
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Automatic Generation of Schedulings
for

Improving the Test Coverage of
Systems-on-a-Chip

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

Verimag Research Report no TR-2006-6

June 2006

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Automatic Generation of Schedulings for
Improving the Test Coverage of Systems-on-a-Chip

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

Verimag & STMicroelectronics

June 2006

Abstract

SystemC is becoming a de-facto standard for the early simulation of Systems-on-a-chip
(SoCs). It is a parallel language with a scheduler. Testing a SoC written in SystemC implies
that weexecuteit, for some well chosen data. We are bound to use a particular deterministic
implementation of the scheduler, whose specification isnon-deterministic. Consequently, we
may fail to discover bugs that would have appeared using another valid implementation of the
scheduler. Current methods for testings SoCs concentrate on the generation of the inputs, and
do not address this problem at all. We assume that the selection of relevant data is already
done, and we generate several schedulings allowed by the scheduler specification. We use dy-
namic partial-order reduction techniques to avoid the generation of two schedulings that have
the same effect on the system’s behavior. Exploring alternative schedulings during testing is
a way of guaranteeing that the SoC description, and in particular the embedded software, is
scheduler-independent, hence more robust. The technique extends to the exploration of other
non-fully specified aspects of SoC descriptions, like timing.

Keywords: SystemC Transaction-Level-Modeling, partial order reduction, simulation, system-on-chip,
test coverage

Reviewers:

Notes: extended version of a paper accepted to FMCAD’06

How to cite this report:

@techreport{ ,
title = { Automatic Generation of Schedulings for
Improving the Test Coverage of Systems-on-a-Chip},
authors ={ C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy},
institution ={ Verimag Research Report},
number ={TR-2006-6},
year ={ 2006},
note ={ }
}

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

1 Introduction

The Register Transfer Level (RTL) used to be the entry point of the design flow of hardware systems, but
the simulation environments for such models do not scale up well. Developing and debugging embedded
software for these low level models before getting the physical chip from the factory is no longer pos-
sible at a reasonable cost. New abstraction levels, such as theTransaction Level Model (TLM)[Ghe05],
have emerged. The TLM approach uses a component-based approach, in which hardware blocks are mod-
ules communicating with so-calledtransactions. The TLM models are used for early development of the
embedded software, because the high level of abstraction allows a fast simulation. This new abstraction
level comes with new synchronization mechanisms which often make existing methods for RTL validation
inapplicable. In particular, recent TLM models do not have clock anymore.

SystemC is a C++ library used for the description of SoCs at different levels of abstraction, from cycle
accurate to purely functional models. It comes with a simulation environment, and is becoming ade facto
standard. As TLM models appear first in the design flow, they become reference models for SoCs. In
particular, the software that is validated with the TLM model should remain unchanged in the final SoC.
Here, we concentrate on testing methods for SoCs written in SystemC.

The current industrial methodology for testing SoCs in SystemC is the following. First, we identify
what we want to test (theSystem Under Test, or SUT), which is usually an open system. We make it
closed by plugginginput generatorsand aresult checker, calledoracle. SCV [RS03] is a testing tool
for SystemC. It helps in writing input generators by providing C++ macros for expressing constraints:
SCV_CONSTRAINT((addr()>10 && addr()< 50)|| (addr()>=2 && addr()<= 5)); is
an SCV constraint that will generate random values ofaddr . In most existing approaches, the SUT writes
in memory, and the oracle consists in comparing the final state of the SUT memory to a reference memory.
As usual, the main difficulty is to get a good quality test suite, i.e., a test suite that does not omituseful
tests (that may reveal a bug) and at the same time avoidsredundanttests (that can expose the same bugs)
as much as possible. Specman [KOW+01] is a commercial alternative of SCV which uses thee language
for describing the constraints.

Contributions and Structure of the paper

We assume that the choice of relevant data for the testing phase has already been done: we consider a
SoC written in SystemC, including the data generator and the oracle. For each of the test data, the system
has to berun, necessarily with a particularimplementationof the scheduler. Since thespecificationof
the scheduler is non-deterministic, this means that the execution of tests may hide bugs that would have
appeared with another valid implementation of the scheduler. Moreover, the scheduling is due to the
simulation engine only, and is unlikely to represent anything concrete on the final SoC where we have true
parallelism. We would like the SoC description, and in particular the embedded software, to be scheduler-
independent. Exploring alternative schedulings is a way of validating this property.

We present an automatic technique for the exploration of schedulings in the case of SystemC. It is an
adaptation and application of the method fordynamicpartial order reduction presented in [FG05]. This
method allows to explore efficiently the states of a system made of parallel processes (given as object
code) that execute on a preemptive OS and synchronize with a lock mechanism. We show here that it can
be applied to SystemC too. Adaptations are needed because: the SystemC scheduler is not preemptive;
SystemC programs use non-persistent event notifications instead of locks; evaluation phases alternate with
update phases; an eligible process cannot be disabled by another one.

Our tool is based on forking executions: we start executing the system for a given data-input, and as
soon as we suspect that several scheduler choices could cause distinct behaviors, we fork the execution.
We use anapproximatecriterion to decide whether to fork executions. The idea is to look at the actions
performed by the processes, in order to guess whether a change in their order (as what would be produced
by distinct scheduler choices) could affect the final state. This criterion is approximate in the following
sense: we may distinguish between executions that in fact lead to the same final state; but we cannot
consider as equivalent two executions that lead to distinct final states. The result is a complete, but not
always minimal, exploration of the scheduling choices for the whole data-input.

The paper is structured as follows: section2 presents an overview of SystemC. Section3 is the formal

Verimag Research Report no TR-2006-6 1/15

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

setting; Section4 explains the algorithms and section5 proves the properties of the method. We present
our implementation and evaluate it in section6, related work in section7, and we conclude with section8.

2 SystemC and the Scheduling Problems

A TLM model written in SystemC is based on anarchitecture, i.e. a set of components and connections
between them. Components behavein parallel. Each component has typed connectionports, and its
behavior is given by a set of communicatingprocessesthat can be programmed in full C++. For managing
the set of concurrent processes that appear in the components, SystemC provides ascheduler, and several
synchronization mechanisms: the low-levelevents, the synchronoussignalsthat trigger an event when their
value changes, and higher level, user-defined mechanisms based on abstract communication channels.

δ

ELAB EV

-cycle

UP EV UP TE EV

time

Figure 1: Diagram of an execution

The static architecture is built by executing the so-calledelaboration phase(ELAB), which creates
components and connections. Then the scheduler starts running the processes of the components, according
to the informal automaton of figure2. Simulations of a SystemC model look like sequences ofevaluation
phases(EV). Signalsupdate phase(UP) andtime elapse(TE) separate them (see figure1).

2.1 The SystemC Scheduler

END

no eligible process

no eligible process

no eligible process

ELAB

EV

UP

TE

elect a process
and run it

advance
simulation time

signal values
update

platform
build the

eligible process

eligible process

eligible process

Figure 2: Automaton of the SystemC Scheduler

According to the SystemC Language Reference Manual [Ope03], the scheduler must behave as follows.
At the end of the elaboration phaseELAB , some processes areeligible, some others arewaiting. During the
evaluation phaseEV, eligible processes are run in anunspecified order, non-preemptively, and explicitly
suspend themselves when reaching await instruction. There are two kinds ofwait instructions: a process
may wait for some time to elapse, or for an event to occur. While running, it may access shared variables
and signals, enable other processes by notifying events, or program delayed notifications. An eligible
process cannot become “waiting” without being executed. When there is no more eligible process, signals

2/15 Verimag Research Report no TR-2006-6

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

values are updated (UP) andδ-delayed notifications are triggered, which can wake up processes. Aδ-cycle
is the duration between two update phases. Since there is no interaction between processes during the
update phase, the order of the updates has no consequence. When there is still no eligible process at the
end of an update phase, the scheduler lets time elapse (TE), and awakes the processes that have the earliest
deadline. A notification of a SystemC event can be immediate,δ-delayed or time-delayed. Processes can
thus be become eligible at any of the three steps EV, UP or TE.

2.2 Examples

void top::A() {
wait(e);
wait(20,SC_NS);
if (x) cout << "Ok\n";
else cout << "Ko\n";}

void top::B() {
e.notify();
x = 0;
wait(20,SC_NS);
x = 1;}

Figure 3: Thefoo example

To illustrate possible consequences of scheduling choices, let us introduce two small examples of Sys-
temC programs. Figure3 shows the examplefoo made of two processesA andB. It has three possible
executions according to the chosen scheduling, leading to very different results:

• A;B;A;[TE];B;A: This scheduling leads to the printing of the string “Ok”.
• A;B;A;[TE];A;B: The string “Ko” is printed. It is a typical case ofdata-race: x is tested before it

has been set to 1.
• B;A;[TE];B: The execution ends after three steps only. The “wait(e) ” statement has been executed

before any notification of evente. Since events are not persistent in SystemC, processA has not been
woken up. It is a particular form ofdeadlock.

void top::A()
as in examplefoo

void top::B()
as in examplefoo

void top::C() {
sc_time T(20,SC_NS);
wait(T);

}

Figure 4: Thefoobar example

It is useful to test all executions of thefoo example because they lead to different final states. But
consider now thefoobar example defined in figure4. foobar has 30 possible executions, but only 3
different final states. 12 executions are equivalent to “C;A;B;A;[TE];C;B;A”, 12 to “C;A;B;A;[TE];C;A;B”
and 6 to “C;B;A;[TE];C;B”. The method we present generates only 3 executions, one for each final state
(or equivalence class).

In general testing techniques, the idea of generating one representative in each class of an equivalence
relation is calledpartition-based testing[GG75]. It is not always formally defined.

2.3 Communication Actions

We callcommunication actionsall actions that affect or use a shared object. We consider only two kinds of
shared objects: events and variables. All other synchronization structures can be modeled using these two
primitives.

There are two operations on events:wait andnotify; and two operations on variables:readandwrite.
In the sequel we will distinguishcaughtnotifications (those that have woken up a process) frommissed
notifications, andwrites that have modified the current value from non-modifying ones. Of course, theses
distinctions can only be done dynamically in the general case.

Verimag Research Report no TR-2006-6 3/15

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

3 Formal Setting

We will now explain how we generate schedulings for multi-threaded models written in SystemC. In the
whole section, the SUT is a SystemC program. We suppose that we have an independent tool for generating
test cases that only contain the data. We call SUTD the object made of the SUT plus one particular test
data1. We have to generate a relevant set of schedulings for this data.

Most of the definitions in this section are quite standard in the literature on partial order reduction
techniques.

3.1 Representation of the SUTD

When data is fixed, a SUT execution is entirely defined by its scheduling; a scheduling is entirely defined
by an element of(P ∪ {δ, χ})∗ whereP is a process identifier andδ, χ are special symbols used to mark
theδ-cycle changes and time elapses respectively. We consider full states of a SUTD to be full dumps of
the SUTD memory, including the position in the code of each process. The SUTD can be seen as afunction
from the schedulings to the full states. It is partial: not all the elements of(P ∪ {δ, χ})∗ represent possible
schedulings of the SUTD (because of the synchronization constraints between processes).

Definition 1 (Schedulings) LetM be a SUTD.PM is the set of its processes;SM is the set of its reachable
full states;FM : (PM ∪ {δ, χ})∗ −→ SM is its associatedfunction. FM is partial. A schedulingis an
element of(PM ∪ {δ, χ})∗; a valid schedulingis an element of the definition domain ofFM : DFM

⊂
(PM ∪ {δ, χ})∗.

For the programs of Section2.2, we have:
• DFfoo

= {ABAχBA,ABAχAB, BAχB};
• Ffoobar(ABC) = Ffoobar(ACB) = Ffoobar(CAB).

Definition 2 (Transitions) A transitionis one execution of one process in a particular scheduling. Each
transition of a scheduling is identified by its process identifier indexed by the occurrence number of this
process identifier in the scheduling. For example, in the schedulingpqp there are 3 transitions:p1, q1 and
p2, in that order.

Definition 3 (Permutations) Let u = vpiwqj be a valid scheduling where the transitionpi (resp. qj)
corresponds to thei-th (resp. j-th) execution of processp (resp. q). Permuting the transitionspi andqj

means generating a new valid schedulingu′ such thatu′ begins byv and thej-th transition ofq in u′ is
before thei-th transition ofp: there existsx, y, z such thatu′ = vxqjypiz. u′ is called apermutation ofpi

andqj for u.

We will use lettersp, q, r to denote processes,a, b, c, . . . to denote transitions andu, v, . . . to denote
sub-sequences of schedulings. Indexes will be omitted when obvious by context. An equivalence on the set
of schedulings is needed to determine whether two schedulings lead to the same final state. We first define
the relation∼: ∀uabv ∈ DFM

, uabv ∼ ubav ⇔ (ubav ∈ DFM
∧ FM (uabv) = FM (ubav))

Definition 4 (Equivalence of Schedulings)The equivalence of schedulings is the reflexive and transitive
closure of the relation∼. It is noted≡.

This definition complies with the property:∀u, v ∈ DFM
, u ≡ v ⇒ F (u) = F (v). Therefore, if we

generate one element of each equivalence class of≡, we will have all possible final states. It allows to
detect all property violation as soon as the corresponding output checker has been included into the SUT
and drives it to a special final state when it detects an error.

1Strictly speaking, the SUT includes a data generator, not a single piece of data. But the generator does not depend on the
scheduling, hence the distinction is not necessary here.

4/15 Verimag Research Report no TR-2006-6

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

3.2 Transition Dependency and Permutation Choice

We produce alternative schedulings by permuting some transitions of a given scheduling, but only when
this can lead to a non-equivalent scheduling. For example, suppose that we are executing a SUTD and we
have just executed the processp and then the processq (u = u1piqj). If there is no causal reason why
the transitionqj was after the transitionpi (processq was not waiting for an event notified inpi), then
we can permute these two transitions. In that case, executingq instead ofp in the stateFM (u1) can be a
divergent path as illustrated on figure5. The question we have to answer is: “Do these two schedulings
lead to the same state?” or formally: “FM (u1pq) = FM (u1qp)?”. Note that me may not be able to prove
that FM (u1pq) = FM (u1qp) because we want to answer this questionwithout executingu1qp entirely.
Hence we rely on the common objects accessed by the transitions to guess whether a permutation has some
effect on the final state. This is incomplete. If we cannot prove that the final states are equal, we generate
the new scheduling.

q

q p =?

?

u1 p

Figure 5: A Potential Divergent Path, black circles represent global states of the model

A

B

t=20t=0

time

Figure 6: Dynamic Dependency Graph

We now study the two questions: which transitionscanwe permute? which transition permutations are
useful? The answer to the first question is given by thepermutability relationship; the answer to the second
question is given by thecommutativityrelationship (it is useless to permute commutative transitions).

The Dynamic Dependency Graph (DDG)represents the synchronizations that occur for a particular
scheduling. Figure6 represents the schedulingabaχba of the foo program of figure3. Each horizontal
line is a process. New cycles (δ or χ) are represented by vertical lines. Each box is a process transition.
Dashed arrows (resp. plain lines) between boxes indicate that the two transitions are dependent but not
permutable (resp. non commutative). We may move some transitions on the horizontal axis, remaining
among thevalid and equivalent schedulings, provided we do not permute two boxes linked by an arrow or
line.

Definition 5 (Permutability) The transitionsa and b are causally permutablein the valid scheduling
u1au2bu3, noted(a, b) ∈ P , if and only if: {u1v1ba ∈ DFM

|∃v2, u1v1abv2 ≡ u1au2bu3} = ∅.

In other words, two transitions are not permutable if and only if:
1. there is an equivalent scheduling in which they are consecutive;
2. the second transitionb can be elected in place of the first transitiona in this equivalent scheduling.

Definition 6 (Commutativity of Transitions) The non-causally ordered transitionsa andb are commu-
tative in the valid schedulingu1au2bu3 if and only if:
∀u1v1abv2 ≡ u1au2bu3, u1v1abv2 ≡ u1v1bav2

Commutativityis not defined for causally ordered transitions.

The theory of partial order reduction relies on the definition ofdependenttransitions [Maz87]. In our
work, we define the dependency relationshipD as follows:

Verimag Research Report no TR-2006-6 5/15

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

Definition 7 (Dependency of Transitions)The transitionsa and b are dependentif and only if they are
not permutable, or permutable but not commutative.

The causal orderspecifies which transitions can be permuted in a particular scheduling without per-
muting dependent transitions, including themselves. All schedulings of the same equivalence class have
the same causal order. Unlike the permutability relationship, the causal order is a partial order.

Definition 8 (Causal Order) The transitionsa and b are causally orderedin the valid schedulingu =
u1au2bu3, noteda ≺u b, if and only if(a, b) ∈ transitive closure of{(x, y) ∈ D|x <u y}.

4 Algorithms

4.1 Computation of the Commutativity Relationship

The first step is to detect pairs of transitions which are not commutative. We compute here a relationship
C for all pairs of transitions. This computed relationship is correct for permutable transitions, which is
sufficient for our problem. Two transitions may be non-commutative ((a, b) 6∈ C) only if they contain
non-commutativecommunication actionson the same shared object (see section2.3). Note that the order
of these actions within a transition is irrelevant. We examine all cases below.
For shared variables there are three cases of non-commutative actions (since operations on variables have
no effect on process eligibility, we just need to check whether the equality of resulting states is still verified
after permutation):

1. a readfollowed by amodifying write
2. amodifying writefollowed by aread
3. awrite followed by amodifying write

In all other cases, the transitions are commutative, as in example2. Note that the nature of awrite depends
of the scheduling we consider. Amodifying writecan become anon-modifying writefor another scheduling,
and reciprocally.

Example 1 Variable x initially set to 0. The first transition executes the actionx=x+2 . The second
executesx=4-x . It is a modifying writefollowed by areadso we consider that the two transitions are not
commutative (point 2 above).

Example 2 Variablex initially set to 2. The first transition executes the actionx=4 . The second transition
also executes this instruction. It is amodifying writefollowed by anon-modifying write.

Note thatC is symmetric, which may not be obvious from point 3 above. But permutating amodifying
write with a non-modifying writeis still a modifying writefollowed by anon-modifying write, except if
there is another pair of dependent actions. Example2 also illustrates this remark.
For events, there are three cases of non-commutative actions:

1. anotificationfollowed by await
2. await followed by anotification
3. acaught notificationfollowed by anotification

The dependency between await and anotify is quite obvious: if thewait comes first, then the corresponding
process is woken up by thenotify, otherwise it remains sleeping. Example3 illustrates the third case.

Example 3 Suppose one runs this three-process model:
• Initial state: processA waiting fore, B andCeligible.
• ProcessA: cout <<’a’; x = 1;
• ProcessB: cout <<’b’; x = 2; e.notify();
• ProcessC: cout <<’c’; e.notify();

There is exactly one transition per process, noteda, b andc. Four schedulings are valid:bac, bca, cba and
cab. In bac andbca, b is dependent witha (2 modifying writes) but they are causally ordered (processA
was enabled by the transitionb). However if we permuteb and c, b is no longer causally ordered witha
sinceA was enabled byc instead ofb.

Permuting two notifications of the same event does not modify the resulting state of the SUTD, but
modifies the computed causal order. That’s why they are considered as non-commutative.

6/15 Verimag Research Report no TR-2006-6

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

4.2 Computation of the Causal Partial Order

In order to compute the permutability, we need to compute the causal order“ ≺ ”. We note
−→
D(u) the

computed set{a, b ∈ u|a ≺ b} obtained after the execution of the schedulingu.
We compute the causal order step by step. Obviously, for the empty scheduling we have

−→
D(ε) = ∅.

Let a andb be two transitions, we havea ≺ b and so(a, b) ∈ D at least in the three following cases:
• a or b indicate a newδ-cycle or time-elapsed.
• a andb belong to the same process (by definition)
• the process of transitionb has been woken up by transitiona.

In these cases, we note:a ≺β b. The rest of the paragraph below is adapted from [FG05]. Having
−→
D(u),

we compute
−→
D(ub) as follows:

−→
D1(ub) = −→

D(u) ∪ {a ≺β b|a ∈ u}
−→
D2(ub) = −→

D1(ub) ∪ {(a, b) 6∈ C|a ∈ u}
−→
D(ub) = transitive closure of

−→
D2(ub)

Finally, we have(a, b) ∈ P in u1au2bu3 iff: (a, b) ∈ transitive closure of
−→
D1(u1au2b).

The following property is useful to optimize the implementation: Letu1au2bu3cu4 be a scheduling. Then
process(a) = process(b)∧b ≺ c ⇒ a ≺ c. Owing to this property, we can represents the causal order with
an arrayT of sizep×s wheres is the number of steps andp is the number of processes. The elementT [a, q]
is the last transition of processq which is causally beforea. Formally:a ≺ b ⇔ num(a) ≤ T [b, process(a)].
Some other optimizations are well explained in [FG05].

4.3 Generation of one alternative scheduling

We are now able to determine if two transitions are not commutative (hence should be permuted). Now we
explain how we treat such a pair of transitions. Letuavb be a scheduling such that(a, b) ∈ D ∩ P . Let
v = v1 . . . vn wherev1, . . . , vn are transitions. The goal is to generate a new valid scheduling withb before
a. We proceed as follows:

• The first partu is unmodified.
• We execute allvi such thata 6≺ vi.
• We executeb and thena (unlike some other concurrent languages,b cannot disablea in SystemC).
• Then, since two dependent transitions have been permuted, we do not know whether the non-

executed transitionsvi such thata ≺ vi are still defined. We are then free to choose the rest of
the scheduling.

4.4 Generation of a full schedulings suite

We start by executing the SUTD with a random scheduling. In parallel with the SUTD execution, we run a
checker:

• the checker computes the causal partial order “≺” and builds the Dynamic Dependency Graph.
• if it discovers two non-commutative transitionspi andqj , with pi beforeqj :

– it generates a new scheduling such thatqj beforepi by permuting the transitions with the
algorithm described above; the constraint “qj beforepi” is saved with the new scheduling to
prevent further permutations of the same transitions.

– it continues the current execution, adding the opposite constraint “pi beforeqj” to all of its
further children.

Then we replay the SUTD with each generated schedulingu. When we reach the end ofu, we continue
the SUTD execution with a random scheduling. In parallel, we compute the causal order and generate new
schedulings for each non-commutative pair of transitions, as for the previous schedulings. Thanks to the
constraints saved with the generated schedulings, each new generated scheduling is more constrained than
its father scheduling and so there are fewer and fewer new schedulings at each iteration. When the checker
does not generate any new scheduling, we have a complete test suite.

Verimag Research Report no TR-2006-6 7/15

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

Checker

Schedulings:
A;B;A;B;A
B;A

wait(e)

modify(x)

notify(e), modify(x)

read(x)

Trace:
A
B
A
A
B

SUTD.exe

Figure 7: First iteration of the analysis for thefoo example. The first execution activates processesA
and B in the orderABAAB. The checker generates two new schedulings. One to permuteA1 and
B1 (unordered accesses to evente) and the other to permuteA3 andB2 (unordered accesses to shared
variablex).

5 Properties

The algorithm guarantees that we generate at least one element of each equivalence class (for the equiva-
lence of definition4).

Theorem 1 LetGM be the set of all generated schedulings of a modelM . For any schedulingu ∈ DFM
,

there exists a schedulingv ∈ GM such thatu ≡ v.

There are two useful and direct corollaries. First, if a local process state is present in a scheduling of
DFM

, it is also present in a scheduling ofGM . Furthermore, we generate all the final states, including all
deadlocks.

To prove the property, we need the definition of≡−prefix and≡−dominant for schedulings, directly
adapted fromprefixanddominantproperties of Mazurkiewicz traces [Maz87].

Definition 9 Letp, d ∈ DFM
be two schedulings,p is an≡−prefix ofd andd an≡−dominant ofp if and

only if there exists a schedulingu ∈ DFM
such thatu ≡ d andp is a string-prefix ofu.

Proof 1 We proceed by contradiction, and assume that there exists a schedulingu ∈ DFM
which breaks

the property. We can writeu in the formu = u1au2 whereu1 is the longest prefix ofu such that:
∃u1u

′
2 ∈ DFM

andv ∈ G such thatu1u
′
2 ≡ v

This decomposition is unique so we just have to prove thatu1a has an≡−dominant inG to get the wanted
contradiction.

Let v ∈ G be a generated completed scheduling such thatu1 is a≡−prefix ofv. As a consequence,
there exists a valid schedulingu1u

′
2 such thatu1u

′
2 ≡ v If there is no non-determinism when we are in the

stateFM (u1), then we must haveu′
2 = au′

3 and sov would be a≡−dominant ofu1a.
Consequentlya is neitherδ nor χ and the process ofa is defined and eligible inFM (u). Since an

eligible process cannot become “sleeping” without running,a is present inu′
2 sou′

2 = w1aw2. Sincea is
eligible inFM (u), it is not causally after any element ofw1. There are three cases:

• if w1 is empty then we get the needed contradiction
• if w1 = xb with b I a then there exists another possible schedulingu1u

′′
2 ≡ v such thatu′′

2 = w′
1abw2

with w′
1 shorter thanw1.

• if w1 = xb with (b, a) ∈ D then:
– Transitionb is beforea in v but they are permutable.
– So we have generated a schedulingv′ with a beforeb, using the algorithm described in sec-

tion 4.3.
– There exists a possible schedulingu1u

′′
2 ≡ v′ such asu′′

2 = w′
1abw′

2 with w′
1 shorter thanw1.

Consequently, by induction on the length ofw1, we get the needed contradiction.

8/15 Verimag Research Report no TR-2006-6

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

6 Prototype Implementation and Evaluation

6.1 The prototype

Figure8 is an overview of the tool. Thechecker implements the checking algorithm of section4.4. It has
to be aware of all communication actions. Some of them can be detected byinstrumenting the SystemC
kernel, some other cannot (like accesses to a shared variable, that are invisible from the SystemC kernel).
We choose to instrument the C++/SystemC source code. For each communication action in the code of
a SystemC process, we add an instruction that notifies the operation to a global recorder. For example,
consider the instructionx=y wherex and y are shared variables. The two following instructions are
added close to the assignment:recorder->read(&y);recorder->write(&x) . Instrumentation
is based on the open-source SystemC front-end Pinapa [MMMC05b].

Another solution would have been to interpret or instrument the binaries. However, using a SystemC
front-end has some benefits: it allows to generate astatic dependency graph (SDG)which represents a
superset of the communications that can occur between processes (see Figure9). Moreover, it is easier to
link the observed behavior to the source code.

SystemC

Model

New

Schedulings

(XML)

Raw Trace

Dynamic

Dependency

Graph

Static

Dependency

Graph (DOT)

Intrumented

Model

+ mapping

Checked

Trace

(XML)

Patched
SystemC
KernelAnalyzer

Pinapa XSLT

Style−SheetChecker

Figure 8: The Prototype’s Architecture

CA B
x,e

Figure 9: Static Dependency Graph for thefoobar example. Nodes represent processes. Arrows repre-
sent possible communications between processes. An arrow goes from the master (i.e. the notifier for a
SystemC event, the writer for a shared variable) to the slave.

The instrumented SystemC program is compiled with apatched SystemC kernel. The patches are: 1)
replacing the election algorithm of the SystemC scheduler by an interactive version, still complying with
the SystemC specification; 2) adding code to record the communication actions that cannot be detected
in the code of the processes, and their consequences (e.g., enabling of a process). When we execute the
instrumented platform with the patched SystemC kernel, we can detect dependencies dynamically or save a
detailed trace and run the checker afterwards. In both cases, we get a list of new schedulings to be executed,
and a record of the computed dependencies, usable as input for other checkers or visualization tools, like
the production of the dynamic dependency graph (DDG). The current prototype is built to checkfunctional
aspects. It is not optimized for execution speed.

6.2 Evaluation

In order to validate the prototype and to evaluate the quality of the test suites produced, we studied several
industrial SoC descriptions. Assume that running one test-case takes some timeT . In order to cover the
scheduling choices, we have to run more than one test-case. Let us noteV the number ofvalid schedulings,

Verimag Research Report no TR-2006-6 9/15

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

and G the number of schedulingsgeneratedby our method. It is interesting to compareV × T with
G× T + O, whereO is the overhead due to the computation of new schedulings.

With a real application, it is often difficult to evaluateV . We chose to evaluate our method on three
examples. First, we considered a SystemC encoding of the indexer problem presented in [FG05]2, because
it is easy to evaluateV . However, the indexer is not representative of the typical SystemC code found in
industry. We then looked at two industrial case-studies: the first one has about 50 000 lines of code but
only 4 processes, and it does not model a full SoC; the second one has about 250 000 lines of code and 57
processes, and it represents a full SoC.

6.2.1 The Indexer Example

There aren components and one global 128-element array used as a hash table. Each component is com-
posed of 2 threads which communicate using a shared variable and a SystemC event. Each component
writes 4 messages in the global hash table. This corresponds to schedulings of length11× n. Forn ≤ 11,
there is no collision in the hash table and all schedulings lead to the same final state. Forn ≥ 12 there are
collisions hence non-equivalent schedulings. Our prototype generates valid schedulings leading to distinct
states of the hash table. In this example, we generate exactly one scheduling per equivalence class. The
number of generated schedulings is far smaller than the number of valid schedulings (at least3.35E11 for
n = 2, and2.43E25 for n = 3). Results are summarized in table1. Time is given only to help estimating
the curve, not as an absolute measure.

components generated schedulings time
1 . . . 11 1 ≤ 11 ms

12 8 60 ms
13 64 4 s
14 512 35 s
15 4096 5 mn

Table 1: Results for the indexer example

6.2.2 The MPEG Decoder System

This system has 5 components: a master, a MPEG decoder, a display, a memory and a bus model. There
are about 50 000 lines of code and only 4 processes. This is quite common in the more abstract models
found in industry, because there is a lot of sequential code, and very few synchronizations.

LCMPEG DISPLAY

BUS

MASTER MEMORY

Figure 10: Architecture of the MPEG decoder system

The test is stopped after the third decoded image, which corresponds to 150 transitions. One simulation
takes 0.39 s. Our tool generates128 schedulingsin 1 mn 08 s. No bug is found, which guarantees that this
test-case will run correctly on any SystemC implementation. Running the model 128 times takes more time

2For the SystemC version see the appendixes.

10/15 Verimag Research Report no TR-2006-6

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

than generating the schedulings (we haveG× T = 128× 0.39 s≈ 50 s andO ≈ 1 mn08− 50 s≈ 18 s).
Thus the overheadO remains acceptable.

On this example, we noticed that the number of generated schedulings could be improved. This MPEG
decoder, as many other TLM models, uses a pair (event, variable) to implement apersistent eventas follows
(x is initially 0):

ProcessP runs:x=1; e.notify();
ProcessQruns: if (!x) wait(e); x=0;

The two valid schedulingsP ; Q andQ ; P ; Q lead to the same final state, but our tool currently gen-
erates both schedulings because it cannot prove it. The intuition is that these schedulings are not equivalent
according to the dependency relationship as computed in section4. Detecting this kind of structures in the
source code and taking them into account for the computation of the dependency relationship would allow
to generate less schedulings.

6.2.3 A Complete SoC

Complete models of Socs are typically 3 to 6 times bigger than the MPEG decoder. We are currently
evaluating our tool on a model —let us call it XX— corresponding to a full SoC: it has about 250 000
lines of code and 57 processes. At the moment we are limited by the code instrumentation tool which still
requires some manual work, so we looked at only one case study of this type, but the instrumentation tool
will soon be fully automatic. For tests of length around 200 transitions, we expect the tool to behave well
on XX: the ability to cope with this number of processes has been tested with the indexer example, and the
ability to cope with the complexity of a large and realistic SystemC description has been tested with the
MPEG example.

The interesting point with XX is thegranularity of the transactions. With the MPEG decoder, the
granularity corresponds to an algorithm that takes one line of the image at a time. Something interesting
can be observed by a test oracle after 150 transitions only (three images have already been decoded). XX
corresponds to an algorithm that takes one pixel of the image at a time. It may be the case that the test oracle
has to observe thousands of transitions. XX is a very good case-study for observing the combined influence
of the test length and the granularity on the performances of our technique. One phenomenon we can
expect, and that we have to validate with the case-study, is the following: very abstract TLM descriptions
have large-grain transactions, but loose synchronisations; while the more detailed TLM description have
finer-grain transactions, but stronger synchronizations. If the number of alternative schedulings decreases
(because of stronger synchronizations) when the granularity of a description increases (and thus the length
of the interesting test-cases), the method may still be applicable. We also comment on this point in the
conclusion.

7 Related Work

Existing work (see, for instance [MMMC05a]) addresses formal verification for TLM models. The idea is
to extract a formal model from the SystemC code, and to translate it into the input format of some model-
checker. In such an approach, the complete model that is model-checked has to include a representation
of the scheduler. It is sufficient to use a non-deterministic representation that reflects the specification of
SystemC, and then a property that is proved with this non-deterministic scheduler is indeed true for any
deterministic implementation. Model-checking is likely to face the state-explosion problem, so testing
methods are still useful. But we need the same guarantee on the results of the test being valid for any
implementation of the simulation engine.

Partial order reduction techniques are quite old, but theirdynamicextension is quite recent. As far
as we know, it is not included in VERISOFT [God97] yet. Partial order reduction is used in many model
checkers for asynchronous concurrent programs such as Spin [Hol97] or JAVA PATHFINDER [VHBP00].
However, since we use testing, our work is more related with tools which work directly on the program
without doing abstraction, such as VERISOFTor CMC [MPC+02]. The main difference is that our tool is
adapted to the TLM SystemC constructs.

Verimag Research Report no TR-2006-6 11/15

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

To get a complete validation environment, one need to include a test case generator and an output
checker. For the latter,assertion-based verification[abv03] proposes to derive monitors from assertion
languages. However, these languages are often based on the notion of clocks which are absent in TLM. If
ABV is extended to TLM, it will become useful in our framework.

8 Conclusion and Further Work

We presented a method to explore the set of valid schedulings of a SystemC program, for a given data
input. This is necessary because the scheduling is a phenomenon due to the simulation engine only, and is
unlikely to represent anything concrete on the final SoC. Exploring alternative schedulings during testing
is a way of guaranteeing that the SoC description, and in particular the embedded software, is scheduler-
independent, hence more robust. By using dynamic partial order reduction, we maximize the coverage
and keep the number of tests as low as possible. Our tool also produces several graphical views that help
in debugging SoCs. With the prototype tool, we have highlighted unwanted non-determinism in a bus
arbiter for a transaction-accurate protocol. Also, some SoC descriptions are scheduler-dependent because
they exploit the initial state of the most used implementation. In this case, covering the valid schedulings
reveals deadlocks. Our tool is already mature enough to be used for industrial SystemC descriptions of
SoCs.

There are at least two ways of improving the prototype performances. The first is to reduce the number
of branches explored. A promising solution is to use partial state memorization. It is unrealistic to save
all the states and compare the new state at each step due to the size and complexity of a SystemC model
state. However, we can save some states and compare only particular new states. We plan to compare each
forked execution every new delta-cycle. The second way is to reduce the time overhead needed for runtime
checking. Some check results are predictable. Consequently doing static analysis before simulation can
avoid runtime computation.

Further work on testing SoCs is threefold. First, the algorithm that fully explores alternative schedulings
can be used on the large platform only if the length of the test is reasonable. A promising idea for very long
tests is to use the methodlocally on the TLM description: a first execution of the whole platform P is used
to record the output transactions of some sub-system S of P. Then, our method is applied on a platform P’
obtained by substituting S’ with S in P. S’ is a sequential algorithm that plays the recorded transactions. It
does not introduce scheduling choices. The idea is that the method then concentrates on the schedulings
due to P−S, forgetting the schedulings due to S.

Second, the whole approach and the SystemC prototype is being adapted to the exploration of non-fully
specified timings in the TLM models. Indeed, TLM models are not cycle-accurate, but people use to label
them by approximate timing properties of the components, in order to estimate the timing properties of the
SoC early. In this case, the timings should not be taken as fixed values. The embedded software will be
more robust if it works correctly for slightly distinct timings. In the testing process, it is useful to explore
alternative timings, with the same idea of generating only those timings that are likely to change the global
behavior of the SoC.

We also started working on efficient implementations of the SystemC simulation engine, by exploiting
multi-processor machines. Here, the difficulty is to guarantee that a multi-processor simulation does not
exhibit behaviors that are not allowed by the non-deterministic reference definition of the scheduler. The
formal setting we described here is appropriate for defining the set of behaviors that the multi-processor
simulation may produce, without changing the behavior of the embedded software.

12/15 Verimag Research Report no TR-2006-6

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

References

[abv03] Assertion-based verification, 2003.
http://www.synopsys.com/products/simulation/
assertion based wp.html . 7

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-
ing software. InSymposium on Principles of programming languages (POPL), pages 110–
121, New York, NY, USA, 2005. ACM Press.1, 4.2, 6.2

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data selection. In
Proceedings of the international conference on Reliable software, pages 493–510, 1975.
2.2

[Ghe05] Frank Ghenassia, editor.Transaction-Level Modeling with SystemC. TLM Concepts and
Applications for Embedded Systems. Springer, June 2005. ISBN 0-387-26232-6.1

[God97] Patrice Godefroid. Model checking for programming languages using VeriSoft. In ACM,
editor,Symposium on Principles of Programming Languages (POPL), pages 174–186, New
York, NY, USA, 1997. ACM Press.7

[Hol97] Gerard J. Holzmann. The model checker SPIN.Software Engineering, 23(5):279–295,
1997. 7

[KOW+01] T. Kuhn, T. Oppold, M. Winterholer, W. Rosenstiel, Marc Edwards, and Yaron Kashai. A
framework for object oriented hardware specification, verification, and synthesis. InDAC
’01: Proceedings of the 38th conference on Design automation, pages 413–418, New York,
NY, USA, 2001. ACM Press.1

[Maz87] A Mazurkiewicz. Trace theory. InAdvances in Petri nets 1986, part II on Petri nets:
applications and relationships to other models of concurrency, pages 279–324, New York,
NY, USA, 1987. Springer-Verlag New York, Inc.3.2, 5

[MMMC05a] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. LusSy: A toolbox for
the analysis of systems-on-a-chip at the transactional level. InInternational Conference on
Application of Concurrency to System Design, June 2005.7

[MMMC05b] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa, 2005.
http://greensocs.sourceforge.net/pinapa/ . 6.1

[MPC+02] Madanlal Musuvathi, David Park, Andy Chou, Dawson R. Engler, and David L. Dill. CMC:
A Pragmatic Approach to Model Checking Real Code. InProceedings of the Fifth Sympo-
sium on Operating Systems Design and Implementation, December 2002.7

[Ope03] Open SystemC Initiative. SystemC v2.0.1 Language Reference Manual, 2003.
http://www.systemc.org/ . 2.1

[RS03] John Rose and Stuart Swan. SCV Randomization, 2003.
www.testbuilder.net/reports/scv randomization.pdf . 1

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and Seung-Joon Park. Model checking
programs. InProc. of the 15th IEEE International Conference on Automated Software
Engineering, 2000. 7

Verimag Research Report no TR-2006-6 13/15

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

Appendix: SystemC Version of the Indexer Benchmark

#include <systemc.h>
#include <vector>
using namespace std;

#define max 4

const int size = 128;
int table[size];

int hash(int w) {
return (w*7)%size;

}

class top;
top * TOP;

class element : public sc_module
{
public:

int tid, m, h, msg;
sc_event msg_event;

SC_HAS_PROCESS(element);
element(sc_module_name name, int n) :

sc_module(name),tid(n), m(0), h(1), msg(0)
{

SC_THREAD(T);
SC_THREAD(getmsg);

}

void T() {
wait(20,SC_NS);
while (1) {

msg_event.notify();
wait(msg_event);
h = hash(msg);
while (table[h] != 0) {

h = (h+1) % size;
}
table[h] = msg;

}
}

void getmsg() {
while (m<max) {

wait(msg_event);
msg = (++m) * 11 + tid;
msg_event.notify();

}
}

};

14/15 Verimag Research Report no TR-2006-6

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, M. Moy

class top : public sc_module
{
public:

vector<element *> elements;

top(sc_module_name name,int num) :
sc_module(name) {
char s_name[16];

for (int i=0;i<num;i++) {
sprintf(s_name,"element_%d",i+1);
elements.push_back(new element(s_name,i));

}
}

};

int sc_main(int argc , char *argv[])
{

int num = 1;

if (argc > 1)
num = atoi(argv[1]);

if (num < 1)
num = 1;

if (num > 100)
num = 100;

TOP = new top("TOP",num);
sc_start(-1);
return(0);

}

Verimag Research Report no TR-2006-6 15/15

	Introduction
	SystemC and the Scheduling Problems
	The SystemC Scheduler
	Examples
	Communication Actions

	Formal Setting
	Representation of the SUTD
	Transition Dependency and Permutation Choice

	Algorithms
	Computation of the Commutativity Relationship
	Computation of the Causal Partial Order
	Generation of one alternative scheduling
	Generation of a full schedulings suite

	Properties
	Prototype Implementation and Evaluation
	The prototype
	Evaluation
	The Indexer Example
	The MPEG Decoder System
	A Complete SoC

	Related Work
	Conclusion and Further Work

