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Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-
semblies of hardware and software components. It is attractive to use such a global modelling
as a basis for early system analysis. However, in such descriptions, the applicative software is
often abstracted away, and is supposed to be developed in some host programming language.
This forbids to take the applicative software into account in such early validation. To over-
come this limitation, a solution consists in translating the ADL description into an executable
model, which can be simulated and validated together with the software. In a previous pa-
per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)
specifications into an executable synchronous model. The present paper is a continuation of
this work, and deals with expressing the behavior of complex scheduling policies managing
shared resources. We provide a synchronous specification for two shared resource schedul-
ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-
ing protocol (PCP). This results in an automated translation of AADL models into a purely
Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with
the actual software.
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1 Introduction
The European project ASSERT is devoted to the safe model-driven design of embedded systems, with
aerospace systems as main application domain. Such systems are deployed on specific architectures that
need to be described and simulated in order to allow early validation of the integrated system.

The approach taken in the ASSERT project is to describe the execution architecture separately from
the software components. The target architecture is described in the AADL architecture description lan-
guage [4, 16]. AADL provides a collection of classical systems components, which can be instantiated and
assembled to describe the actual execution platform. In a typical AADL description, a system is made of
several computers, communicating through buses; a computer is made of memory and processors, and a
processor runs a scheduler and several tasks; at last, tasks are running applicative software. Those software
components can be developed using several programming languages, including Scade/Lustre and ADA.

AADL components are decorated with information like rates and WCET (Worst Case Execution Time)
for periodic tasks, scheduling policy, etc. Those informations are intended to be used in the validation of
the platform, mainly by checking properties like the absence of deadlocks, or the respect of deadlines. The
functional part is expressed by the software components, and thus generally completely ignored, although
it may influence some non-functional aspects. For instance, a software component may produce some event
that wakes up a task; the scheduling environment and the execution times are then modified.

Our main objective is to perform simulation and validation that take into account both the system
architecture and the functional aspects. We consider the case where software components are implemented
in the synchronous programming language Lustre/Scade4. Our proposal in [8] is to build automatically
a simulator of the architecture, expressed in a synchronous language like the software components. This
approach presents several advantages: first, synchronous languages are well-known to be able to express
non-synchronous behaviors, while the converse is more difficult; now, getting all aspects in the same model
allows both functional and system aspects to be considered jointly. For instance, in AADL, sporadic tasks
can be activated by the output of some other components (using the concept of events). Therefore, in such
cases, more realistic simulation and finer-grained formal verification can be performed.

The translation proposed in [8] takes into account various asynchronous aspects of AADL such as task
execution time, periodic or sporadic activations, multitasking (using Rate Monotonic Scheduling [13]), and
clock drifts. The result is an executable integrated synchronous model, combining architecture behavior
with actual software components, which can be validated with tools available for synchronous programs.

In this paper, we propose to extend this work by taking into account shared resources using different
protocols (no lock, blocking, basic inheritance, priority ceiling). We also show how various properties
related to determinism, schedulability, or the absence of inter-locking can be automatically model-checked
on given architecture models.

The article is organized as follows. We first recall in Section 2 the principles of simulation of AADL in
the synchronous paradigm. Then we describe in Section 3 how to deal with shared resources and various
shared access protocols in a synchronous program. Finally, we show in Section 4 how one can use the re-
sulting executable model to model-check various kinds of properties (determinism, schedulability, absence
of inter-locking), and to perform monitored simulations.

2 From AADL to synchronous programs
This section briefly recalls how the behavior of an (asynchronous) AADL model can be modeled by a
non-deterministic synchronous program. This subject is presented in details in [8].

2.1 The AADL description language
We briefly recall here the main features of the Architecture Analysis & Design Language (AADL). The
complete definition can be found in [4, 16].

An AADL model is made of a hierarchic assembly of software and hardware components. A component
is defined by an interface (input and output ports), a set of sub-components, a set of connections linking

4Scade is the industrial version of Lustre[7] maintained and distributed by the Esterel-Technology company.
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up the subcomponents ports, and a set of typed attributes (called properties). The main kinds of AADL
components are the following.

Systems are top-level components; they describe the mapping between software and hardware compo-
nents.

Device components model hardware responsible for interfacing the system with its environment. They
are typically used to represent sensors or actuators. From a functional point of view, they correspond to the
inputs and the outputs of the system.

Processor components are abstractions of hardware and software responsible for scheduling and exe-
cuting threads.

Memory components (hardware) are used to specify the amount and the kind of memory that is avail-
able to other components.

Data components (software) are used to represent data type in the source text. Other com-
ponents might have a shared access to data components. The access policy is controlled by the
Concurrency Control Protocol property (lock, priority ceiling protocol, cf. Section 3).

Bus components (hardware) are used to exchange data between components on different processors.
Process components are abstractions of software responsible for defining a memory space that can be

accessed by the threads sub-components it contains.
Thread components are abstractions of software responsible for executing applicative programs. When

several threads run under the same processor, the sharing of the processor is managed by a runtime sched-
uler. The dispatch protocol property is used to specify that scheduling policy. For instance, the
value periodic means that the thread must be activated according to the specified period; the value
aperiodic means that the thread is activated via one of the other components output port (called an
event port).

Sub-program components are the leaves of this hierarchical description. Their implementations need
to be provided in some host language. In our approach, if one wants to be able to formally analyse aperiodic
threads which activation depends on the functional output of some program component, one needs to
provide for it a synchronous program (or at least a wrapper), e.g., written in Scade or Lustre. The property
compute exec time specifies a range for the worst case execution time (WCET) of the program. In the
sequel, we use the term task to denote a thread running a program.

2.2 The synchronous paradigm

We present now the essentials of the synchronous paradigm, insisting on the aspects that will be used later
on to give a formal executable semantics to AADL descriptions.

A synchronous program is a reactive system: it executes a sequence of atomic reactions, periodically or
sporadically, according to the way the program is activated. At each reaction, the program reads its inputs,
computes its outputs, and updates its internal state. The main feature of synchronous programs is the way
they are composed: when connecting several sub-programs, a reaction of the whole program consists of a
simultaneous reaction of all the components. In other words, synchronous paradigm provides an idealized
representation of parallelism.

Synchronous programs are a straightforward generalization of synchronous circuits (i.e., sequential
circuits or Mealy machines), where data can be of arbitrary types rather than just Boolean values. For
instance, Figure 1.a pictures a Mealy machine with two inputs, x and y, one output z, and one state variable
s. A step of this machine can be defined by the functions fo and fs, respectively giving the output and the
next state from the current inputs and the current state:

z = fo(x, y, s) , s′ = fs(x, y, s)

The behavior of that machine is the following: it starts in some initial state s0. In a given state s, it
deterministically reacts to an input valuation (x, y) by returning the output z = fo(x, y, s) and by updating
its state into s′ = fs(x, y, s) for the next reaction.

Such a machine is said to be combinational if it does nor use any register (memory).
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Figure 1: Synchronous machines and their composition

Synchronous composition Synchronous machines (also called nodes) are composed in parallel, by con-
necting one’s outputs to the other’s input (Figure 1.b). As long as the connections do not introduce loops
in the combinational part, the behavior of the composition is straightforward, and defines yet another syn-
chronous machine. In the example of Figure 1.b, we obtain a Mealy machine with two outputs and two
state variables whose behavior is defined by:

z1 = fo(x1, z2, s1) , z2 = go(x2, z1, s2)
s′1 = fs(x1, z2, s1) , s′2 = gs(x2, z1, s2)

Those equations have a straightforward solution as long as, either the results of fo(x1, z2, s1) does not
combinationaly depend on z2, or the results of go(x2, z1, s2) does not combinationaly depend on z1. In
this paper, we only use such “correct” composition, free of combinational loops.

The delay machine Let us give two very simple examples of synchronous machines that will be used
later. The first one is a single “delay” machine (the “pre” operator of Lustre, noted • and in the sequel):
this machine receives an input i of some type τ , and returns i delayed by 1 step; it therefore has a state
variable s of type τ , and can be defined by:

fo(i, s) = s , fs(i, s) = i

The sampler machine Our second example is a sampler, with two inputs: i of type τ and a Boolean b.
This sampler returns the value of i when b is true, and its previous output when b is false. It is defined by:

fo(i, s) = fs(i, s) = if b then i else s5

Activation conditions All synchronous languages provide some extra mechanism to express sporadic
activation (e.g., the “suspend” statement of Esterel, or the “clock” mechanism of Lustre and Signal).

In this paper, we use the Activation conditions of Scade: an activation condition is a meta-operator that
takes a synchronous program P , a Boolean input b, and produces a new program called the conditional
activation of P by b, and noted PJ b. Figure 2 shows the graphical representation PJ b. The behavior of
P J b is defined as follow: a new state variable z− is introduced to hold the value of the output; and the
transition function f ′ is defined using the transition function f of the program P as follows:

f ′o(x, b, s, z−) =
{

z− if b = 0
fo(x, s) if b = 1

f ′s(x, b, s, z−) =
{

(s, z−) if b = 0
(fs(x, s), fo(x, s)) if b = 1

5In Lustre we would write “current(i when b)”
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Figure 2: Activation condition

2.3 Modeling asynchrony in the synchronous framework

The ability of the synchronous framework to model asynchrony is well-known [14], and has been often
used [1, 2, 6, 5, 12]. In [8], we used a similar technique for translating a subset of AADL into synchronous
data flow equations. We briefly recall in this section the principles of this translation. It addresses the
following problems:

• Synchronous programs are deterministic, while asynchronous composition introduces temporal and
possibly functional non-determinism;

• In the synchronous framework, tasks take no time (or are executed within 1 logical instant, unless
explicitly allocated among several instants);

• Asynchronous composition involves non-deterministic interleaving of atomic actions.

2.3.1 Modeling non-determinism

The key idea for modeling asynchrony with synchronous machines is to use additional inputs – often called
“oracles” — whenever it is necessary to model the intrinsic non-determinism of asynchronous execution.
This way of expressing non-determinism has some advantages over built-in non-deterministic constructs
of many specification languages.

• On the one hand, non-determinism is clearly localized and controlled, and it is possible to replay the
same execution twice, just by providing the same oracles.

• On the other hand, non-determinism can be restricted by imposing some constraints on oracles. We
will make an intensive use of this feature, in particular to express known scheduling constraints.

2.3.2 Time consuming tasks

In order to model time-lasting tasks, we proposed to delay the update of its outputs. Since the exact
computation time of a task is generally not known precisely, this delay is generally non-deterministic.

Figure 3 illustrates the modeling principle: the task itself is modeled by the program P , activated by
an external clock Cp, the true occurrences of which model the beginning of the execution. When Cp is
true, the outputs of P are immediately available. This is why we introduced an extra sampler component
β, in order to hold the value. The output will be dispatched to the environment on the next occurrence of
the clock cβ . This dispatching clock is provided by a random delayer: this program is restarted whenever
it receives CP , then waits until it decides that the computation time is reached, and delivers an output for
cβ . Here again, non-determinism is achieved with the help of an oracle Ωp. For instance, in AADL, it
is often the case that the execution time (via the compute exec time property) is known to belong to
some interval [m,M ]; in this case, the delayer component is programmed in such a way that cβ randomly
occurs between m and M global ticks after each occurrence of Cp.
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Figure 3: Modeling a time-lasting task
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Figure 4: Modeling asynchronous parallel executions

2.3.3 Modeling asynchronous parallel executions

By combining activation conditions and oracle-driven non-determinism, we can express any non-
synchronous composition of synchronous processes.

Consider the example of two processor components running physically in parallel, and suppose that
those processors have already been modeled by two synchronous machines P and Q.

Each processor has its own “activation clock”. Without further information on those clocks, from an
external observer point of view, one can state nothing more precise than that the processors are activated by
some unrelated activation conditions. This is illustrated on Figure 4.a, where the processors are activated
by unrelated and unconstrained oracles ΩP and ΩQ. The resulting non-deterministic synchronous model
clearly outlines the fact that any interleaving of the executions can be observed, including (but not only)
the case where both processors are actually working “at the same time”.

Note that this approach considers instants where none of the clocks are true, i.e., where nothing hap-
pens. For model-checkers, such instants cause no problem. But for simulation, such instants are useless;
only instants where at least one clock is true are interesting. This can be achieved adding the constraints
over the two oracle inputs. This illustrated in Figure 4.b, where a special program takes random oracles,
and use them to compute clocks that satisfy the expected property. The equations of this generator could
be:

Cp = ΩP ; CQ = ¬ΩP ∨ ΩQ

Quasi-synchronous clocks This principle of random constrained generation can be easily extended to
more sophisticated properties. For instance, it is often the case that, even if they are different, the actual
clocks of the processors are known to be of (almost) the same rate. This information does not mean that
the clocks are synchronous, but it is also clear that some interleavings become unrealistic (e.g., Cp occurs 3
times between 2 occurrences of Cq). This case is called quasi-synchronous execution [3], and can be finely
modeled by programming a generator that forbids the clocks to differ too much; for instance, the generator
may guarantee that each clock occurs at most twice between two occurrences of the other.

Multitasking The case of two concurrent processes sharing the same processor can be modeled in almost
the same manner. The difference is that simultaneity is impossible: at each instant at most one process
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may run. If we have no particular information on the actual scheduling policy, we can safely model the
interleaving as shown in Figure 4.b, provided that the clock generator guarantees that CP et CQ never
occurs at the same time. A possible definition for such a generator is:

Cp = ΩP ; CQ = ¬ΩP ∧ ΩQ

Of course, more realistic scheduling policies can be specified. In our previous paper [8], we presented
a solution for a simple policy with fixed priorities. In this article, we will consider more sophisticated
policies that take into account shared resources with protected access, and all the problems they raise:
priority inversion, inter-locking, etc.

3 Handling shared resources
In AADL, Data component accesses can be shared between several components. In contrast with other
kinds of components (thread, process, sub-program) which are translated into nodes, data components are
translated into local variables of the surrounding component node. Depending on the kind of access that is
associated to them (read only, write only, or read write), the necessary wires are added to the interface
of the node (respectively one input, one output, or one input and one output).

A data component that has a write (resp., read) access to a resource has an additional output (resp., an
additional input), and the data update is performed at its dispatch time (using an activation condition).

In order to guarantee the data integrity, it is often necessary to prevent the resource from being accessed
by several components at the same time. For that purpose, several concurrency control protocols were
defined [17], that modify the classical Rate Monotonic scheduling. In AADL, this is specified through the
“Concurrency Control Protocol” property, which is attached to a data component.

In this section, we explain how to implement four kinds of concurrency control protocol:

• NoneSpecified: components access the shared resource with no constraint at all (no lock mecha-
nism).

• Lock: Before accessing a shared resource, a component should ask for it, and gets it only if no other
component has locked it before; otherwise, it is suspended until the resource is unlocked. Once it
obtains the resource, we say that the component enters a critical section.

Hence, a low priority thread tl can block a high priority one th if th wants to access a resource that
is locked tl. But the problem with that protocol is that tl can block th without locking any resource.
This is referred to as the priority inversion problem [17].

• BIP: The Basic Inheritance Protocol is a refinement of the previous one, defined in order to prevent
priority inversions.

• PCP: The Priority Ceiling Protocol is a refinement of BIP defined in oder to prevent inter-blocking.

In the following, we describe those protocols more precisely, and explain how to implement them in a
synchronous data-flow formalism.

3.1 No Lock

The simplest way of handling shared resources is to ignore them, and to give the CPU to the highest
priority thread that asks for it. Even if this (absence of) protocol is straightforward and generally useless,
we describe here the part of the scheduler that decides which thread the CPU will be attributed to, since
this is the part that will be refined later for the other protocols.

Concretely, we need to generate a synchronous program that takes as inputs the Boolean variables
indicating which threads ask for the CPU (Dispatched1, ..., Dispatchedn), and that returns Boolean
variables indicating which thread is elected (cpu1, ..., cpun). Of course, at most one among the cpui
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should be true at each instant. The convention here is that ti has priority over tj if i < j. A possible way
of implementing that node is as follows:

∀k ∈ [1, n] : cpuk = Dispatchedk ∧
∧

0<i<k

cpui (1)

Henceforth, the convention is that the program input variables begin with an uppercase letter (e.g.,
Dispatchedk).

3.2 Blocking
In order to take into account shared resources, we need additional inputs: the Boolean variable named
Asks csti

r`
indicates (via a suitable plug-in into the predefined AADL sub-programs Get resource and

Set resource [16]) that the thread ti wants to access the resource r`.
In order to ease the definition of cpuk, we introduce the following auxiliary variables:
• the Boolean variable has cstk

r`
indicates that the thread tk is in Critical Section on resource r`;

• the Boolean variable ti blockstk
r`

indicates that the thread tk asks for a resource r`, which is locked
by another thread ti.

Computing which thread is in critical section A thread tk is in critical section for a resource r` if it
asks for the resource, and if either

• it was in critical section before (• has cstk
r`

);6

• or it enters in critical section at the current instant. It enters a critical section when and only when it
obtains the CPU.

Hence, the following definition of has cstk
r`

:7

∀k ∈ [1, n],∀` ∈ [1,m] : has cstk
r`

= Asks cstk
r`
∧ (cpuk ∨ • has cstk

r`
) (2)

Note that in the generated scheduler, the auxiliary variable has cstk
r`

is defined only if the thread tk may
access the resource r` (i.e., if there exists an access connection between the thread and the resource com-
ponents in the AADL model). This remark holds for all the variables relating threads and resources.

Computing the blocks relation We say that a thread ti blocks a thread tk via a resource r` if tk tries to
access r` (Asks cstk

r`
is true) while r` is locked by ti (has csti

r`
is true).

∀k, i ∈ [1, n], i 6= k,∀` ∈ [1,m] : ti blockstk
r`

= Asks cstk
r`
∧ has csti

r`
(3)

Computing the elected thread Once we have defined those two auxiliary relations, cpuk can easily be
defined nearly as before: the highest priority thread obtains the CPU, except if it is blocked by some other
thread:

∀k ∈ [1, n] : cpuk = Dispatchedk ∧
∧

0<i<k

cpui ∧
∧

i 6=k,`∈[1,m]

ti blockstk
r` (4)

Note that those three definitions are cyclic: t blockst
r depends on has cst

r , which depends on cpu, which
depends on t blockst

r . In order to break that combinational loop, one solution is to slightly change the
definition of t blockst

r as follows:

∀k, i ∈ [1, n], i 6= k,∀` ∈ [1,m] : ti blockstk
r`

= Asks cstk
r`
∧Asks cstir`

∧ •has cstir`
(5)

Indeed, if the thread ti was locking a resource r` at the previous instant, and if it still asks for the resource,
it should keep the lock on r`. Therefore both formulations are equivalent (and the latter is loop-free thanks
to the delay).

6All Boolean delays (•) are initialised to false.
7When we define such a relation (and we do it all along this Section), the quantification “∀k ∈ [1, n], ∀` ∈ [1, m]” suggests that

we generate n × m Lustre equations. But in fact, it is generally much less, since in the AADL description, all the threads may not
have access to all the resources.
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3.3 The Basic Inheritance Protocol
The Basic Inheritance Protocol was introduced [17] to avoid the priority inversion problem. Indeed, with
the previous protocol, when a high-priority thread t1 wants to access a resource shared by a lower priority
thread t3 which puts a lock on it, the CPU is kept by t3. Moreover, t3 can be interrupted by t2, which has
a lower priority than t1, even though t2 does not try to access any shared resource.

The idea of the Basic Inheritance Protocol (BIP) is to modify the priority of t3 in such a way that it
inherits the priority of t1, when t3 has the lock on a resource r` requested by t1. Indeed, this prevents t2 to
interrupt t3, and hence prevents the priority inversion.

The idea of our (synchronous data-flow) implementation of the BIP is the following: we first consider
the highest priority dispatched thread. If it is not blocked, it obtains the CPU. Otherwise, we consider its
blocking thread, and check if it is itself blocked, and so on until we find a thread that is not blocked. When
we find a thread that is not blocked, we give it the CPU. Hence, the first thing to do is to compute the
transitive closure of the t blockst

r relation.

Computing the ti blocks∗tk
relation Let an inhibition path from a thread ti to a thread tk be a list of

threads {ti=ti0, ..., tis = tk} such that there exist resources r1, ..., rs, that may be respectively accessed
by ti0 and ti1, ti1 and ti2, ..., tis−1 and tks. Such a path is said to be cycle-free if all the threads in the path
are distincts. We note Path(i, k) the set of cycle-free paths from ti to tk (this set is specified in the AADL
source).

∀i, k ∈ [1, n], i 6= k : ti blocks∗tk
= ti is blocked ∧

∨
p={i0,...,is}∈Path(i,k)

ti0 blocks
ti1
r1 ∧ ... ∧ tis−1 blocksts

rs
(6)

where:

∀k ∈ [1, n] : tk is blocked =
∨

`∈[1,m],j∈[1,n],j 6=k

tj blockstk
r`

Note that we have added the ti is blocked condition because we are only interested in obtaining a thread
that is not blocked.

The protocol The BIP states that a thread in critical section on a resource inherits from the prior-
ity of any other more priority thread that asks for the same resource. The difficulty is to translate
this “dynamic” condition (the priority of each thread depends on the history) into a Boolean condition.
To do that we use an accumulator, (named ii for inhibiting index), that carries the value of the in-
hibitor of the thread that has the highest priority (if the highest priority dispatched thread is blocked).
For readability, we use a switch-like notation, where c1 → x1, c2 → x2, ..., cn → xn stands for
if c1 then x1 elseif c2 then x2 ... if cn then xn

ii0 = 0
∀k ∈ [1, n] : (cpuk, iik) =

dispatchedk → (False, iik−1) (7)
(cpu1 ∨ ... ∨ cpuk−1) → (False,−1) (8)

iik−1 = k → (True,−1) (9)
iik−1 > 0 → (False, iik−1) (10)

{ tj blocks∗tk
→ (False, j) }j∈[1,n],j 6=k (11)

True → (tk is blocked, 0) (12)

For each k > 0, cpuk and iik depend on cpuk−1 and iik−1, which means that cpu1 and ii1 are computed
first, and then cpu2 and ii2, and so on, until cpun and iin. At the beginning, the inhibiting index is equal
to 0 (ii0 = 0). Then, the pairs (cpu1,ii1), ..., (cpun,iin) are computed in turn. As long as cpuk−1 is set to
False (i.e., lines 9 and 12 do not match):

8/14 Verimag Research Report no TR-2008-10
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• If tk is blocked by a lower priority thread tj (line 11), the inhibiting index takes the priority of the
inhibitor, i.e., j. Then, the inhibiting index keeps this value (lines 7 and 10), until the index of the
inhibitor is reached (line 9). In that case, the corresponding cpu variable is set to True, and the
remaining values of cpu are set to False (line 8).

• Otherwise (line 12), if tk is not blocked at all, it gets the CPU, and all the remaining values of cpu
are set to false (line 8). If it is blocked, the system deadlocks.

The inhibiting index is set to −1 when we are certain it will not be used anymore (cf lines 8 and 9).

3.4 Priority ceiling
The problem with the BIP is that it does not prevent deadlocks. Indeed, consider the following scenario,
where 2 threads t1 and t2 share 2 resources r1 and r2:

1. t2 asks for the CPU (Dispatched1) and gets it.

2. t2 locks r1.

3. t1 asks for the CPU. It has a higher priority than t2, hence t1 gets the CPU.

4. t1 locks r2.

5. t1 tries to lock r1. But t2 has locked it. Therefore t2 gets the CPU.

6. t2 tries to lock r2. But t1 has locked it. Nobody can get the CPU. The system is blocked.

One solution is to (statically) forbid such intertwined use of locks. Another solution is to use the so-called
Priority Ceiling Protocol (PCP). The PCP is a refinement of the BIP.

The priority ceiling of a resource r` is the maximal priority of all the threads that may use r`. It is
statically known from the AADL source; we note it PC(`). The priority ceiling of a thread tk is the
maximum of the priority ceilings of the resources locked by other threads; we note it PCk. Contrary to
PC(`), PCk is a dynamic value. The PCP consists in adding the following constraint to the BIP: tk can
lock a resource r only if its priority is higher than its priority ceiling (k < PCk).

The tk ask relation We first define an auxiliary relation that holds if a thread asks for one of the resources
that it did not have at the previous instant (i.e., the thread wants to lock a recourse it hasn’t locked yet).

∀k ∈ [1, n] : asks cstk =
∨

`∈[1,m](Asks cstk
r`
∧ •has cstk

r` )

The Priority Ceiling of resources locked by threads other than k PCk formal definition is just a direct
translation of the informal definition given above.

∀k ∈ [1, n] : PCk = Min {n + 1} ∪
{

PC(`) / Asks csti
r`

∧ • has csti
r`

}
` ∈ [1,m],
i ∈ [1, n], i 6= k

(13)

Note that we use Asks csti
r`
∧ •has csti

r`
instead of has csti

r`
to avoid combinational loops, as in equation 5.

The protocol The PCP encoding is the same as the BIP one, except that we need to modify the definition
of the blocks relation defined in 5. Indeed, there is now a second reason for a thread tk to be blocked by
another thread ti: if tk wants to enter a critical section (asks cstk ) when its priority ceiling PCk is not
higher than its own priority (PCk ≤ k), and where the priority ceiling of tk (i.e., the value of PCk) is a
consequence of the lock that ti has on the resource ` (PC(`) = PCk).

∀k, i ∈ [1, n], i 6= k,∀` ∈ [1,m] : (14)

ti blockstk
r`

= Asks csti
r`
∧ •has csti

r`
∧ (Asks cstk

r`
∨ (asks cstk ∧ PC(`) = PCk ≤ k))
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Figure 5: Examples
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Figure 6: Experiments with the deadlock prop.

4 Validation

We have encoded all the equations given in the previous Section into an OCaml (meta-)program that, given
a set of tasks, a set of resources, and a set of task/resource pairs generates a Lustre program8. The resulting
Lustre program is a task scheduler, computing one Boolean variable (cpui) per thread, from Boolean inputs
indicating which threads ask for the CPU, and which threads ask for which resource.

In the following, we illustrate the use of a model-checker to check various properties against this gen-
erated program. This was very useful to debug the equations given in this paper, and also to debug the
OCaml encoding of those equations. We’ll also argue why we believe it might also be useful for AADL
end-users.

4.1 Absence of deadlock

In order to prove the absence of deadlock, we just have to ask a model-checker [9] to prove that, whenever
at least one thread asks for the CPU, at least one (in fact, exactly one) of the cpui is true.

We performed this on several examples pictured in Figure 5. For instance, the first example (ex. 1) of
Figure 5 consists in a system with two threads t1 and t2, that can access two resources r1 and r2. This
example is precisely the one given in [17] to illustrate the fact that the BIP does not prevent deadlock,
which motivates the definition of PCP. Lesar was indeed able to generate a counter-example that exhibits a
deadlock; the scenario it provides is almost the same as the one given [17] (and also in Section 3.4). Lesar
also proved the absence of deadlock for the PCP. All the results are shown in Fig. 6. For the cases where
the property is false, we indicate the number of steps of the counter-example provided by Lesar.

An interesting point in those experiments is that it is not always worth using the PCP (that is deadlock-
free by construction) as the BIP and the lock protocol can provably be deadlock-free in some configurations
(e.g., in ex. 2). Note that in order to avoid false alarms, we need to tell the model-checker that the inputs
of the scheduler are not completely random. For instance, a thread cannot change its requests for resources
when it does not own the CPU.

8We put a copy of this OCaml program as well as a copy of the resulting Lustre programs at the url http://www-
verimag.imag.fr/∼jahier/aadl-schedul/
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Figure 7: Experiments with the non-inversion prop.
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Figure 8: The automaton recognizing well-scheduled systems. There is one such automaton per thread to
schedule.

4.2 Priority inversion

The priority inversion corresponds to situations when a thread is blocked by a less priority thread. This
occurs very naturally when two threads shares the same resource, locked by the less priority thread. Priority
inversion is more problematic when it happens as in the example of Section 3.3 (which was the example
given in [17] to motivate the introduction of the BIP). Indeed, threads are generally supposed to remain in
critical section for a short time. Now, if a thread that does not lock any resource preempts a less priority
thread in critical section, the corresponding resource might be locked a long time.

Therefore, we check the following property: if a thread tk gets the CPU, when a more priority thread
asks to enter in critical section, then tk should have at least a lock on one of the resource. In other terms,
we want to be sure that a thread that does not lock any resource cannot block any higher priority thread.

As summarized in Figure 7, Lesar found counter-examples that falsify the non-inversion property for
the last two examples of Figure 5. Note that the second example is the one given [17] (and also in Sec-
tion 3.3), for motivating the introduction of the BIP. Here again, one can remark that in some configurations,
it is not always worth the complexity of the BIP or the PCP to ensure the non-inversion.

4.3 Schedulability

The scheduler we generate in Section 3 take as input Boolean values (Dispatched1, ..., Dispatchedn)
indicating which threads ask for the CPU, and computes the thread the CPU is attributed to. But this
scheduler is just a part of our AADL to Lustre translator; in particular, the values of the Dispatchedi

variables are also defined by this translator, using the thread WCET and period (or just the output of some
software component for sporadic threads), as explained in [8], and recalled in Section 2.3.

In order to check the schedulability of the AADL program, we look at the sequences of values taken
by the Dispatchedi and cpui variables. The set of valid sequences is defined by the automaton of Fig-
ure 8. In this automaton, d stands for “dispatch”, and is defined as the Dispatched rising edge; a stands
for “activate”, and is defined as the cpu rising edge; and r stands for “release”, and is defined as the
Dispatched falling edge. All omitted transitions in this automaton target the “scheduling-error” state. A
system is well-scheduled if this error state is never reached.

In other words, nothing prevents the resulting Lustre scheduler to generate a “dispatch” event between
an “activate” and a “release” event. This is what typically occurs when the system is not schedulable,
i.e., when some deadline is missed.

Once encoded into a Lustre formula, this automaton can be used to prove (by model-checking) that the
system is schedulable.
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The Cheddar tool [10, 18] can perform schedulability analysis over AADL specification, but it ignores
the functional aspects of AADL components, and it is more oriented towards quantitative analysis (resource
usage, number of preemptions, number of context switches, etc.). Cheddar allows users to define dedicated
(user defined) schedulers and perform simulations [19].
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5 Conclusion

We have defined an automated translation of AADL models into a purely Boolean synchronous (Lustre)
scheduler, that can be directly model-checked. The advantages are manyfold.

• Firstly, it was very useful to debug our scheduler generator.
• Secondly, we claim it can also be useful for the AADL end-users; for example, the PCP is a refine-

ment of the BIP that has been introduced to avoid deadlocks. However, for some particular topologies
of threads and resources, it may happen that deadlocks cannot occur even with the BIP scheduler,
and that a model-checker is able to prove it on our model.

• And finally, in presence of shared resources, the analytic schedulability criteria are very conservative,
and may reject schedulable systems. Moreover, as soon as the system contains sporadic events (i.e.,
when the thread activation depends on the output of some other thread), the analytic method can be
meaningless.

Of course, since the verification is automatic, we were not able to deal with generic mechanisms (e.g.,
to prove properties of resource management protocols whatever be the number of tasks and resources), but
since the generation of models for verification is automatic, the verification can be played again for each
instance of a generic mechanism.

When the verification problem is too large, an exhaustive verification can be untractable. However, our
encoding can still be useful to perform intensive automatic simulations using testing tools like Lurette [11].
The absence of deadlocks, the schedulability, and the non-inversion properties are used as test oracles (i.e.,
runtime monitors). The assertions on the scheduler inputs (e.g., no rising edges for the asking of a resource
by threads that do not have the CPU) are used to constraint the random input generator [15].

Another case where such tests and simulations are the only tractable methods is when the AADL model
contains sporadic threads activated by software components that are not implemented in Lustre (or in any
other language with formal semantics). A way to turn around this problem would be to have a Lustre
abstraction of all the possible behavior of such components; but such an abstraction is not always easy to
define.
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