Unité Mixte de Recherche 5104 CNRS - INPG - UJF

erimac

Certification of Smart-Card
Applications in Common Criteria

Iman Narasamdya, Micle Péerin

Verimag Research Report 1 TR-2008-14

September 2008

Reports are downloadable at the following address
http://www-verimag.imag.fr

rlg;.@mﬁm@u“rg%

Centre Equation

2, avenue de VIGNATE
F-38610 GIERES

tel : +33 456 52 03 40

fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Certification of Smart-Card Applications in Common Criteri a

Iman Narasamdya, Miclé Péerin

September 2008

Abstract

This report describes a certification method of smart-caplieations in the framework of
Common Criteria. In this framework, a smart-card applaats represented consecutively by
a model of its specification, a functional specification diéseg an input-output relationship, a
low-level design, and implementation code. The certifaraprocess consists of the following
tasks: (1) prove that the model, the functional specificatibe low-level design, and the
code satisfy security properties in the smart-card apjin® specification, and (2) prove that
there is a representation correspondence between eacltohgeautive representations. For
each task, a certificate or a collection of certificates aszlad to certify the accomplishment
of the task. We describe in this report the application ofemtl of program properties to the
certification process. The theory provides foundationgd&scribing and proving properties
of a single program and properties relating two programse fhieory provides a notion of
verification condition as a notion of certificate. The the@applicable to the certification
process because all representations of a smart-card afipii@re essentially programs and
the representation correspondences are propertieswgetatd programs.

Keywords: Software Certification, Common Criteria, Program Invatsaimter-Program Properties
Reviewers: Laurent Mounier

Notes

How to cite this report:

@techreporf ,

title = { Certification of Smart-Card Applications in Common Crigri
authors ={ Iman Narasamdya, Michaél P&fin

institution ={ Verimag Research Repdjt

number ={TR-2008-14,

year={ },

note ={ }

}

Iman Narasamdya, Miclé Périn

1 Introduction

The use of smart cards has been pervasive in our everyday Iber example, smart cards in the form
of debit or credit cards have been used in electronic bantamgsactions. Smart cards have also been
used for mobile telephony. With the widespread use of madfilenes, the use of smart cards will play an
important role in our lives. Smart-card applications aregobams embedded in the chip on smart cards.
These programs control the use of smart cards. Smart cardnaad-card applications have mostly been
used to provide security, mainly for authentication andhatization. The security functions provided by a
smart-card application are described in the specificaB@®aurity properties. Since security properties are
paramount for a smart-card application, one has to prowvedtly that an implementation of the application
satisfies the security properties. Moreover, to give higtfidence to the user of the smart-card application,
one needs to provide a certificate showing that the impleatientindeed satisfies the properties.

We describe in this report our work on certifying smart-capplications. Our work is part of an
industrial project calleEDEN2 that has been conducted at Verimag laboratory. The aim gdfrihject are
twofold: (1) to develop a method for formal software certtion in the framework of Common Criteria
certification [Com, 2007, and (2) to provide a certificate or a collection of certifesashowing that a
smart-card application follows its specification or a maaféts specification.

Common Criteria (CC) is an international standard for thal@ation of security related systems. CC
defines requirements for certificatiogecurity policy mode(SPM), functional specificatiofFSP),TOE
design(TDS), andimplementationIMP). Given a system and its specification, an SPM is a motlel o
the specification. An FSP describes an input-output redatigp of the system. TOE stands for target of
evaluation, which is the system itself. A TDS is a low-levesijn of the system. We often describe a TDS
as a reference implementation. An IMP is the code implemgrttie system. Each requirement in CC
has a representation. For exampleEIDEN2 the SPM is written in a declarative language specifying the
behavior of the smart-card application, while the FSP aedlbhS are written in subsets of Java. Between
every two consecutive requirements there is a so-calleg@septation correspondence (RCR) relating the
two requirement representations.

In the CC certification process one first has to demonstrateeifich requirement representation sat-
isfies the security properties, and also produce certiichiat certify that the representation satisfies the
properties. Second, one proves that there is an RCR betveedntwo consecutive representations and
produces a certificate about the RCR. In this report we cengidly the requirements SPM, FSP, and
TDS.

We apply the theory of program properties describedlimmpsamdy2007 Voronkov and Narasamdya
2009 to the CC certification process. The theory provides fotioda for proving properties of a single
program and properties that relate two programs. The fazatédn of the theory is based on a suitably
adapted notion of program invariant for a single programe ffteory is based on the notion afsertion
function a function that assigns assertions to program points. Meery introduces the notion of ex-
tendible assertion function as a constructive notion facdbing and for proving program invariants. This
notion is developed further in the theory so that it can bel te@rove properties relating two programs, or
inter-program properties. The theory also develops a naifoverification condition. A verification con-
dition associated with an assertion function of a prograrmfoacertificatethat certifies that the program
satisfies the properties described by the assertion funcfioverification condition itself is a finite set of
assertions constructed from the assertion function angritgram. A certificate can be turned intp@of
by proving that all assertions in the certificate are valid.

The representations of the SPM, the FSP, and the TDS aretieflggorograms. Although standard
Floyd-style verification technique like-[oyd, 1967 Hoarg 1969 can be applied to proving their prop-
erties, the theory described above can also be used to pgrevaroperties and, additionally, to provide
certificates about those properties. The RCR between twsecoiive requirements are essentially prop-
erties relating two programs. Thus, we can apply the themprave the RCR and to provide a certificate
about the RCR.

In this reportwe discuss the application of the theory tovprg properties of SPMs. Properties of FSPs
and TDSs can be proved in the same way as proving properti@BNs. In the CC certification process,
one has to demonstrate that if the SPM satisfies some proffeatythe FSP and the TDS also satisfy the
same property. Instead of proving the same property for 8¢ &d the TDS, we describe in this report

Verimag Research Report MR-2008-14 1/33

Iman Narasamdya, Miclé Périn

how properties of the SPM are preserved by the RCR betweeSRM and the FSP. That is, once one
proves that the SPM satisfies some property and there is antiR@kRen the SPM and the FSP, then the
FSP satisfies the same property. Property preservationtfrefaSP to the TDS can be described similarly
to describing property preservation from the SPM to the FSP.

The contribution of this paper is the application of the abtheory to the certification of smart-card
applications in CC. The application itself is not straigitfard since smart-card programs have differ-
ent characteristics from typical imperative programsst-ia run of a smart-card program can terminate
abruptly in the middle of the program due to power loss. Thas,has to model such an abrupt termination.
Second, the low-level design of the application includasgaction mechanism. One then has to model
transaction mechanism so that the theory can be appliedddfirdtions of RCRs are more complex than
standard refinement relations. For example, when a traoedstnot in progress, the order of updating
some variables of the TDS must be the same as the order ofingdaetir corresponding counterparts in
the FSP. But, when a transaction is in progress, such an isrdeglevant. Mapping between variables in
RCRs can be nontrivial. For example, a scalar variable irStl corresponds to an array variable in the
FSP.

The outline of this report is as follows. We first describe theory of program properties. We only
provide the essence of the theory. A detailed descriptichedtheory can be found inrasamdygz2007,
Voronkov and Narasamdy200d. We then apply the theory to proving properties of SPMs.eAftard,
we apply the theory to proving RCRs between SPMs and FSPghandRCRs between FSPs and TDSs.
Having described the application of the theory to provingRRCwe discuss property preservation from
SPMs to FSPs by RCRs between SPMs and FSPs. Finally, we latieflyss some related works and then
conclude this report.

2 A Theory of Program Properties

2.1 Assumptions

The theory is based on standard assumptions about prograirnibeir semantics. A program consists of
a finite set ofprogram points For example, @rogram pointof a programP can be the entry or the exit
of a sequence of statements (dblack in P. We denote byPoint p the set of program points df. A
program-point flow graph of is a finite directed graph whose nodes are the program poinks dn
the sequel, we assume that every progfame are dealing with is associated with a program-point flow
graph, denoted b¢ p.

We assume that every program has a uniepiey pointand a uniquexit point Denote byentry(P)
and exit(P), respectively, the entry and the exit point of progr&nWe assume that the program-point
flow graph contains no edge into the entry point and no edge fhe exit point.

We describe the run-time behavior of a program as sequetiaembigurations. Aconfigurationof
a program run consists of a program point and a mapping framahias to values. Such a mapping is
called astate Formally, a configuration is a paip, o), wherep is a program point and is a state. A
configuration(p, o) is called arentry configuration forP if p = entry(P), and arexit configuration for
Pif p = exit(P).

We assume that the semantics of a progfam defined as a transition relatien p with transitions of
the form(py,01) —p (p2, 02), Wwherep;, p» are program pointss , o2 are states, angh, p2) is an edge
in Gp.

DEeFINITION 2.1 (Computation Sequence,Run)cAmputation sequence of a progrdenis either a finite
or an infinite sequence of configurations

(pOaUO)a(plaal)a"" (2)

where(p;, 0;) —p (pi+1,0i+1) forall i. A run R of a programP from an initial states is a computation
sequencel) such thap, = entry(P).
O

2133 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

We introduce two restrictions on the semantics of progrdfirst, we assume that programs are deter-
ministic. That is, for every program, given a configuration,, there exists at most one configuratign
such thaty; —p 2. Second, we assume that, for every progrdrand for every non-exit configuration
~v1 of P’s run, there exists a configuration such thaty; —p ~2. One can view a non-deterministic
program as a deterministic program having an additionaltivariablez whose value is an infinite se-
guence of numbers, these numbers are used to decide whiom-afaterministic choices should be made.
Further, if a program computation can terminate in a stdferdént from the exit state, we can add an
artificial transition from this state to the exit state. Afseich a modification we can also consider arbitrary
non-deterministic programs.

Further, we assume sorassertion languagi which one can writ@ssertionsnvolving variables and
express properties of states. The set of all assertionsisee byAssertion. We will use meta variables
«, ¢, p, andy, along with their primed, subscript, and superscript notes, to range over assertions. We
write ¢ = « to mean an assertianis true in a stater, and also say that satisfiesw, or thata holds at
o. We say that an assertienis valid if o = « for every stater. We will also use a similar notation for
configurations: for a configuratiaip, o) and assertiom we write (p, o) = «if o | «. We assume that
the assertion language is closed under the standard ptiopasconnectives and respects their semantics,
for examples = -« if and only if o }~ «.

2.2 Extendible Assertion Functions

We introduce the notion of assertion function that assesiptogram points with assertions. Assertion
functionfor a programp is a partial function

I : Pointp — Assertion

mapping program points aP to assertions such th@fentry(P)) and I (exit(P)) are defined. The re-
quirement thaf is defined on the entry and exit points is purely technical motdrestrictive, for one can
always defind (entry(P)) andI(exit(P)) asT, that is, an assertion that holds at every state.

Given an assertion functiah we call a program point I-observabléf I(p) is defined. A configuration
(p, o) is calledI-observable if so is its program point We say that a configuration= (p, o) satisfies/,
denoted byy = I, if I(p) is defined andr = I(p). We will also say thaf is defined ony if it is defined
onp and writel(y) to denotel (p).

For proving that a program satisfies some properties, wednte the notion of extendible assertion
function. This notion provides a constructive charactgion of relations between an assertion function
and a program.

DEFINITION 2.2 Let] be an assertion function of a progrdm I is strongly extendiblé for every run

Yoy -5 Vi

of the program such that> 0, vy = I, v; E I, and~; is not an exit configuration, there exists a finite
computation sequence

Yis oo Yitn

such that
1. n>0,
2. Yi+n =1, and
3. forallj suchthat < j < i+ n, the configurationy; is not/-observable.

The definition ofweakly-extendiblassertion function is obtained from this definition by drimgpcondi-
tion 3. O

Verimag Research Report MR-2008-14 3/33

Iman Narasamdya, Miclé Périn

Later, to provide verification conditions associated wiheation functions, we need a notion of cover-
ing set. We say that a sét of program points inP coversP if entry(P) € C and every infinite path in
G p contains a program point it. Verification conditions associated with assertion fusrtsi consist of
assertions formed from paths in program-point flow graplesfofm such assertions, we need the notions
of precondition and liberal precondition.

DEFINITION 2.3 (Weakest Precondition) Let= (po,...,p,) be a path in the flow graph. An assertion
¢ is called apreconditionof the pathr and an assertiott, if, for every statery such thavy = ¢, there
exist statesry, . . ., 0, such that

(pOaUO) = (pl,O'l) = ... = (pn70n)

ando,, = . An assertionp is called theweakest preconditioof = and, denoted bywp (), if itis a
precondition ofr and), and, for every preconditiop’ of = and+), the assertiop’ = ¢ is valid.

An assertiony is called diberal preconditionof the pathr and an assertiot, if, for every sequence
oo, ..., 0y Of states such that

(o, 00) = (p1,01) = ... = (Pn, o),

andoy = ¢, we haves,, = . An assertionp is called theweakest liberal preconditionf = and,
denoted bywlp .. (¢), if it is a liberal precondition ofr and+, and, for every liberal preconditiop’ of =
andy, the assertiop’ = ¢ is valid. O

To provide certificates or verification conditions for pragrproperties, we need to be able to compute
the weakest and the weakest liberal precondition of a giatim @nd an assertion. In the sequel we assume
that our programming language has theakest precondition propertthat is, for every assertiopn and
pathr, the weakest precondition far and) exists and moreover, can effectively be computed from
and. Sincewlp (1) is equivalent towp . (v) V —wp(T), one can also compute the weakest liberal
precondition forr and.

Next, we describe the verification conditions associated agsertion functions. Such verification con-
ditions formcertificatesfor program properties described by the assertion funstibet/ be an assertion
function. A pathpy, . . ., p, In Gp is called/-simpleif n > 0 and! is defined orp, andp,, and undefined
on all program pointg, ..., p,—1. We will say that the path isetweerp, andp,,.

DEFINITION 2.4 Let] be an assertion function of a progrdmsuch that the domain df coversP. The
strong verification conditiomssociated with is the set of assertions

{I(po) = wip(I(pn))
| m is anI-simple path betweep, andp,, }.

Note that the strong verification condition is always finite. O

THEOREM 2.5 Let] be an assertion function of a programwhose domain covei8 andS be the strong
verification condition associated with If every assertion i is valid, then! is strongly extendible. [

One can reformulate the notion of verification condition utls a way that it will guarantee weak
extendibility. For every path, denote bystart(r) andend (), respectively, the first and the last point of
.

DEFINITION 2.6 Let] be an assertion function of a progrdfandII a set of paths iiG p such that for
every pathr in IT both start(7) andend(w) areI-observable. For every program pojnin P, denote by
II|p the set of paths il whose first point i.

Theweak verification conditioassociated witll andII consists of all assertions of the form

I(start(m)) = wip,. (I(end(m))),

4/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

wherer € II and all assertions of the form

I(p) = \/ wp(T),

m€ll|p

wherep is anl-observable point. O

THEOREM 2.7 Let I andII be as in Definitior2.6 and W be the weak verification condition associated
with I andIl. If every assertion iV is valid, then/ is weakly extendible. O

2.3 Inter-Program Properties

To prove properties relating two programf®sand P/, we consider the programs as a p@i P’) of pro-
grams with disjoint sets of variables. A configuration is pléu(p,p’, &), wherep € Pointp, p' €
Pointp/, ands is a state mapping from all variables of both programs toelun the sequel, such a
states is written as(o, o’), whereo is for P ando’ is for P’. Similarly, the configuratiofip, p’, &) can be
written as(p, p’, o, o’).

Similar to the case of a single program, we say that a confiigura = (p, p’, o, 0’) is called arentry
configuration for(P, P') if p = entry(P) andp’ = entry(P’), and anexit configuration for(P, P’) if
p = exit(P) andp’ = exit(P’).

The transition relatior~ of a pair(P, P’) of programs contains two kinds of transition:

(plap/a 01, OJ) = (p27p/7 02, OJ)v

such thai(p,, 01) — (p2, 02) is in the transition relation of, and

(p’p&)o-)o-i) = (p)p/Q)U)U/Q))

such thai{py,01) — (p2, 02) is in the transition relation of’. Having the notion of transition relation for
pairs of programs, the notions of computation sequence@mdan be defined in the same way as in the
case of a single program.

An assertion functiomf a pair(P, P’) of programs is a partial function

I : Pointp x Pointp: — Assertion

mapping pairs of program points #fand P’ to assertions such thats defined or{entry(P), entry(P’))
and(exit(P), exit(P")).

Given an assertion functiah we call a pair of program pointg, p’) I-observabléf 7(p, p’) is defined.
Lety = (p,p’, 0,0") be a configuration. Then, is I-observable if so is the pair of program poifitsp’).

We also say that satisfiesl, denoted byy |= I, if I is defined or(p, p’) and(c,¢’) = I(p,p’). We will
also say thaf is defined ony if it is defined on(p, p’) and writel () to denotel (p, p’).

Unlike in the case of a single program, for a pair of prograthsre is no notions of invariant and
strongly-extendible assertion function. The transitielation of a pair of programs has no synchronization
mechanism. For example, one program in a pair can make astmaasjtions as possible, while the other
program in the same pair stays at some program point withaktng any transition. Thus, it is not useful
to have the notions of invariant and strongly-extendibseason functions.

Weakly-extendible assertion functions for a pair of progsacan be defined in the same way as in the
case of a single program.

DEFINITION 2.8 Let/ be an assertion function of a p&iP, P’') of programs./ is weakly extendiblé for
every run

Yoy -5 Vi

of (P,P’) such thatt > 0, v = I,y | I, and~; is not an exit configuration, there exists a finite
computation sequence

iy« Vitn
of (P, P’) such that

Verimag Research Report MR-2008-14 5/33

Iman Narasamdya, Miclé Périn

1. n>0,and

2. Yitn |: I
[l

Similar to the properties of a single program, the verifmatonditions associated with inter-program
properties use the notion of path. However, since the floplisaf the two programs in a pair of programs
are considered disjoint, the notion of path for pairs of paogs needs to be elaboratedpath = of a pair
(P, P") of programs is a finite or infinite sequence

(o, p0), (P1,11); - -
of pairs of program points such that, for ali 0, either
e (pi,pi+1) is an edge ofa p andp) = p/, , or
e (p},pi,,)isanedge ofzp andp; = p;41

A path7 of (P, P’) can be considered as a trajectory in a two dimensional spheeavthe axes are paths
of P andP’. We denote such a pathby (7, 7’'), wherer andpi’ are the axes of the spacejs a path
of P andn’ is a path ofP’. Having the notion of path for a pair of programs, the notiohgrecondition
and liberal precondition for paths of a pair of programs camléfined in the same way as in the case of a
single program.

We can define the verification condition associated with Weaktendible assertion functions similarly
to the case of a single program.

DEFINITION 2.9 Let! be an assertion function of a pdiP, P') of programs andI a set of non-trivial
paths of the pair of programs such that for every pat II both start(r) and end(w) path arel-
observable. For every paip,p’) of program points, denote bM|(p, p’) the set of paths idl whose
first pair of points is(p, p’).

Theweak verification conditioassociated witli andII consists of all assertions of the form

I(start(n)) = wip,.(I(end(w))),

wherer € II and all assertions of the form
Ip,p) = \/ wp(T),
mell|(p,p’)

where(p, p’) is anl-observable point, angis not the exit point ofP. O

THEOREM2.10 Let/ andII be as in Definitior2.9andW be the weak verification condition associated
with 7 andIl. If every assertion iV is valid, then/ is weakly extendible. O

The notion of weak verification condition is the cornerstohthe theory of inter-program properties. The
notion of weak verification condition forms a suitable natif certificate about properties involving two
programs.

3 Proving Properties of Policy Models

3.1 Smart-Card Application Life Cycle

In this section we briefly overview the operations of smandcapplication. Acard reader(or aterminal)
communicates with a smart-card application by first selgdtie application and then sending a sequence
of commands to the application. Each smart-card applicasadentified by itsapplication identifier
(AID). Commands sent by the reader are in the formpmgdlication protocol data unittAPDUS), a standard

6/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

K
entry(C)
m 201 A Tpr A s
AN

B B B

. . : B4
r
\ /Fail Abrupt
Fail
[]
exit, (C) exit,(C)

Figure 1: Semantics of SPM.

format for exchanging data defined in ISO 7816-4. The apiitinaeplies to each APDU command with
a status word indicating the result of the operation, anibaptly with data. The reader terminates the
communication with the application by deselecting the @agibn?

An application isinactivewhen it is first installed into the smart card. The applicatioen becomes
activewhen it gets selected by a card reader. From being activegghlcation becomes inactive if the
reader deselects the application or a card tear (loss ofpoweurs. Later in defining the runtime behavior
of smart-card applications, we only concern with the bedra@i active applications.

3.2 Command Description Language

We now discuss the language used to write SPMEDMEN2. An SPM models the policy that a smart-card
application has to respect. Such a policy includes secaritysafety properties. The SPM might not be
able to model all security properties, but at least it motlesaccess controhndinformation flowof the
application. The SPM models such properties by descriliiadpehavior of each command, and therefore
the language used to write SPMs is calteinmand description language

We only provide an informal description of the syntax and aetics of the language. An SPM consists
of commands that will be implemented in the smart-card apfibn. Each command in the SPM has the
following form:

commandC(p1,...,pn) {
pass(¢1) { B1 }
fail (p2) { B2 }
fail (p3) { Bs }
abrupt { By }
}

The command’ has alistps, . .., p,) of input parameters. Each input parameter specifies theatypéhe
name of the parameter. The list of input parameter can beyempée behavior of a command is specified
by thepass, fail , andabrupt clauses. The conditions;, ¢, ¢3 of the clauses are boolean expressions.
The bodiesB,, B, Bs, B, of the clauses are statements written in a simple imperktiguage.

The semantics of the commantlis described by the flow graph depicted in Figlre=irst, for every
commandC, there is a unique entry denoted bytry(C'), but there are two exit points, one exit point,
denoted byezit,, (C), is for normal exit and the other, denoted &wit,(C), is for abrupt exit. Second,
each clause in the command description is associated wiib@as event. Fopassclause, we associate a

1Specifically for Java Card platform, selecting and desielgain application are performed by sending special comm#mthe
Java-Card Runtime Environment, which in turn calls, retpely, selection and deselection methods implementeldrapplication.

Verimag Research Report MR-2008-14 7133

Iman Narasamdya, Miclé Périn

statement emittingass event at the end of the body of the clause. Similarlyféar andabrupt clauses,
we associat€ail andAbrupt events.

A run or an execution of a command from a states is a computation sequence starting from the
configuration(entry(C), o). If the states satisfiesp;, 2, or 3, then the run will go through the bodies,
respectivelyB1, Bs, or Bs. If the states satisfies none ap1, o2, Or 3, then the run will go through the
empty body. A run of a commard terminates normally if it reaches:it,,(C'), and for such a termination,
the run emits either &ass or Fail event. For simplicity, particularly to eliminate hondeténism and
blocking run, we interpret theassandfail clauses of the command as the followifigthen -elseconstruct:

if o1 then B,
elseif o, then B,
elseif 3 then B3
elseBs

whereBs is an empty body.

A card tear can occurs at any time and at any configuration ofrantand run. In Figuré, for every
point in the round box, we have an edge going to the entrg.of A run of a command_ terminates
abruptly if it reaches the poinrtit,(C), and in reaching this point the run emits Abrupt event.

As also shown in Figurd, an SPM itself can be considered as a program that takes agana
sequence of commands. Each input command is of the &fm, ..., a,), whereC' is the command’s
name and, ..., a, are the input arguments. A run of an SPM can be consideredexpiaisce of runs of
commands in the SPM. For each run of a command in the SPM, ititheerminates normally, then the run
of the SPM fetches the nextinpGtaq, .. ., a,) in the input sequence. The notati6t? in Figurel means
that the fetched input is a commaad When a card tear occurs, then the run of the command terasinat
abruptly and, in turn, the run of the SPM simply terminatesthle life cycle of a smart-card application,
such an abrupt termination makes the application inactive.

A run of an SPM is a finite or infinite alternating sequence

Y0,E1,7Y25E25 + « -y
where
e vy is an entry configuration;
e foralli > 0, we havey; — ~;+1; and
e forall j > 1, ¢; is an event associated with transitign.,; — ;.

Events are not restricted feass, Fail, and Abrupt events; we allow unobservable internal events. We
assume that each SPM has an input variable and the stateffuzationy, maps this variable to the input
value, which is a sequence of commands.

3.3 Proof Technique

We prove properties of an SPM by proving properties of eachreand in the SPM. Each command in
the SPM is represented by two flow graphs: one fothssandfail clauses, and the other for thbrupt
clause. We illustrate our proof technique by the followingmples.

ExamMpPLE 3.1 We consider a command used to authenticate users byiagrihe input PIN given by the
users. We call the commanteckPIN. The SPM of the command is depicted in Fig@reé~or simplicity,
we omit the types of variables in the SPM. We assume gihatp, MAX, andtrial are of integral type,
denoted byint, while val is of boolean type. The variablgn holds the PIN stored in the card and the
variablep holds the input PIN. The variablAX holds the maximum number of failed trials, while the
variabletrial holds the remaining failed trials. The variabd is a flag denoting the validation status of
the PIN.

In Figure2 we also depict the flow graphs for thassandfail clauses in the middle and for tladrupt
clause on the right. Let us call the former graphand the lattei,.

The property that we want to prove is as follows:

8/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

commandcheckPIN(int p) {

pass(trial > 0 A pin = p) { ¢

val == T trial > 0

} trial ;= MAX; A: P
fail (trial > 0 A pin # p) { val := L val := T val := L
val = 1;
trial = trial — 1; ltrial = MAX l Abrupt
} trial := trial —

Fail
Pass

fail (trial <0) { } o
abrupt {val = L1;}
}

Figure 2: An SPM otheckPIN.

In any run ofcheckPIN, the value of variableal at the exit configuration of the run is trife
and only if the run emits &ass event.

This property describes an information flow in the command, thus is a security property. To prove this
property, we need to prove that, for any run of each commaredfdllowing sub-properties hold at the
entry and normal exit configurations of the run:

1. The value of variabl®&AX is greater tha.
2. The value of variablerial is betweerd and the value ofMAX inclusive.

3. Ifthe PIN is blocked, that is the value ofal is equal ta0, then the validation status, or the value of
val is false.

These properties are often calliedariants of the SPMNote that propertie®j and @) are safety proper-
ties.
Let the following assertions describe the above properties

MAX > 0 (1)
0 < trial < MAX (2)
trial=0=val =1 (3).

We generalize property) to
trial < MAX = val = 1 (3'),

that is, instead of provingl) A (2) A (3), we prove a stronger assertioh) A (2) A (3’). Denote the latter
assertion byp.

First assume that emitting an observable event is perfobyedsigning the event to a special variable
callede. We assume further th&ass # Fail # Abrupt. We now define assertion functiofsof P, and
I, of P, as follows:

Li(pe) = ¢

Li(ps) = @Aval=T & e =Pass
Ig(ae) = T

Iy(agy) = val=T & e = Pass

Verimag Research Report MR-2008-14 9/33

Iman Narasamdya, Miclé Périn

Second, since a card tear can happen at any time and at anyirptiie flow graphP;. We need to
prove that for any run oP; from a state satisfying; (p.), the assertiods (a.) holds at every configuration
atany pointinP;. Sincelz(a.) is a valid assertion, thef (a.) holds at every configuration.

We argue that, for the commaiatleckPIN, if the functions/; andI> are weakly extendible, then the
properties that we want to prove hold. Consider a Rinf checkPIN from a statesr satisfying/; (pe).
Assume first that card tears are not present. satisfies the condition of thgassclause, then the run will
reach the normal exit afheckPIN with some state”’. Sinceo’ satisfiestrial = MAX andMAX are not
modified in the run, thena’ satisfiesd < trial < MAX andMAX > 0. Because the value ¢l AX was
assigned tarial in the run, it follows that’ satisfiestrial < MAX = val = L. Finally, sinceval ande
are assigned with, respectively,andPass, the stater’ satisfiesval = T < ¢ = Pass. Thus, the state’
satisfiesl; (p..).

With a similar kind of reasoning, if the stateof the runR satisfiesl; (p.) and the conditiontrial >
0 A pin # p, then when card tears are not present, the run will reachdheal exit with a stater” that
satisfiesl; (p..). The assertion < trial < MAX holds ats”’ since the assertion

0 < trial < MAXAMAX > 0 Atrial > 0= 0 < (trial — 1) < MAX

is valid. Similarly for the assertiotrial < MAX = val = L. The assertional = T < ¢ = Pass is
trivially satisfied bys” becauseal andev were assigned with. andFail, respectively.

Now, suppose that the stateof the runR satisfiesl; (p.) andtrial < 0. When no card tears occur,
the run reaches the normal exit with a staté. Since there is no variable modified in the run, it follows
thato'” satisfiesp. To prove thav”’ satisfiesval = T < ¢ = Pass, we need to show that”’ mapsval
to L. Since the state satisfiestrial < 0 andMAX > 0, theno satisfiestrial < MAX. Becauser also
satisfiestrial < MAX = val = L, it follows thato satisfiesval = L. Finally, the states”” will map val
to L becauseal was not modified in the run. This reasoning has shown the itapoe of the properties
described by the assertign= I, (p.).

For the assertion functioh,, we defineT ona. because we do not make any assumption when a card
tear occurs. Moreover, singel is set tol ande gets the valuébrupt, the assertional = T < ev = Pass
holds trivially at the exit configuration of a run that terratas abruptly.

We prove that/; andl, are strongly extendible. First, both and, cover P, and P, respectively.

Letnm) , ,m , ,andms bel-simple paths fronp. to p,. The pathr) , traverses the condition
pin = p, the pathzrf)eypx traverses the conditigsin # p, and the path-geypx traversesrial < 0. Letnw,_ 4,
be the only path i%,. The strong verification conditions fdy and/, consist of the following assertions:

Ii(pe) = wipr (1(pa))
Li(pe) = wiprz (1(p2))
Ii(pe) = wipys (I(pz))
I(ae) = szﬂa B (I(az))

One can prove that these assertions are all valid, andithaisd /> are strongly extendible, which in turn
are also weakly extendible.

To prove that the above properties hold for the whole SPM, @ezlrio prove that the assertiprholds
at the entry and normal exit configurations of any rurottffer commands. To this end, we follow the
following steps:

1. Prove that the assertignholds after the initialization of the SPM.

2. For each command, define an assertion function for the flayhgrepresenting theassandfail
clauses such that the assertions defined on the entry andihexinpoints of the function imply,
and then prove that the function is weakly extendible.

These steps (1) and (2) can be carried out in the same way asgtbe properties for the command
checkPIN. 0

In the above example we do not assume anything when a camd@aans. Thatis, the assertion function
1y is defined as” on the entry point,. of the programP; that represents abrupt termination. For simplicity,

1033 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

commandupdatePIN(int p) {

pass(val) {
it (0) { l
pin == p;
trial ;= MAX;
} else{
pb = pin;
tb = trial;
c = T;
pin = p;
trial := MAX;
c = 1
}
}

fail (~val) { }

trial := MAX |tb := trial pin := pb

c:=T trial := tb

]
'_

val :

abrupt{ trial := MAX Abrupt

if (o) {

pin = pb;
trial = pt;
}

val = 1;

}

Figure 3: An SPM ofipdatePIN.

let us call such &, anabrupt programor anabrupt flow graph The assertiofT is valid at every state,
and so when a card tear occurs, the state upon the enty sétisfiesT. One can unnecessarily assert
MAX > 0 at the point. since, provided tha¥1AX > 0 holds at the entry point of the command avid X

is not modified in the command, the assertion always holdseryeonfiguration of a run when the run
is in thepassor fail clause. Thus, the entry configuration of any runfofalways satisfied1AX > 0.
However, one often needs to define a precondition at the goint of an abrupt program such that some
variables in the precondition are modified in fheessor fail clause of the command description. In such a
case, one has to prove that the precondition always holdseay eonfiguration of a run of the command
when the run is in theassor fail clause. We illustrate such a case in the following example.

ExampPLE 3.2 We consider a command for updating PIN shown in Fi@urEhe updates ofin andtrial
are conditional depending on the value of variabl8uch an update mechanism resembles the transaction
facility in the implementation level. Since the commandaliggion language does not have any transaction
facility, the conditional updates are performed manualiyvthe help of the variable. The variablepb
andtb can be considered as variables that back up the valugis @ihdtrial, respectively. The variables
pb andtb are declared globally.

In Figure3 we depict the flow graphs for normal termination in the midathel for the abrupt termina-
tion on the right. Denote the former flow graph By and the latter byP;.

The property that we want to prove in this example is the Yaithg:

In any run ofupdatePIN, at the exit configuration of the run, either the values ohhgt
andtrial are updated or the values of these variables coincide wéhvéitues at the entry
configuration.

Verimag Research Report MR-2008-14 1133

Iman Narasamdya, Miclé Périn

To prove the property, we need to assert that at the entryt pbany run ofupdatePIN, if the conditionc
is true, then the variablgsb andtb hold the latest values of, respectivabyn andtrial beforec becomes
true. Assume that the variabdds initially false. For simplicity, we assume that we havey&d that, for
every command besidesdatePIN, we prove that wheneveris true, the variablegb andtb holds the
latest values of, respectivelyin andtb beforec becomes true.

We now define two assertion functiods,of P; andl, of P, as follows:

Li(pe) = (c=(pb=FkAtb=1))Apin=nAtrial=m

Li(ps) = ¢

Iy(a.) = (c=(pb=nAtb=m)V (pb=kAtb=1))
A(—c = 1)

Ias) = &V (pin=k Atrial = 1),

wherek, [, m,n are logical variables, ang denotes the assertion
(pin = p A trial = MAX) V (pin = n A trial = m).

The functionl; says that at the entry configuration of any ruruptiatePIN, the variablegpin andtrial
hold some values denoted by the logical variablemdm, respectively. Moreover, if the conditiartrue,
then the variablegb andtb also hold some values denoted by the logical variablasdi, respectively.

One can prove that and/, are weakly extendible. The weak extendibilitylefensures that when the
run reaches the exit d?;, then either botlpin andtrial are updated or none of them are updated. Similarly,
by being weakly extendible, the functida guarantees that if the run terminates abruptly, then ettieer
variablespin andtrial are updated, or both variables retain the same values aslteswpon entry, or the
values of the variables must be rolled back to the lateseghefore the variablebecomes true.

Note that the assertioh (a.) “links” the flow graphsP; and P,. That is, we have to prove tha(a.)
holds at every state of any run of the command when the runtiseipassor fail clause, provided that
the entry configuration of the run satisfiégp.). First, since the assertiah (pe) implies I (a.), then it
follows that for any run of the command such that the entryfigomation satisfies; (p.), the configuration
also satisfied, (a.). Next, for every statement that updatesve prove thafs (a.) holds immediately after
the statement. We define another assertion fundtjas follows:

13(176) = Il(pe)
Ii(p1) = Ix(ae)
I3(p2) = I2(ae)
Ii(pz) = I2(ae)

We only consider the statements that updatecause only those statements that can affect the truth valu
of Ix(a.). One can prove easily that the functidg is strongly extendible. Thus, for any run of the
command such that the entry configuration of the run satigfigs), the assertiords (a.) holds at every
configuration of the run. O

In the implementation of the SPM, the conditions of the ofslia a command description are boolean
expressions written in a subset of Java language. The bofites clauses are statements in a subset of
Java language. Program points in the flow graphs are dengtéabbls in the SPM. Labels are placed
in a special comments following the JML notationsfvens and Chep200d. Assertion functions are
written in a separate file. Assertions themselves are IMkesgons.

4 Proving RCRs between SPMs and FSPs

In EDEN2 an FSP is essentially a Java program written in a subset af Jaach command in the FSP
is a Java method. The return value of the method is a resptatss éndicating whether the execution of
the method is successful or not. If the method needs to retume data, then such data is assigned to
a special designated variable. One can consider returnsng@essful response status as emittifipss

1233 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

int checkPIN(int[] p, int I) {

try {
if (trial > 0) {
trial = trial — 1;
if (length = 1) {
int i =0
while (i < length) {
if (pin[i] == p[i])
i =i+ 1;
else
return SW_PIN_VERIFICATION_FAILED;
}

return SWNOERROR;
}
}
return SW_PIN_VERIFICATION_FAILED;
} catch (CardTearException e) {

val = false;
return SW.UNKNOWN,;

Listing 1: An FSP ofcheckPIN

event, while returning a response status that indicatesran @ a failure as emitting &ail event. Any
exception that can occur in the method shall be encodedasireg a response status indicating failure.

An FSP describes card tears usingyacatch construct, where theatch part catches a special excep-
tion calledCardTearException. Thetry part describes an input-output relationship when cardtaig not
present. Theatch part tells what the application has to do when a card tearreccu

EXAMPLE 4.1 In this example we show an FSP of the commalmetkPIN discussed in the previous
section. The FSP is shown in Listifig The PIN in the FSP is represented by the array varialle
while the input PIN is represented by the array varighl&@he length of the PIN is stored in the variable
length.? The FSP also takes the length of the input PIN as an input. &herr statement returning
SW_NO_ERROR denotes a successful completion of the command, while o#iarn statements in the
try part denotes terminations with failures. In thatch part the validation status is set to false. Since
the command has to return a response status;dtuh part returnsSSW_UNKNOWN. One can consider
returningSW_UNKNOWN in thecatch part as emitting akbrupt event.

O

Similar to SPMs, an FSP is a program that takes as an inputueseg of commands of the form
C(as,...,a,), whereC is the command’s name ang, . . . , a,, are input arguments. A run of an FSP can
be described as a sequence of runs of commands in the FSRdFRorua of the command, if the run exits
from thetry part, then the run of the FSP fetches the next inpt;, . . ., a,) from the input sequence.
If a card tear occurs, then the run of the command exits framedlch part or terminates abruptly, and in
turn the run of the FSP simply terminates.

A run of an FSP is a finite or infinite alternating sequence

Y0,€1,72,€25 -+ -,
where

e vy is an entry configuration;

2In Java the length of an array is stored in the fieldength associated with the array, and this field can be accessedeby th
selectora.length. We store the length of an array PIN in a separate variablessuciated with the array because the length of the
PIN can be different from the length of the array.

Verimag Research Report MR-2008-14 13/33

Iman Narasamdya, Miclé Périn

e foralli > 0, we havey; — ~;41; and
o forall j > 1, the event; is an event associated with transitign.; — ;.

We assume that each FSP has an input variable, and the statefigfurationy, maps this variable to the
input value, which is a sequence of commands. Later in thaitlefi of RCRs between SPMs and FSPs
we introduce a one-to-one correspondefiée between the set of observable variables of an SPM and the
set of observable variables of an FSP. We assume&ihaimaps the input variable of the SPM to the input
variable of the FSP.

We prove properties of an FSP in the same way as proving pgiepaf an SPM. First, we prove
properties of each command in the FSP separately. To thjseniepresent the command by two program-
point flow graphs, one for they part and the other for theatch part. We then define assertion functions
of the two flow graphs and prove that the functions are weakstrongly extendible.

We now define the notion of RCR between SPMs and FSPs that wia E8EN2. Let I be a set of
observable events. Denote By the subsequence &f consisting only of events if:

R = (po,00).€1, (p1,01), €25 - -
Rl = (po,00),€is (Pir,Ti1), Eins (Pigs Tiy)

wheree;; € E forall j. Let X be a set of variables of an SPM, we denoteddy X) the set of variables in
X such that the variables are modified in #f®rupt clause of the SPM.

DEFINITION 4.2 LetOgpy andOpgp be the sets of observable variables of, respectively, an &M
an FSP such that there is a one-to-one correspond@hedetweenOgpy; and Opsp. Let Ep =
{Pass, Fail, Abrupt} be the set of observable events of the SPM and the FSP. ThareRER between
the SPM and the FSIP, for every run

R|EO = (po, O—O)a Eiys (pi170i1)7 cee

of the FSP, there is arun
RI|EO = (pé)a U(/))a 5;15 (P;'NU;')7 s
of the SPM, where for alt € Ogpys, Wwe havery(z) = o(,(Obs(z)), such that, for alk

I.

® S T Ej

o if g;, # Abrupt, theno;, (z) = ag-k(Obs(m)) forallz € Ogpar,
e if &;, = Abrupt, theno;, (y) = o’ (Obs(y)) forally € Ab(Ospar).
O

The observable events in the above definition of RCR congistents that occur at the exit points of
both the SPM and the FSP. In the above definition, if there R@R between the SPM and the FSP, then
if there is a run of the FSP from a staié such that the run terminates normally, then there is a run of
the SPM from a state with (¢, o) satisfies\ ... ,.,, * = Obs(z) such that the run of the SPM also
terminates normally and, upon termination of both runsyéidaes of corresponding observable variables
coincide at the exit configurations of the runs. If the runhef ESP terminates abruptly, then there is also
a run of the SPM with the same condition on the entry pointé $liat the run terminates abruptly; but in
this case, only observable variables modified by the SPMeralinupt clause must have equal values at
the exit configurations to their corresponding countegaiarthe FSP.

To apply the theory of inter-program properties to provingRCR between an SPM and an FSP, we
prove the RCR between each corresponding commands sdpatageObs be a one-to-one correspon-
dence between observable variables of the SPM and of theTlR8Fe is an RCR between the SPM and the
FSP of a command' if the following conditions hold. For any ruR of the command” in the FSP from
a statesy, there is a rum?’ of the same command in the SPM from a stafesuch thair; ando] satisfy
Necosp,, T = Obs(z), and

14/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

e if Risterminating, then so ig&’,

e whenR andR’ are terminating with, respectively, statesandc?’,, R andR’ emit the same event
such that

— if € # Abrupt, thenoy ando), satisfy A\ x = Obs(z);
— otherwisers andd?, satisfyz = Obs(x) forall z € Ab(Ospur).

2€0spm

Let o be an assertion such that the assertios- A ..., ¢ = Obs(z) is valid. Let; be the flow
graph of thepassandfail clauses of the command in the SPM, and lef?, be the flow graph of the
abrupt clause ofC. Let P] and P, be the flow graphs of, respectively, ttrg and thecatch parts of the
same command in the FSP. In the same way as denoting the @i pbcommands in SPM, we denote
the exit point ofP] by exit,,(P}) and the exit point o by ezit,(P}). We define an assertion functidp
of (P, P/) such that

I (entry(Py), entry(P})) = I (exit, (Py), exit,(P))) = a.

I, can be defined elsewhere but for all poiptg ezit,, (P;)andp’ # exit,,(P]), we havel; (p, exit, (P}]))
and/, (exit,(P1),p') undefined. Furthermore, 164 = {p’ | Ip, ¢.I,(p,p’) = ¢} be the set of points in
P/ such that, for any point’ in S, there is a poinp in P, and 1, (p,p’) is defined. We say that a path
Do, - - -, Pn IS S1-Simple ifn. > 0, andpy andp,, are inS; but none ofp, ..., p,_1 are inS. We require that
the setS; coversP]. Next, we define a séi, of paths of(P;, P}) such that the seftr’ | 3(r, ©') € I1,}
consists of allS; -simple paths.

We define an assertion functidn of (P,, P) as follows. On the paifentry(P), entry(P4)) of entry
points the functior, is defined ag with the following requirements:

e the assertiom = ¢ is valid, and

e for every finite run(pg, oy)), - . ., (p,,, o) of P{, there is a finite ruripo, 09), . .., (Pm,om) Of Py
such thaf{oy, o)) satisfiesy and(o,,, o7,) satisfies).

On the pair(ezit, (P,), exit,(Py)), the functionl, is defined ag)’ such that, for all: € Ab(Ospay), the
assertion)’ = x = Obs(z) is valid. Furthermore, for all points # exit,(P2) andp’ # ezit,(Py), we
havels (exit, (Py),p') and Iy (p, exit,(P})) undefined. From the functiof, we can define a sé, from
I, similarly to defining the se§; from I;. The setS, must coverP}. We also define a sét, of paths of
(Py, P3) similarly to defining the sefl; .

THEOREM4.3 Let I; and I, be assertion functions as defined above, BacandIl, be sets of paths as
defined above. LétV; and W, be the weak verification conditions associated, respegtiveth I; and
I1;, and withZ, andIL,. If all assertions of/; and W, are valid, then there is an RCR between the SPM
and the FSP of the command

PROOF. First, since all assertions i¥; andW, are valid,/; andl are weakly extendible.

Suppose that card tears do not occur. Bet= ~,...,v; be a run of(P, P{) such thaty, =
I (entry(Py), entry(P})) and~; = fl(pi,pg) wherey; = (p;,p},0i,0,). Let us suppose that, #
exit,(P}). Since the ses, = {p’ | 3p, ¢.1, (p,p’) = ¢} coversP}, from the configuratiorip;, o), there

is a computation sequencg;, o;), ..., (i, ., 0i,,) Of P{ such that the computation sequence passes
through anS;-simple pathr’ = pj,...,p;,, in P|. By the construction of the sét, and the validity of

all assertions in the verification conditi®¥, , there is a pathr = p;, ..., p;+.m In P such that (1) there is

a computation sequen¢g;, o;), . . ., (Pi+m, 0it+m) Of P1 such that the computation sequence follows

(2) 1 (pism» Plry) is defined, and (3)oism, o,) MOAEISTy (Pitm, Dliy)-

Now, if p;,, = exit,(P]), then since for all points # exit,, (P) we havel (p, exit,,(P])) undefined,
we havep; ., = exit,(P1). Thus, if the run ofP] is terminating, then the run aP; is terminating.
Moreover, SiNCe o, m, o’ ,,) SAtSHesl (pitm, Phin), L1 (exit, (P1), exit, (P])) = o, and the assertion
a= A x = Obs(x) is valid, we have thafo; ., o},) satisfies/\ x = Obs(z).

r€0spm 2€0spm

Verimag Research Report MR-2008-14 1533

Iman Narasamdya, Miclé Périn

trial > 0
trial := trial — 1

Figure 4:P; is on the left andP] is on the right.

When card tears occur, then by the requirements 6fntry(Ps), entry(P})) we have the states on
enteringentry(P,) andentry(Py) satisfy I, (entry(Py), entry(P})). With the same kind of reasoning as
before, if the run ofP; reachesuit, (P5) with a states’, then there is a run a, reachingexzit,, (P,) with
a stater. By the weak extendibility of, it follows that(c, o) |= I (exitq(Ps), exitq(Py)). O

To prove that there is an RCR between the SPM and the FSP, énsiquire that for every commanid
and for every assertion functidn of the flow graphs representing thassandfail clauses of the command
C in the SPM and thery part of the same command in the FSP,

fl(entry(Pl), entry(P])) = fl(e:m'tn(Pl), exit, (P])) = a,

whereq is the assertion expressing the correspondence betwe&Ptfleand the FSP. Second, we have
to prove thata holds when the SPM and the FSP are initialized. When a commanchlls another
command’; both in the SPM and in the FSP, then since a command in a siaalapplication is usually
notrecursive, we can inline the comma@s.

EXAMPLE 4.4 In this example we will show that there is an RCR betweenIRM and the FSP of the
commandcheckPIN. The SPM of the command is described in Fig@rand the FSP is described in
Listing 1. Let us first consider the flow graph representingpghssandfail clauses of the SPM and the
flow graph representing they part. Call the former flow grapl; and the lattet?. These flow graphs
are depicted in Figuré.

For clarity, we assume that the SPM and the FSP have disgib$variables. To this end, we consider
that all variables in the FSP are in primed notation. Let #te s

Ogpy = {trial, pin, p,val, MAX, ¢}
Opsp = {trial’,pin’,p’,val’, MAX’ ¢’}

be the sets of observable variables of, respectively, tihé &Rl the FSP such that a one-to-one correspon-
denceDbs betweerDgpy; andOrgp maps each variable i@gp,, to its primed counterpart i pgp

Note thatpin in the SPM has a scalar type tnit’ in the FSP has an array type. So, we have to define
the equivalence betwegin andpin’. First, every array PIN has a lengtl associated with the array; we
write the association as a pdp,!). We introduce a predicate between such pairs such that, given an
array PINsp, p’ and lengthg, I’, we say thatp,l) = (p’,!')if L =1"and foralli = 0,...,l — 1, we have

16/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

Figure 5: P, is on the left andP; is on the right.

pli] = p'[i]. Next we introduce a predicate between scalar PINs and array PINs. The predicate
axiomatized as follows: for every scalar PIdsz and for every array PINg, z,

r~y=> Y=z 1~ 2)
r~y=(w=xSw~y).

The predicate- defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence batoleservable variables of the SPM and of
the FSP:
¢1 & trial = trial’ ds = p~(p,l)
¢o & val=val o5 < MAX = MAX
¢3 < pin ~ (pin’, length’) g & e=¢

Next, we define an assertion functidnof (P, P}) as follows:

Lipe,pt) = N1 ¢i
Lpupy) = Ay ¢i Atrial >0
Lip,p!) = /\?:2 ¢; Atrial > 0 A trial = trial’ + 1
Alength’ = 1" AT <I'A (V5.0 < 5 <V = pin'[j] = p'[]])
Li(pa,ph) = Nj—i i /Apin = p A (pin,length) = (p,1)
Li(ps,ps) = Aj_i i Apin #p A (pin,length) # (p,])

L(pe,pl) = Mooy ¢

The function; is undefined elsewhere. Note that the Set= {p., p}, p},p}. 4. p,} of points in P}
coverspP;.

Denote a path from pointto ¢ in a program-point flow graph by, ,. We define a seffl; of paths of
(P, P{) such that the set consists of the following paths:

(Wpe-,m » Tpl p))7 (Wpe Dz Tpl,pl,)7 (Wpl) Tpy ,p/{)v (7Tp17;nx) Tp ,p?,)7
1’ 1 1

(ﬁpl 2y Tp) .,p’2)v (Wpl) TpY/ ,pY)7 (th;nz) Tpy/ ,pl)7 (th;ns) Tpy ,pg),
Tpy.pas TTply,pl,)7 (Wpsy;nx > Tply pl,)

Note that the sefx’ | Ir.(w, ') € 11, } consists of allS; -simple paths. One can prove that all assertions
in the weak verification condition associated wiihandII; are valid.
We now consider the flow graphs of thbrupt clause and theatch part. Call the former oné, and

the latterP;. These flow graphs are depicted in FigGraVe define an assertion functidp of (P,, P}) as
follows: .
Iy(ae,a) = T

Iy(ag,al,) = val=val.

The functionl;, is undefined elsewhere. Note that the Set= {a., a/,} coversP,. Note also that since

the assertionT is satisfied by any state, the assertﬁgtue, a’,) satisfies the requirements of the assertion
1 described before. We define a &t of paths of(P, P;) such that the set consists only of the path

Verimag Research Report MR-2008-14 17/33

Iman Narasamdya, Miclé Périn

ob ':’5 ’Pin_

trial := MAX |tb := trial

Ib := length

tb := trial

c:—T

pin := p”.'

—0

T i<l
length := 1| ipin[j] :=| p[j]

trial := MAX

Figure 6:P; is on the left andP] is on the right.

(Ta,, ags Tal al, +). The pathr, . is the onlySz-simple path. One can prove easily that all assertions in the

weak verlflcat|0n condition associated with andIl, are valid. Thus, by Theoredh 3 there is an RCR
between the SPM and the FSP of the commaredkPIN. O

EXAMPLE 4.5 We consider in this example the commaipdatePIN whose SPM is depicted in Figuge
The flow graphs that represent tha@ssandfail clauses of the SPM and they part of the FSP are depicted
in Figure6. Let us call the former flow grapR; and the latter oné;.

Let the seDspy = {c, trial, pin, p,val, MAX, e} be the set of observable variables of the SPM, and
the setOrgp be the set of observable variables of the FSP suchQhat- consists of the primed coun-
terparts of all variables iDgp,,. The one-to-one corresponder@ks betweerOgpy, andOpgp simply
maps each variable i®gp), to its primed counterpart iWpsp. The following assertions express the
correspondence between the SPM and the FSP:

¢1 & trial = trial’ o5 & c=c

¢s & val =val ¢ps < MAX = MAX

¢3 & pin ~ (pin’,length’) o7 & e=¢€

ps & p~(p,l) ¢s < cAcd = pb~ (pb,Ib')Ath =tb’

We define an assertion function Af of (P, P}) as follows:

:1(pevple) /\?:1 bi

\(p1py) = /\?:1 Gi ANy b AcA (VL0 <1 <i=pin'[l] = p'[l])
1 (p2:ph) = /\1 198 A=C A (VL0 < 1 < i = pb'll] = pin’[l])
g(p:a,ps) = /\z L6 A Ny @i NeA (VL0 <1< = pin'[l] = p[I])
(3, p5) = NSy @i AcA (e A=c! = é1 A ¢3)

((psph) = Np—i i A (e A= = 61 A d3)

1(pl7pm) /\?:1 Gi-

The function/; is undefined elsewhere. Note that the Sgt= {pL, P}, ph, 5, P4, P}y, vl } of points inP|

18/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

length

:= Ib| pin[k] Y}

trial :=tb |k .= kl+1

= L val := L
Abrupt Abrupt
e a,

Figure 7:P, is on the left andP; is on the right.

coversP]. We also define a séf, of paths of(P;, P}) such that the set consists of the following paths:

(Tpe,prs Tp!,p})y (Tpe.pas Tp!, ,p’z)v (Tpepa s Tl 0,)s
(Tp1 5 Tp! p})s (Tp1 pas 7717’1,1)21)7 (Tps 7Tp’27p’2)a (Tpa.ps> ﬂ'pé,pg’)’
(Tps» Tpy pl)s (s Tpls ,ply)s (Tps pas Tpt ,py)s (Tps pas Tp!, ,pl,)-

The patth;,c_/p21 is the path fronp), to p); through the~c¢’ branch. Similarly forr,©,, . Note that the set
{#' | 3n.(x,7') € II,} consists of allS;-simple paths. One can prove that all assertions in the weak
verification condition associated wifh andII; are valid.

We now consider the flow graphs of thbrupt clause and theatch part. Call the former oné’, and

the latterPy. These flow graphs are depicted in FigidraVe define an assertion functidnof (P, P}) as
follows:

D(ac,al) = ¢sA(~cA~C = ¢ Aps)
o(a1,d}) = pb~ (pb!,Ib) Ath = tb' A (V1.0 < 1 < k = pin'[l] = pb/[1])
I(ag,al,) = ¢1 NP2 A3

The functionl, is undefined elsewhere. Note that the Sgt= {a,, a}, a, } coversP;.
We also define a sét, of paths of(P, P;) such that the set consists of the following paths:

(Wae,(n » Mal,,a})7 (7Ta1 » Tal,a))7 (Wae,ax) Wag,aQE)a (7ra1 Jaz) Ta) ,a;)-

Note that the sefx’ | Ir.(w, ') € Il,} consists of allS;-simple paths. One can prove that all assertions
in the weak verification condition associated withandIi, are valid.
Note also that the requirements for the asserfidn. , o)) is satisfied by the assertioig(ps, pif) and
I (ps, p}y) and the weak extendibility af,. Therefore, there is an RCR between the commandtePIN
of the SPM and of the FSP. O

5 Proving RCRs between FSPs and TDSs

In this section we discuss RCRs between FSPs and TDSs. Ri$oressing RCRs, we first describe TDSs.
In EDENZ2, a TDS of a smart-card application is a program describiogvaével design of the application.
A TDS is also called aeferencemplementation. The language used to write a TDEIEN2 is a subset
of Java. This subset includes memory characteristics andaction mechanism of Java Cagdif} 200§
Chen 200Q. First, in the language of TDSs there are two kinds of memmeysistent memory and transient

Verimag Research Report MR-2008-14 19/33

Iman Narasamdya, Miclé Périn

memory. The difference between these kinds of memory isalh@Afing: when power is lost (or a card tear
occurs), data stored in the persistent memory will be kegitermemory, while data stored in the transient
memory will be lost. In the sequel, variables whose valuesstored in the persistent memory are called
persistent variablesand variables whose values are stored in the transient nyeane calledtransient
variables

The language of TDSs offers a transaction mechanism thainf@es the transaction mechanism of
Java Card API. The depth of a transaction is at most 1, thttdse is no nested transaction. The methods
for managing transactions abeginTransaction, commitTransaction, andabortTransaction. A transaction
is started by callingeginTransaction. When another transaction is in progress, calbeginTransaction
throws an exception. Throwing such an exception can be septed by a return statement that returns a
value indicating an error. The transaction is ended byrgg#ithercommitTransaction or abortTransaction;
but when no transaction is in progress, callteghmitTransaction or abortTransaction throws an exception.
Similarly, throwing such an exception can be represented bgturn statement. When a transaction is
in progress, any updates to persistent variables are éomalit That is, if the transaction is ended by
commitTransaction, then all updates to the persistent variables are committberwise, all updates are
discarded. The updates of transient variables are undonadif regardless a transaction is in progress or
not. Later, we will introduce a boolean variatidransaction to keep track if a transaction is in progress
or not. When a transaction begins, the valuéindfansaction is set to true, and when it ends, the value of
inTransaction is set to false. One can set the valuaéndfansaction to false to escape from a transaction.
This feature is useful for variables whose updates must lbenditional. In Java Card such a feature is
provided by non-atomic API methodsiin 2004. Discussion on Java Card non-atomic API methods and
their effects on transactions can be foundtinipbers and PglP0043.

Similar to FSPs, each command in a TDS is a Java method. Gaslaee described using@-catch
construct in the method. For an FSP, the writer of the FSP ligsedom to write, in theatch part of a
command, what the command has to do when a card tear occuid TESS, thecatch part of the command
modelsonly the clearing of transient memory and the effects of tramsiast Clearing transient memory
means setting all transient variables to their defaulteslu

To cope with transactions, we modify each command in the TOBlws:

e For each persistent variable, we introduce a fresh varfablae bookkeeping of the old value of the
variable during a transaction.

e We introduce a special global varialaransaction to keep track whether a transaction is in progress
or not.

¢ In thecatch part of the command, we add statements that undo the efféetsransaction if the
transaction is in progress.
e We replace any call tbeginTransaction by the statements
if (inTransaction) return TRANSACTIONJIN_PROGRESS;
inTransaction = true;

Between the above two statements we add statements thatdsgothe current values of persistent
variables.

e We replace any call toommitTransaction and toabortTransaction by the statements

if (!inTransaction) return TRANSACTION.NOT_IN.PROGRESS;
inTransaction = false;

Particularly forabortTransaction, between the two statements above we add statements tlathend
effects of the in-progress transaction.

Our modelling of transactions follows the modelling of J8&ad transactions iri-{ubbers and PglR0044.

ExAMPLE 5.1 We illustrate the modelling of transactions and cartstegaTDSs in this example. The pro-
grams in this example is adapted fron[bbers and PglP0044. The original command, or the command

20/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

before the modification, is shown below on the lefthand saahe, the modified version is on the righthand
side. We assume here thmais a persistent variable, whileis a transient variable. The default valueta$
0.

int command() {
try {
if (inTransaction)
return TRANSACTIONJIN_PROGRESS;
pb = p;
inTransaction = true;
p=p+1, t=t+ 1, p=p+ 1

int command() { if (p < 10)
beginTransaction (); if (!inTransaction)
p=p+ 1, t=1t+ 1; return TRANSACTION_NOT_IN_PROGRESS;
p=p+ 1; inTransaction = false;
if (p < 10) else {
commitTransaction (); if (linTransaction)
else return TRANSACTION.NOT_IN_PROGRESS;
abortTransaction (); p = pb;
t =t + 1; inTransaction = false;
return SWNOERROR; }
} t =t + 1;

return SW.NOERROR;
} catch (CardTearException e) {
if (inTransaction) p = pb;
t = 0;
return SW.UNKNOWN;

O

Similar to FSPs, a TDS is a program that takes as an input a&sequwf command calls of the form
C(ai,...,a,), whereC is the command’s name angl, . . ., a,, are input arguments. The notion of run of
TDSs is the same as the notion of run of FSPs. Proving pregesfiTDSs can be done in the same way
as proving properties of SPMs or FSPs.

Having described TDSs, we now define RCRs between FSPs ansl TB8us first denote bipr(X)
the set of persistent variables in the &ebf variables of a TDS. Later in the definition of RCRs between a
FSP and a TDS we require that observable persistent vasiabtee TDS are updated in the same order as
their counterparts of the FSP. But, when a transaction isagness, then such an order becomes irrelevant.
For example, given a one-to-one correspondépieebetween observable variables of the TDS and of the
FSP, if no transaction is in progress and the observabléspamsvariables of the TDS are updated in the
orderxy, z2, x3, then their counterparts are updated in the or@es(x1), Obs(x2), Obs(xs). However,
when a transaction is in progress, then the order of upd@ingz,), Obs(z2), Obs(x3) is irrelevant.
Moreover, whether a transaction is in progress or not, eadahe is updated with the same value as its
counterpart. To this end, first, for each persistent vagialif the TDS and its counterpatibs(z) of the
FSP, we associate with both variables an event fun®ieie_x. This function takes as an input the value
v of z or Obs(z) and returns an evelltrite_z(v). The following assertion axiomatizes the event function:

YV, y, v, w.(Write_z(v) = Write_y(w) < Write_x = Write_y A v = w),

where the equalityVrite_.z = Write_y denotes a syntactic equality. In the sequel we denote, the
domain of variabler.

Second, the set of events emitted by the TDS is a power set s&tiof events emitted by the FSP. Next,
assignments to observable persistent variables and ctimgritansactions emit events in the following
way:

e Inthetry part of the FSP, the update of a variaplevherey = Obs(x) for an observable persistent
variablez in the TDS, emitdNrite_xz(v), wherev is the updated value of.

Verimag Research Report MR-2008-14 21/33

Iman Narasamdya, Miclé Périn

e Inthetry part of the TDS,

— if no transaction is in progress, that is the variabfansaction is false, then the update of an
observable persistent variabtemits{Write_xz(v) }, wherew is the updated value af;

— if atransaction is in progress, that is the variabi@ansaction is true, then wheimTransaction
is set to false and beforehand the observable persisteablesz, . .., z,, are updated such
that thelatestupdated values of these variables are, respectivgly.. . , v,,, then if the re-
setting ofinTransaction is not caused by a call tabortTransaction, then the resetting emits

{Write_zo(vp), . . ., Write_z,, (v,)}. However, when the resetting ofTransaction is caused
by a call toabortTransaction or no observable variables are updated, then no set of eigents
emitted.

Note that the set of events emitted by the TDS is always nobemp

For comparing events of the TDS and events of the FSP, we aay thonempty sefzo, . . ., &, } Of
TDS’s eventsnatchesa sequencey, .. ., <, of FSP’s events if (1)n = n, and (2) foralli = 0,...,m,
there existg such that) < j < n ands} = g;. Now, we say that a sequengg ¢, . . . of sets of TDS’s
eventsmatches sequence], 5, . .. of FSP events if either both sequences are of length 0, oe them
increasing sequeneg < nq < ... of positive integers such that

1. & matcheg’,..., e, ,and

’~nq?

2. foralli > 2, &; matches;, .,,...,€), .

i 7

Note that the one-to-one correspondetée maps variables of the TDS to variables of the FSP. We
assume that the FSP and the TDS have disjoint sets of vasidilehe sequel, for simplicity, the inverse
of Obs is calledObs as well. That is, for any variable of the TDS and any variable’ of the FSP,
a2’ = Obs(z) ifand only if z = Obs(z').

DEFINITION 5.2 LetOprsp andOrpg be the sets of observable variables of, respectively, andfgR
TDS, andObs be a one-to-one correspondence between these sets. Letghe s

Ersp = {Pass,Fail, Abrupt}
U{Write_z(v) | € Pr(Orps) ANV € Tops(a)

{{Pass}, {Fail}, {Abrupt}}
U(P({Write_z(v) | x € Pr(Orps) A (v € T VU € Tops(a))}) — {0})

Erps

be the sets of observable events of the FSP and of the TD®ateay. There is aRCR between the FSP
and the TDSf, for every run

R|ETDS = (p07 00)75i17 (pi1aai1)a v

of the TDS, thereis a run

RI|EFSP = (pf), 06)75317 (p;—l,d;)7 cee
of the FSP, where for alt € Orps, we haveoy(z) = o0((Obs(x)), such that there is an increasing
sequence; < no < ... Of positive integers such that

/ /
1. &;, matches) ...} ,and
. ! !
2. forallk > 1,¢;, matche$jnk71+1, e
and

e foralll,if g;, # {Pass} # {Fail} # {Abrupt}, theno;, (y) = aé-nl (Obs(y)) forally € Pr(Orps);
otherwise

¢ 0i,(z) = 0}, (Obs(x)) forallz € Orps.

22133 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

ExamMpLE 5.3 We illustrate the above definition in this example. Famdicity, consider the following
two programs, where the TDS is on the left and the FSP is orighe r

I/« X,y,z are persistent x/
/+ t is transient x/

z = 1; z' = 1;
beginTransaction (); X' =z + 1;
X =z + 1; t’ = x";

z = 3; y' = 4,

t = x; z' = 3;

y = 4; y' = 5;
commitTransaction ();

y = 5;

The variables, y, z are persistent, while the variahlés transient. All of these variables are assumed to
be observable. The one-to-one correspondéricebetween the observables of TDS and the observables
of FSP maps every variable 8tDS to its primed counterpart.

There is an RCR between the TDS and the FSP with the followeagoning. First, the sequence of
events in the TDS is

{Write_z(1)}, {Write_x(2), Write_z(3), Write_y(4) }, { Write_y(5)}.
In the FSP we have a matching sequence:
Write_z(1), | Write_x(2), Write_y(4), Write_z(3) |, Write_y(5)

We put a separatot™as an aid for the readers to see how the sequences matchis;oaexample, the set
{Write_x(2), Write_z(3), Write_y(4) } matches the sequentérite x(2), Write_y(4), Write_z(3). Second,
the values of corresponding persistent variables coirati@gery pair of matching events. Third, the value
of transient variable coincide with the value of on termination. O

Similar to the RCR between an SPM and an FSP, we use the spad#lles to store the events emitted
by the FSP and the TDS. For the RCR between an FSP and a TD8ngrait event means concatenating
the event to the current value of the special variabl€hat is, for an event or a set of eveltsemittingE
is equal to the assignment:= &; E. We say that the value of ¢ of the TDS is equal to the valué of ¢
of the FSP if and only it matches/’. The variable: of the TDS is considered transient.

Particularly for the TDS, we use another special variapte keep track the updated observable persis-
tent variables when a transaction is in progress. When thablainTransaction is set to true, the variable
g4 IS set to the empty set. During the transaction, any updadm tobservable persistent variabiavith
valuew is recorded by updating with ¢, U {Write_z(v)}. When the variablénTransaction is set to false,
the variables is set toe; ¢, only if the reseting ofnTransaction is not caused bwbortTransaction. More-
over, when the TDS emitBass or Fail, and a transaction is in progress, theis updated withe; e;; Pass
or ¢; g¢; Fail, respectively. When a card tear occurs and the TDS efitept, then the content of; is
discarded and is updated withe; Abrupt.

Regarding the updates of variables during a transactianaght need to modify programs further to
apply our technique of recording updates with the speciaaliess ande;. For example, suppose that in
the TDS a transaction is in progress and a persistent vasiablupdated by the following statements:

X =X+ 1;

X =X + 1;

But its corresponding counterpaftin the FSP is updated by a single statement x’ + 2. For sim-
plicity, assume that the domains efandx’ are the same. The variabteof the TDS will be set to
{Write_x(v1), Write_x(v2) }, for some values, , vz, but the variable of the FSP will be set tdVrite_x(vz).

To handle this problem, one can always translate both pnogiiato SSA form flpern et al, 198§ such
that in the program texts there is only one assignment to eagable. That is, the translation of the TDS
into SSA form results in

x1 = x0 + 1;
X2 = x1 + 1;

Verimag Research Report MR-2008-14 23/33

Iman Narasamdya, Miclé Périn

and the translation of the FSP into SSA form resultgliin= x0’ + 2. For the correspondence between
variables, the variable0 corresponds to the variabl®’ and the variable?2 corresponds to the variable
x1’. Thus, the variable of the TDS will be set td Write_x2(v2)} that matches the eveWrite x2(vy) set

to the variable of the FSP.

We apply the theory of inter-program properties to provingRCR between an FSP and a TDS by
proving the RCR between each corresponding commands $elyataeta be an assertion describing the
correspondence between variables induced by the oneetcayrespondenagbs between the sel@rsp
andOrpg of observable variables of the FSP and the TDS. That is, thertena = /\IEO LT =
Obs(z) is valid. Let P, and P| be the flow graphs of, respectively, the FSP and the TDS ou’r;hpart of
a command”. Let alsoP; andP2 be the flow graphs of, respectively, the FSP and the TDS of dteh
part of the same command.

We define an assertion functidn of (Py, P/) such that

fl(entry(Pl), entry(Py)) = fl(em'tn(Pl), exit,(P])) =

I, can be defined elsewhere but for all pointg ezit,,(P1) andp’ # exit,(P]), we havel, (exit, (P;),p’)
and 1, (p, exit, (P}])) undefined. Furthermore, I&4 = {p’ | 3p, ¢.I1(p,p’) = ¢} be the set of points in
P/ such that, for any point’ in S;, there is a poinp in P, and; (p, p’) is defined. We require that the set
S, coversP]. Next, we define a sél; of paths of(P;, P}) such that the ser’ | I(w, «') € II,} consists
of all S1-simple paths.

Similarly for the pair(P,, P;), we define an assertion functidp of (P», P;) as follows. On the pair
(entry(Py), entry(P})) of entry points the functiot, is defined ag» with the following requirements:

e the assertiom = 1 is valid,
e the assertion) = ¢ = Obs(c) A \,cp,(0rps) & = Obs(z)) is valid, and

e for every finite run(pg, oy), . .., (p},, o},) of P, there is a finite rur{py, 0¢), . . ., (Pm,om) Of P1
such thafog, o)) satisfiesy and(o,,, o7,) satisfies).

On the pair(ezit, (P»), exit,(P})) of exit points, the functior, is defined as)’ such that the assertion
V' = Nicopps T = Obs(z) is valid. Furthermore, for all points # exit,(P2) andp’ # exit,(P;),
we havel, (ezit, (Ps),p') andls(p, exit, (P3)) undefined. From the functiofy, we can define a sef,
similarly to defining the sef; from 11 The setS, must coverP}. We also define a sét, of paths of
(P,, P}) similarly to defining the seff; .

THEOREMb5.4 Let I; and I, be assertion functions as defined above, BacandIl, be sets of paths as
defined above. LéfV; and W, be the weak verification conditions associated, respegtiveth I; and

I1;, and with, andIL. If all assertions of#/; and W, are valid, then there is an RCR between the FSP
and the TDS of the commaid (]

The proof of the above theorem is similar to that of TheoreBn First, consider runs that terminate
normally. Since the assertions

I (entry(Py), entry(P})) = & = Obs(e)
I (exit,, (Py), exit,(Py)) = ¢ = Obs(e)

are valid and the functiod; is weakly extendible, it is guaranteed that the sequencetsfd events
emitted by the run of the TDS matches the sequence of everitieerny the run of the FSP. Moreover,
since the assertion
I (entry(Py), entry(Pl)) = /\ x = Obs(x)
z€Pr(Orps)

is valid, it follows that after each corresponding updatés @nd Obs(e) the value of each variable
y € Pr(Orps) coincides with the value of its counterpart in the FSP. Intfalows from the asser-
tion I, (eit,, (P), exit,,(P]) that when the runs terminate normally, or emittRgs or Fail, the values of

each corresponding observable variables coincide.

24/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

Let us now consider runs that terminate abruptly. Recal ithahe TDS, when a transaction is in
progress, updating an observable persistent variable matesmit any event; instead, the update is re-
membered by the special variable Since the assertiohy (ezit, (P,), ezit,(P])) = ¢ = Obs(e) is
valid, for any run of the TDS that emits event and then terminates abruptly, there is a run of the FSP,
on the same input for observable variables, such that thefriine FSP emits event, and terminates
abruptly, ands; matchess|. The match between; ande’ fulfills the requirement that the assertion
Ly(entry(Py), entry(P})) = € = Obs(e) A /\mer(oTDs) x = Obs(z) is valid. Moreover, since undoing
the effects of an in-progress transaction only involvesi@alof persistent variables before the transaction
begins, it is safe to asse,. p,.(o,.,,) * = Obs(z) at the entry of P, P;). Moreover, by the assertion

I (exito(Py), exit,(Py)) and the weak extendibility of,, it follows that, at the exit of P2, P5) (or when
the runs emiAbrupt), the assertlovi\xepr (Orps) & = Obs(z) is preserved by the undoing of the effects of
the transaction, and the value of each observable trangieable and the value of its counterpart coincide.

ExamPLE 5.5 We consider again the commadt@ckPIN in this example. Consider the FSP of the com-
mand shown on the righthand side of Figdre The figure shows the flow graph of the part of the
command. The value of variabigal is decremented before the PIN is checked against the inpltliis

is a desirable security property. If the valuetetl is decremented after the PIN is checked against the
input PIN, then if one can observe the run of the command, ltleszan produce a card tear once he knows
that the PIN is not equal to the input PIN, and thus he can impabg PIN infinitely often. This is a kind

of security attack which is not captured by the SPMIgdckPIN.

In the presence of transactions, having the valueriaf decremented before the PIN check is not
sufficient to handle the above security attack. First, th@atéetrial must be persistent since it must keep
its value when power is switched off. Second, the decrenteihieovalue oftrial must not participate in a
transaction; otherwise, if a card tear occurs, the contethteovariabletrial will be restored with its latest
value before the transaction begins, and thus one can possilwrong PIN infinitely often.

In the TDS of the commancheckPIN, for simplicity, we require that any update of the valuetiedl
shall not participate in any transaction, or in other worttie, update shall be unconditional. Fig8e
depicts the FSP and the TDS of ttrg parts of the commancheckPIN. The flow graph of the FSP is
called P, and is on the lefthand side of the figure, while the other flompdris the flow graph of the TDS
and it is calledP;. In P;, the variablenTrans denotes the variabli@Transaction used in desugaring the
transaction mechanism of TDSs. Persistent variabléy iaretrial, pin, length, MAX. Other variables are
transient. The variabl is a backup variable for the variabigal.

Let the set

Opsp = {trial, pin, length, p, |, val, MAX, e}

be the set of observable variables of the FSP and thé@sets be the set of observable variables of
the TDS such tha®rpg consists of the primed counterparts of all variable®insp. The one-to-one
correspondenc@bs betweenDrsp andOrps maps each variable i@ s p to its primed counterpart in
Orps. We express the relationship of observable variables bfolleving assertions:

¢1 < pin = pin’ A length = length’ A MAX = MAX' A trial = trial’
P & p=p Al=lIAval=vall Ahe=¢
¢ < o1 Apa A(inTrans’ = trial = tb')

The assertiong; and¢, describe the correspondence of, respectively, persiatehtransient variables.
We define an assertion function@?;, P/) as follows:

f1(pe7p/e) A1(p17p1) A1(p17p5) Al(pfnpﬁ) A1(p27p2)
= Li(ps,1s) = Li(p3,p%5) = L (pa,) = L (pe, 0s) = L1 (pas P) = ¢

LetS] = {p' | Ip, . I (p,p') = ¢} be the set of points i} such that for each point in 51, thereis a
pointp in P, andfl (p,p’) is defined. Note that/ coversP;. Similarly, letS; = {p | 3p', 0.1, (p,p) = ¢}
We define a sdil, of paths of(P;, P;) as follows: for everys-simple pathr, .,

e there is anS;-simple pathr, , such thatl; (p, p’) and 1, (g, ¢') are defined, or

Verimag Research Report MR-2008-14 25/33

Iman Narasamdya, Miclé Périn

Ps : e
h,,zl

Lrial := trial — 1

inTrans

iinTrans = 1

/

:
’ trial := trial — 1

$ tb := trial

Figure 8:P; is on the left andP; is on the right.

26133

Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

Figure 9: P, is on the left andP; is on the right.

o there is a trivial pathr,, wherep € Sy, such thatl, (p, p’) and1, (p, ¢') are defined.

One can easily prove that the assertions in the verificatorlition associated witlh, andTl; are valid,
and thus/; is weakly extendible.

We next consider theatch part of the commandpdatePIN. The flow graphsd? and P, in Figure9
are thecatch parts of the command. Note that thetch part P, of the FSP is different from the one
shown on the righthand side of FiguseThe flow graphP; in Figure9 updates the variablgsandl. The
counterparts of these variables in the TDS are transieiablas® and so on abrupt they are set to their
default values. Nevertheless, one can easily define antiassmction of the flow graptP, in Figure9
and the flow graplP, of the SPM in Figuré such that there is still an RCR between the SPM and the FSP
of the commandheckPIN.

We define an assertion functidp of (P,, P}) as follows:

Lae,a)) = ¢rAp=p Ae=¢e A(inTrans' = trial = tb’)
Iy(a1,d)) = o1 Ap=p Aval=val' Ae=¢
L(az,al,) = ¢.

Note that the assertions= I(ac,a,) andls(ac,a.) = A,cpp(oppe) @ = Obs(x) Ae = & are valid.

Moreover, since the sét; above cover$’;, by the weak-extendibility of,, it follows that for every finite
run of P, there is a finite run of?; such that the initial configurations of the runs satigfand the last
configurations of the runs satisfy(a., a’,).

Let S, = {p' | Ip,¢.Ir(p,p') = ¢} be the set of points i) such that for each point in S}, there is
a pointp in P, andl,(p,p’) is defined. Note tha$} coversP,. Similarly, letSy = {p | Ip', 0. (p,p') =
¢}. Letllg, be the set of alb;-simple paths antlls, be the set of alb,-simple paths. We define a 9@t
of paths of(P, P;) as follows:

My = {(Tpqs Tprqr) | 301, 02.(Tpg, T) € s, x Ilgy @nd i (p, p') = 1 andli(q,q') = p2}

One can prove that the assertions in the weak verificatiodition associated with, andIl, are valid.
Therefore, there is an RCR between the FSP and the TDS of thenaadcheckPIN. O

3Stack variables are transient variables.

Verimag Research Report MR-2008-14 27133

Iman Narasamdya, Miclé Périn

/‘WS
Ii =0 Ii =0

i< Iength
kieﬂ = MAY

Lb := length pr[i] = P'"['])

Iength

1= trial

length :

trial 1= MAX |; .= j 41

Figure 10:P; is on the left andP] is on the right.

ExaMPLE 5.6 In this example we will show that there is an RCR betweenR8P and the TDS of the
commandipdatePIN. Figure10 shows thery parts of the command. The flow grapRsand P, are the
FSP and the TDS, respectively. As usual, to distinguistatdes of the FSP from variable of the TDS, we
use primed notation for variables of the TDS. Let the sets

Opsp = A{trial,pin,length, p,1,val, MAX c, ¢}
Orps = {trial’,pin’,length’, p’,I',val’, MAX' inTrans’, ¢}

be the sets of observable variables of, respectively, tiedtl the TDS. The one-to-one correspondence
Obs maps each variable i@rsp, exceptc, to its primed counterpart i pg; the variablec itself is
mapped tanTrans’. The following assertions express the correspondenceeeeithe observable vari-
ables:

¢1 < trial = triall A MAX = MAX' A length = length’ A pin = pin’
¢o & val=vall Ac=inTrans Ap=p'Al=1

03 & e=¢

¢4 < cAinTrans’ = pb=pb’ Alb=1b' Atb = tb

¢ & 1 NP2 NP3 AP

We define an assertion function bf of (P, P}) as follows:

Al(pevp;) = ¢

Al(pl’ /1) = ¢71/\¢2/\¢4/\C/\€:E/;82/\i:il
1(])2,])/) = ¢7/\ﬁC/\i:i/

\(ps,p5) = dAcC

hpa,ph) = diAd2Agahche=cie,nj=]
5(ps5,p5) = ¢

5(Pe, D) = ¢

The function/; is undefined elsewhere. Note that the Set= {pL, P}, ph, s, P}, P5, P} of points in P/

28/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

length := Ib| pin[k] Y\

]
trial := tb

inTrans :

Abrupt

Figure 11:P, is on the left and?; is on the right.

coversP]. We also define a séf, of paths of(P;, P|) such that the set consists of the following paths:

(Tpe.pi» Tp! ,p})s (Tpepas Tpl,,ph)y (Tpe pas T,),)5
(Tp1 1 Tp! .p,)s (Tp1 pas Tp} 7p;)a (Tpa,pas Wp;,pg)v (Tpa.ps s 7Tp’27pg)v
(Tps,ps 7Tp§7pg)v (Tps.pas 7Tp§7pg)a (Tpa,ps Fpg,pg)-(ﬂps,pz » Ty, pl,)

Note that the sefr’ | 3r.(w, ') € 11, } consists of all5;-simple paths. One can prove that all assertions
in the weak verification condition associated withandIi; are valid.

We now consider the flow graphs of thetch parts of the command. Call the flow graph of the FSP
P, and the flow graph of the TD&;. These flow graphs are depicted in Figide We define an assertion
functionl, of (P,, P}) as follows:

>

5 (e, ar,) 1A P3N\ s

Ig(al,a’l) = ¢1/\¢3/\¢4/\C/\k:k/
Ig(ag,a’z) = ¢1A¢3 A val =val
Ir(ay,dl) 1N\ 2 N p3

The function/, is undefined elsewhere. Note that theSet= {a’, a}, a}, a’,} coversP;.

€ x

We also define a sét, of paths of(P,, P}) such that the set consists of the following paths:
(Wae.,al 3 7Ta’e,a’1); (7ra1 a1 7Ta’1,a’1); (7ra1 ,a2 ﬂ_a’l ,a’z)v (Wae,ag 5 7ra/e,a’2)7 (Tral,ax 3 7Ta’1,afT)

Note that the sefx’ | Ir.(w, ') € Il,} consists of allS;-simple paths. One can prove that all assertions
in the weak verification condition associated withandIl, are valid.
Note also that the requirements for the asserfidn,, o)) is satisfied by the assertiotig(ps, p}) and
I (ps, p5) and the weak extendibility af,. Therefore, there is an RCR between the commanidtePIN
of the SPM and of the FSP. O

Verimag Research Report MR-2008-14 29/33

Iman Narasamdya, Miclé Périn

6 Property Preservation

We have discussed in Secti8ra technique for proving properties of SPMs. The same prabirtigue is
also applicable to proving properties of FSPs and TDSs.iRgqwoperties of SPMs is easier than proving
properties of FSPs or TDSs because the language of SPMsptesithan those of FSPs and TDSs. Let
us be given an SPM, an FSP, and a TDS of a smart-card applic&ippose that we have proven that the
SPM satisfies a property. Suppose further that there are an RCR between the SPM al&thand an
RCR between the FSP and the TDS. Instead of proving that tReaf8 the TDS satisfy in the same
way as proving that the SPM satisfigswe prove that the FSP and the TDS satigfipy showing thaty
is preserveddy the RCRs. We discuss in this section how properties aepred by RCRs, particularly
RCRs between SPMs and FSPs; property preservation betvndnd TDSs can be described similarly.

We are interested in the partial correctness property. IRtbed a programP is partially correctwith
respect to a preconditiop and a postconditiory, denoted by{p} P{«}, if for every run of P from a
configuration satisfyingp and reaching an exit configuration, this exit configuratiatis§ies:). We now
introduce a notion of partial correctness that also respaotupt terminations. A prograi is partially
correct with respect to a preconditipna normal postconditiort; and an abrupt postconditiai, denoted
by {¢} P{v1}{1=} , if for every run of P from a configuration satisfying, if the run reaches a normal exit
configuration, then this exit configuration satisfigs and if the run reaches an abrupt exit configuration,
then this exit configuration satisfies. The programP itself can be a command in an SPM, an FSP, or
a TDS. In the sequel the former notion of partial correctnesslled the standard notion, while the latter
notion is called the non-standard notion.

Weakly-extendible assertion functions are sufficient fmving standard partial correctness.

THEOREM6.1 LetI be a weakly-extendible assertion function of a progfasuch thatl (entry(P)) = ¢
andI(ezit(P)) = ¢. Then{p} P{v}, thatis, P is partially correct with respect to the preconditignand
the postcondition). O

A proof of the above theorem can be found litefasamdyz2007.

To prove non-standard partial correctnéss } P{1 } {12}, we first represent the prografby two
programsP; and P,. The programP; describes the normal behavior Bf that is in the case of smart-card
applications, the behavior df when no card tears are present. The progfardescribes the behavior of
P when a card tear occurs. Recall thabifis a command in an SPM, thdn is the program representing
the passandfail clauses and> is the program representing thbrupt clause. IfP is a command in an
FSP or a TDS, ther®, is the program representing the part andP; is the program representing the
catch part.

Second, we introduce an assertionas a “linking” assertion betwedn andP,, such that the assertion
p1 = 2 is valid. We then prove the following properties:

1. {1} Pi{vn},
2. {@Q}PQ{’(/JQ}, and

3. for every run ofP from an entry configuration satisfying, , every configuration of the run satisfies
P2

By Theorem6.1, weakly-extendible assertion functions are sufficientdfiaving propertied and 2. As
shown in Exampl&.1and Exampl&.2, we can use the notions of (weakly or strongly) extendibsegn
function and verification condition associated with thedtion to prove propert.

THEOREM®6.2 Let P and P’ be programs representing, respectively, the SPM and thedf@Rommand
C. LetObs be a one-to-one correspondence between th@set,; of observable variables of the SPM and
the setOrgp Of observable variables of the FSP. ket , 1 be assertions consisting only of variables
of the SPM and/’, ¥}, ¢}, be assertions consisting only of variables of the FSP suahttie following

30/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

assertions are valid:
Nacogpy T = 0bs(x) = (p & ¢')
x = 0bs(z) = (Y1 & ¢])

z€0spm

Nicap(0spa) & = Obs(@) = (Y2 & 13).

If P is partially correct with respect to the preconditiogn normal postcondition);, and abrupt postcon-
dition v, or {¢} P{¢1}{¢2} and there is an RCR between the SPM and the FSP of the conthanen

{" P {n Habs)

PrROOF Consider a run of’ from a stater| satisfyingy’ such that the run reaches a normal exit configu-
ration with states},. Since there is an RCR betwe&randP’, there is a run of” from a stater; such that
(01,01) satisfies/\ ..., @ = Obs(z), and thusr, satisfiesp. By the RCR, the run of”’ also reaches
a normal exit configuration with state. Since{p}P{v1}{12}, the stater, satisfies);. It follows from
the validity of assertiof\ ... ,.,, = = Obs(z) = (Y1 & 1) thatoy, satisfies)].

Suppose that the run @1’ reaches an abrupt exit configuration with a stelteThen by the RCR there
is a run of P from a stater; such that(oy, o) satisfies)\ .. ,.,, # = Obs(z), and thusr; satisfiesp,
and the run reaches an abrupt exit configuration with stat&ince{¢} P{11 }{12}, the stater; satisfies
2. It follows from the validity of assertiop\ . 4,0, & = Obs(z) = (V2 < ¥3) thatoy satisfies)s.
0

Properties of SPMs or FSPs and RCRs between SPMs and FSHteardascribed by assertion func-
tions. LetP; and P, be programs representing, respectivelyghssandfail clauses and thabrupt clause
of a command” in an SPM. LetP] and P, be programs representing, respectivelyttgeandcatch parts
of the command” in an FSP. Lef; and/, be assertion functions of, respectively, and P, such that

Li(entry(P1)) = ¢
Il(eIZt(P1)> = ’l/)l
L(entry(Py)) = 2
Ig(ea:it(Pg)) = wg

for some assertiong, g2, V1, %2, and{y1 } P{1¥1 }{12}. The same property for the FSP is represented
by assertion functiong andI} of, respectivelyP; andP,, such that

Ii(entry(Pr)) = &
Li(eit(P)) = 44
Iy(entry(P3)) = b
Iy(exit(P3)) = 4%

for some assertions, s, V1, ¥s. R
Let the RCR between the SPM and the FSP of the comraisdepresented by assertion functidas
andl of, respectively(P;, P{) and(P, P}), such that

I (entry(Py), entry(P])) = a
I (exit(Py), exit(P])) = o
I:g(entry(Pg), entry(Py)) = 0
I (exit(Py), exit(Py)) = g

for some assertions, o/, 3, #’. To prove thaf ¢} } P'{+} }{«4}, as the above theorem has shown, we have
to prove that the following assertions are valid:

a= (p1 & @)
o = (1 & Y1)

B = (Y2 < 5).

In addition we have to show that if a card tear occurs duringreaf P;, then the final state of the run
satisfiesl) (entry(Py)). To this end, we need to prove that the asserfion (2 <) is valid. Thus, if

Verimag Research Report MR-2008-14 31/33

Iman Narasamdya, Miclé Périn

a card tear occurs during a runBf such that the final state of the rurvi§ then by the RCR there is a finite
run of P such that the final state of the rurvigind(o, o) satisfied} (entry(P3)). Since{y1 } P{1 } {12},
we haveo satisfiesps. Now, sincel)(entry(Pj5)) = (3 and the assertio = (p2 <)) is valid, it
follows thato’ satisfiesyl,, and thus{y} } P/{v} }{4}.

ExaMPLE 6.3 In this example we consider the property that we havegréer the SPM in Examplg.1
That s, in any run otheckPIN the validation status at the exit configuration of the rumus if and only if
the run emits &ass event. This property is a partial correctness property@3RM. We want to show that
this property is preserved by the RCR described in ExarhpleThat is, the FSP shown on the righthand
side of Figuret and Figureb satisfies the property.

We assume that all variables in the FSP are in primed notalmdescribe the property we define two
assertion function$; andI} such that

Lipe) = ¢

L) = ¢ Avall =T & e =Pass
Blag) = T

Ii(al) = val' =T < e = Pass,

wherey’ is the conjunction of the assertioRsAX’ > 0, 0 < trial’ < MAX/, andtrial’ < MAX' = val’ =
L. The functionl; andI} can be defined elsewhere.

Consider the assertion functiofisand /> defined in Exampl&.1, and the assertion functiods and
I, defined in Exampld.4. Since the following assertions are valid:

1 (pe,) = (I(pe) & 11(pL))
1 (pas 1) = (I (p2) < 11(P}))
5(pe, p.) = (I2(pe) < 11(pL.))
Iy(pa, P) = (I2(pa) & I{(P))

it follows that the FSP of the commantieckPIN is partially correct with respect to the precondition
I (pl), the normal postconditiofy (p/,), and the abrupt postconditidi(p’,). O

In this section we have shown how RCRs between SPMs and F88arpe properties of SPMs. Prop-
erty preservation between FSPs and TDSs can be describigatlsim

7 Related Work

There have been some works related to the specification aifit&ion of smart-card applications and to
CC certification. For example, the work iBijeunesse et 12005 describes a case study in the specifica-
tion and verification of an electronic purse applicationeWork is not in the framework of CC and only
concerned with the specification and verification of a sinmtegram, which is the implementation code.
The work can complement our work in proving properties ofithplementation code.

An example work on CC certification isigitmeyer et al.200€. The work is concerned with verifying
that the kernel of a software-based embedded device esfdata separation. Similar to our SPMs, the
specification is modelled as a finite state machine. The RGRsmwork is only between the state machine
and the implementation code, and also is a standard refirtesiation.

8 Conclusion

We have successfully applied the theory of program progedéescribed inarasamdyz2007 to the cer-
tification of smart-card applications in the framework off@oon Criteria. In the application of the theory
to proving properties of SPMs, FSPs, and TDSs, we prove thygepties of each command separately. Each
command is represented by two flow graphs or programs, orggarodescribes the normal behavior of

32/33 Verimag Research Report TR-2008-14

Iman Narasamdya, Miclé Périn

the command and the other program describes what the commaarid do when a card tear occurs. Prop-
erties that we want to prove are encoded as assertion fusaticthese two programs. Weakly-extendible
assertion functions are then sufficient to prove the pragzert

In the application of the theory to proving RCRs, we prové thare is an RCR between each corre-
sponding commands separately. Each corresponding pregepresenting the normal behavior and card
tears are considered as two pairs of programs. The RCR igs#i&n encoded as assertion functions of
these pairs of programs. The notions of weakly-extendigdedion function and weak verification condi-
tion are used to prove the RCR and to provide a certificatetdahelRCR. Particularly for RCRs between
FSPs and TDSs, the application of the theory to proving su¢R%Ralso handles memory characteristics
and transaction mechanism that exist in the low-level desigthe TDSs.

We have also shown that, using the theory, the properti¢stbaatisfied by a requirement representa-
tion of an application can be brought forward to the subsetezjuirement representations, and so there
is no need to prove that the same properties are satisfiecelsutisequent representations.

References

Common Criteria for Information Technology Security Eaian, 2007. Version 3.1, CCMB-2007-09-
003.1

B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equadtyariables in programs. I&onfer-
ence Record of the Fifteenth Annual ACM Symposium on Ptesgd Programming Languages (POPL
1988) pages 1-11, 198&%

C.-B. Breunesse, N. Catafio, M. Huisman, and B. Jacobs. &an@thods for smart cards: an experience
report. Sci. Comput. Program55(1-3):53—-80, 20057

Z. Chen.Java Card Technology for Smart Cardehe Java Series. Addison-Wesley, 2080.

Robert W. Floyd. Assigning meaning to programs. In J. T. Saitwy editorProceedings of Symposium in
Applied Mathematigpages 19-32, 19671

Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonand John McLean. Formal specification and
verification of data separation in a separation kernel fograbedded system. [@CS '06: Proceedings
of the 13th ACM conference on Computer and communicatiansitg pages 346—355, New York, NY,
USA, 2006. ACM.7

C. A. R. Hoare. An axiomatic basis for computer programmi@4gCM, 12(10):576-580, 1964.

E.-M.G.M. Hubbers and E. Poll. Transactions and non-atokfit methods in Java Card: specification
ambiguity and strange implementation behaviors. TechRieport NIll R0438, University of Nijmegen,
Toernooiveld, 6525 ED Nijmegen, The Netherlands, Octolb@da.5

E.-M.G.M. Hubbers and E. Poll. Reasoning about card teadgramsactions in Java Card. In M. Wer-
melinger and T. Margaria-Steffen, editoFsindamental Approaches to Software Engineering, 7thnter
national Conference, FASE 2004lume 2984 o NCS pages 114-128. Springer-Verlag, 2004b. ISBN
3-540-21305-85, 5.1

G. Leavens and Y. Cheon. Design by contract with jml, 20803.

Iman Narasamdya. Establishing Program Equivalence in Translation Valideti for Optimiz-
ing Compilers PhD thesis, The University of Manchester, 2007. Downlbéelaat
http://www-verimag.imag.fr/ ~narasamd/NarasamdyaThesis.ps .1,6,8

Java Card 3.0 Platform Specification Sun Micro systems, Inc, Palo Alto, California, 2008.
http://java.sun.com/javacard/3.0/ .5

Andrei Voronkov and Iman Narasamdya. Proving inter-progpaoperties. Technical Report TR-2008-13,
Verimag, September 2008.

Verimag Research Report MR-2008-14 33/33

http://www-verimag.imag.fr/~narasamd/NarasamdyaThesis.ps
http://java.sun.com/javacard/3.0/

	Introduction
	A Theory of Program Properties
	Assumptions
	Extendible Assertion Functions
	Inter-Program Properties

	Proving Properties of Policy Models
	Smart-Card Application Life Cycle
	Command Description Language
	Proof Technique

	Proving RCRs between SPMs and FSPs
	Proving RCRs between FSPs and TDSs
	Property Preservation
	Related Work
	Conclusion

