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Abstract

Fault trees may be used in order to decompose the verification of a safety critical
control system into two steps: a high level modelling of the possible faults, from
which safety conditions can be automatically extracted; and the model-checking of
these conditions with respect to a model of the controller program. To this purpose,
we introduce a fault tree formalism with unconventional features related to the mod-
elling of discrete event system; we give this formalism a temporal semantics; and we
provide an algorithm essentially related to minimal cut set analysis for the extraction
of safety conditions.
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1 Introduction

1.1 The PROOFER project
The work presented in this report was motivated and supported by the Predit project PROOFER.
The plan was to apply formal verification methods to prove the safety of a railway control system.
The parties involved with the project were

• RATP (running Paris underground railways) as the ordering party,

• Alcatel TSA (now Thales) as system provider,

• Prover-Technology as formal verification tool provider,

• Verimag as academic consultant.

The main goal was to express and prove safety properties on an interlocking control system (e.g.
that the controller can prevent derailment). A necessary step was the derivation of controller
properties suitable to the verifier from expert knowledge expressed in terms of high level notions,
such as that of derailment event. In this report, we are going to present a method based on fault-
trees that can be used to extract a controller specification from a high-level representation of
failure events.

1.2 Safety conditions in safety-critical systems
Safety critical applications of control systems pose increasingly hard problems of validation and
verification. There are several methods that have been applied to problems of significant size
— for example, proved construction à la B [1], controller synthesis [13], model-checking [14].
However, in practice, many real-world systems are too complex to be handled with such methods.
Interlocking systems are no exception.

By railway interlocking systems here we mean programs that can observe railway traffic,
control arrangements of signals, and supervise commands to track elements such as switches at
junctions and barriers at level crossings, in order to prevent conflicts that may lead to accidents
such as derailment and collisions.

In principle, it should be possible to:

• model the environment, i. e., the way trains move on tracks, stop at red lights, the way
switches behave under control, etc.;

• model the accidents that the controller should prevent, such as collisions and derailment;

• either formally synthesise a controller, or else build one and model-check that it prevents
all the accidents under the assumptions provided by a model of the environment.

However, the size of a system may be too large for this approach to be used with the available
tools at a reasonable cost. This appears to have led Prover Technology [16], our partner in the
Proofer Project, to adopt a different, two-step approach:
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1. expect railway experts to extract from an informal modelling of the system conditions that
depend on variables, either observable or controllable by the control program;

2. model-check the control program against those conditions.

In the Proofer Project, our aim is to contribute a specific method for the extraction of safety
conditions from high-level models of system failures. In practice, such models are going to be
defined under the supervision of railway specialists, hence we find it convenient to rely on a
modelling approach which is popular with the industry — and this is the case for the fault tree
method.

1.3 The Fault Tree method
The fault tree method is a semi-formal technique used to analyse system failures at the level
of design. It has been around for several decades [17], with application to stochastic risk as-
sessment as well as to verification. The method consists of a top-down analysis which starts
from prospected failures and looks for its possible causes. It relies on a representation of causal
consequence between events which is closely associated with AND-OR trees. It is relatively
independent of any low-level modelling of the system [8].

A fault tree is essentially a bipartite graph where two classes of nodes are associated, respec-
tively, to system events and causal relations (called gates). Each event may have at most one
parent and one child node, so the branching factor depends ultimately on gates. Gates represent
causal connections between input events (child nodes) and an output event (parent node). Top
and leaf nodes must be events. Each gate together with its parent and child nodes forms a compo-
nent of the tree. The top node is associated with the main failure under scrutiny. Leaf nodes are
associated with basic events — usually either system events that do not require further analysis,
or conditions such as environment ones.

The type of a gate is defined by the logical character, and sometimes by the temporal and
causal one, of the relation associated with it. The logical character consists normally of either a
conjunctive or a disjunctive Boolean sub-relation between the inputs, so that the relation may be
either of the AND sort — the output event is caused by a conjunction of inputs — or of the OR
sort — the output event is caused by any one of the inputs. OR gates may be used to introduce
alternative causal explanations. Fault trees in the simplest form are essentially AND-OR trees.

In general, gate types will also depend on temporal sub-relations between the inputs and
between inputs and output. When the temporal relation between input and output is one of
synchronicity — and thus time can be abstracted away without loss — the gate can be said to be
decompositional, otherwise temporal. A gate may be called dynamic when the associated relation
involves a constraint about the order in which input events take place, static otherwise. Examples
of gate types are logical and (decompositional), primary and (dynamic, inputs taking place in a
specified order), asynchronous and (static, inputs simply taking place before the output).

In any case, every relation should at least express either an “if” or an “only if” dependency
between input events and output — corresponding to what may be called correctness and com-
pleteness aspects of causal analysis, respectively. In general, given our interest in safety, the
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completeness aspect is ultimately the one that matters — in principle, we need to consider all the
possible necessary causes. However, the notion of correctness, i.e. of what counts as sufficient
causes, is important for the definition of safety criteria which are as liberal as possible.

1.4 Minimal cut sets
The following notion plays a central role in failure analysis.

Given an AND-OR tree H with origin h and a subset K of the leaves of H , we say that K is
a minimal cut set of H whenever K is the value for h of a function f from nodes to sets of nodes
that satisfies the following specification:
(A) if x is a leaf, then f x = {x} ;
else, let y0, . . . , yn be the child nodes of x;

(B) if x is an AND node, then f x =
⋃

i≤n(f yi);
(C) if x is an OR node, then f x = f yi, for any i ≤ n.

Intuitively, minimal cut sets represent the smallest possible sets of basic events which, under
the correctness aspect of the fault tree, suffice to cause the main failure.

1.5 Basic fault tree analysis
The notion of minimal cut set may also be expressed, abstracting completely from time, in a
simple logic of conjunction and disjunction, by interpreting nodes as atomic formulas, sets of
nodes as conjunctions of formulas, and sets of sets of nodes as disjunctions of formulas. The
minimal cut sets of a fault tree can then be represented, according to the definition given above,
as a formula in disjunctive normal form, i. e.

(x11 ∨ . . . ∨ x1m) ∧ . . . ∧ (xj1 ∨ . . . ∨ xjn)

where all atomic formulas represent leaf nodes.
Fault Tree Analysis (FTA) at its simplest, abstracting from time relations, consists of the

computation of minimal cut sets over the AND-OR structure of fault trees, returning a Boolean
formula in disjunctive normal form.

It is a known fact — see [3], for example — that minimal cut sets (without time) can be
computed by inference in a deductive system as simple as a logic with implication, conjunction
and disjunction — this is the case for Boolean logic, as well as for weaker logics such as positive
and intuitionistic ones.

Allowing for abstraction from time, as we are doing now, the truth of x may be taken as the
statement “x happens”, ∧,∨,¬ may be given the standard intuitive interpretation as “and”, “or”
and “not”, and x ⇒ y may be read as if x happens, so does y. Each AND gate with output node
x and input nodes y0, . . . , yn may then be represented, for the completeness and the correctness
aspects respectively, as
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AND cmp
x ⇒

∧
{y0, . . . , yn}

AND crr ∧
{y0, . . . , yn} ⇒ x

and similarly, each OR gate may be represented as

OR cmp
x ⇒

∨
{y0, . . . , yn}

OR crr ∨
{y0, . . . , yn} ⇒ x

where
∧

and
∨

extend ∧ and ∨ to sets.
A fault tree may be associated to a set Rcmp of cmp formulas giving its representation w.r.t.

completeness, and to a set Rcrr of crr formulas giving its representation w.r.t. correctness.
It is a relatively straightforward exercise to show that it always holds

Cmp(M) ∧
Rcmp ∧ f ⇒ M

Crr(M) ∧
Rcrr ∧M ⇒ f

where f is the main failure of the fault tree and M is the Boolean representation of its
minimal cut sets; hence

Eq(M) ∧
(Rcmp ∪Rcrr) ⇒ (M ≡ f)

So, from the logical representation of the fault tree and the negation of M , the negation of
the main failure follows, i. e. ¬M is a safety condition for the given AND-OR tree.

It is possible to compute M by an algorithm closely associated to property Cmp(M) — this
consists of applying exhaustively, as rewrite rules, the conditionals in Rcmp, starting from f .
Since all names in a fault tree are unique, there can be neither cycles nor multiple applications of
the same rule. It is routine to prove that the formula thus obtained is equivalent to M .

It is also true in general that, once assumed Rcmp, M can be proved to be the weakest formula
containing only wedge and vee with the given properties; i. e., for any wedge/vee-formula K
that satisfies Cmp(K) and Crr(K), it always holds

Rcmp ∧K ⇒ M

In fact, K can satisfy Crr(K) only if in Rcrr there are conditionals that allows for the deduc-
tion of f from K; but the conditionals in Rcrr are exactly the converses of those in Rcmp; this,
together with the fact that M has been obtained by exhaustive application of the latter, ensures
the result, allowing us to say that M is the most “liberal” safety condition, i.e. the weakest one.
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1.6 Temporal analysis
Basic FTA can be insufficient as failure analysis in presence of temporal constraints. Time may
be taken into account in different ways. A possibility [14, 15] is to represent causal consequence,
and therefore gates, in a temporal logic, and to define failure analysis in terms of temporal deduc-
tion. Another possibility, pursued in [9], is to formalise causal consequence in terms of predicate
logic, and to define failure analysis as an algorithm that can handle explicit time information.

1.7 Related work
The semi-formal character of the fault tree method commonly used in industry has plausibly
something to do with utilisation in contexts where full system modelling is either infeasible or
too costly. Indeed, a common application of fault trees is stochastic — i.e. probability assessment
of critical events based on probability associated with minimal cut sets. However, formalisation
is necessary when we want to derive proof obligations.

This formalisation has taken different paths. There are semantics of fault trees based on
system models — [10, 8]. There are formal definitions of fault tree, where the relationship
between logic models and system models is shown to be close enough [14, 15, 3]. Some safety
analysis tools allow for synthesis of fault trees from system models coupled with fault models,
in order to carry out probabilistic failure analysis [2, 12, 11].

The approach presented in [10], particularly focused on dynamic gates and implemented as
a tool [6, 5] is based on specification in Z and on translation to Markov models, allowing for an
account of the probabilistic aspect. The approach presented in [8, 9], particularly focused on the
timing aspect, is based on algebraic modelling of time and events (each associated with a start
and an end), on a definition of fault trees in predicate logic, and on a translation to timed Petri
nets. A simpler translation of fault trees to generalised stochastic Petri nets can be found in [4].

Logic-based accounts of fault trees are usually based on a temporal logic. This is the case for
the formalisation based on Interval Temporal Logic presented in [15] as well as for those based on
Mu-calculus proposed in [3]. The verification framework presented in [14] — and implemented
[7] — uses fault trees to represent requirements and phase automata to model real-time systems;
both formalisms are shown to be representable in a fragment of the Duration Calculus; this makes
it possible to model-check the validity of requirements.

1.8 Our approach
The proposed application of failure analysis is extraction of controller specifications expressed
in Boolean logic. To this purpose we are going to introduce a fault tree-style representation
of system failures that relies, essentially, on decompositional and static gates — in what we
call the basic formalism — although capable of capturing some aspect of dynamic behaviour
— with what we call the concrete formalism, defined as an extension of the basic one. Time
can be important in order to express properties of interlocking systems, but it does not appear
convenient to express it explicitly, given the limited expressiveness of the language allowed by
the verification tool. For this reason, we are going to keep the temporal aspect into account by

6/23 Verimag Research Report no TR-2007-6



Fault Trees Paolo Torrini, Paul Caspi, Pascal Raymond

replacing the notion of minimal cut set with a stronger one, rather than by using a more expressive
logic.

We are also departing from standard fault tree analysis by introducing distinctions between
events which are essentially associated with the modelling framework of discrete event systems
[13] — notably, the distinction between instantaneous events (hereafter simply events) and con-
ditions (comparable to what in traditional fault tree terminology are non-instantaneous events);
and, further, the distinction between controllable and uncontrollable events, as well as between
observable and unobservable conditions. These approach is motivated by the prospective goal
of making the extraction of fault trees from models inclusive of an environment more efficient.

1.9 Report organisation
In Section 2 we introduce the basic formalism together with its temporal semantics. In Section 3
we introduce our notion of safety analysis. In Section 4 we formalise fault trees and we de-
scribe an algorithm for the extraction of safety conditions. In Section 5 we present the concrete
formalism that has been defined with end users in mind. In Section 7 we give an example of
application.

2 Basic formalism

2.1 Conditions and events
Our approach to high-level failure analysis is based on the distinction between two primitive
types of behaviours — events and conditions.

Event : type
Cond : type

Intuitively speaking, conditions last through time whereas events are sequences of pointwise oc-
currences. Event occurrences have no duration; moreover, different events may be associated to
different timers; therefore, in practice, it may be difficult to say whether occurrences of differ-
ent events take place at the same time. On the other hand, stating that two conditions hold at
the same time does not appear problematic. Therefore, we are not using representation of syn-
chronous events, rather of events taking place while a condition is satisfied — without ruling out
the possibility of simultaneity, anyway.

For the nature of the application, we find it convenient to present a formalism that restricts
to events having a single occurrence, as well as to conditions that once true never become false.
It follows that here events are the same as event occurrences, and that it is possible to define
a bijection between events and conditions. We preserve the distinction, however, as it may be
useful in practice to tell conditions that define the state of the system apart from events that
determine its changes.

Events are classified into either controllable or uncontrollable, depending on whether they are
controllable by the controller or controlled by the environment. Similarly, conditions are either
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observable or unobservable, depending on whether they are observable or not by the controller.
An unobservable condition is meant to be totally opaque to the controller, which can never say
when it does not hold — even in case this could be inferred theoretically.

Controllable events may be associated, in practice, to system events (often commands) that
the controller may allow or not allow to happen. We want to express safety conditions that
refer to controllable events, insofar as they say at which time the associated events must not
happen in order to avoid a failure, and we want these conditions to be the most liberal compatibly
with safety. Time should be expressed qualitatively, in terms of observable conditions. So, in
general, a condition may consist of saying that a controllable event must not happen when certain
observable conditions hold together.

We are going to introduce behaviours and gates directly from their formal semantics, and to
define fault trees, based on this semantics.

2.2 Semantical foundations
In the fault trees that we are considering (SC fault trees, defined further on), parent and child
nodes represent behaviours (either events or conditions). Intuitively, behaviours may be thought
of as properties of abstract states and gates as transitions between them.

We can essentially distinguish between two sorts of gates. Those of types Cor and Cand are
decompositional gates, similar to Boolean operators and can be used in order to build complex
conditions. Those of types C2E and E2C are static gates expressing simple temporal relations
between input and output.

In the following, we are going to define a semantics for objects and operators, based on their
representation in a temporal model. Our notion of time is comparatively unconstrained — we
only require that it is an order < on T ′ = T ∪ {∞} where T is a set of finite values with a
minimum 0 and ∞ is an infinite value.

Cor : Cond+ → Cond

Cand : Cond∗ → Cond

C2E : Cond → Event → T ′ → Boolean

E2C : Event → Cond → T ′ → Boolean

Here “+” means one or more occurrences, “∗” means zero or more occurrences.

Conditions (in our sense) can be represented as non-decreasing Boolean functions on time
that become eventually true — i.e. as functions that are either always true or have just one step
up:

StepUp = {s : T ′ → Bool | s∞ = True; ∀xy : T. x ≤ y ⇒ (s x ⇒ s y)}

Event occurrences can be represented as time functions giving the occurrence date at current
time when the event has already occurred, infinite otherwise.
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EventOc = {s : T ′ → T ′ | ∃x : T ′. s x = x ∧
∀y : T ′. if y < x then s y = ∞ else s y = x}

Clearly, for every e : EventOc, it always holds

∀t : T ′. e t 6= ∞⇒ e t ≤ t

We can declare eval and date as functions that give a representation of conditions and events
in our model, respectively:

eval : Cond → StepUp

date : Event → EventOc

In the following, we are going to treat eval and date as forms of lifting and hide them,
therefore writing c t for eval c t and e t for date e t, respectively.

We can define def : Cond as a condition that is true at any defined time:

def t = True

We find it useful to define the following functions, respectively converting conditions to
events and vice-versa in obvious ways.

cn2ev : Cond → T ′ → T ′

cn2ev c t = min ({∞} ∪ {x | c x ∧ x ≤ t})

ev2cn : Event → T ′ → Bool

ev2cn e t = (t = ∞) ∨ (e t < ∞)

2.3 Decompositional gates
Cand and Cor are lifted Boolean operators for conditions, i.e. they are constructors for timed
Boolean signals.

Cand(c1, . . . , cn) t = c1 t ∧ . . . ∧ c2 t
Cor(c1, . . . , cn) t = c1 t ∨ . . . ∨ c2 t

We can define Cand() = def. Moreover, we will use ∧,∨ as lifted syntax for Cand,Cor,
as well.

Verimag Research Report no TR-2007-6 9/23



Paolo Torrini, Paul Caspi, Pascal Raymond Fault Trees

2.4 Temporal gates and T-constraints
The semantics of temporal gates may be given in terms of abstract relations implying, by axiom,
temporal constraints on associated behaviours, here called T-constrains.

A gate of type C2E may be thought of as a specification for operators that convert condi-
tions into events. The event may take place at any time when the condition holds. This can be
expressed with the following axiom — where the left hand-side is the T-constraint:

C2E c e t ⇒ cn2ev c t ≤ e t

A gate of type E2C may be thought of as a specification for operators that convert events
into conditions. The condition arises when the event occurs. Here the axiom can be:

E2C e c t ⇒ cn2ev c t = e t

Note that in both cases the time parameter plays the role of a bound — we are considering
the past, not the future.

2.5 SC fault trees
We define an SC fault tree to be a fault tree where the only gates are of types C2E, E2C, CAnd
and COr, and where the only controllable events are leaf nodes.

In the following, we are going to discuss the relationship between SC fault trees and the
systems they represent, and to introduce a specific form of failure analysis, which, in comparison
to standard FTA leads to sets of conditions that are more restrictive and takes implicitly time into
account. As a default, by fault trees we will always mean SC fault trees

3 Fault-trees for safe control

3.1 Basic notions
Let H be a fault tree and p a node. We say that the subtree K is generated by p whenever it is
the greatest subtree that has p as its root.

We say that K is a direct subtree of p whenever it is generated by a child node of p.
Given two branches a and b, we say that h is an initial sub-branch of k whenever, assuming

branches are represented as lists starting from the origin, a is a non-empty prefix of b.
We say that K is an initial subtree of H whenever, for every branch a of H , K contains an

initial branch of a.

3.2 Deterministic subtrees
We say that a fault tree H is a deterministic tree whenever for each OR node, it includes one and
only direct subtree. Clearly, determinism is inherited by subtrees.
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Let H be a fault tree. We say that K is a main deterministic subtree of H whenever K is a
maximal subtree such that it is deterministic.

A deterministic tree is equivalent to an AND tree, since all its OR nodes have a single child.
So, main deterministic subtrees can represent maximal AND subtrees.

Every fault tree can be represented by the set of its main deterministic subtrees. Intuitively
speaking, these are the processes leading to the main failure, and may be regarded as possible
explanations.

3.3 Causal sets
Given a deterministic tree, we will call the set of its leaves the causal set associated with it. Given
the fact that a deterministic tree is essentially and AND tree, causal sets may be considered as
special cases of minimal cut sets.

We say that a causal set is controllable whenever all of its elements are either conditions or
controllable events, and at least one is a controllable event.

Intuitively, controllable causal sets may be associated with safety conditions (with their nega-
tion, to be more precise).

3.4 Dead ends
Let H be a fault tree, J a main deterministic subtree of H , and K a subtree of J generated by
a node p ∈ J . We say that K is a dead end of H whenever either (A) p is an unobservable
condition, (B) K does not contain any controllable event.

The notion of dead end is needed in order to capture the idea that there are parts of the system
for which either a controller can do nothing (case B) or there is ineliminable uncertainty about
whether relevant conditions may hold (case A). In case a dead end is also a main deterministic
subtree, it is clearly impossible to guarantee safety of the system, since there is a causal set that
cannot be affected by any controller.

3.5 Control tree
We will call control tree of a fault tree H the greatest initial subtree K such that it has the same
number of main deterministic subtrees as H and has no dead ends, if this exists; otherwise, we
will say that the control tree does not exist, or is empty.

In order to make this notion more accessible, we may consider the following definition,
extending that of dead end.

Let H be a tree and K a subtree generated by a node p ∈ H . We say that K is a dead subtree
if either (A) p is an unobservable condition, (B) K does not contain any controllable event, (C)
p is an OR node and at least one of its direct subtrees is dead, or (D) all of its direct subtrees are
dead.

Now, it is not hard to see that a fault tree has no dead ends if and only if it has no dead
subtrees. Therefore, the control subtree is the same as the greatest initial subtree which does not
include any dead subtree.
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Intuitively speaking, the control tree represents the same processes as the fault tree from
which it is extracted, only up to the point these processes are controllable and therefore relevant
from the point of view of controller specification. In case the fault tree allows for processes that
are not controllable, there is no such thing and the system is inherently unsafe.

3.6 Pruning
Let H be a fault tree. We say that K is a pruning of H whenever, for a main deterministic subtree
J of H , K is an initial subtree of J , and all of its leaves are behaviour nodes. We will say that a
pruning is controllable whenever its causal set is.

Given the fact that all leaves in a fault tree are behavioural, prunings always include main
deterministic subtrees.

Intuitively speaking, given a main deterministic subtree, each pruning represents a different
temporal cut of the process leading to the main failure. Causal sets of the prunings can represent
abstract states of the system — where a state can be interpreted as a set of behaviours holding at
the same time.

As to the relationship between prunings of a fault tree H and those of its control subtree K,
it is not hard to see that

(A) for each pruning I of H , the intersection of I with K, J = I ∩K, is a pruning of K; and
(B) every pruning of K can be obtained in that way.

3.7 Safety Control Analysis
Given an SC fault tree, we will call control sets (CS) the causal sets of the controllable prunings
of the control subtree. We may refer to the extraction of the CS set from a tree as safety control
analysis (SCA).

We are interested in the control subtree as the part of the system that can be actually con-
trolled, and in the controllable prunings as those associated with controllable causal sets, and
therefore with safety conditions. As to the relationship between FTA and SCA, one may note
that, given a control tree, the causal sets that contain only controllable events can represent the
minimal cut sets.

SCA gives a result that tends to be stronger than standard FTA, insofar as it takes qualitative
time into consideration. Unfortunately, if the number of minimal cut sets can grow exponentially
in the number of the OR nodes, the number of control sets can grow exponentially already in the
number of the AND ones.

4 Formalisation

4.1 Inference system
Our formal representation of fault trees is based on a language L that includes a set of names for
behaviours (events and conditions), operators E2C, C2A, Cand, Cor for gate relations, and the
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defined operator ev2cn.
We will call temporal formula in L any expression of type T ′ → Bool. We will call tran-

sition any instantiation of gate relation with behaviour names. We use ki, with i : Nat, as a
metavariable for either a condition name c or for a condition expression ev2cn e, where e is an
event name. We will call state formula any expression of form Cand[k1, . . . kn].

We can define an inference system to derive safety conditions in terms of provably correct
rewrite rules associated to E2C, C2E, Cor transitions and applicable to sets of state formulas.
Each rule can be derived from a transition, by instantiation of one of the following rule schemas.
Let S be a set of state formulas. We will write S + α for S ∪ {α}.

Event Elimination: given a transition C2E c e, derive

S + Cand(k1, ev2cn e, k2) =⇒ S + Cand(k1, c, k2)

Condition Elimination: given a transition E2C e c, derive

S + Cand(k1, c, kn) =⇒ S + Cand(k1, ev2cn e, kn)

Or Elimination: given a transition c = Cor [c1, . . . , cn], derive

S + Cand(k1, c, k2) =⇒ S + Cand(k1, c1, k2) + . . . + Cand(k1, cn, k2)

4.2 Formal states
State formulas may be used to represent causal sets, which then, according to our semantical
interpretation of Cand, are sets of conditions holding together at a certain time. More precisely,
we may say that a state formula α = Cand(k1, . . . kn) (does not hold) holds at a time t when
k1 t ∧ . . . ∧ kn t (does not hold) holds. If α (does not hold) holds at any finite time, we can
simply say that α (does not hold) holds, and replace k1, . . . , kn with Boolean variables to obtain
the Boolean translation of α.

Each component of a fault tree can be represented by a transition. Note that we have as-
sumed behaviour names to be individual constants rather than variables, and therefore we do not
need existential quantification. We will call the set of transitions associated with a fault tree H ,
together with a partition of the event names between controllable and uncontrollable, and a parti-
tion of the condition names between observable and unobservable, the logical representation of
H .

We are going to treat sets of state formulas like disjunctions, saying that a set of state formulas
(does not hold) holds (at t) whenever one of its elements does. Each rewrite rule follows logically
from the associated transition, in the sense that if the left-hand side set of the rule holds at a
certain time, then the right-hand side set does as well. The proof follows from the T-constrains
associated to the transitions.

Indeed, it follows for each transition, by the T-constraint associated with it, that the logical
relationship between the left hand-side α and the right hand-side β of the associated rewrite rule
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is actually a weak form of equivalence:

RA
∃t : T. α t ≡ ∃t : T. β t

Rewrite rules may be used to trace backwards the possible causes leading to the main failure,
corresponding to the completeness aspect of FTA; on the other hand, converse rewrite rules
can be used to derive possible effects from causes, corresponding to the correctness aspect of
FTA. We take the notion of possibility in the correctness aspect to be purely implicit. Time
intervals implicitly associated to C2E relations are not kept into account quantitatively, but rather
qualitatively, using the SCA approach.

In order to represent formally the causal sets of the prunings, we can now introduce a notion
of formal state inductively, as follows.

The final state of a fault tree H with main failure f can defined as ev2cn f (in fact equivalent
to Cand(ev2cn f)).

The set of all formal states of H is the smallest set of state formulas which includes the
final state and is closed with respect to the application of the rules derived from the logical
representation of H .

It is a matter of routine to show that for each pruning, its causal set is represented by a formal
state. A controllable formal state is a formal state that, according to the logical representation,
represents a controllable causal set.

4.3 Declarative SCA
It is now possible to specify SCA using the notion of formal state. The task consists of finding
the controllable formal states of the control tree, as follows.

Given a fault tree H ,
(A) extract from H the control subtree K;
(B) define the logical representation K ′ of K;
(C) compute the set S of all formal states fro K ′;
(C) compute the set T of all controllable formal states from S and K ′.

It is a matter of routine to show, using the RA weak equivalence for each rewrite rule, that
the result of formal SCA holds at a finite time, whenever the main failure may take place at some
finite time, as well.

Let T be the result of SCA and T ′ = {s1, . . . , sn} be the set of Boolean translation of the
elements of T . Assuming at the semantical level that the fault tree represents all the possible
ways in which the main failure f may take place in the system, the safety condition sc relative to
f can be defined, equivalently, either as

¬(s1 ∨ . . . ∨ sn)

or as
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¬s1 ∧ . . . ∧ ¬sn

The proof that sc is actually a safety condition relative to f , i.e. that

sc ⇒ ∀t : T. ¬ (ev2cn f)

is quite straightforward, given the above. The proof that sc is the weakest safety condition,
may be given along lines similar to those used for the analogous requirement in FTA.

4.4 Procedural SCA
In the previous section we have used a declarative approach, defining logical representation and
formal states, and then defining the result of SCA as controllable formal states.

In contrast, here we will give a procedure such that it can be used, starting from the final
state, to build a set of state formulas that in fact converges to the set of the controllable formal
states.

Moreover, rather than pre-processing the fault tree in order to get the control subtree, we
add a semantical rule. Dead ends can be neutralised by making the worst possible assump-
tion, in terms of safety, about their top node. This can be obtained by applying the following rule.

DE Elimination: if the behaviour name in ki is member of a dead end, derive

S + Cand(k1, ki, k2) =⇒ S + Cand(k1, k2)

Then the algorithm goes as follows.

1. Compute the logical representation of the fault tree.
2. Initialise the state set S to the singleton of the final state.
3. Repeat until saturation: for each state formula α in S

• compute the applicable rules (selected rules);

• apply each of the selected rules, adding the result to the state set

• delete α from S, if all the selected rules have been applied, unless α is controllable (i.e.
represents a controllable causal set, according to the logical representation), and all the
selected rules of α are instances of Condition Elimination.

Showing that this algorithm satisfies the specification, i.e. converges to the controllable for-
mal states, is a matter of routine. The fact that the order of execution does not matter, follows
from the fact that there can be just an applicable rule for each behaviour name — apart from DE
Elimination, which may be delayed at wish, since its semantical precondition holds only when it
extends to child nodes.
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5 Concrete formalism

In the concrete formalism, events, conditions and gate types are graphically distinguished. Extra-
logical information about events and conditions is conveyed by means of colours — events are
either controllable or non controllable, conditions are either observable or non observable.

Noticeably, in the concrete formalism we tend to avoid the use of Cand; rather, we introduce
the following gate types which combine Cand with other ones.

ECand : COND+ → EV ENT → T ′ → Bool

CEand : COND∗ × EV ENT → COND → T ′ → Bool

ECand: The output event occurs when some input condition becomes true while the other
ones are true — this essentially expresses causal dependency of the output event on input
conditions regardless of the order in which the latter become true.

ECand

e

c1 c2

ECand (c1, . . . , cn) e = C2E (Cand (c1, . . . , cn)) e

CEand: The output condition becomes true as soon as the input conditions are true and the
input event occurs — this essentially expresses causal dependency of the output on an event that
takes place while a condition holds. Note that this relation involves the temporal order of inputs,
and therefore has dynamic character; however, e cannot be further developed when there are
side conditions. The use of this operator is recommended for situations in which the relation
between the input conditions and the input event is not a cause-effect one.

c2c1 e

CEand

c´

CEand (e, c) c′ =
if c 6= ∅
then ECand (c) e and E2C e c′

else E2C e c′
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6 Conclusion and further work
We have presented a formal method that associates top-down analysis of system failures in the
style of fault trees, allowing for extraction of safety conditions, together with system modelling
based on a temporal semantics in the style of discrete event systems [13].

The application VeriFT, built as part of the project, includes an implementation of SCA in
Haskell and a graphic interface implemented using Java and uDrawGraph. Further work should
involve addressing open issues, particularly with respect to the expressive power of the formalism
and possible extensions.

There are still some aspects related to time that need to be considered. As to the repre-
sentation of temporal constraints in the system model, we expect to handle them explicitly by
introducing events for timer start and timeout.

We would like to be able to represent the fact that, in order to preserve safety, some actions
have to be taken — whereas at present the only safety conditions that we can use are action-
disabling ones.

Finally, although our analysis does not cover stochastic aspects, we think it may be practically
useful to introduce a weaker form of safety — associated to conditions that make the system safe
in “most cases”, or under ordinary circumstances. To this purpose, we have been considering the
introduction of “rare event” as a special type of event.
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7 An example

7.1 The problem
Figure 1 is a fault-tree representing an accident — originally a train derailment within an inter-
locking system, disguised as asked by our industrial partner Thales.

Here the accident consists of a cat eating a bird. The informal reasoning goes that if there is
a bird free in the room and there is a cat as well, the bird might end up eaten. The act of opening
the cage sets the bird free. The act of opening the room door while the cat is behind it, allows the
cat to enter the room. The most liberal discipline for safety, consists of avoiding to perform one
of the two acts under any course of events started by the other one. We will now illustrate how
safety conditions can be extracted procedurally in this simple case.

7.2 Deriving safety conditions
The logical representation of the fault-tree contains the following transitions. Conditions and
event names are abbreviated to their acronyms with respect to the labels used in Fig. 1. We will
write e′ for ev2cn e.

ECand (cir, bf) ceb (1)
E2C cer cir (2)
E2C oc bf (3)
ECand (do, cbd) cer (4)
E2C od do (5)

The initial set contains only the final state:

add s0:
Cand(ceb′)

We can apply to s0 an instance of Event Elimination derived from relation 1 (after expansion
with the definition of ECand). Moreover, s0 can be deleted from the set, since it is not
controllable and all the selected rules have been applied.

delete s0 (all rules applied, uncontrollable).

add s1:
Cand(cir, bf’)

Now it is possible to apply Condition Elimination derived from relation 3 to bf’.
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ECand

CEand

ECand

CEand

CEand

open_door

door_open

cat_eats_bird

cat_in_room bird_free

open_cagecat_enters_room

cat_behind_door

Figure 1: A derailment example
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add s2:
Cand(cir, oc′)

This is a controllable state. State s1 can also be transformed by Condition Elimination
derived from relation 2.

delete s1 (all rules applied, uncontrollable).

add s3
Cand(bf, cer′)

This is not a controllable state, as cer is not controllable, and indeed it can be further trans-
formed — by Event Elimination (from 4), using also DE Elimination for cbd and simplifying.

add s4:
Cand(bf, do′)

We can apply Condition elimination (from 5).

add s5:
Cand(bf, od′)

This is also a controllable state, and this pair cannot be further refined. On the other hand, s2
as well as s3 can be refined in another way.

delete s3 (all rules applied, uncontrollable).

add s6:
Cand(cer′, oc′)

This can be transformed using Event Elimination. Alternatively, from s4 by Condition
Elimination.

delete s6 (all rules applied, Event elimination applied);
delete s4 (all rules applied, uncontrollable).

add s7:
Cand(do, oc′)
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From this we can also get the last one.

add s8:
Cand(od, oc′)

States s7 and s8 are controllable as well. Therefore the final set is {s2, s5, s7, s8}. Negating
the Boolean translation of each element and taking the conjunction amounts to saying

Don’t open the bird cage either when the cat is in the room or when the room door is open,
don’t open the room door when the bird is free, and don’t open the two doors at the same time.
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