. Furthermore, we will show that our definition of RCR helps us prove
property preservationfrom one model to the other. That is, as required by the CC EAL7certification, the
RCRs must guarantee that all security properties satisfied by the SPM are satisfied by the FSP and the TDS.

We develop a proof technique for proving RCRs. We prove RCRs betweenS andT by proving the

1Research and industrial partners include Verimag, CEA, Gemalto, and Trusted-Logic; seehttp://www.eden-rntl.org.
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RCR between each corresponding commands inS andT . We apply a theory of inter-program properties
described inVoronkov and Narasamdya[2008] to proving RCRs. Inter-program properties are properties
relating two programs. RCRs are essentially inter-programproperties. We prove RCRs by using assertions
that describe data abstraction and control mapping betweenthe transition graphs of the corresponding com-
mands. The theory also provides a notion of certificate aboutinter-program properties. Such a certificate
is essential to the CC EAL7 certification.

Proving RCRs are challenging due to nontrivial data abstractions between application models and due
to language features in which the models are written. Consider a commandcheckPIN used to authenticate
users by checking an input PIN against the PIN stored on the card. The security policy does not require the
PIN to be in some specific format. Thus, in the SPM the PIN can simply be a natural number. For security,
the command uses variablestrial as a trial-remaining counter. If the input PIN does not matchthe stored
PIN, thentrial is decremented, and if it gets 0, then the PIN is blocked. In the FSP, developers usually
take defensive measures. The PIN in the FSP is now an array of natural numbers, and prior to checking the
input PIN, the variabletrial must be decremented. We then have the following excerpts of over-simplified
checkPIN, the SPM and the FSP are on the lefthand and righthand, respectively:

if (pin 6= input) {
trial := trial − 1;
return fail;

}

trial := trial − 1;
while (i < length) {

if (pin[i] 6= input[i])
return fail;

}
If we associate an event with every update oftrial, then in the SPM this event occurs at the end of command
execution, but in the FSP it occurs at the beginning. Thus, wemay end up with different sequences of
observable events. This poses some difficulties in determining observable events in RCRs. Note that in
the SPM and the FSP above, the data abstraction introduces a loop in the FSP. To prove that for every run
of the SPM there is a “corresponding” run of the FSP, one has toprove that the loop will not yield non-
terminating run. We will show later that in the presence of transaction mechanism, we sometimes have to
relax the definition of RCR. That is, we only require that for every run of the TDS, there is a corresponding
run of the FSP.

In summary the contributions of this report is a method for proving representation correspondences as
a part of the CC EAL7 certification of smart-card applications.

The outline of this report is the following. We first discuss our framework for formally modelling smart-
card applications. We then develop a notion of representation correspondence based on this framework.
Afterward we describe briefly the theory of inter-program properties. Then, we discuss our proof technique
for proving RCRs based on the theory. We then show how RCRs allow us to preserve property in the chain
of the CC requirements. Finally, we discuss some related work and conclude this report.

2 Formal Models and Representation Correspondences

2.1 Transition Graphs and Computation Sequences

A smart-card application is a program consisting ofm + 1 procedures:main, c1, . . . , cm, wheremain
is the main procedure andc1, . . . , cm are command procedures. In the sequel command procedures are
often calledcommands. Each procedureP consists of a finite set ofprogram pointsand is presented as
two disjoint transition graphs(or program-point flow graphs) G

n
P andG

a
P . A transition graph is a finite

directed graph whose nodes are program points. Each edge of atransition graph is labelled with a guard, an
assignment instruction, a goto instruction (or a skip instruction), or a procedure call. The transition graph
G

n
P describes the normal behavior ofP , while the transition graphGa

P describes what the application has
to do when a card tear occurs during the execution ofP .

We assume that every transition graphGP has a unique entry point, denoted byentry(GP ) and a
unique exit point, denoted byexit(GP ). As such, every procedureP has a unique entry pointentry(P ) =
entry(Gn

P ), and two exit points,normal exit pointexitn(P ) = exit(Gn
P ) andabrupt exit pointexita(P ) =

exit(Ga
P ).

The main procedure takes as input a sequence of input commands. In turn, the procedure reads each
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input command of the form(C, v̄), whereC is the command name and̄v are the input values forC. For
each input command(C, v̄), the main procedure calls the corresponding commandC on input v̄, or call
C(v̄).

We introduce a restriction on command procedures, that is, for every command procedureP , the graphs
G

n
P andG

a
P do not contain edges labelled with procedure calls. Similarly, the graphGa

main does not
contain such edges. This restriction does not limit the applications that can be modelled in our framework.
Procedures called by command procedures in smart-card applications are usually not recursive and thus
can be inlined. For technical reason, we assume that, for every command procedure,Gn

main contains an
edge labelled with a call to the procedure.

We describe the run-time behavior of an application as sequences of configurations. Aconfiguration
of a run is a pair(p, σ) wherep is a program point andσ is astatemapping variables to values. Given a
procedureP , a configuration(p, σ) is a called anentry configuration forP if p is an entry point ofP , a
normal exit configuration forP if p is a normal exit point ofP , and anabrupt exit configuration forP if p
is an abrupt exit point ofP

The semantics of an application is defined as a transition relation with transitions of the form(p1, σ1)
l
7→

(p2, σ2), where(p1, σ1) and(p2, σ2) are configurations andl is a transition label. Transitions are of the
following kinds:

• Intra-graph transition, where the pair(p1, p2) is an edge of a transition graph,l is the label of the
edge such thatl is not a procedure call.

• Call transition is a transition wherep2 = entry(P ) of a procedureP such that there is a call edge
(p1, p) labelled withP (y1, . . . , yn) in the transition graph containing pointp1, and there is a pro-
cedureP whose input parameters arex1, . . . , xn. The stateσ2 maintains all global variables inσ1

and, for alli = 1, . . . , n, the stateσ2 mapsxi to the value ofyi. The labell of the transition is
P (y1, . . . , yn).

• Return transition is a transition wherep1 = exitn(P ) for a procedureP such that there is a call

transition(p3, σ3)
l′

7→ (p4, σ4) wherep4 = entry(P ) and(p3, p2) is a call edge labelled withP (ȳ).
The stateσ2 maintains all global variables inσ1, and maps designated variables to the values of the
return variables inσ1. The labell is a special labelret.

• Abrupt transition is a transition wherep1 belongs toGn
P for a procedureP , p2 = entry(Ga

P ), and
σ1 = σ2.

• Abrupt transition, wherep1 is in G
n
P , p2 is entry(Ga

P ), l is a special labelab, andσ1 = σ2.

We allow labels of transitions (or edges of transition graphs) to be associated with events, which means
that the transitions emit the events. We will use a special event variableε to store emitted events. That is,
if a transition emits an eventE, then it is the same as an assignment ofE to ε.

We use the following assumptions for transition relations.First, for every procedureP , every pointp

in G
n
P , and every stateσ, there is a transition(p, σ)

l
7→ (entry(Ga

P ), σ). That is, a card tear can occur non-
deterministically. Second, there is no transition from an exit configuration(p, σ), wherep = exita(P ) for
every procedureP , orp = exitn(main). Third, intra-graph transitions are deterministic. Forth, transitions
are atomic.

A computation sequenceof an applicationA is either a finite or an infinite sequence of

(p0, σ0)
l17→ (p1, σ1)

l27→ (p2, σ2) . . .

where, for alli, the transition(pi, σi)
li+1
7→ (pi+1, σi+1) is justified by a transition in the transition relation

of A. When a computation sequence is finite, then it ends with a configuration. Arun of a procedureP in
A from a stateσ0 is a computation sequence ofA such thatp0 = entry(P ). For every run of a command
procedureP , the run terminates when it reaches an exit configuration forP , and can only terminate in such
a configuration. We say that the runterminates normally(terminates abruptly) if the final configuration
is a normal (abrupt) exit configuration forP . A run of an applicationA from a stateσ is a run of the
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proceduremain fromσ. Especially formain, a run ofmain terminates normallyif the final configuration
is a normal exit configuration formain, and terminates abruptlyif the final configuration is an abrupt
exit configuration for any procedure. Arun of a transition graphG in an applicationA is a computation
sequence ofA such thatp0 = entry(G) and for alli, the pairs(pi, pi+1) is an edge of the graph.

2.2 Representation Correspondences

For our discussion on representation correspondences (RCRs), we assume that we are given two modelsS

andT of an application, whereT is an implementation ofS. That is,S andT can be, respectively, an SPM
and an FSP, or they can be, respectively an FSP and a TDS. For simplicity, we assume that each command
in S has a corresponding command, with the same name, inT , and vice versa. We assume further thatS

andT have disjoint sets of transition graphs and disjoint sets ofvariables.
To define RCRs, we associate with bothS andT the same set of observable events, and for each

observable event we associate a one-to-one correspondencebetween observable variables ofS andT at
the start or final configurations of the transitions that emitthe event. Intuitively, there is an RCR between
S andT if for every run ofT , there is a run ofS on the same input, such that (1) both runs terminate or
generate infinite computation sequences, (2) these runs exhibit the same sequence of observable events,
(3) the values of corresponding observable variables in theconfigurations of each corresponding events
coincide, and (4) vice versa for every run ofS.

We first discuss the set of observable events. For every procedureP , we associate every incoming edge
into exitn(P ) with either aPassP or aFailP events. The first event denotes a successful completion of a
run ofP , while the latter denotes a logic failure. We associate every incoming edge intoexita(P ) with an
AbruptP event and every call transition to a procedureP with aCallP event.

Next, we associate one-to-one correspondences between observable variables for events. For each

command procedureP and for every configurationγ such that there is a configurationγ′ andγ′
l
7→ γ where

l is associated withPassP , we associate withγ a setOS of observable variables ifγ belongs to anS’s run,
and a setOT if γ belongs to aT ’s run, such that there is a one-to-one correspondenceObs betweenOS

andOT . Similarly for l associated withFailP andAbruptP . Whenl is associated withCallP , then, instead
of γ, we associateOS andOT with γ′ such that if the parameters ofP in S and inT are, respectively,
x̄ = x1, . . . , xm andȳ = y1, . . . , yn, thenm = n, {x1, . . . , xm} ⊆ OS and{y1, . . . , yn} ⊆ OT , andObs
mapsxi to yi for all i = 1, . . . ,m. We also associate entry configurations ofmain with the setsOS and
OT such that the input variables ofS andT are mapped to each other.

We associateobservation functionO with eachS andT to identify observable configurations and tran-
sition labels. That is, for a configurationγ, the functionO(γ) = γ if γ is associated with a set of observable
variables, otherwiseO(γ) = ⊥. Similarly, for a labell of a transition,O(l) = e if l emits an observable
evente, otherwiseO(l) = ⊥. An observation sequenceof a computation sequenceR, denoted byo(R),
is obtained by turningR into an alternating sequence of configurations and transition labels, and applying
the observation functionO to each configuration and transition label ofR. That is, for a computation

sequenceR = γ0
l17→ γ1

l27→ γ2
l37→ . . ., we haveo(R) = O(γ0),O(l1),O(γ1),O(l2),O(γ2),O(l3), . . .. A

⊥-free observation sequenceof a computation sequenceR, denoted byo⊥(R) is obtained fromo(R) by
suppressing⊥ in o(R).

We say that two statesσ1 andσ2 arecompatiblewith respect to a one-to-one correspondenceObs

between the setsO1 andO2 of observable variables in the domain of, respectively,σ1 andσ2 if for every
x ∈ O1, we haveσ1(x) = σ2(Obs(x)). Two configurationsγ1 = (p1, σ1) andγ2 = (p2, σ2) arecom-
patible if there are setsO1 andO2 of observable variables associated withγ1 andγ2 such that (1) there is
a one-to-one correspondenceObs betweenO1 andO2, and (2)σ1 andσ2 are compatible with respect to
Obs.

DEFINITION 2.1 We say that two computation sequencesR1 andR2 areobservationally equivalent(or
stuttering equivalent) if, let

o⊥(R1) = θ1, θ2, . . . o⊥(R2) = θ1, θ
′
2, . . . ,

o⊥(R1) ando⊥(R2) are of the same length, and for alli, we have either (1)θi = γ andθ′i = γ′, for
configurationsγ andγ′, such thatγ andγ′ are compatible, or (2)θi = θ′i. �
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DEFINITION 2.2 There is arepresentation correspondencebetween a procedureP of S and a procedure
P ′ of T if for every runR of P from a configurationγ, there is a runR′ of P ′ from a configurationγ′,
whereγ andγ′ are compatible, and vice versa, such thatR andR′ are observationally equivalent.

There is arepresentation correspondencebetweenS andT if there is a representation correspondence
betweenmain of S andmain of T . �

In the above definition, due to call transitions and our assumption thatGn
main contains at least a call

edge for every command procedure, the configurationsγ andγ′ have sets of observable variables associated
with them. Note that to haveγ andγ′ compatible, then the proceduresP andP ′ must refer to the same
command. The notion of RCR for procedures is useful for proving RCR betweenS andT . Sincemain
can be thought of as a loop that read input command and call thecommand, then proving RCR betweenS
andT can be reduced to proving RCR between each corresponding commands.

3 Theory of Inter-Program Properties

In this section we describe an abstract theory for describing and proving properties that relate two programs.
Such properties are calledinter-program properties. A detailed description of the theory can be found
in Voronkov and Narasamdya[2008]. The theory deals with programs that are represented as transition
graphs described in the previous section.

For describing and proving inter-program properties, the theory considers two programsP1 andP2 as
a pair(P1, P2), such that they have disjoint flow graphs and disjoint sets ofvariables. A stateσ for the pair
(P1, P2) can be considered as a pair(σ1, σ2) = σ, such thatσ1 is forP1 andσ2 is forP2. A configuration
is a tuple(p1, p2, σ1, σ2) such that(p1, σ1) is a configuration forP1 and(p2, σ2) is a configuration forP2.
The semantics of(P1, P2) is a transition relations containing two kinds of transitions:

1. (p1, p2, σ1, σ2) 7→ (p′1, p2, σ
′
1, σ2), such that(p1, σ1) 7→ (p′1, σ

′
1) is inP1;

2. (p1, p2, σ1, σ2) 7→ (p1, p
′
2, σ1, σ

′
2), such that(p2, σ2) 7→ (p′2, σ

′
2) is inP2.

In the description of the theory in this section, we omit the transition labels for simplicity. Thus, a compu-
tation sequence is simply a sequence of configurations.

The theory assumes anassertion languageand uses relationσ |= α to mean that the stateσ satisfies
the assertionα. For a configurationγ = (p, σ), we writeγ |= α for σ |= α. An assertion isvalid if it is
satisfied by any state.

The formalization of the theory is based on the notion of assertion function. Anassertion functionof
(P1, P2) is a partial function

I : PointP1 × PointP2 → Assertion

mapping pairs of program points of(P1, P2) to assertions, such thatI is defined on(entry(P1), entry(P2))
and(exit(P1), exit(P2)). This requirement is technical as one can always defineI on these pairs as⊤.
Assertions defined on such anI are calledinter-program assertions. Given a pair of pointŝp and a pair of
stateŝσ of (P1, P2), we say that̂p is I-observable ifI(p̂) is defined. For a configurationγ = (p̂, σ̂), we
write γ |= I if I(p̂) is defined and̂σ |= I(p̂).

The theory introduces the notion of weakly-extendible assertion function as a well-suited notion for
describing inter-program properties.

DEFINITION 3.1 LetI be an assertion function of a pair(P1, P2) of programs. The functionI is weakly
extendibleif every run

γ0, . . . , γi

of (P1, P2), such thati ≥ 0, γ0 |= I, γi |= I, andγi is not an exit configuration, can be extended to a run

γ0, . . . , γi, . . . , γi+n

such that (1)n > 0, and (2)γi+n |= I. �
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EXAMPLE 3.2 We illustrate in this example the notion of weak extendibility. Consider the following two
programsP1, on the right, andP2, on the left:

i := 0; j := 0;
while (j ≤ i ∨ j 6= i) {

if (i > j) j := j + 1;
elsei := i + 1;
q : }

i′ := 0; j′ := 0
while (j′ ≤ i′ ∨ j′ 6= i′) {

i′ := i′ + 1;
j′ := j′ + 1;

q′ : }

We define an assertion functionI such thatI(entry(P1), entry(P2)) = ⊤, I(q, q′) = (i = i′ ∧ j =
j′ ∧ i = j), andI(exit(P1), exit(P2)) = ⊥. The functionI is weakly extendible with the following
reasoning: (1) For every run of(P1, P2) from any entry configuration, by taking two iteration of the loop
in P1 and one iteration of the loop inP2, the run reaches(q, q′) such that the last configuration satisfies
I(q, q′); (2) From every configuration that satisfiesI(q, q′), by taking the same path as before, the run
reaches(q, q′) again with a configuration that satisfiesI(q, q′); (3) no exit configuration can be reached by
any run of(P1, P2). �

In Voronkov and Narasamdya[2008] we show that, without appealing to the standard proof technique
that uses well-founded set, and using only inter-program assertions and the notion of weak extendibility, we
can prove program equivalence and mutual simulations of twoprograms where one program has a loop that
does not correspond to any loop in the other program, or even the loop is eliminated in the other program.
For proving RCRs, we often encounter such a situation. For example, PIN is a scalar variable in the SPM,
but is an array variable in the FSP. So, for checking and updating the PIN, the FSP contains loops that do
not exist in the SPM.

We now develop verification conditions that guarantee weak extendibility. To this end, we need a notion
of path of pairs of programs. A pathπ of (P1, P2) can be viewed as atrajectory in a two dimensional
space:π = (π1, π2), whereπ1 is a path in the flow graph ofP1 andπ2 is a path in the flow graph ofP2.
A path istrivial if it consists of a single pair of points. Given apathπ and an assertionψ, we denote by
wpπ(ψ) andwlpπ(ψ), respectively, the weakest and the weakest liberal preconditions ofπ andψ. Since we
have to compute these preconditions, we assume that the programming language that we consider has the
weak precondition property: for every pathπ and every assertionψ, wpπ(ψ) exists and can effectively be
computed. One can also computewlpπ(ψ) since it is equivalent towpπ(ψ)∨ ¬wpπ(⊤). The precondition
for paths of pairs of programs can also be derived from the precondition of paths of single programs.

DEFINITION 3.3 LetI be an assertion function andΠ be a set of nontrivial path such that, for everyπ ∈ Π,
we havestart(π) andend(π) to beI-observable. Denote byΠ|(p, p

′) the set of paths inΠ whose first pair
of points is(p, p′).

Theweak verification conditionW associated withI andΠ consists of assertions of the form

I(start(π)) ⇒ wlpπ(I(end(π))),

whereπ ∈ Π and assertions of the form

I(p) ⇒
∨

π∈Π|(p,p′)

wpπ(⊤)

where(p, p′) is I-observable. �

The first kind of assertion is a standard assertion for proving partial correctness of path. The second
kind of assertion expresses that, whenever a configuration at p satisfiesI(p), the computation from this
configuration willinevitablyfollows at least one path inΠ.

THEOREM 3.4 Let W, I andΠ be as in Definition3.3. If every assertion inW is valid, thenI is weakly
extendible. �
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The notion of weak verification condition is our notion for certificates that certify inter-program prop-
erties. In the next section we will use inter-program assertions to describe correspondences between ob-
servable variables. Later, to prove an RCR between two commands, one has to prove other inter-program
properties between transition graphs of the commands. These program properties altogether describe the
RCR. To prove such properties, we define an assertion function and prove that the function is weakly
extendible. The certificates certifying these properties form a certificate for the RCR.

4 Proving Representation Correspondences

For our discussion on proving RCRs, we consider the application modelsS andT described in Section2.
To prove an RCR betweenS andT , we are only concerned with command procedures, that is, foreach
corresponding command procedures, we prove an RCR between the procedures.

For two modelsS andT , there is usually a one-to-one correspondenceObs between global observable
variables ofS andT such that the values of each corresponding variables coincide at the entry and normal
exit configurations of every command run. To this end, let us consider some command procedureP .
Let Obsp, Obsf , Obsa be one-to-one correspondences specified for the end configurations of transitions
emitting, respectively, a aPassP , aFailP , anAbruptP event. For simplicity of presentation, in the sequel let
Obsp = Obsf . LetObsc be a one-to-one correspondence specified for the start configurations of transitions
emittingCallP . We require thatObs is included inObsp andObsc. We say that a correspondencef is
included in a correspondenceg if for every mappingx 7→ y in f is a mapping ing.

Denote byPS andPT , respectively, the commandP in S and inT . Given a functionf , we denote by
dom(f) the domain off . For simplicity of notation, given a one-to-one correspondenceg, we abbreviate
the assertion

∧
x∈dom(g) x = g(x) to simplyg. To prove an RCR betweenPS andPT , we do the following

steps:

1. Letα be an assertion, such that the assertionα ⇒ Obsc is valid. That is,α describes the corre-
spondenceObsc. The assertionα can also describe invariants specific toS or T . We prove thatα is
satisfied by the initializations of global variables.

2. We assertα at (entry(Gn
P S ), entry(Gn

P T )) andα′ at (exit(Gn
P S ), exit(Gn

P T )) such that the asser-
tionsα′ ⇒ Obsp andα′ ⇒ α are valid. That is, we assume that the correspondence expressed byα
holds in the entry configurations of the procedures, and is preserved in the exit configurations.

3. Letψ, ψ′ be assertions asserted at, respectively, the pairs of points(entry(Ga
P S ), entry(Ga

P T )) and
(exit(Ga

P S ), exit(Ga
P T )) such that the assertionψ′ ⇒ Obsa is valid. That is, the correspondence

Obsa holds when procedure runs terminate abruptly.

4. We prove that for every finite run ofGn
P T , there is a finite run ofGn

P S from configurations satisfying
α, and vice versa, such that the final configurations of the runssatisfy the assertionψ.

One can demonstrate (1) easily since it amounts to proving that the initializations of global variables satisfy
α. In the sequel we focus on the steps (2), (3), and (4).

We present our proof technique for proving RCRs of commands by means of areal example of a com-
mand calledcheckPIN that is used for authenticating users. In this report we onlyconsider proving RCRs
between the SPM and the FSP of the command. Proving RCRs between the FSP and the TDS follows the
same steps above. The SPM is written in a domain-specific language, called command description lan-
guage, that resembles a subset of Java. Each command can be thought of as a method that has clauses: one
passclause describing conditions and state updates of successful completion of a run of the command; one
or morefail clauses describing logic failures and the corresponding state updates; and oneabrupt clause
describing abrupt behavior of the command. For each commandprocedureP , thepassandfail clauses of
the command constitute the transition graphG

n
P , while theabrupt clause constitutes the transition graph

G
a
P .

The FSP is written in a subset of Java. Each command procedureP is a method of the form:

P ( . . . ) { t ry { . . . } catch ( CardTearException ) { . . . } }
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Figure 1: SPM and FSP ofcheckPIN.

The try part constitutesGn
P , while thecatch part constitutesGa

P . Details of SPM and FSP can be found
in another technical reportNarasamdya and Périn[2008].

EXAMPLE 4.1 We prove that there is an RCR between two corresponding commands procedurePc by
considering their transition graphsGn

Pc
andG

a
Pc

separately. The lefthand pair of transition graphs in
Figure1 is G

n
checkPIN

of the SPM, on the left of the pair, andGn
checkPIN

of the FSP, on the right of the
pair. As a shorthand, we call the formerP1 and the latterP ′

1. The FSP ensures that the variabletrial is
decremented prior checking the PIN value. For disjointness, we assume that all variables inP1 are primed.

First the global variables of the SPM that we want to observe are trial, pin, val, andMAX. They
correspond to their primed counterparts in the FSP. Additionally, at the entries ofP1 andP ′

1, the input pin
p corresponds top′, and at the exits ofP1 andP ′

1, the event variableε corresponds toε′. Next, we have
to define the equality between scalar PIN and array PIN. Everyarray PINp is associated with a length
l; we write this association as(p, l). We introduce predicate≡ between such pairs such that, given array
PINs (p, l) and(p′, l′), we say that(p, l) ≡ (p′, l′) if l = l′, l ≥ 0, and for alli = 0, . . . , l − 1, we have
p[i] = p′[i]. We introduce a predicate∼ which is axiomatized as follows: for every scalar PINsw, x and
for every array PINsy, z,

x ∼ y ⇒ (y ≡ z ⇔ x ∼ z) x ∼ y ⇒ (w = x⇔ w ∼ y).

The predicate∼ defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence between observable variables:

φ1 ⇔ trial = trial′

φ2 ⇔ val = val′
φ3 ⇔ pin ∼ (pin′, length′)
φ4 ⇔ MAX = MAX′

φ5 ⇔ p ∼ (p′, l′)
φ6 ⇔ ε = ε′

Next, we define an assertion functionI1 of (P1, P
′
1) as follows:

I1(pe, p
′
e) =

∧5
i=1 φi I1(px, p

′
x) =

∧6
i=1 φi

I1(p1, p
′
1) =

∧5
i=1 φi ∧ trial > 0

I1(p1, p
′′
1) =

∧5
i=2 φi ∧ trial > 0 ∧ trial = trial′ + 1

∧length′ = l′ ∧ i′ < l′ ∧ (∀j.0 ≤ j < i′ ⇒ pin′[j] = p′[j])

I1(p2, p
′
2) =

∧5
i=1 φi ∧ pin = p ∧ (pin, length) ≡ (p, l)

I1(p3, p
′
3) = I1(p3, p

′′
3) =

∧5
i=1 φi ∧ pin 6= p ∧ (pin, length) 6≡ (p, l)

In this example, we prove an interesting part of RCR, that is,without any presence of card tears, for
every runR of P1, there is a runR′ of P ′

1 from compatible states, such thatR andR′ are observationally
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equivalent. We denote byπp,p′ a path fromp to p′, and byπp a trivial path consisting only of pointp. We
prove thatI1 is weakly extendible by the following reasoning. First, forevery run of(P1, P

′
1) from an entry

configuration that satisfiesI1(pe, p
′
e), the run can reach(p1, p

′
1) by following the path(πpe,p1 , πp′

e
,p′

1
) such

that the end configuration satisfiesI1(p1, p
′
1). From this configuration, the run can be extended either by

following the path(πp1,p3 , πp′

1,p′′

3
) or by following the path(πp1 , πp′

1,p′′

1
) such that the end configuration

satisfiesI1. From the configuration that satisfiesI(p1, p
′′
1), the run can be extended either by following

(πp1 , πp′′

1 ,p′′

1
), or by following (πp1,p2 , πp′′

1 ,p′

2
), or by following (πp1,p3 , πp′′

1 ,p′

3
). Without any of these

paths,I1 would not be weakly extendible. Thus, we have shown that, using the notion of weak extendibility,
these paths show that the loop inP ′

1 terminates.
Note that every possible transition ofP1 is described by the nontrivial paths that constitute the first

elements of all pairs of paths above. Therefore, we have proved that for every runR of P1, there is a run
R′ of P ′

1 from compatible states, such thatR andR′ are observationally equivalent. We can use the same
reasoning for proving the other direction. Indeed, by taking the set of all the above pairs of paths, one can
prove that all assertions of the weak verification conditionassociated withI1 and the set are valid.

Consider now the righthand pair of transition graphs in Figure1 is G
a
checkPIN

of the SPM, on the left of
the pair, andGa

checkPIN
of the FSP on the right of the pair. As a shorthand, we call the formerP2 and the

latterP ′
2. The SPM and FSP only have to guarantee that the validation status is set to false in case of power

loss. That is, the only observable variables areval and its primed counterpart.
We define an assertion functionI2 of (P2, P

′
2) such that we haveI2(ae, a

′
e) = ⊤ andI2(ax, a

′
x) =

(val = val). It is easy to thatI2 is weakly extendible, which means that if a card tear occurs and the config-
urations of the runs at(ae, a

′
e) satisfiesI2, then both runs will emit the same event, which isAbruptcheckPIN

and they both terminate in compatible states.
Finally we have to prove that for every finite run ofP1 with end stateσ, there is a finite run ofP ′

1 with
end stateσ′, and vice versa, such that(σ, σ′) satisfiesI2(ae, a

′
e). SinceI2(ae, a

′
e) is satisfied by every

state, then we have finished our proof. �

Proving RCRs between an FSP and a TDS is challenging due to thefeatures of the language of the TDS.
A TDS is written in a subset of Java CardSun[2008], which includes transient and persistent memory as
well as transaction mechanism. When a card tear occurs, datastored in persistent memory will be kept
in the memory, while those stored in transient memory will belost. Variables whose values are stored in
persistent memory are calledpersistent variables, while those whose values are stored in transient memory
are calledtransient variables.

Transactions are managed by methodsbeginTransaction, commitTransaction, andabortTransaction with
standard functionalities. The depth of a transaction is at most 1. When a transaction is in progress,
the updates of persistent variables are conditional, in thesense that the updates will be materialized if
commitTransaction is called. Regardless a transaction is in progress or not, the updates of transient variables
are unconditional. To model card tears and transactions, weuse the desugaring method inHubbers and Poll
[2004b]. Each command in the TDS is a Java method, and desugaring thecommand means translating the
method into the same form as that of the FSP, that is, the method has a bigtry-catch construct. Thecatch
construct sets all transient variables to their default values, and cancel the updates of persistent variables if
the card tear occurs when a transaction is in progress.

EXAMPLE 4.2 In this example we only considerG
n
checkPIN

of the SPM andGn
checkPIN

of the FSP, depicted
on the lefthand and righthand of figures2, respectively. As a shorthand, we call the formerP and the latter
P ′.

For disjointness, we assume that all variables in the TDS areprimed. The input variables and the
variableval′ are the only transient variables; others are persistent. The boolean variableinTrans and the
variabletb come from the desugaring method. The value ofinTrans is true if a transaction is in progress;
otherwise false. The variabletb backs up the value oftrial.

In the presence of transactions, we require that the updatesof trial andval must be unconditional. For
this reason, Java Card has so-called non-atomic methods forupdating persistent variables. Discussion on
these methods and their effects on transactions can be foundin Hubbers and Poll[2004a]. Since the TDS
is only a reference implementation, in this example, we useinTrans to model the non-atomic methods.
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Figure 2: FSP and TDS ofcheckPIN.
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The following assertions express the one-to-one correspondence between observable variables:

φ1 ⇔ pin = pin′ ∧ length = length′ ∧ MAX = MAX′ ∧ trial = trial′ ∧ val = val′ ∧ ε = ε′

φ2 ⇔ p = p′ ∧ l = l′

We then define an assertion functionI of (P, P ′) such that

I(pe, p
′
e) = I(p1, p

′
1) = I(p2, p

′
2) = φ1 ∧ φ2

I(p3, p
′
3) = I(p4, p

′
4) = I(p5, p

′
5) = I(px, p

′
x) = φ1

Given a setS of program points, we say that a pathπ = p0, . . . , pn is S-simple ifn > 0, p0 andpn are in
S, and none ofp1, . . . , pn−1 are inS. LetD be the set of pairs of program points, we denote byfst(D) the
set of first point of the pairs inD, and similarly bysnd(D) the set of second point. We denote byDom(I)
the defined domain of the assertion functionI.

By taking the set of pairs(π, π′) of paths of(P, P ′), such thatπ is fst(Dom(I))-simple andπ′ is
snd(Dom(I))-simple, andI is defined on(start(π), start(π′)) and(end(π), end(π′)), one can easily
prove thatI is weakly extendible in a similar way to the previous example. These pairs of paths also show
that, without any card tears, for every runR of P , there is a runR′ of P ′ from compatible states, such that
R andR′ are observationally equivalent, and vice versa.

The remaining steps of proving the RCR follows those of the previous example. �

One might have to relax Definition2.2 of RCRs to prove RCRs between an FSP and a TDS. Let us
consider the following toy commands:

P1:

x := 5;
y := 6;

P2:

ǫ

P ′
1:

if (inTrans) return ERROR;
xb := x′;
yb := y′;
inTrans := ⊤;
x′ := 6;
y′ := 5;
inTrans := ⊥;

P ′
2 :

if (inTrans) {
x′ := xb;
y′ := yb;

}

The programs (or transition graphs)P1 andP2 constitute thetry andcatch parts of the FSP, respec-
tively. (P2 has no instruction.) Similarly forP ′

1 andP ′
2 of the desugared form of the TDS. Suppose that

x′ andy′ are observable persistent variables that correspond tox andy, respectively. The variablesxb and
yb are back-up variables forx′ andy′. The boolean variableinTrans indicates whether a transaction is in
progress or not; assume that it is false at the entry ofP ′

1. In case of abrupt terminations, we want to ensure
that the above correspondence holds. To this end, we have to assert at the entries ofP2 andP ′

2 the assertion
φ below:

(¬inTrans ⇒ x = x′ ∧ y = y′) ∧ (inTrans ⇒ x = xb ∧ y = yb)

For every finite runR′ of P ′
1 from a state satisfyinginTrans = ⊥, there is a finite runR of P1 such that

the final configurations of the runs satisfyφ. For example, ifR′ reaches the middle of transaction, e.g., the
entry ofy′ := 6, thenR simply stays at the entry ofP1. However, showing the other way around is not
possible. When a runR reaches the entry ofy := 6, then there is no finite runR′ of P ′

1 such that the final
configurations satisfyφ. Thus, according to Definition2.2there is no RCR between the commands.

To handle such an above case, one can relax Definition2.2. That is, we only require that for every
runR of PT from a configurationγ, there is a runR′ of PS from a configurationγ′, whereγ andγ′ are
compatible, such thatR andR′ are observationally equivalent. The drawback of this relaxed definition is
that if PT does not terminate and the assertion at the entries of abruptgraphs is valid, then there is always
an RCR betweenPT andPS . Nevertheless, with this relaxed definition, we can still preserve security
properties forS in T , as shown in the following section.

5 Property Preservation

In this section we show how security properties of the SPM canbe preserved in the FSP using RCRs.
Property preservation between the FSP and the TDS can be explained in the same way. We are only

Verimag Research Report no TR-2008-18 11/14



Iman Narasamdya, Michaël Périn

concerned with security properties that can be characterized as partial correctness properties: a procedure
P is partially correctwith respect to a preconditionα and a postconditionβ, denoted by{α}P{β}, if for
every run ofP from a state satisfyingα and reaching an exit configuration, this configuration satisfiesβ.

Consider again the application modelsS andT and the one-to-one correspondencesObsp,Obsf ,Obsa,
Obsc described at the beginning of Section4. We show property preservation by the following theorem:

THEOREM 5.1 Letα andβ be, respectively, a precondition and a postcondition for a procedurePS such
that {α}PS{β}. Letα′ andβ′ be, respectively, a precondition and a postcondition for a procedurePT

such that the assertions

Obsc ⇒ (α⇔ α′)
(Obsp ∧ ε = PassP ) ∨ (Obsf ∧ ε = FailP ) ∨ (Obsa ∧ ε = AbruptP ) ⇒ (β ⇔ β′)

are valid. If there is an RCR betweenPS andPT , then{α′}PT{β′}. �

As an example, consider again the command and assertions in Example4.1. Suppose that the property
that we want to preserve is as follows: for any run ofcheckPIN, the value of variableval at the exit
configuration of the run is trueif and only if the run emits aPasscheckPIN event.

Let ψ be the assertion(val = ⊤ ⇔ ε = PasscheckPIN) andϕ be the conjunction of the following
assertions: (1)MAX > 0, (2)0 ≤ trial ≤ MAX, and (3)trial < MAX ⇒ val = ⊥. The above property can
be expressed as a partial correctness property{ϕ}checkPIN{ψ}. One can use standard Floyd-Hoard proof
techniqueFloyd [1967], Hoare[1969] to prove the property for both the SPM and the FSP.

Suppose that we have proved that the property holds for the SPM. We have shown in Example4.1
that there is an RCR between the commandcheckPIN of the SPM and of the FSP. LetP be the command
checkPIN in the FSP. Recall again the assertionsφ1, . . . , φ6 in the example. Given an assertionα, let us
denote byp(α) the assertion obtained fromα by replacing each variable inα with its primed notation.
Now, since the following assertions

∧5
i=1 φi ⇒ (ϕ⇔ p(ϕ))

(
∧6

i=1 φi ∧ (ε = PassP ∨ ε = FailP )) ∨ (φ2 ∧ ε = AbruptP ) ⇒ (ψ ⇔ p(ψ))

are valid, then by Theorem5.1we have{p(ϕ)}P{p(ψ)}.

6 Related Work and Conclusion

We developed a method for proving RCRs in the CC EAL7 certification of smart-card applications. We
presented a modelling framework by which the representations of the SPM, the FSP, and the TDS can
be modelled uniformly. Our framework is an extension of the modelling framework of procedural pro-
grams inZaks and Pnueli[2008], in the sense that we model abrupt behavior of procedures. Our definition
of RCRs is mutual simulations between two application models. We apply the theory of inter-program
properties inVoronkov and Narasamdya[2008] for proving RCRs and providing certificates about them.
The theory has been used for proving properties in translation validation approach to compiler verifica-
tion Rinard and Marinov[1999], Zuck et al.[2003], Voronkov and Narasamdya[2008]. In this report we
have shown another venue for the application of the theory. The application is beneficial since the theory
provides a notion of certificate, which is essential in the CCEAL7 certification.

There have been a few works on formal specification and verification in the CC framework; closely
related to ours isDadeau et al.[2008]. Their work is based on B method. Their definition of RCRs is similar
to ours, in the sense that, for each command, they have a mapping between input-output relationships of
two application models. Their work does not address complexdata abstractions like our PIN, and their
commands do not contain loops. However, their work has gone beyond ours in the sense that they included
a model of Java Card API for APDU commandsSun[2008].

Another related work is by Heitmeyer et. al. on verifying enforcement of data separation in the kernel
of a software-based embedded deviceHeitmeyer et al.[2006]. Similar to ours, their work uses a state
machine model consisting of events as a specification. Concrete code is partition into event code, trusted

12/14 Verimag Research Report no TR-2008-18



Iman Narasamdya, Michaël Périn

code, and other code. Event code corresponds to an event in the state-machine specification and such code
is annotated with preconditions and postconditions. Theirwork construct two mappings: one is between
events of the state machine and of the code, and the other is between assertions describing preconditions
and postconditions of corresponding events. RCRs are proved for each corresponding events, that is,
the precondition and the postcondition of an event in the code imply, respectively, the precondition and
postcondition of the corresponding event in the specification. In their work, event code contains no loops,
and they do not prove the relation between the code and its precondition and postcondition. Moreover, the
mapping between assertions is based only on syntactic matching. Unlike ours, their work deals with real C
code.

Other works on the CC certification have not addressed RCRs, or have only given little efforts on
RCRsChetali and Nguyen[2008], Wilding et al.[2001]. One distinguish feature in our work that has not
been addressed by others is proving property preservation using RCRs.

There has been some work related to the specification and verification of smart-card applications, but
not in the CC certification. PaperSchellhorn et al.[2006] describes a verification of Mondex electronic
purse based on abstract state machine (ASM). The work is not in the CC, but it uses a notion of refinement
simulation between ASMs to show correctness of a concrete implementation. The operations (similar to
commands) in Mondex are simple and contains no loops and no complex data abstractions. The work
in Breunesse et al.[2005] describes a case study in the specification and verificationof an electronic purse
application. The work is concerned only with the specification and verification of commands in the imple-
mentation code. The work can complement our work in proving properties of the implementation code.

In this report we do not address RCRs between the TDS and the implementation code. We assume
that existing work on certified and certifying compilersLeroy [2006], Rinard and Marinov[1999] can
be used to provide RCRs between the TDS and the implementation code. We are currently developing
certification tools based on the method described in this report. We take JML approachLeavens and Cheon
[2003] to specifying assertion function. That is, we use special comments to put labels denoting program
points in the programs, and write the assertion function in aseparate file. We use off-the-shelf data-flow
analyses, such as global value numbering, to assist users indefining assertion functions, so that users only
concentrate on one-to-one correspondences between observable variables. We are developing heuristics
based on observable events to alleviate the burdens of specifying paths in weak verification conditions; this
is the topic of our future work. Assertions in the verification conditions can then be proved using SMT
solvers, such as YicesDutertre and de Moura[2006].
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