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Abstract

We present a method for proving representation correspmaedaen the Common Criteria (CC)
certification of smart-card applications. For securityippolenforcement, the CC defines a
chain of requirements: a security policy model (SPM), a fiomal specification (FSP), and a
target-of-evaluation design (TDS). In our approach to tRec@rtification, these requirements
are models of applications that can have different reptaiens. A representation correspon-
dence (RCR) describes a correlation between the repréisastaf two adjacent requirements.
One task in the CC certification is to demonstrate formal fso6 RCRs. We first develop a
modelling framework by which the representations of SPMPE&d TDS can be described
uniformly as models of an application. We then define RCRs atsiah simulations between
two application models over sets of observable events amables. We describe a proof tech-
nigue for proving RCRs and providing certificates about thased on assertions relating two
models at specific locations. We show how RCRs can help uspoperty preservation
from the SPM to the FSP and the TDS.
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1 Introduction

The use of smart card and smart-card applications has beeaspe in our everyday lives. Smart-card
applications are programs embedded in the chip on the sma@al$.cThese application have mainly been
used to provide security functions, in particular user antttation and authorization. These functions are
specified by a security policy. Since the fulfillment of thidipy is paramount for a smart-card application,
to give high confidence to the users, smart-card applicatoniors need to provide an assurance that an
implementation of the application satisfies the policy. Phecess of providing such an assurance is often
referred to as certification process.

We describe in this report our work on developing a methodfdomal certification of smart-card
applications in the framework of Common Criteria (CC)m [2007. This work is part of an industrial
project calledEDEN2.! The CC is an international standard for the evaluation afisgcrelated systems.

It guarantees that a target of evaluation (TOE), or a systarfgrces security policies by means of an
assurance architecture. For assurances in the developnoeess, this architecture consists of a chain of
requirements starting from the model of the policies at taet ®f the chain, to the low-level design and
the implementation of the system at the end of the chain.

At the highest level of the CC certification, which is calledhlation assurance level 7 (or EAL7),
the following chain of requirements are needed in the asserarchitecture: (1) a formal security model
(SPM), (2) a formal functional specification of security &tions (FSP), and (3) a TOE design (TDS). The
SPM models the policy independently of the implementatioa FSP describes input-output relationships
of security functions, and the TDS is a low-level design ibatose to the implementation. A representation
correspondence (RCR) demonstrates the correlation beteash two adjacent requirements in the chain.
The CC EALY certification consists of proving that the SPMg DS, and the FSP satisfy the security
policies, and providing certificates about this satistactiln addition, the CC EAL7 also requires formal
proofs of RCRs between the SPM and the FSP, and between tharfeSRe TDS.

In this report we are concerned with proving RCRs and progdiertificates about them. We present
a method for proving RCRs in the context of smart-card apgibos. First, we develop a framework for
modelling smart-card applications such that the formal edapture the operations of the applications,
in particular our model allows one to reason about card t@arpower loss) and transaction mechanism
that are present in smart-card applications. In this fraotkwa model of an application consists of a set
of command procedures (or simply command). Each commanesepted by two transition graphs (or
control-flow graphs), one describes the normal behaviodn®@tbmmand and the other describes what the
command has to perform when a card tear occurs. The FSP afidDthare essentially models of an
application. INEDENZ2, the SPM consists of two entities: one entity is a model ofapglication and the
other is a set of assertions (or formulas) in some logic siahthe assertions describe security properties.
In the sequel, we refer to the former entity when we speak 88Bi. Card readers communicate with
a smart-card application by sending a sequence of commanedsmodel this interaction with a main
procedure that takes as the only input a sequence of commanddor each command, the procedure
calls the corresponding command procedure in the appitafl he semantics of an application is then
characterized by the set of the main procedure’s runs.

We define RCRs between two application models as bisimulaguivalence consisting of mutual
simulations between the models over observable eventsaarables. To this end, given two modélsnd
T of an application, we associate withand7' the same set of observable events and for each event we
associate a mapping between observable variables. Welyjtive say that there is an RCR betwefand
T if for every run ofS, there is a run of " on the same input, and vice versa, such that (1) both runbiéxhi
the same sequence of observable events, and (2) for eachytvab events, the values of corresponding
observable variables coincide. Having a unified model foargroard applications allows us to have only
a single definition of RCRs such that the definition is apfiedor RCRs between the SPM and the FSP,
and between the FSP and the TDS. Furthermore, we will shavotiradefinition of RCR helps us prove
property preservatiofrom one model to the other. That is, as required by the CC Eedrfification, the
RCRs must guarantee that all security properties satisfi¢idedSPM are satisfied by the FSP and the TDS.

We develop a proof technique for proving RCRs. We prove RC&w&denS andT' by proving the

1Research and industrial partners include Verimag, CEA, @termand Trusted-Logic; sée t p: / / www. eden-rnt | . or g.
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RCR between each corresponding commands amd7". We apply a theory of inter-program properties

described in/oronkov and Narasamdyf2009 to proving RCRs. Inter-program properties are properties
relating two programs. RCRs are essentially inter-progresperties. We prove RCRs by using assertions
that describe data abstraction and control mapping betthedransition graphs of the corresponding com-
mands. The theory also provides a notion of certificate almeit-program properties. Such a certificate

is essential to the CC EAL?7 certification.

Proving RCRs are challenging due to nontrivial data abstnas between application models and due
to language features in which the models are written. CensidommandheckPIN used to authenticate
users by checking an input PIN against the PIN stored on ttte &e security policy does not require the
PIN to be in some specific format. Thus, in the SPM the PIN caapkyi be a natural number. For security,
the command uses variable&l as a trial-remaining counter. If the input PIN does not makehstored
PIN, thentrial is decremented, and if it gets 0, then the PIN is blocked. éRBP, developers usually
take defensive measures. The PIN in the FSP is now an arratwfahnumbers, and prior to checking the
input PIN, the variablerial must be decremented. We then have the following excerpteasfgimplified
checkPIN, the SPM and the FSP are on the lefthand and righthand, rtesgdec

if (pin # input) { trial 1= trial — 1;
trial @ = trial —1; while (i < length) {
return fail; if (pin[i] # input[i])

} return fail;

If we associate an event with every updaterafl, then in the SPM this event occurs at the end of command
execution, but in the FSP it occurs at the beginning. Thusmag end up with different sequences of
observable events. This poses some difficulties in deténgniobservable events in RCRs. Note that in
the SPM and the FSP above, the data abstraction introduoeg @l the FSP. To prove that for every run
of the SPM there is a “corresponding” run of the FSP, one hgsdwe that the loop will not yield non-
terminating run. We will show later that in the presence ahgaction mechanism, we sometimes have to
relax the definition of RCR. That is, we only require that feely run of the TDS, there is a corresponding
run of the FSP.

In summary the contributions of this report is a method favjorg representation correspondences as
a part of the CC EALY certification of smart-card applicasion

The outline of this reportis the following. We first discuss éramework for formally modelling smart-
card applications. We then develop a notion of represematbrrespondence based on this framework.
Afterward we describe briefly the theory of inter-prograrogerties. Then, we discuss our proof technique
for proving RCRs based on the theory. We then show how RCBw ai to preserve property in the chain
of the CC requirements. Finally, we discuss some related aod conclude this report.

2 Formal Models and Representation Correspondences

2.1 Transition Graphs and Computation Sequences

A smart-card application is a program consistinghof+ 1 proceduresmain, ci, ..., ¢y, Wheremain
is the main procedure and, ..., c,, are command procedures. In the sequel command procederes ar
often calledcommands Each proceduré’ consists of a finite set gfrogram pointsand is presented as
two disjointtransition graphs(or program-point flow graphsG% andG¢%. A transition graph is a finite
directed graph whose nodes are program points. Each eddesofsition graph is labelled with a guard, an
assignment instruction, a goto instruction (or a skip ingtion), or a procedure call. The transition graph
G, describes the normal behavior Bf while the transition grapkx$, describes what the application has
to do when a card tear occurs during the executioR of

We assume that every transition gra@h> has a unique entry point, denoted bytry(Gp) and a
unique exit point, denoted it (G p). As such, every proceduf® has a unique entry poirtutry(P) =
entry(G'5), and two exit pointspormal exit pointexit,,(P) = exit(G’) andabrupt exit pointezit, (P) =
exit(G%).

The main procedure takes as input a sequence of input consmémtlirn, the procedure reads each
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input command of the fornC, v), whereC' is the command name andare the input values faf'. For
each input comman@”, v), the main procedure calls the corresponding comn@mah inputo, or call
C(v).

We introduce a restriction on command procedures, thasigviery command proceduf the graphs
G, and G% do not contain edges labelled with procedure calls. Silyjléne graphG¢, .., does not
contain such edges. This restriction does not limit theiappbns that can be modelled in our framework.
Procedures called by command procedures in smart-carecapphs are usually not recursive and thus
can be inlined. For technical reason, we assume that, foy @enmand proceduré&?, ... contains an
edge labelled with a call to the procedure.

We describe the run-time behavior of an application as sempgeof configurations. A&onfiguration
of a run is a paifp, o) wherep is a program point and is astatemapping variables to values. Given a
procedureP, a configuratior(p, o) is a called arentry configuration forP if p is an entry point ofP, a
normal exit configuration foP if p is a normal exit point of?, and arabrupt exit configuration fof if p
is an abrupt exit point of

The semantics of an application is defined as a transitiatioal with transitions of the forrfp;, o1) LR
(p2,02), where(py,01) and(p2, o2) are configurations antis a transition label. Transitions are of the
following kinds:

e Intra-graph transition, where the pdjs; , p2) is an edge of a transition graphis the label of the
edge such thdtis not a procedure call.

e Call transition is a transition wheng = entry(P) of a procedure’ such that there is a call edge
(p1,p) labelled withP(y1, . .., y,) in the transition graph containing poipf, and there is a pro-
cedureP whose input parameters areg, ..., z,. The statero maintains all global variables i,
and, for alli = 1,...,n, the states, mapsz; to the value ofy;. The labell of the transition is

P(y1,. . Yn)-

e Return transition is a transition whepe = exit,,(P) for a procedure” such that there is a call

transition(ps, o3) R (p4, 04) Wherepy = entry(P) and(ps, p2) is a call edge labelled wit® (7).
The staters maintains all global variables it , and maps designated variables to the values of the
return variables imr;. The label is a special labetet.

e Abrupt transition is a transition whegg belongs toG’, for a procedure?, p, = entry(G%), and
01 = 09.

e Abrupt transition, where; isin G, p2 is entry(G%), L is a special labetb, ando; = .

We allow labels of transitions (or edges of transition g be associated with events, which means
that the transitions emit the events. We will use a speciahevariable: to store emitted events. That is,
if a transition emits an everdt, then it is the same as an assignmenkdbd c.

We use the following assumptions for transition relatioisst, for every procedur®, every pointp

in G’%, and every state, there is a transitio(p, o) N (entry(G%), o). Thatis, a card tear can occur non-
deterministically. Second, there is no transition from ®it @nfiguration(p, o), wherep = exit,(P) for
every proceduré, orp = exit, (main). Third, intra-graph transitions are deterministic. Fotthnsitions
are atomic.

A computation sequenad an applicationd is either a finite or an infinite sequence of

l !
(po,00) = (p1,01) V> (p2,02) ...

where, for alli, the transitionp;, ;) Ly (pi+1,0i+1) is justified by a transition in the transition relation
of A. When a computation sequence is finite, then it ends with gumation. Arun of a procedure” in

A from a stater, is a computation sequence Afsuch thap, = entry(P). For every run of a command
procedureP, the run terminates when it reaches an exit configuratioif@nd can only terminate in such
a configuration. We say that the rterminates normallyterminates abruptlyif the final configuration
is a normal (abrupt) exit configuration f@?. A run of an applicationA from a states is a run of the
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procedurenain from o. Especially formain, a run ofmain terminates normallyf the final configuration
is a normal exit configuration fomain, andterminates abruptlyf the final configuration is an abrupt
exit configuration for any procedure. in of a transition graph in an applicationA is a computation
sequence ofl such thapy = entry(G) and for alli, the pairs(p;, pi+1) is an edge of the graph.

2.2 Representation Correspondences

For our discussion on representation correspondencesgR@R assume that we are given two modgels
andT of an application, wher&' is an implementation of. Thatis,S andT can be, respectively, an SPM
and an FSP, or they can be, respectively an FSP and a TDS nialicity, we assume that each command
in .S has a corresponding command, with the same nanig, and vice versa. We assume further tSat
andT have disjoint sets of transition graphs and disjoint seisaofbles.

To define RCRs, we associate with bathand T’ the same set of observable events, and for each
observable event we associate a one-to-one corresponkdetveeen observable variables $fandT" at
the start or final configurations of the transitions that ehétevent. Intuitively, there is an RCR between
S andT' if for every run of7’, there is a run o5 on the same input, such that (1) both runs terminate or
generate infinite computation sequences, (2) these ruribiettie same sequence of observable events,
(3) the values of corresponding observable variables irctmigurations of each corresponding events
coincide, and (4) vice versa for every run®f

We first discuss the set of observable events. For every guoe®, we associate every incoming edge
into exit,, (P) with either aPassp or aFailp events. The first event denotes a successful completion of a
run of P, while the latter denotes a logic failure. We associateyev@oming edge intezit, (P) with an
Abruptp event and every call transition to a procedéraith a Callp event.

Next, we associate one-to-one correspondences betweenvabke variables for events. For each

command procedut® and for every configuratiof such that there is a configuratighand~’ N ~ where
[ is associated witlPass p, we associate with a setOg of observable variables if belongs to arb’s run,
and a seOr if v belongs to &™s run, such that there is a one-to-one correspondéieebetweenOg
andO~. Similarly for ! associated witlrail p andAbrupt . Whenl is associated witlkall p, then, instead
of v, we associat®s and O with 4/ such that if the parameters &f in .S and inT are, respectively,
T=x1,...,Tmandy = y1,...,yn, thenm = n, {z1,...,2,} € Og and{y1,...,y»} € O, andObs
mapsz; toy; foralli = 1,...,m. We also associate entry configurationsiafin with the setsDg and
Or such that the input variables 6fandT" are mapped to each other.

We associatebservation functioi® with eachS andT’ to identify observable configurations and tran-
sition labels. Thatis, for a configuratianthe functionO(v) = ~ if v is associated with a set of observable
variables, otherwis®(~) = L. Similarly, for a label of a transitionO(l) = e if | emits an observable
evente, otherwiseO(l) = L. An observation sequenad a computation sequend® denoted by(R),
is obtained by turning? into an alternating sequence of configurations and tramsigibels, and applying
the observation functio® to each configuration and transition label Bf That is, for a computation
sequencek = 7o &, " KA Yo B we haveo(R) = O(70), O(l1), O(71), O(l2), O(72), O(l3),.... A
L -free observation sequenoéa computation sequendg denoted by, (R) is obtained fromo(R) by
suppressing. in o(R).

We say that two states; andos arecompatiblewith respect to a one-to-one corresponde®és
between the set®; andO, of observable variables in the domain of, respectivelyando if for every
x € Oy, we haveo (z) = 02(Obs(x)). Two configurationsy; = (p1,01) andvyz = (p2,02) arecom-
patibleif there are seté); andO- of observable variables associated wjthand~- such that (1) there is
a one-to-one corresponden@és betweenO; andOs, and (2)o; ando, are compatible with respect to
Obs.

DEFINITION 2.1 We say that two computation sequenégsand R, areobservationally equivaler(or
stuttering equivalentf, let

OL(R1)=91,92,... OL(R2)=91,9/2,...,
o1 (Ry) ando, (Ry) are of the same length, and for allwe have either (1§; = v and@;, = +/, for
configurationsy and~’, such thaty and~’ are compatible, or (2); = 0. O
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DEFINITION 2.2 There is aepresentation correspondenbetween a procedut@ of S and a procedure
P’ of T if for every run R of P from a configurationy, there is a run®’ of P’ from a configurationy’,
wherey and+’ are compatible, and vice versa, such tReind R’ are observationally equivalent.

There is aepresentation correspondenbetweenS andT if there is a representation correspondence
betweennain of S andmain of T. O

In the above definition, due to call transitions and our aggion thatG}, ,,, contains at least a call
edge for every command procedure, the configuraticarsdy’ have sets of observable variables associated
with them. Note that to have and+’ compatible, then the procedur@sand P’ must refer to the same
command. The notion of RCR for procedures is useful for pro\RCR betweery and7'. Sincemain
can be thought of as a loop that read input command and catbtimenand, then proving RCR betwegn

andT can be reduced to proving RCR between each correspondingands.

3 Theory of Inter-Program Properties

In this section we describe an abstract theory for des@isivd proving properties that relate two programs.
Such properties are callédter-program properties A detailed description of the theory can be found
in Voronkov and Narasamdy2009. The theory deals with programs that are represented asitien
graphs described in the previous section.

For describing and proving inter-program properties, ety considers two prograniy and P, as
a pair(Py, P»), such that they have disjoint flow graphs and disjoint setedibles. A state for the pair
(P1, P,) can be considered as a péifi, 02) = o, such thaw is for P, ando is for P». A configuration
is a tuple(py, p2, 01, 02) such thatp;, ;) is a configuration foP; and(pz, o2 ) is a configuration forP,.
The semantics ofP;, P) is a transition relations containing two kinds of transigo

1. (p17p2701502) = (p/17p27011502)1 such tha(plval) = (pllvall) is in Pl'
2. (p1,p2,01,02) — (p1,D5, 01, 0%), such thalps, o2) — (ph, oh) isin Pa.

In the description of the theory in this section, we omit ttaasition labels for simplicity. Thus, a compu-
tation sequence is simply a sequence of configurations.

The theory assumes assertion languagand uses relation = « to mean that the state satisfies
the assertionv. For a configurationy = (p, o), we writey = a for o = «. An assertion ivalid if it is
satisfied by any state.

The formalization of the theory is based on the notion of @gsefunction. Anassertion functiorof
(P, P) is a partial function

I : Pointp, x Pointp, — Assertion

mapping pairs of program points @P;, 1) to assertions, such thats defined or{entry(Py), entry(P2))
and (ezit(Py), exit(P)). This requirement is technical as one can always ddfioa these pairs as.
Assertions defined on such @rare callednter-program assertionsGiven a pair of pointg and a pair of
statess of (P, P»), we say thap is I-observable iff (p) is defined. For a configuration= (p,5), we
write y |= I if I(p) is defined and |= I(p).

The theory introduces the notion of weakly-extendible a&se function as a well-suited notion for
describing inter-program properties.

DEFINITION 3.1 Let] be an assertion function of a pdiP;, P») of programs. The functiod is weakly
extendibldf every run

Y055 Yi
of (P, P»), suchthat > 0,+ = I,v; | I, andy; is not an exit configuration, can be extended to a run

Y05y Viy e ey Vitn

such that (1 > 0, and (2)yi4+n = I O
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ExampLE 3.2 We illustrate in this example the notion of weak exteilitljp Consider the following two
programsP;, on the right, and>, on the left:

i 1=0;) 1= 0; =0 :=0
while j <iVvj#i){ while (jf <"V #1){
fGi>)j:=j+1 [ U
elsei := i+1; o=+
[a:]} ¢ 3]}
We define an assertion functidnsuch thatl (entry(Py), entry(Ps)) = T, I(¢,¢') = (i =V Aj =

i Ni = j), and(ezit(Py), exit(P2)) = L. The function] is weakly extendible with the following
reasoning: (1) For every run 0P, P») from any entry configuration, by taking two iteration of tle®p

in P, and one iteration of the loop iR,, the run reacheg;, ¢’) such that the last configuration satisfies
I(q,q"); (2) From every configuration that satisfiég;, ¢'), by taking the same path as before, the run
reacheggq, ¢') again with a configuration that satisfiégy, ¢'); (3) no exit configuration can be reached by
any run of(Py, P). O

In Voronkov and Narasamdyf200g we show that, without appealing to the standard proof teghe
that uses well-founded set, and using only inter-prograsarisns and the notion of weak extendibility, we
can prove program equivalence and mutual simulations optwgrams where one program has a loop that
does not correspond to any loop in the other program, or dnetobp is eliminated in the other program.
For proving RCRs, we often encounter such a situation. Famgse, PIN is a scalar variable in the SPM,
but is an array variable in the FSP. So, for checking and upgl#te PIN, the FSP contains loops that do
not exist in the SPM.

We now develop verification conditions that guarantee waédelibility. To this end, we need a notion
of path of pairs of programs. A pathof (P, P») can be viewed as @ajectoryin a two dimensional
space:r = (w1, m2), wherer is a path in the flow graph aP, and, is a path in the flow graph aPs.

A path istrivial if it consists of a single pair of points. Givenpathr and an assertiott, we denote by
wp,. (1) andwlp,. (1), respectively, the weakest and the weakest liberal prétons of r andq. Since we
have to compute these preconditions, we assume that theapnogng language that we consider has the
weak precondition propertyfor every pathr and every assertio), wp.. (1) exists and can effectively be
computed. One can also compui®__(v) since it is equivalent tap,.(¢) V —wp . (T). The precondition
for paths of pairs of programs can also be derived from thegurdition of paths of single programs.

DEFINITION 3.3 Letl be an assertion function ahtbe a set of nontrivial path such that, for every 11,
we havestart(r) andend(r) to bel-observable. Denote | p, p’) the set of paths il whose first pair
of points is(p, p’).

Theweak verification conditio®V associated withf andIl consists of assertions of the form

I(start(n)) = wip,.(I(end(m))),

wherer € II and assertions of the form

where(p, p’) is I-observable. O

The first kind of assertion is a standard assertion for pgypiartial correctness of path. The second
kind of assertion expresses that, whenever a configuratiprsatisfies/(p), the computation from this
configuration willinevitablyfollows at least one path iH.

THEOREM 3.4 LetW, I andII be as in Definitior8.3. If every assertion ir¥V is valid, then! is weakly
extendible. O
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The notion of weak verification condition is our notion fortifcates that certify inter-program prop-
erties. In the next section we will use inter-program agsestto describe correspondences between ob-
servable variables. Later, to prove an RCR between two cardmane has to prove other inter-program
properties between transition graphs of the commands. eTjmegram properties altogether describe the
RCR. To prove such properties, we define an assertion funetial prove that the function is weakly
extendible. The certificates certifying these propertiemfa certificate for the RCR.

4 Proving Representation Correspondences

For our discussion on proving RCRs, we consider the apmicatodelsS andT" described in Sectiof.
To prove an RCR betweesi and7’, we are only concerned with command procedures, that issdoh
corresponding command procedures, we prove an RCR betive@ndcedures.

For two modelsS andT', there is usually a one-to-one correspondeneebetween global observable
variables ofS and7" such that the values of each corresponding variables clEatithe entry and normal
exit configurations of every command run. To this end, let aiss@der some command procedure
Let Obs,, Obs¢, Obs, be one-to-one correspondences specified for the end coatiigs of transitions
emitting, respectively, aBassp, aFail p, anAbrupt» event. For simplicity of presentation, in the sequel let
Obs,, = Obsy. LetObs. be a one-to-one correspondence specified for the start coatiigns of transitions
emitting Callp. We require thaDbs is included inObs, andObs.. We say that a correspondengtés
included in a correspondengéf for every mappinge — y in f is a mapping iry.

Denote byP® and P”, respectively, the comman@in S and inT. Given a functionf, we denote by
dom(f) the domain off. For simplicity of notation, given a one-to-one correspamceyg, we abbreviate
the assertiof . ;,,,,() © = 9(x) to simplyg. To prove an RCR between® and P, we do the following
steps:

1. Leta be an assertion, such that the assertior> Obs. is valid. That is,a describes the corre-
spondenc®bs.. The assertion can also describe invariants specificstor 7'. We prove thaty is
satisfied by the initializations of global variables.

2. We assertv at (entry(G'hs ), entry(G'hr)) anda’ at (exit (G5 ), exit(G'r)) such that the asser-
tionsa’ = Obs, anda’ = « are valid. That is, we assume that the correspondence eeorbgo
holds in the entry configurations of the procedures, andasgrved in the exit configurations.

3. Lety, 4’ be assertions asserted at, respectively, the pairs ofgieintry(G%s), entry(G%.)) and
(ezit(G%s), exit(G%r)) such that the assertial = Obs, is valid. That is, the correspondence
Obs, holds when procedure runs terminate abruptly.

4. We prove that for every finite run @', there is a finite run oG, s from configurations satisfying

«, and vice versa, such that the final configurations of the satisfy the assertion.

One can demonstrate (1) easily since it amounts to provaidttle initializations of global variables satisfy
«. In the sequel we focus on the steps (2), (3), and (4).

We present our proof technique for proving RCRs of commagdaédans of aeal example of a com-
mand callectheckPIN that is used for authenticating users. In this report we oahsider proving RCRs
between the SPM and the FSP of the command. Proving RCRsdetive FSP and the TDS follows the
same steps above. The SPM is written in a domain-specifizibegey called command description lan-
guage, that resembles a subset of Java. Each command caubbttbf as a method that has clauses: one
passclause describing conditions and state updates of suctessfipletion of a run of the command; one
or morefail clauses describing logic failures and the correspondig stpdates; and orabrupt clause
describing abrupt behavior of the command. For each commpeortdureP, the passandfail clauses of
the command constitute the transition gra@i, while theabrupt clause constitutes the transition graph
G%.

The FSP is written in a subset of Java. Each command procétiigsra method of the form:

P(...) { try { ... } catch(CardTearException) { ... } }
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I"al =1 Ival =T

Figure 1: SPM and FSP aheckPIN.

Thetry part constitute€z%, while thecatch part constitute€x%,. Details of SPM and FSP can be found
in another technical repoltarasamdya and Perfa004.

ExaMPLE 4.1 We prove that there is an RCR between two correspondimgmamds procedur€, by

considering their transition graptG’ and G separately. The lefthand pair of transition graphs in

Figurelis Gl ...piy Of the SPM, on the left of the pair, ar@Z, ...p;n Of the FSP, on the right of the

pair. As a shorthand, we call the formBr and the lattet?]. The FSP ensures that the variablil is

decremented prior checking the PIN value. For disjointn@esassume that all variables i are primed.
First the global variables of the SPM that we want to obsereet@al, pin, val, and MAX. They

correspond to their primed counterparts in the FSP. Aduttily, at the entries o, and P;, the input pin

p corresponds t@’, and at the exits of, and P}, the event variable corresponds ta’. Next, we have

to define the equality between scalar PIN and array PIN. Esegy PINp is associated with a length

I; we write this association g, /). We introduce predicate: between such pairs such that, given array

PINs (p,1) and(p’, "), we say thatp,l) = (p/,l') if L =1',1 > 0, and foralli = 0,...,l — 1, we have

pli] = p'[¢]. We introduce a predicate which is axiomatized as follows: for every scalar PiNsz and

for every array PINg, z,

r~y=> (Y= 1~ 2) r~y= (w=aSw~y).

The predicate- defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence batoleservable variables:

¢1 & trial = trial’ ¢3 < pin ~ (pin’, length’) o5 < p~(p,l")
¢s & val =val 01 & MAX = MAX’ g & e=¢

Next, we define an assertion functidnof (P;, P/) as follows:

L(pe,pt) = Ny o N(pe, ) = Ny @i
Il (pl,pll) = /\?:1 (;51 Atrial > 0
Lp,p)) = N_, i Atrial > 0 Atrial = trial’ + 1
Alength” = 1" ATV < I A (V4.0 < j < i = pin'[j] = p'[4])
N(p2,ph) = Ai—y éi Apin =pA (pin, length) = (p,1)
Li(ps,p3) = Ii(ps,p3) = N\;—i ¢i Apin # p A (pin,length) # (p, 1)

In this example, we prove an interesting part of RCR, thatvithout any presence of card tears, for
every runR of Py, there is a rum?’ of P/ from compatible states, such thatand R’ are observationally
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equivalent. We denote by, ,» a path fronp to p’, and by, a trivial path consisting only of point We
prove thatl; is weakly extendible by the following reasoning. First, éery run of( Py, P) from an entry
configuration that satisfie& (p., pr.), the run can reacfp:, p ) by following the path(r, ,,, 7 1) SUCh
that the end configuration satisfiégp1, p}). From this configuration, the run can be extended either by
following the path(m,, p,, 7 ) OF by following the path(m,, , 7, ,v) such that the end configuration
satisfiesl;. From the configuration that satisfiésp, p}), the run can be extended either by following
(Tpy s Tpyr iy )s OF by following (7, p,, T ), OF by following (mp, g, Tpr 1y ). Without any of these
paths,/; would not be weakly extendible. Thus, we have shown thatgusie notion of weak extendibility,
these paths show that the loop terminates.

Note that every possible transition &f is described by the nontrivial paths that constitute the firs
elements of all pairs of paths above. Therefore, we haveggrtvat for every rurk of Py, there is a run
R’ of P{ from compatible states, such thatand R’ are observationally equivalent. We can use the same
reasoning for proving the other direction. Indeed, by tgkime set of all the above pairs of paths, one can
prove that all assertions of the weak verification conditiseociated witli; and the set are valid.

Consider now the righthand pair of transition graphs in Féduis G¢, ...pn Of the SPM, on the left of
the pair, andG4, ...p iy Of the FSP on the right of the pair. As a shorthand, we call tneér P, and the
latter Py. The SPM and FSP only have to guarantee that the validatitunssis set to false in case of power
loss. That is, the only observable variables\aleand its primed counterpart.

We define an assertion functidn of (P, P;) such that we havé;(a.,a.) = T andlx(a,,al,) =
(val = val). Itis easy to thaf, is weakly extendible, which means that if a card tear occudghe config-
urations of the runs dt., a/,) satisfiesl,, then both runs will emit the same event, whiclsupt_cpin
and they both terminate in compatible states.

Finally we have to prove that for every finite run Bf with end stater, there is a finite run oP; with
end states’, and vice versa, such thét, o’) satisfiesl;(a.,al,). Sincels(a.,al) is satisfied by every
state, then we have finished our proof. O

Proving RCRs between an FSP and a TDS is challenging due teahees of the language of the TDS.
A TDS is written in a subset of Java Cardin[2004, which includes transient and persistent memory as
well as transaction mechanism. When a card tear occurssttaed in persistent memory will be kept
in the memory, while those stored in transient memory willdst. Variables whose values are stored in
persistent memory are callpérsistent variablgsvhile those whose values are stored in transient memory
are calledransient variables

Transactions are managed by methieelsinTransaction, commitTransaction, andabortTransaction with
standard functionalities. The depth of a transaction is astml. When a transaction is in progress,
the updates of persistent variables are conditional, insthrese that the updates will be materialized if
commitTransaction is called. Regardless a transaction is in progress or rotighates of transient variables
are unconditional. To model card tears and transactionsse&¢he desugaring methodinbbers and Poll
[20041. Each command in the TDS is a Java method, and desugaringtheand means translating the
method into the same form as that of the FSP, that is, the rdétas a bigry-catch construct. Theatch
construct sets all transient variables to their defaulles] and cancel the updates of persistent variables if
the card tear occurs when a transaction is in progress.

EXAMPLE 4.2 In this example we only consid€ly, ...py Of the SPM andz’; .,.» iy Of the FSP, depicted
on the lefthand and righthand of figurasrespectively. As a shorthand, we call the formieand the latter
P

For disjointness, we assume that all variables in the TDS&emed. The input variables and the
variableval’ are the only transient variables; others are persisteng. bbiolean variableaTrans and the
variabletb come from the desugaring method. The valuen@tans is true if a transaction is in progress;
otherwise false. The variabte backs up the value afial.

In the presence of transactions, we require that the updateial andval must be unconditional. For
this reason, Java Card has so-called non-atomic methodgfi@ting persistent variables. Discussion on
these methods and their effects on transactions can be fouidbbers and Po[20043. Since the TDS
is only a reference implementation, in this example, wein$eans to model the non-atomic methods.
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Figure 2: FSP and TDS a@heckPIN.

1014

Verimag Research Report TR-2008-18



Iman Narasamdya, Miclé Périn

The following assertions express the one-to-one correpure between observable variables:

¢1 < pin = pin’ A length = length’ A MAX = MAX’ A trial = trial’ Aval = val' Ae =&’
o & p=p Al=V

We then define an assertion functibof (P, P’) such that

I(pe,p.) = 1(p1,p1) = L(p2,p5) = 1 A b2
I(p3,ps) = I(pa; Py) = I(ps,p5) = 1(pa, 1) = 1
Given a setS of program points, we say that a path= py, .. ., p, is S-simple ifn > 0, pg andp,, are in
S, and none opq, ..., p,—1 areinS. Let D be the set of pairs of program points, we denotg by D) the
set of first point of the pairs ib, and similarly bysnd(D) the set of second point. We denote Bym/(I)
the defined domain of the assertion function
By taking the set of pairér, ') of paths of(P, P’), such thatr is fst(Dom(I))-simple andr’ is
snd(Dom(I))-simple, andl is defined on(start(rw), start(x")) and (end(w), end(n’)), one can easily
prove thatl is weakly extendible in a similar way to the previous exampleese pairs of paths also show
that, without any card tears, for every riof P, there is a rurR’ of P’ from compatible states, such that
R and R’ are observationally equivalent, and vice versa.
The remaining steps of proving the RCR follows those of thevimus example. O

One might have to relax Definitio.2 of RCRs to prove RCRs between an FSP and a TDS. Let us
consider the following toy commands:

Pr: P: Py Py
x 1= b € if (inTrans) return ERROR; if (inTrans) {
y 1= 6; xb 1= x; x' 1= xb;
yb 1=y y' 1= yb;
inTrans : = T; }
x 1= 6
y' 1= 5;
inTrans : = 1;

The programs (or transition graphB) and P, constitute thery andcatch parts of the FSP, respec-
tively. (P, has no instruction.) Similarly foP, and P, of the desugared form of the TDS. Suppose that
x" andy’ are observable persistent variables that correspordimly, respectively. The variable® and
yb are back-up variables fof andy’. The boolean variableTrans indicates whether a transaction is in
progress or not; assume that it is false at the entdy/ofin case of abrupt terminations, we want to ensure
that the above correspondence holds. To this end, we hagséatat the entries @% and P, the assertion
¢ below:

(minTrans = x=x' Ay =y') A (inTrans = x = xb Ay = yb)
For every finite runk’ of P| from a state satisfyininTrans = L, there is a finite rum of P, such that
the final configurations of the runs satigfy For example, ifR’ reaches the middle of transaction, e.g., the
entry ofy’ : = 6, thenR simply stays at the entry dP,. However, showing the other way around is not
possible. When a ruR reaches the entry of : = 6, then there is no finite ruR’ of P/ such that the final
configurations satisfy. Thus, according to DefinitioR.2there is no RCR between the commands.

To handle such an above case, one can relax DefinZian That is, we only require that for every
run R of PT from a configurationy, there is a run’ of P° from a configurationy’, wherey and~’ are
compatible, such tha® and R’ are observationally equivalent. The drawback of this retbatefinition is
that if P7 does not terminate and the assertion at the entries of apraphs is valid, then there is always
an RCR betweer®” and PS. Nevertheless, with this relaxed definition, we can stidg@rve security
properties forS in T, as shown in the following section.

5 Property Preservation

In this section we show how security properties of the SPM lmapreserved in the FSP using RCRs.
Property preservation between the FSP and the TDS can beimaglin the same way. We are only
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concerned with security properties that can be charaetas partial correctness properties: a procedure

P is partially correctwith respect to a preconditiom and a postconditiof¥, denoted by{«} P{5}, if for

every run ofP from a state satisfying and reaching an exit configuration, this configuration fiets.
Consider again the application modslandZ’ and the one-to-one corresponden0és,,, Obs ¢, Obs,,

Obs,. described at the beginning of SectidnWe show property preservation by the following theorem:

THEOREM5.1 Leta and 3 be, respectively, a precondition and a postcondition foracpdureP* such
that {a} P9{3}. Leta/ and 3’ be, respectively, a precondition and a postcondition foracpdure P
such that the assertions

Obs. = (a & o)
(Obs, N e = Passp) V (Obsy A e = Failp) V (Obs, Ae = Abruptp) = (8 < )

are valid. If there is an RCR betweét¥ and P7, then{a/} PT{f'}. O

As an example, consider again the command and assertionaimge4.1 Suppose that the property
that we want to preserve is as follows: for any runcoéckPIN, the value of variableal at the exit
configuration of the run is tru€and only if the run emits ®asscheckpin €VENL.

Let v be the assertiofival = T < & = Passcheckpin) @and e be the conjunction of the following
assertions: (IMAX > 0, (2)0 < trial < MAX, and (3)trial < MAX = val = . The above property can
be expressed as a partial correctness progerfgheckPIN{¢}. One can use standard Floyd-Hoard proof
technique-loyd[1967, Hoare[1969 to prove the property for both the SPM and the FSP.

Suppose that we have proved that the property holds for tiv. 8 have shown in Examplé.1
that there is an RCR between the commahetkPIN of the SPM and of the FSP. Lét be the command
checkPIN in the FSP. Recall again the assertigns. . ., ¢s in the example. Given an assertianlet us
denote byp(«) the assertion obtained from by replacing each variable in with its primed notation.
Now, since the following assertions

Ny 6 = (0 < p(p)
(A2, ¢i A (e = Passp V e = Failp)) V (¢a A e = Abruptp) = (¢ < p(v))

are valid, then by TheoreBi1we have{p(¢)} P{p(¢¥)}.

6 Related Work and Conclusion

We developed a method for proving RCRs in the CC EAL7 certificaof smart-card applications. We
presented a modelling framework by which the represemtatad the SPM, the FSP, and the TDS can
be modelled uniformly. Our framework is an extension of thedelling framework of procedural pro-
grams inZaks and Pnue[2009, in the sense that we model abrupt behavior of proceduresdéfinition
of RCRs is mutual simulations between two application mad&le apply the theory of inter-program
properties invVoronkov and Narasamdy2009 for proving RCRs and providing certificates about them.
The theory has been used for proving properties in translatalidation approach to compiler verifica-
tion Rinard and Marino\[1999, Zuck et al.[2009, Voronkov and Narasamdy2009. In this report we
have shown another venue for the application of the thedng dpplication is beneficial since the theory
provides a notion of certificate, which is essential in theEAL 7 certification.

There have been a few works on formal specification and vatidic in the CC framework; closely
related to oursi®adeau et a[2009g. Their work is based on B method. Their definition of RCRsnsikar
to ours, in the sense that, for each command, they have a ntapptween input-output relationships of
two application models. Their work does not address comgéa abstractions like our PIN, and their
commands do not contain loops. However, their work has gegerid ours in the sense that they included
a model of Java Card API for APDU commartdsn[2009.

Another related work is by Heitmeyer et. al. on verifying@mement of data separation in the kernel
of a software-based embedded devitaimeyer et al[2004. Similar to ours, their work uses a state
machine model consisting of events as a specification. @wacode is partition into event code, trusted
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code, and other code. Event code corresponds to an evemt stetfe-machine specification and such code
is annotated with preconditions and postconditions. Tweitk construct two mappings: one is between
events of the state machine and of the code, and the othetwed® assertions describing preconditions
and postconditions of corresponding events. RCRs are grinreeach corresponding events, that is,
the precondition and the postcondition of an event in theedatply, respectively, the precondition and
postcondition of the corresponding event in the specificatin their work, event code contains no loops,
and they do not prove the relation between the code and it®pdéition and postcondition. Moreover, the
mapping between assertions is based only on syntactic ingtdbinlike ours, their work deals with real C
code.

Other works on the CC certification have not addressed RCRbkawe only given little efforts on
RCRsChetali and Nguye[2009, Wilding et al.[2001]. One distinguish feature in our work that has not
been addressed by others is proving property preservatiog RCRs.

There has been some work related to the specification anficegion of smart-card applications, but
not in the CC certification. Papérchellhorn et al[200q describes a verification of Mondex electronic
purse based on abstract state machine (ASM). The work isibeiCC, but it uses a notion of refinement
simulation between ASMs to show correctness of a concrgpéeimentation. The operations (similar to
commands) in Mondex are simple and contains no loops and mplea data abstractions. The work
in Breunesse et g]2009 describes a case study in the specification and verificafiam electronic purse
application. The work is concerned only with the specifmatnd verification of commands in the imple-
mentation code. The work can complement our work in provirgerties of the implementation code.

In this report we do not address RCRs between the TDS and thlerimentation code. We assume
that existing work on certified and certifying compilérsroy [2004, Rinard and Marino1999 can
be used to provide RCRs between the TDS and the implememtatide. \We are currently developing
certification tools based on the method described in thigrtejVe take JML approach=avens and Cheon
[20093 to specifying assertion function. That is, we use speaahments to put labels denoting program
points in the programs, and write the assertion function searate file. We use off-the-shelf data-flow
analyses, such as global value numbering, to assist uséediiing assertion functions, so that users only
concentrate on one-to-one correspondences between abkewvariables. We are developing heuristics
based on observable events to alleviate the burdens ofgipggbaths in weak verification conditions; this
is the topic of our future work. Assertions in the verificaticonditions can then be proved using SMT
solvers, such as Yicesutertre and de Mourf2004.
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