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Abstract

j-POST is an integrated tool chain for property-oriented software testing. This tool chain
includes, a test designer, a test generator, and a test execution engine. The test generation is
based on an original approach which consists in deriving a set of communicating test processes/
obtained both from a requirement formula (expressed in a trace-based logic) and a behavioral
specification of some specific parts of the software under test. The test execution engine is then
able to coordinate the execution of these test processes against a distributed Java program. A
typical application of j-POST is to check the correct deployment of security policies.
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1 Introduction

j-POST is an integrated tool chain for Property-Oriented Software Testing (POST).

Property-Oriented Software Testing. The approach proposed in j-POST relies mainly on an original
test generation technique whose theoretical framework is described in [1, 2, 3]. In this framework, a
requirement is expressed by a logical formula built upon a set of (abstract) predicates. Each predicate
corresponds to a (possibly non-atomic) operation to be performed on the system under test (SUT), and is
(user-)provided as a test module indicating how to perform this operation on the actual implementation,
and how to decide whether its execution succeeds or not. The test generation step consists in building a
set of communicating test processes from this partial specification. Each test process is either an abstract
test component or a controller. Then, the test execution engine is able to coordinate the execution of these
processes against a distributed Java program, leading to a satisfiability verdict with respect to the given
requirement.

Comparison with classical Model-Based Testing. This approach offers several advantages over the
more classical model-based test generation technique ([4, 5, 6]) implemented in several existing tools (like
TGV [7], TorX [8], Autolink [9], see [10] or [11] for a more exhaustive survey). First, j-POST is able to
deal with piecewise specifications restricted to specific functionalities. We strongly believe that this feature
is really important in practice, especially in application domains where formal modeling of software is not
a common practice. Specifying only some global requirement and some specific implementation features
in an operational way seems much easier for test engineers than building a complete model of a software.
As a consequence, the test generation step will not require the exploration of such a complete model,
avoiding the well-known state explosion problem. Furthermore, this tool chain remains open in the sense
that various logics can be considered to express the requirements, and new logic plugins can be easily
added. Finally, this tool chain integrates the whole test process, from the design of the partial specification
to the test execution. Note however that the components of this tool chain are loosely coupled, which
allows the use of the test execution engine with other test generators (like TGV).

The remainder of this report is organized as follows. The second section presents general information
about j-POST. The Sect. 3 illustrates the use of j-POST on a small example. Sect. 4,5,6 are respectively
about the test designer, the test generator, and the test execution engine. The Sect. 6 presents some
conclusions about j-POST.

Changes with TR-2007-8 From the last report (TR-2007-8) of j-POST, this version includes the follow-
ing changes:

• Description of the logical formalisms extensions.

• Description of the newly implemented test objectives.

• Updtating the mapping description.

• Updtating the running example.

2 Illustrating the use of j-POST on an example

We describe in this section the use of j-POST on an example. Tests are designed, generated, executed
using the j-POST tool chain to check some properties on a travel agency application [12], called Travel.
We take as inputs an informal requirement extracted from the functional specification of Travel and the
application interface. The requirement we choose for the demonstration purpose is informally expressed
as “it is impossible to validate a mission that not have been created first”.
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Figure 1: Edition of a test module with the designer

2.1 Test design
We start by presenting the test design stage, that is the requirement formalization and the edition of test
modules.

Requirement formalization. A possible understanding of our requirement could be that a behavior in
which it is possible to validate a given mission before performing the corresponding mission creation oper-
ation is forbidden. In other words, we can say that we require no mission validation until a corresponding
mission creation is performed. This informal statement refers to two abstract operations: “validate a mis-
sion”, and “create a connection”. In the following we respectively designate these two operations by the
predicates missionV alidation() and missionCreation(). The predicate missionCreation() takes two
“external” (i.e., user supplied) parameters indicating the mission destination and dates. Thus, the require-
ment can be expressed formally by the following LTL formula:

(¬missionV alidation( ) ) U missionCreation(NewY ork, 01/12/2008, 20/12/2008)

Test module edition. The test module edition in j-POST is represented on the Fig. 1. The user of the
designer adds (left-hand side) transition and the corresponding graph is pictured (right-hand side).

Test modules have to be created by the user for the predicates missionV alidation() and missionCreation().
Each of this module should describe:

• how to perform the abstract operation using the Travel interface;

• what is the test verdict obtained (depending on how Travel reacts).

Possible test modules are described below.
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Figure 2: Test module for predicate missionCreation

• The missionCreation test module (Fig. 2) essentially performs a call to the missionRequest2(id,
New York,01/12/2008,20/12/2008) abstract method, where id is a parameter indicating
the user identity. This value is internal to the Travel application, and it is generated when the user
opens a connection to Travel. This operation, which is mandatory to execute the test case, will be
introduced within a test objective (see below). Note that missionRequest2 operation returns a
missionNumber those value could be either a positive integer, in which case the the returned ver-
dict is pass, or a −1, in which case the the returned verdict is fail. or pass otherwise. Variables
id and missionNumber are declared as shared, meaning that they can be read and assigned by
several test modules. The transitions labelled with c start2, c loop2, c ver2 and c stop2
are automatically added by the test generator to manage the test execution (they not need to be written
by the user).

• The missionV alidation test module (Fig. 3) performs a call to the validMission(id, missionNumber)
abstract method. This call returns either a correct value ok in which case the resulting verdict is
pass, or an incorrect one, in which case it is fail. Here again, transitions labelled with c start3,
c loop3, c ver3 and c stop3 are automatically added by the test generator.

Note that inside the tool chain the test modules are represented using an XML format, but, from a
practical point of view, the j-POST test designer facilitates their writing and edition.

2.2 Test generation
From the formal LTL requirement and the associated test modules we are now able to perform the test gen-
eration phase. The (textual) command to use indicates the filename of the formula description (formula.ltl)
and the destination directory to store the resulting test case (TC formulaltl).

java -jar testGeneration.jar -in formula.ltl -out TC_formulaltl

In order to illustrate such a generation process, we give an insight of the generated test case on Fig. 4.
The structure of this test case follows the structure of the formula. It contains a test controller for each
operator appearing in the formula (Until and Not), and a test module for each predicate (missionValidation()
and missionCreation()). The testCaseLauncher is in charge of managing the execution of the test case
and emitting the final verdict. The c start (resp. c stop, c loop, c ver) channels are used by the processes
to perform starting (resp. stopping, rebooting, verdict transmission) operations.
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Figure 3: Test modules for predicate missionV alidation

rootTestCase

Controller

until

Controller

not

missionCreation

missionValidation

c start0, c stop0, c ver0, c loop0

c start3, c stop3, c ver3, c loop3

c start1, c stop1, c ver1, c loop1
c start2, c stop2, c ver2, c loop2

Figure 4: Test case produced from ¬(missionV alidation)U missionCreation
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Figure 5: Test objective

2.3 Test execution

The next operation to perform is to choose a test objective in order to restrict the set of potential test
executions. As mentioned before, to create a mission with the Travel application needs to obtain first a user
identity expressed by an integer value (this how the application interface works). This integer is obtained
when a user opens a connection to travel, using a method called identify, with a a user name and
password as parameters. To enforce the call to this method during test execution, a solution consists in
using a test objective those purpose is both to guide the test execution through particular scenarios and to
“insert” additional interactions with the SUT when they are necessary. This test objective is expressed as a
finite state automaton with particular states (accept and reject) to define expected and unexpected scenarios.
We will use here the test objective depicted on figure 5. Roughly speaking, this test objective indicates that
an expected scenario is the one (leading to the accept state) that successively opens a connection, creates a
mission, and chooses a travel agency. If the mission creation fails, then the accept state is reached, meaning
that the test will be irrelevant (and it will give a non conclusive verdict).

The test objective defined, and the test case generated, one can use the test execution engine to execute
the test case against the SUT. The command to use is the following:

java -Djava.security.policy=java.policy -jar testEngine.jar -tc TC_formulaltl \
-mapping mapping.xml -obj objective.xml -log TC_formulaltl/LOG

This command indicates the directory containing the test case (TC formulaltl) the mapping file
(mapping.xml), the test objective (objective.xml) and the destination directory for the log files
produced during test execution (TC formulaltl/LOG).

Three experiments have been tested:

• Experiment 1. In the first (erroneous) version of Travel a mission validation can be performed even
for a non existing (i.e, not previously created) mission. The test execution engine detects this error
(it delivers a fail verdict) and produces the test execution traces and graphs for the main test process
and each test module.

• Experiment 2. In the second experiment we ran the test engine on a correct version of Travel
but without any test objective. During the test execution no mission creation operation succeeds
(missionRequest2 is called with an incorrect random user id), and the test execution stops with
an inconclusive verdict due to a timeout expiration (the whole test execution is guarded by a timer).
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Figure 6: Architecture of the test designer of j-POST

• Experiment 3. Finally, executing the test engine on this correct version of Travel with the test objec-
tive gave (as expected) a pass verdict. The log file obtained for the createMission test module
is given below:

/////////////////////////////////////////////
createMission
Path=formulaltl/createMission2Inst
anciation.xml
/////////////////////////////////////////////

* Starting time: Wed Sep 17 17:22:16 MEST 2008
TRANSITION START
startState;[true]?c_start2()
s0;[true]missionNumber:=

missionRequest2(id,dest,dateDep,dateArr)
s1;[missionNumber != -1]xv:=pass
s2;[true]!c_ver2(xv)
verState;[true]?c_loop2()
s0;[true]missionNumber:=

missionRequest2(id,dest,dateDep,dateArr)
s1;[missionNumber != -1]xv:=pass
s2;[true]?c_stop2()
nilState;TRANSITION END
createMission> no possible transition, finishing

* Ending time: Wed Sep 17 17:22:17 MEST 2008

The verdict: PASS

3 Test Design
This section describes how it is possible to design test entities (abstract test case library and requirement)
with the j-POST Test Designer (Fig. 6).

3.1 Overview
The interface of the SUT contains a set of public variables and methods. Using this input, the user writes a
library of abstract test modules, corresponding to high-level operations that can be performed on the SUT.
These components can be viewed as terms of a “test calculus” [1]. Roughly speaking, this calculus offers
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t1 ‖ · · · ‖ tn communicating

pi ↔ ti

Figure 7: Architecture of the test generator of j-POST

the basic primitives required to compose elementary actions in order to describe more complex behaviours.
These primitives include sequential and parallel composition, non-deterministic choice, recursion, and data
manipulations. The elementary actions can be either internal actions of the test components (like internal
variable assignments) or external calls to the SUT interface. Note that the execution of an external action
is considered atomic.

The test designer of j-POST provides a user interface to design these abstract test modules and visualize
them in an intelligible way. The XML format has been chosen as an internal representation of these
components. We used the Eclipse Modeling Framework [13] to generate a test writer: users of j-POST test
designer can produce their test cases by composing interface actions without error-prone manipulation of
XML. Also, we provide a test case viewer representing the test case as a labelled transition system. This
part of the test designer uses GraphViz [14] to generate the test case image.

4 Test Generation
This section describes the functioning of the test generator and the test generation process (Fig. 7).

4.1 Overview
The j-POST test generator consists mainly in a test generation function. This function takes as input a
formal requirement φ, written in a trace-based logical formalism. It produces a complete test case following
a syntax-driven approach:

• For each atomic predicate Pi of φ, an instance of the corresponding abstract test component ti is
produced ;

• For each subformula φ = F (φ1, · · · , φn) of φ, the test generator function instantiates a (generic) test
controller dedicated to the operator F , to be executed in parallel with the test processes (recursively)
obtained for each φi. The purpose of the test controller is both to schedule the test execution of the
sub-testers and to combine their verdicts in order to produce the verdict associated to φ.

Generic test controllers and test generation algorithms have been defined for different specification for-
malisms. So far, j-POST supports two common-use formalisms.
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• Temporal logics [15] like LTL are frequently used in the verification community to express require-
ments on reactive systems. We consider here fragments of such logics whose models are set of finite
execution traces. Our case studies have shown however that many concepts of access control security
policies fall in the scope of these logics.

• Extended Regular Expressions. Regular expressions [16] are another formalism to define behavior
patterns expressed by finite execution traces. They are commonly used and well-understood by
engineers. We provide support for for the negation operator to allow the specification of not desired
behaviors.

4.2 Parsing of the requirement
The first stage is the construction of a communication tree obtained from the abstract syntax tree of the for-
mula. This tree expresses the communication architecture between the test processes that will be produced
by the test generator. Its leaves are abstract test components corresponding to the atomic predicates of the
formula, as they are provided by the user. Its internal nodes are (copies of) generic test controllers, corre-
sponding to the logical operators appearing in the formula (they are obtained from a finite set of generic
controllers provided by the logic plugin). Finally, the root of this tree is a special test process, called
testCaseLauncher, whose purpose is to initiate the test execution and delivers the resulting verdict.

The analysis of the formula (expressing the requirement) is performed thanks to a syntactic analyzer.
To realize the parsing, we chose Java-CC [17]. This a Java parser/scanner generator. It generates a set of
Java classes by analyzing a set of grammar rules (see Sect. B) describing the language to be analyzed and
the Java code inserts to be performed.

p3(a, b, c)

p1() p2

U

∨

Figure 8: Abstract syntax tree corresponding to (p1() ∨ p2())Up3(a, b, c)

4.3 Implementation of the test generation function (Test tree building + Test in-
stantiation)

To apply the test generation principle ([3], Sect. 3), we build the abstract syntax tree. For instance, if we
consider the LTL expression: (p1() ∨ p2()) U p3(a, b, c), the abstract tree is represented on Fig. 8. In the
following, we illustrate only the implementation for the LTL version of GenTest, the principle is identical
for the EREs. Thanks to the syntactic analyzer, we built the syntactic tree. In order to represent the tree in
memory, we defined the following classes:

• Node.java: This is an abstract class containing all the information shared by the tree nodes. Each of
the following classes representing the nodes inherit from this class. It rules the implementation of
the needed methods for the generation.

• FormulaNode.java: Represents the LTL always and eventually unary controllers.

• PredicateNode.java: Represents the test predicate of the formula.

• BinaryOperationNode.java: Represents the binary and, or, imply and until controllers.

Each of these classes (representing the controllers or the predicates) owns one or several attributes
representing their operands. As the GT function is recursive, it is defined in each of the controller class,
the Test function in the class PredicateNode and GenTest in the class Node.
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?c loop()

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Figure 9: Instantiation of an abstract test component tp

As seen before, the test processes (predicates, and controllers) are represented in XML. Each of the test
being instantiated by GenTest, their structure or parameters are modified. We used JDOM [18], a tool
permitting the manipulation and modification of XML data.

For each of the requirement formalism, the principle is:

• GenTest: Creates the master controller managing the test process at the highest level in the tree. In
a second time, it calls a generation method associated to this process (with a fresh communication
channel name to instantiate it).

• GT (Fn(φ1, · · · , φn), cs): Takes as parameter a communication channel cs and generates one new
communication channel per operand of Fn. The generic test controller associated to operator Fn

is then instantiated with these channel names, and the generation method is (recursively) called for
each operand of Fn (with the corresponding channel name as parameter).

• Test(tp, {c start, c stop, c loop, c ver}) Takes a channel number and generates control states and
transitions of this predicate and implements it in the structure (see Fig. 9).

Once this stage is finished, we obtain a list of XML files representing the instantiated test processes.
They can be used then as an entry for the test execution engine. Furthermore, the test execution needs the
existence of two supplementary files. The first one is the list of all actions that each of the tests process
can perform. The second one is the list of the channel used in the potential internal communication of the
test processes. These files are also defined in a XML scheme. These two files are produced during the tree
browsing by GenTest.

5 Test Execution
This section describes how tests are executed with the j-POST test execution engine (Fig. 10).

5.1 Overview
The purpose of the test execution engine is to produce a verdict for the initial requirement. To do so, it uses
the complete test case produced by the test generator and a test objective.

Test selection using dynamic test objectives. The test case produced by the test generator may contain
a bunch of possible test executions (due to possible non-determinism both inside the test modules and in-
troduced by the parallel composition). Moreover, the test generation function only ensures that the verdicts
produced by the test execution are sound with respect to the initial formula ϕ: it does not help to select
the interesting test executions that are likely to exhibit an incorrect behavior of the SUT. To solve this
problem we propose to use behavioral test objectives, already introduced in several model-based testing
tools (e.g. in [7, 9]). Their purpose is to inject some execution scenario in the test cases produced by the
test generation phase, either by enforcing the execution order of some visible actions, or by introducing
other additional visible actions to lead the SUT into some particular state. Most of the time, in specification

Verimag Research Report no TR-2008-15 9/21



Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

ATC Engine

Concretisation
Wrapper

Scheduler

Logger

Instanciated tests

Objective
Engine

Test case
Loader

SUT

EngineTest Execution

communication
RMI

information
execution

Execution traces

Execution graphs

(pass,fail,inc)

Test Objective

abstract external
actions

t1 ‖ · · · ‖ tn communicating

Verdict for F

Figure 10: Architecture of the test execution engine of j-POST

based testing, this test selection is performed during the test generation phase, by pruning the undesired test
executions from the whole SUT specification. In our approach, the selection is not performed during test
generation, but during the test execution (similarly to walk guidance in TorX). This is due to the fact that
we do not rely on such a specification. So, the test selection phase is combined with the test execution: the
test objective is expressed by an LTS with accepting states, and the test sequences leading to such states are
privileged during the text execution. A formal definition of this notion of test objectives within the j-POST
framework can be found in [19].

Multi-threaded test execution with “on-the-fly” concretisation. Once the test process has to perform
an external action, this action is concretised “on-the-fly”. To do so, the user furnishes a mapping between
the external action and the SUT interface actions. Using this mapping, the test execution engine concretises
the action and produces the corresponding interface call. Each test process produced by the test generator
is executed in a separate Java thread. It also allows a user to define scheduling policies and priority order
between each type of interaction.

5.2 Functioning principle
The purpose of this tool is to execute a set of test processes to decide a verdict allowing to validate or not the
requirement used to generate the tests. A set of communicating test processes is used as an input of the tool.
In the first time, the files containing the channel, and the action list are analyzed. Then in a second time,
the file of each of the given test process is analyzed in order to the corresponding automaton in memory.
Each of the test process is modeled by a Java thread in memory. As so, to launch the corresponding test
process, we just have to launch the thread.

5.2.1 Construction and evaluation of the test automata

Each of the test processes owns a memory containing the set of variables and parameters. There is also
a set of states and transition which actions are of several types (see the next section). Moreover, the test
processes detain a shared memory allowing to stock common values. When a test process is launched, it
starts evaluate the guard of the transitions which departure state is the initial state. The guard are boolean
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expression, their evaluation is ensured by a parser generated by Java-CC. The grammar of the boolean
expression can be found in Sect. A. The test process is going to obtain the list of the possible transitions
and will be able to choose later the one it will perform. The next subsection explains how this choice
is done. Once the action determined, the test process tries to realize it. If it succeeds, the stage change
is executed and the execution is pursued following the same principle. If not, the test process makes
another choice with the remaining transitions and tries to execute the recently chose action. If no action is
performed well, the test process stops its execution.

5.2.2 Test selection with respect to test objective

This section describes how the test engine proceeds to select a particular test sequence among the ones
offered by the current test case. More precisely it explains how the use of a test objective helps to both take
into account some scheduling directives (internal to the test case execution), and to enrich the test execution
with extra interactions between the tester and the SUT.

First of all, let us recall the three different kinds of actions a test process can perform:

Internal operations. These actions are local to the test process, typically data manipulations, or tempori-
sation actions.

Internal communications. These actions are synchronization operations with other processes. The pro-
cess needs to receive or emit a signal with parameters or not through a specified channel. All pro-
cesses that want to synchronize using this channel wait that other participants are in the rendez-vous.
Depending on the policy, the processes will have to wait for all expected participants or only for a
subset. At least, one emission and one reception is required in order to realize the communication.

External interactions. These actions are used to communicate with the SUT (e.g., method call). A con-
cretization step is required to translate first the abstract interaction (as it appears in the test process)
by a concrete one (as it is expected by the SUT). This step is described in the next subsection.

Several policies can be considered to favor one kind of actions or an other. In order to stay as modular as
possible, a specific class encodes the policy that one might want to choose. In the default policy, the process
privileges internal actions among all the other kinds, then external actions are preferred, and finally the
internal communications. Conflicts occurring at a given level (i.e, two test processes compete to perform
both an internal action) are solved by the underlying default Java scheduler (since each test process is
implemented by a distinct Java thread). In practice a test process sends its set of pending actions to the
j-POST scheduler, and waits for its notification to proceed. It is therefore blocked as long as the scheduler
decides to notify it.

This default scheduling policy can be modified by means of a test objective. Formally, a test objective
is a deterministic automaton with special states noted “Accept” and “Reject”. Its transition are labelled
either with internal communications or with external interactions. Moreover, a priority relations between
outgoing labels can be associated to each states. Intuitively, execution sequences leading to “Accept” states
denote expected test scenarios whereas execution sequences leading to “Reject” states denote unwanted
ones. Note that these execution sequences may contain “extra” communication interactions, i.e., interac-
tions with the SUT that do not appear in the test case itself (provided they are in the test interface of the
SUT).

The test objectives are used by the scheduler for test selection according to the following rules:

• if some actions proposed by the test processes match the labels of the outgoing transitions of the
current state of the test objective, then one of the most prioritary ones is (randomly) chosen, and the
corresponding test process is notified ;

• if the intersection between the actions proposed by the test processes and the labels of the outgoing
transitions of the current state of the test objective is empty then two cases can occur:

– either there exists some (extra) communication interactions offered by the test objective in the
current state, and therefore one of the most prioritary ones is (randomly) executed ;

– otherwise, the conflict is solved by the default Java scheduler.
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<interaction guard="true" type="emission_reception" scope="external">
<call name="identify">

<param type="string" value="A_Possible_Login" />
<param type="string" value="A_Password" />

</call>
<var name="id" type="integer" />

</interaction>

Figure 11: Example of how an external action is XML-coded

5.3 Concretisation of external interactions
The external interactions are represented in an abstract form in the test processes. This abstraction allows to
be independent towards the tested architecture. A concretisation phase is therefore needed for these actions
to become executable on the SUT. To be as general as possible the concretisation stage is independent from
the test execution engine. It uses a mapping allowing the translation of external interactions. For now, the
concretisation towards Java RMI [20] is supported. We are studying how other technologies can be used
with our test execution engine. One seems interesting, JMS [21] is a technology offering asynchronous
message passing.

5.3.1 Modelization of external actions

The possible kinds of action for an external action are:

• emission: corresponds to a call on the SUT. No answer is waited

• reception

• emission-reception: the test processes performs a call on the SUT and a return value is waited.

On Fig 5.3.1 is an example of XML code describing an external action. In order for an action to be
external, the scope attribute value must be external. The type is one of those predefined. In the provided
example, the test process will process the abstract action “identify”, to do so, it gives two string parameters
and waits for a return value of type integer which is supposed to be stored in the variable id.

In order for an action external action to be executed, the scope attribute value has to be external. The
type is one of those previously defined. In this example, the test process will perform the abstract action
“identify”, to do so, it gives two parameters of type string and waits for a return value of type integer that
will be stored in the id variable.

5.3.2 Elements needed for the mapping

The mapping principle is to translate an abstract action in a concrete one in an easy and elegant way. It is
needed to know the targeted architecture. For now, j-POST supports black box testing via RMI technology.
The elements for which a concretisation is necessary are:

• Call name: The possible calls are the available methods in the remote interfaces made available by
the SUT. It is so needed to define the interfaces, their locations, and the callable methods.

• Types of the input parameters and returning values. A correspondence is needed between abstract
types and their equivalent in the target value. For now the abstract corresponds simply to the equiv-
alent in Java. The XML scheme is given in Sect. A.

In this file, an interface, named diag is declared. The url corresponds to the object location. In the RMI
technology, to get a distant object, it is needed to use rmiregistry: a directory listing all available remote
interfaces. From the interface name and the url, the rmiregistry will return a reference on the remote object.
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<mapping>
<interface name="diag" url="rmi://localhost/" packageName="mappFile" className="Diag">

<method abstractName="choseAgency" realName="choseAgency" arity="3" >
<msgReturn concreteValue="Wrong number, try again." abstractValue="pasOk" />
<msgReturn concreteValue="Incorrect status of travel." abstractValue="pasOk" />
<msgReturn concreteValue="Wrong number." abstractValue="pasOk" />
<msgReturn concreteValue="Agency correctly chosen" abstractValue="ok" />
</method>

</interface>
</mapping>

Elements of type method are declared for the diag interface. These elements correspond to the callable
methods. In these elements one could indicate the abstract name (the name used inside the test process), the
concrete name (the one appearing within the SUT interface) and the method arity. Furthermore, parameter
values can also be mapped in order to associate abstract values (i.e., used in the test process) with concrete
ones (i.e., actually returned by the SUT).

6 Conclusion
This report presents a Java tool chain for testing properties on software, funded on an original approach.
The test generation is driven by a formal requirement and works from partial specifications and algebraic
test composition. The development architecture allows extensions by adding logical formalisms via logic
plugins. One of the motivation of this approach is to validate the correct deployment of security policies,
e.g. in the Politess [22] project.
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A XML scheme descriptions

A.1 Test process description

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- Tag testCase -->
<xs:element name="testCase">
<xs:complexType>
<xs:sequence>
<!-- param marker : parameters of the testCase -->
<xs:element name="param" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="channelList" minOccurs="0" maxOccurs="3">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="startC" type="xs:string" use="required" />
<xs:attribute name="stopC" type="xs:string" use="required" />
<xs:attribute name="loopC" type="xs:string" use="required" />
<xs:attribute name="verC" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="channelSet" />
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />
</xs:complexType>

</xs:element>

<!-- declare marker : declaration of a variable -->
<xs:element name="declare" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />
<xs:attribute name="shared" type="xs:boolean" use="optional" />
</xs:complexType>

</xs:element>
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<!-- Tag state : declaration d’un etat de l’automate -->
<xs:element name="state" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<!-- Tag transition : description d’une transition de l’automate -->
<xs:element name="transition" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<!-- Tag interaction : description d’une action de la transition -->
<xs:element name="interaction">
<xs:complexType>
<xs:sequence>
<xs:element name="channel" type="xs:string" minOccurs="0" />
<xs:element name="expression" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="optional" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="required" />
</xs:complexType>

</xs:element>

<!-- For external action -->
<xs:element name="call" minOccurs="0">
<xs:complexType>
<xs:sequence>

<xs:element name="param" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="channelSet" />
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

Verimag Research Report no TR-2008-15 15/21



Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

<xs:element name="var" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="emission"/>
<xs:enumeration value="reception" />
<xs:enumeration value="emission_reception" />
<xs:enumeration value="affectation" />
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name="scope" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="internal"/>
<xs:enumeration value="external" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="guard" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="nextState" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="initial" type="xs:boolean" use="optional" />

</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:schema>
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A.2 Channel description

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="channelList">
<xs:complexType>
<xs:sequence>
<xs:element name="channel" maxOccurs="unbounded" >
<xs:complexType>
<xs:sequence>
<xs:element name="type" minOccurs="0" maxOccurs="unbounded" >
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="name" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="arity" type="xs:integer" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

A.3 Action description

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="actionList">
<xs:complexType>

<xs:sequence>
<xs:element name="interaction" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="channel" type="xs:string" minOccurs="0" />
<xs:element name="expression" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="optional" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="value" type="xs:string" use="required" />

</xs:complexType>
</xs:element>
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<!-- For external action -->
<xs:element name="call" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="param" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="channelSet" />
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
<xs:element name="var" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="emission"/>
<xs:enumeration value="reception" />
<xs:enumeration value="emission_reception" />
<xs:enumeration value="affectation" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="scope" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="internal"/>
<xs:enumeration value="external" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="guard" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
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B Concrete syntax of the requirement formalisms

B.1 Linear Temporal Logic
The abstract syntax of LTL (Linear Temporal Logic) is given by the following grammar, where pi(x)
designates an atom expressed by a parameterized action predicate:

ϕ ::= ¬ϕ | ϕ U ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ | pi(x)

The concrete syntax we considered in JavaCC was the following:

Spec ::= Formula
Formula ::= Mod Term | Term
Term ::= Term OpBin Factor | not Factor | Factor
Factor ::= Predicate | (Formula)
OpBin ::= and | or | => | until
Mod ::= always | eventually
Predicate ::= name (ListParam)
ListParam ::= name EndListParam | epsilon
EndListParam ::= , name | epsilon

B.2 Extended Regular Expressions
The syntax of ERE (Extended Regular Expressions) is given by the following grammar, where pi(x) des-
ignates an atom expressed by a parameterized action predicate:

ϕ ::= not ϕ | ϕ + ϕ | ϕ · ϕ | ϕ∗ | pi(x)

The concrete syntax we considered in JavaCC was the following:

Spec ::= Term
Term ::= Term OpBin Factor | not Factor | Factor * | Factor
Factor ::= Predicate | (Term)
OpBin ::= + | .
Predicate ::= name (ListParam)
ListParam ::= name EndListParam | epsilon
EndListParam ::= , name | epsilon

C About options of j-POST binaries
This section descibres the options

C.1 Test generator
The option list can be obtained by launching the executable JAR file and providing the --help option.

ruitor:˜/workspace/jpost2/dist/testGenerator> java -jar testGenerator.jar --help
Usage : java -jar testGenerator.jar options

-in,-input The input path of the requirement
-out,-output The output path

if omited, the output path is determined automatically
-log [path] log in path (the path to the directory)
-v use verbose mode
--help display this help message
where testGenerator.jar is the name of this JAR file
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The options that can be provided to the Test Generator are rather simple:

• Option -in or -input is used to indicate the path to the requirement file.

• Option -out or -output is used to indicate the path to the output directory for the test case.

• Option -log is used to indicate to log information of the process of generation to a log file indicated
in argument.

• Option -v indicates to the tester to use verbose mode. In this case more information about the
generation is displayed on the console.

• Option --help is used to display the available options.

C.2 Test engine
The option list can be obtained by launching the executable JAR file and providing the --help option.

ruitor:˜/workspace/jpost2/dist/testEngine> java -jar testEngine.jar --help
Usage : java -Djava.security.policy=java.policy -jar Test-Engine.jar options

-tc [path] : indicates the path of the test case
-map|-mapping [path] : indicates the path of the mapping file
-obj [path] -> Use the test objective to drive the execution
-log [path] : the path to the directory used to log
-graph : produce a graph illustrating the execution
-debug|-d [path] : the path to the directory use to debug
-verbose|-v use verbose mode
--help : displays this help message
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