
Randomized Simulation of Hybrid Systems
For Circuit Validation

Thao Dang and Tarik Nahhal

VERIMAG
2 avenue de Vignate
38610 Gières, France

Abstract. The paper proposes a simulation-based method for validat-
ing analog and mixed-signal circuits, using the hybrid systems methodol-
ogy. This method builds upon RRT (Rapidly-exploring Random Trees),
a probabilistic path/motion planning technique in robotics with a spe-
cial property that allows to guarantee a good coverage quality. We focus
on investigating conditions for preserving this coverage property and de-
velop a variant of the classic RRTs which is more time-efficient. These
results enabled us to implement a prototype tool that can handle high
dimensional hybrid models.

1 Introduction

Due to an increasing utilization of embedded systems (systems in which the
computer interacts with the physical world), there has been a dramatic rise in
interest in analog and mixed-signal circuits. While digital circuit design can be
done with performant CAD tools, analog and mixed signal design is still much
less automated. This paper proposes a technique for validating these circuits,
based on the hybrid systems methodology. Hybrid systems are systems which
combine discrete event systems and continuous systems, and they can naturally
describe the behaviors of such circuits. Recently, much effort has been devoted
to the development of automatic analysis methods and tools for hybrid systems
based on formal verification (see recent proceedings of the conferences HSCC
Hybrid System: Computation and Control). This methodology has been success-
fully applied to some interesting examples of analog and mixed-signal circuits,
such as in [8, 4, 7]. Nevertheless, its applicability is still limited to small size sys-
tems due to the complexity of exhaustive analysis. It is clear, however, that for
large analog circuits, modeled at the transistor level (rather than at the func-
tional level), one needs lighter methods based on simulation. On the other hand,
simulation, which can be used for much larger size systems, is a standard valida-
tion method in industry, despite its limitations compared to formal verification

(algorithmic or deductive). Indeed, (non-exhaustive) simulation can only reveal
an error but does not permit proving the correctness of the system. The goal of
this paper is to bridge the gap between these two approaches by investigating a
simulation-based analysis method which can guarantee some level of confidence
in the results.

We now explain our problem more formally. We want to develop an analysis
method for hybrid systems using an available numerical simulator in combination
with a search method. This method could be guided by some coverage criteria
reflecting the simulation quality we want to achieve. For simplicity, we shall focus
only on continuous systems defined by a differential algebraic equation DAE:

F (x(t), ẋ(t), u(t)) = 0 (1)

where x ∈ X ⊆ Rn denotes the state variables and u denotes the input vari-
ables (modelling external disturbances or input signals). The above DAE permits
describing the behaviors of a large class of analog circuits. Note that the depen-
dence of the dynamics on the circuit parameters here can be captured by the
input variables (as in the example treated in Section 7). The set X is the state
space of the system. We assume a set U of admissible piecewise continuous input
functions u : R+ → U where the set U ⊂ Rm is bounded. We denote the initial
condition1 by x0. We use φ(t, x0, u(·)) to denote the value at time t ≥ 0 of the
solution of (1) with the initial condition x(0) = x0 under the input function
u(·) ∈ U . The reachable set from x0 of the system (1) is defined as:

Reach = {y ∈ X | ∃t ≥ 0 ∃u(·) ∈ U : y = φ(t, x0, u(·))}.

To simulate the system (1) by a deterministic numerical simulator, the user
needs to provide a time step h and an input function u(·). The simulator then
produces a sequence {x̄k | k = 0, 1, 2, . . .} of points, which we call a simulation
trace. If there is no numerical simulation error, ∀k > 0 : x̄k = φ(kh, x0, u(·)). In
this paper, we assume that a reliable DAE integration tool is provided.

One major problem with this ‘classic’ simulation approach is the infiniteness
of the input space and of the state space because in practice, it is only pos-
sible to simulate the system with a finite number of input functions and for
a bounded time horizon. Furthermore, the results are only a finite number of
finite sequences of points on some trajectories of the system. In other words,
a numerical simulator cannot produce in practice the output signals which are
functions from reals to reals but only their approximation in discrete time. In
general, in order to verify the system using simulation, one first needs to fix
an input signal and then check whether the simulation trace induced by this
input signal is as expected. It is thus important to choose the inputs that lead
to interesting scenarios (with respect to the property/functionality to check). To
fulfill a desired analysis objective (such as to verify a safety property) as best
1 The results can be straightforwardly extended to a set of initial conditions.

as possible, the arising question is thus how to choose appropriate simulation
paremeters, such as a time step h and a set Us of test input functions (stimuli).
Simulation coverage criteria are indeed a way to evaluate the simulation quality,
or the degree of fulfilling the desired analysis objective.

In this work, to solve the reachability problem of continuous and hybrid sys-
tems, we propose to apply RRT (Rapidly-exploring Random Trees) [20], a prob-
abilistic path and motion planning technique in robotics with a special property
that allows achieving a good coverage quality. On the other hand, simulation cov-
erage criteria are indeed a way to evaluate the simulation quality, or the degree
of fulfilling a desired validation objective. The essential ideas of our approach
can be summarized as follows:

– It is based on the RRT (Rapidly-exploring Random Tree) algorithm intro-
duced in [23, 22], a probabilistic motion planning technique in robotics. This
algorithm has been successful in finding feasible trajectories in motion plan-
ning. The idea of applying RRTs to the verification of hybrid systems was
previously explored in [6, 9, 14]. Their relationship with our work will be
dicussed in Section 8.

– We focus on determining the conditions for preserving the coverage property
of RRT in the context of reachability computation. This study enabled us
to develop a variant of the classic RRTs, which has lower complexity with
respect to the system dimension.

– A simulation coverage measure, defined in terms of the star discrepancy of
the visited points, is used to guide the simulation process.

The rest of the paper is organized as follows. In Section 2, we explain a simu-
lation algorithm based on RRT. We next prove its completeness property with
respect to the computation of the reachable set. This proof is then used to derive
a modified version of RRT, which is more time-efficient and still preserves the
completeness of RRT. The next section is devoted to the simulation coverage
measure and its estimation. We then present a variant of the RRT algorithm
which is guided by this coverage measure. We call this variant the gRRT algo-
rithm. In Section 7 we describe an implementation of these algorithms and some
experimental results including an analog circuits example. Before concluding, we
discuss related work.

2 RRT-based Simulation

2.1 Abstract Algorithm

In path and motion planning, RRT are used to find feasible trajectories connect-
ing a given set of points in a subset of the state space, which does not contain

any obstacles and is thus called the free configuration space (see [20] and the
references therein). Our abstract RRT-based simulation algorithm contains the
same main steps as the classic RRT algorithms (see for example [10]). The free
configuration space is indeed the state space X . The reachable points are stored
in a tree T , the root of which corresponds to the initial state. In iteration k, a
point xk

goal in X is sampled. This point is called a goal point because it indicates
the direction towards which the tree is expected to evolve. Note that in most
RRT algorithms, the sampling distribution of xk

goal is uniform over X . To grow
the tree towards xk

goal, first an initial point xk
init for the current integration step

is determined. In the classic RRT algorithms, the point xk
init is a nearest neigh-

bor of xk
goal (in the Euclidean distance): xk

init = argminv∈V k−1 ||xk
goal−v|| where

V k denotes the set of all vertices of the tree T at the end of iteration k. In our
abstract algorithm, we do not specify how this initial point is computed, but its
computation should satisfy some conditions which will be detailed later. Then,
the procedure BestSuccessor tries to find the input so that the corresponding
trajectory from xk

init approaches xk
goal as much as possible, and this results in

a new point xk
new. The main ingredients of the above abstract algorithm are:

Algorithm 1 RRT-based simulation algotihm
procedure RRT(x0, h)

T 0.init(x0), k = 1
repeat

xk
goal = Sampling(T k)

xk
init = InitialPoint(T k, xk

goal)

(uk, xk
new) = BestSuccessor(xk

init, h)
NewEdge(T k, xk

init, x
k
new), k + +

until k ≥ Kmax

end procedure

sampling a goal point, finding an initial point, computing a best successor. So
far, we did not detail how these functions are computed. In the next section, we
study the conditions for preserving the completeness of RRT in the context of
reachability computation.

2.2 Reachability completeness

Resolution completeness is an important property of RRT. It guarantees that
for any point x in the free configuration space, the probability that the RRT
tree T k contains a vertex which is ε-close to x tends to 1 as the number k of
iteration tends to infinity [10, 20]. This property thus makes RRT very suitable
for solving safety verification problems. However, note that the proofs of the
completeness in the path and motion planning context often assume that the

whole free configuration space is ‘controllable’ in the sense that it is possible
to reach any point in X from the initial point x0 (see for example [10]). In our
verification problem, not all the points in X are reachable from x0. Indeed, if
this were true, the verification problem would be solved. But we can still prove
the resolution completeness with respect to the computation of the reachable
set. We call this property reachability completeness. The proof of this result
follows the idea of the proof in [2]. However, the lack of the above-mentioned
controllability assumption makes the proof more complicated. We first introduce
some definitions and intermediate results.

Definition 1. For any set S ⊆ X with positive volume, if the probability that
xk

goal ∈ S is strictly positive, then we say that the sampling process satisfies the
full coverage sampling property.

It is easy to see that the uniform sampling method satisfies this property. As we
shall show later, it is a sufficient condition on the sampling process that guar-
antees the resolution completeness. In the remainder of the section, we assume
that the sampling of goal points satisfies this property.

Given x ∈ Rn and ε > 0, B(x, ε) is the ball with center x and radius ε. For a
set V of points in Rn, we denote the set

⋃
x∈V B(x, ε) by N(V, ε).

Lemma 1. Let x ∈ Reach be a reachable point. Then, for any ε > 0 there
exists a finite K such that ∃v ∈ V K : Pr[v ∈ B(x, ε)] > 0 where V K is the set
of RRT vertices at iteration K.

The proof of this lemma can be found in [5]. We point out that the proof uses
the following important assumptions:

– (A1) There is a non-null probability that each vertex in V k is selected to be
xk

init.
– (A2) If Rf is a set of reachable states with positive volume, then for all

k > 0 Pr[xk+1
new ∈ Rf] > 0. Intuitively, this assumption means that there is a

non-null probability that ‘each reachable direction’ is selected.

Theorem 1. [Reachability completeness] Given ε > 0 and a reachable point
x ∈ Reach,

limk→∞Pr[x ∈ N(V k, ε)] = 1. (2)

Proof. We first notice that the reachable set Reach is connected; therefore, for
any ε > 0 the set Br(x) = Reach ∩ B(x, ε) is always non-empty with strictly

positive volume. Hence, using the full coverage sampling property, the probability
Pr[xk

goal ∈ Br(x)] > 0 for all k > 0. We call dk(x) = minv∈V k ||x−v|| the distance
from x to V k. Initially, V 0 = {x0}, and hence d0(x) = ||x− x0||. If at iteration
k, the tree already contains a vertex inside Br(x) implying that x ∈ N(V k, ε),
then (2) is proved. It remains to prove (2) for the case where all the points in
V k are outside Br(x). We have seen that Pr[xk

goal ∈ Br(x)] > 0, and we suppose
that xk

goal ∈ Br(x). Because the whole set Br(x) is reachable, by Lemma 1, there
exists a finite k′ > k such that

∃v ∈ V k′ : Pr[v ∈ Br(x)] > 0.

Note that v ∈ Br(x) implies dk′(x) < dk(x). In addition, dk(x) is non-increasing
with respect to k; therefore the expected value of the distance to x at iteration
k′ must be smaller than that at iteration k, that is E(dk′(x)) < E(dk(x)). There-
fore, limk→∞Pr[dk(x) < ε] = 1, which means that limk→∞Pr[x ∈ N(V k, ε)] =
1 ut

.

Remark. The validity of the proof of the reachability completeness requires the
assumptions (A1) and (A2). These assumption guarantee that for any reachable
point x there is a non-null probability that the new vertex xk+1

new reduces the
distance from x to the tree. In fact, the selection of xk

goal controls the growth
of the tree by determining both the initial point xk

init and the direction of the
expansion in each iteration. Consequently, to preserve the completeness it suffices
to guarantee the satisfaction of the assumptions (A1) and (A2). The following
lemma shows a sufficient condition for (A2) to be verified.

Lemma 2. If the control set U is finite and for each u ∈ U Pr[uk = u] > 0,
then the assumption (A2) is satisfied.

The proof of this lemma can be found in [5]. In the classic RRT algorithms, the
initial point for each iteration is a nearest neighbor of the goal point, and the new
vertex is then computed by solving an optimal control problem (whose objective
is to minimize the distance to the current goal point). These two problems are
difficult, especially for non-linear systems in high dimensions. In the following,
we shall exploit the above remark to derive a variant of the RRT algorithm
which has lower complexity. Indeed, to determine the initial points we shall use
approximate nearest neighbors.

Although this completeness property is mainly of theoretical interest, it is a
way to explain the good space-covering property of the RRT algorithm, which
makes it successful in solving robotic motion planning problems. This prop-
erty also makes RRTs very suitable for our goal of developing a high-confidence
simulation-based validation method. Indeed, we build on top of the RRT algo-
rithm a guiding tool to bias the exploration in order to achieve a good coverage

of the system’s behaviors we want to check. To this end, we need a coverage
measure, which is the topic of Section4.

3 Approximate RRTs

3.1 Approximating neighbors

In this section, we show the construction of our approximate RRTs. The coor-
dinates of the tree vertices are stored in a data structure which is similar to a
kd-tree. We assume that the state space X is a box B. Each node of the tree

Algorithm 2 Compute the box that contains x

procedure ContainingLeaf(x)
s = root(T), H = ∅
while (!isLeaf(T , s)) do

k = s.axis(), d = s.pos()
if (x[k] ≥ d) then

s = s.rightChild(), σ = −1
else

s = s.leftChild(), σ = 1
end if
H = H ∪ {H(k, d, σ)}

end while
b = constructBox(H), Vs = s.ptset()

return (s, b, V)
end procedure

has exactly two children. The information associated with a node s consists of
a partitioning axis k = s.axis() and a partitioning position d = s.pos(), which
define a partitioning plane x[k] = d. The additional information associated with
a leaf is a point set Vs = s.ptset(). Each node thus corresponds to a box, defined
recursively as follows. The box of the root of the tree is B. If the box at the
node s is b, and its left and right child nodes are respectively s1 and s2, then
the boxes b1 and b2 at s1 and s2 are the results of dividing the box b by the
partitioning plane of the parent node s. We now show how to perform two im-
portant operations on the aRTT tree: adding a new point and finding a neighbor.
To add a new point x in the tree, we use the procedure ContainingLeaf in
Algorithm 2, which traverses the tree from its root to a leaf whose box contains
x; this box is thus called the containing box of x. This procedure also collects
all the half-spaces defining the containing box b and the point set V at the leaf.
Then, the new point x is added in V . In the algorithm, H(k, d, σ) denotes the
half-space defined as {x | σx[k] ≤ σd}. If the new point set needs to be split, the

box b is partitioned into two sub-boxes and two new children of s are created to
store the points inside each sub-box. It is easy to see that the containing box b
of x does not necessarily contain a nearest neighbor of x, which may indeed be
in a neighboring box. However, we restrict the search for a neighbor only within
the contaning box. More concretely, let (s, b, Vs) = ContainingLeaf(x) where
x = xk

goal, then we compute a neighbor of x as:

xk
init = argminv ∈ Vs

||x− v||. (3)

It is important to note that this approximation is sufficient to preserve the res-
olution completeness. Indeed, for any arbitrary vertex v ∈ Vs, the Voronoi cell
Cv of v with respect to b has positive volume. Due to the full coverage sam-
pling property, the probability that the goal point is in Cv ∩ b is positive and
thus the probability that v is the initial point xk

init as determined in (3) is also
positive. The reason we use this approximation is that it has lower complexity
with respect to dimension than the computation of exact nearest neighbors. It is
important to note that although the resolution completeness is preserved, exces-
sive error in this approximation might slow down significantly the convergence
of the algorithm. Consequently, we control the error by fixing a maximum size
of the containing boxes in the partition. An additional rule for partitioning is
the maximal number of points in each box.

4 Coverage Measure

As mentioned earlier, simulation coverage is a way to evaluate the simulation
quality. More precisely, it is a way to relate the number of simulations to carry
out with the fraction of the system’s behaviors effectively explored. The classic
coverage notions mainly used in software testing, such as statement coverage
and if-then-else branch coverage, path coverage (see for example [32, 28]), are
not appropriate for the trajectories of continuous and hybrid systems defined by
differential equations. However, geometric properties of the hybrid state space
can be exploited to define a coverage measure which, on one hand, has a close re-
lationship with the properties to verify and, on the other hand, can be efficiently
computed or estimated. In this work, we are interested in point coverage and
focus on a measure that describes how ‘well’ the explored points represent the
reachable set of the system. This measure is the star discrepancy in statistics,
which characterises the uniformity of the distribution of a point set within a
region.

4.1 Star Discrepancy as Simulation Coverage

In this section, we present a brief introduction of the star discrepancy. The reader
is referred to the excellent books on this topic, such as [19, 12, 25, 26].

The star discrepancy is an important notion in equidistribution theory as well
as in quasi-Monte Carlo techniques (see for example [17]).

We assume that the state space X is a box B = [l1, L1]× . . .× [ln, Ln], called
the bounding box. Given a set of k points P = {p1, p2, . . . , pk} where each point
pi is in B. The star discrepancy of P with respect to the box B is defined as:

D∗(P,B) = supJ∈Γ D(P, J)

where D(P, J) is the local discrepancy with respect to J , a subbox of B of the
form J =

∏n
i=1[li, βi] with βi ∈ [li, Li]. The set Γ is the set of all such sub-boxes.

The local discrepancy is defined as follows:

D(P, J) = |A(P, J)
k

− λ(J)
λ(B)

|

where A(P, J) is the number of points of P that are inside J , and λ(J) is the
volume of the box J . Note that 0 < D∗(P,B) ≤ 1.

Intuitively, the star discrepancy is a measure for the irregularity of a set of
points. A large value D∗(P,B) means that the points in P are not much equidis-
tributed over B.

Simulation Coverage. Let P be the set of all points explored by a simulation.
The coverage of this simulation is defined as: Cov(P) = 1−D∗(P,B). This means
that a large value of Cov(P) indicates a good coverage quality.

4.2 Estimation of the Simulation Coverage

The computation of the star discrepancy is not easy (see for example [24, 16, 31]).
Many theoretical results for one-dimensional point sets are not generalizable to
higher dimensions, and among the fastest algorithms we can mention the one
proposed in [16] of time complexity O(k1+d/2). In this work, we do not try to
compute the star discrepancy but approximate it by estimating a lower and
upper bound. These bounds are then used to decide whether the box b has been
‘well explored’ or it needs to be explored more. This estimation is based on the
results published by Eric Thiémard [26, 27]. Let us briefly recall these results.
Although in these results, the box B is [0, 1]n, we have extended to the general
case where B can be any full-dimensional box.

We define a box partition of B as a set of boxes Π = {b1, . . . , bm} such that
∪m

i=1b
i = B and the interiors of the boxes bi do not intersect. Each such box

is called an elementary box. Given a box b = [α1, β2] × . . . × [αn, βn] ∈ Π, we
define b+ = [l1, β1]× . . .× [ln, βn] and b− = [l1, α1]× . . .× [ln, αn]. Recall that
the bounding box is B = [l1, L1]× . . .× [ln, Ln] (see Figure 1 for an illustration).

B

b+

b

b−

(α1, α2)

(β1, β2)

(L1, L2)

(l1, l2)

Fig. 1. Illustration of the star discrepancy notion.

For any finite box partition Π of B, the star discrepancy D(P,B) of the point
set P with respect to B satisfies:

C(P,Π) ≤ D(P,B) ≤ B(P,Π)

where the upper bound is:

B(P,Π) = max
b∈Π

max{A(P, b+)
k

− λ(b−)
λ(B)

,
λ(b+)
λ(B)

− A(P, b−)
k

} (4)

and the lower bound is:

C(P,Π) = max
b∈Π

max{|A(P, b−)
k

− λ(b−)
λ(B)

|, |A(P, b+)
k

− λ(b+)
λ(B)

|} (5)

The imprecision of this approximation is the difference between the upper and
lower bounds, which can be bounded as follows:

B(P,Π)− C(P,Π) ≤ W (Π) = max
b∈Π

(λ(b+)− λ(b−))/λ(B) (6)

Thus, one needs to find a partition Π such that this difference is small.

5 Discrepancy Guided Sampling

In this section, we use the definition and estimation of the star discrepancy to
derive a simulation guiding strategy. Recall that our goal is to achieve a good
simulation coverage quality, which is equivalent to a low level of star discrepancy
of the explored points. More concretely, in each iteration of the RRT algorithm,
the goal point sampling distribution is no longer uniform but biased according
to the star discrepancy of the current set of explored points.

Let Π be a finite box partition of B that is used to estimate the star discrep-
ancy. The sampling process consists of two steps:

– Step 1: sample an elementary box b ∈ Π.
– Step 2: sample a point in b.

The sampling in Step 2 is uniform. In the following, we show how to biase the
elementary box sampling distribution in Step 1 in order to optimize the star
discrepancy.

Let P be the set of the vertices of the tree after k iterations. We assume that
the new point computed in each iteration is always added in the tree; hence, the
number of points in P is exactly k. Indeed, in order to reduce the complexity
of the RRT algorithm, it is sometimes preferable not to add a new point if it is
too close to an existing point, since the new point does not significantly improve
the coverage. We assume further that after the iteration k, no splitting is needed
and the partition Π is thus unchanged.

The intuition behind our strategy is to favor the selection of an elementary box
such that a new point x added in this box results in a smaller star discrepancy
of the new point set P ∪ {x}. The strategy is determined so as to reduce both
the lower bound C(P,Π) and the upper bound B(P,Π).

5.1 Reducing the lower bound

We consider a set P̃ of k points in the box B such that for any box b ⊆ Π, we
have

λ(b)
λ(B)

=
A(P̃ , b)

k

where A(P̃ , b) is the number of points inside b∩ P̃ . Note that P and P̃ have the
same cardinality. We denote

∆A(b) = A(P, b)−A(P̃ , b),

which is the difference in the number of points inside b, when comparing P with
P̃ . Denote c(b) = max{|∆A(b+)|, |∆A(b−)|}, and the lower bound of the star
discrepancy of the point set P over the bounding box B becomes:

C(P,Π) =
1
k

max
b∈Π

{c(b)} (7)

Note that in comparison with P̃ , the negative (respectively positive) sign of
∆A(b) indicates that in this box there is a lack (respectively an excess) of points;
its absolute value indicates how significant the lack (or the excess) is. We observe
that adding a point in b reduces |∆A(b+)| if ∆A(b+) < 0, and increases |∆A(b+)|

otherwise. However, doing so does not affect ∆A(b−) (see Figure 1). Thus, we
define a function reflecting the potential influence on the lower bound as follows:

ξ(b) =
1−∆A(b+)/k

1−∆A(b−)/k
, (8)

and we favor the selection of the box b if the value ξ(b) is large. Note that:
1−∆A(b)/k > 0 for any box b inside B. The intepretation of ξ is as follows. If
∆A(b+) is negative and its absolute value is large, the ‘lack’ of points in b+ is
significant. In this case, ξ(b) is large, meaning that the selection of b is favored.
On the other hand, if ∆A(b−) is negative and its absolute value is large, then
ξ(b) is small, because it is preferable not to select b in order to increase the
chance of adding new points in b−.

5.2 Reducing the upper bound

The upper bound in (4) can be rewritten as

B(P,Π) = max
b∈Π

fm(b) (9)

where fm(b) = max{fc(b), fo(b)} and

fc(b) =
A(P, b+)−A(P̃ , b−)

k

fo(b) =
A(P̃ , b+)−A(P, b−)

k

Since the value of fm is determined by the comparison between fc and fo. After
straightforward calculations, the inequality fc(b) − fo(b) ≤ 0 is equivalent to
fc(b)− fo(b) = 1

k (∆A(P, b+) + ∆A(P, b−)) ≤ 0. Therefore,

fm(b) =
{

fo(b) if ∆A(b+) + ∆A(b−) ≤ 0,
fc(b) otherwise.

(10)

Again, note that adding a point in b increases fc(b), but this does not affect
fo(b). To reduce fo(b) we need to add points in b−. Hence, if b is a box in Π that
maximizes fm in (9), it is preferable not to add more points in b but in the boxes
where the values of fm are much lower than the current value of B(P,Π) (in
particular those inside b−). Using the same reasoning for each box b locally, the
smaller |∆A(P, b+)+∆A(P, b−)| is, the smaller sampling probability we give to b.
Indeed, as mentioned earlier, if fm(b) = fc(b), increasing fc(b) directly increases
fm(b). On the other hand, if fm(b) = fo(b), increasing fc(b) may make it greater
than fo(b) and thus increase fm(b), because small |∆A(P, b+) + ∆A(P, b−)|
implies that fc(b) is close to fo(b).

We define two functions reflecting the global and local potential influences on
the upper bound:

βg(b) = B(P,Π)− fm(b) (11)

and
βl(b) = |∆A(P, b+) + ∆A(P, b−)|/k (12)

We can verify that βg(b) and βl(b) are always positive.

Now, combining the above functions with the function ξ in (8) that describes
the potential influence on the lower bound, we define:

κ(b) = γξξ(b) + γgβg(b) + γlβl(b)

where γξ, γg, and γl are non-negative weights that can be user-defined param-
eters. Then, at the iteration k + 1, the probability of choose the box b can be
defined as follows:

Pr(b) =
κ(b)∑

b∈Π κ(b)
(13)

6 Guided RRT algorithm

In order to guide the simulation by the star discrepancy, we need to perform the
operatio of updating the discrepancy estimation.

Fig. 2. Illustration of the update of the star discrepancy estimation.

Update the discrepancy estimation. When a new point x is added in the tree,
the estimation of the star discrepancy needs to be updated. More concretely, we

need to find all the elementary boxes b such that the new point has increased
the number of points in the corresponding b− and b+. These boxes are indeed
those which intersect with the box Bx = [x1, L1]× . . .× [xn, Ln]. In addition, if
b is a subset of Bx, the numbers of points in both the boxes b+ and b− need to
be incremented; if b intersects with Bx but is not entirely inside Bx, only the
number of points in b+ needs to be incremented.

Searching for all the elementary boxes that are affected by x can be done by
traversing the tree from the root and visiting all the nodes the boxes of which
intersect with Bx. In the example of Figure 2, the box Bx is the dark rectangle,
and the nodes of the trees visited in this search are drawn as dark cirles.

6.1 Preservation of the completeness property

The proofs of the completeness of RRTs are often established for the algorithms
where the goal point sampling distribution is uniform and other operations are
exactly computed (see for example [10]). We identify the following sampling
condition: the probability that each point in the current tree is selected to be
the initial point xk

init is strictly positive. We can prove that this condition is
sufficient for the completeness proofs to remain valid, even when the sampling
distribution is non-uniform [5]. Note that to show that this sampling condition
is satisfied, it suffices to prove that: for any set S ⊆ X with positive volume, the
probability that xk

goal ∈ S is strictly positive. It is easy to see that the uniform
sampling method satisfies this condition. We now give a sketch of proof that our
guided sampling method and nearest neighbor approximation also satisfy it.

We first observe that, in Step 1 of the sampling method, the elementary box
sampling distribution guarantees that any box has non-null probability of being
selected. We consider only the case where the elementary box b where we search
for a neighbor of x is also the one that contains x (the other case can be handled
similarly). Let Pr(b) be the set of explored points that are inside b. Let Vb be
the Voronoi diagram of Pr(b) restricted to b and Cp the corresponding Voronoi
cell of an explored point p. Recall that the Voronoi cell of a point p is the set
of all points that are closer to p than to any other point. We can prove that
the volume of Cp is strictly positive. Since the sampling distribution within b
in Step 2 is uniform, the probability that p is the approximate neighbor is also
positive. It then follows that any point in the tree has positive probability of
being selected to be the initial point xk

init.

7 Experimental results

We have implemented the above-described gRRT algorithm in a prototype tool
which allows us to evaluate its practical performance. We first show the result

on two non-linear systems, one of which is a simple analog circuit. Then, to
evaluate the scalability of the method, we test it on a set of linear systems
in various dimensions (up to 100). The results reported here were obtained by
running the tool on a 1.4 GHz Pentium III under Linux.

Tunnel Diode Circuit. We use a tunnel diode circuit [3] to illustrate the ap-
plication of our approach to analyze the circuit behavior under parameter and
input variations. The state variables (x1, x2) = (I, Vd) where I is the current
through the inductor and Vd is the voltage across the diode (see Figure 3). The
differential equations describing the behavior of the circuit are:

ẋ1 = 1
C (−ι(x2) + x1)

ẋ2 = 1
L (E −Rx1 − x2)

where C = 2pF , L = 5nH, E = 1.2V , R = 1.5kΩ, the non-linear current-voltage
characteristics of the tunnel diode is defined as

Id = ι(Vd) = 17.76Vd − 103.79V 2
d + 229.62V 3

d − 226.31V 4
d + 83.72V 5

d .

We study the behavior of the circuit under two types of variations: the variation

Fig. 3. The tunnel diode circuit and its phase portrait

on the diode characteristic modeled by Id = ι(Vd) + ∆ι and the source voltage
variation ∆E . These variations (∆ι,∆E) can be considered as disturbance input
variables the range of which in this experiment is [−0.12,−0.12]×[−0.1, 0.1]. The
initial point is the unstable equilibrium state (0.29, 0.6) and the randomly goal
point is generated inside the rectangle [−0.2,−0.2]× [1.25, 1.25]. Figure 4 shows
the simulation result (after 30s), which is consistent with the phase portrait and
has a high coverage quality.

Fig. 4. Simulation results for the tunnel diode circuit

Competing specie model. The populations of two competing species can be de-
scribed by the following equations:

ẋ = 2x(1− x/2)− xy + u1

ẏ = 3y(1− y/3)− 2xy + u2

We let their dynamics be slightly perturbed by an additive input u. The phase
portrait of the dynamics is shown in Figure 5. The first two pictures show the
simulation results after 50000 iterations, using the basic RRT and gRRT algo-
rithms. The basic RRT algorithm we implemented uses the uniform sampling
and exact nearest neighbors in the Euclidian distance, and we did not include
any improvements proposed in the RRT literature.

The algorithms were run with the same initial points (100 points taken from
a grid in the box [0.2, 0.5]× [0.2, 0.5], with the same integration step h = 0.002
and with the same set of discrete input values u (100 values from a grid in
[−0.05, 0.05] × [0.05, 0.05]). The run time of the RRT algorithm is 50 seconds

and that of the gRRT algorithm is 1.2 minutes. From Figure 6 we can see that
the coverage of the gRRT algorithm is better. Indeed, the better coverage result
of the gRRT algorithm can be explained as follows. Due to the uniform sampling
of goal points, the basic RRT exploration is biased by the Voronoi diagram of
the vertices of the tree. More precisely, if the volume of the Voronoi cell of a
node has a large volume, the node has a high probability of being selected to be
the initial point xk

init. If the actual reachable set is only a small fraction of the
state space, the uniform sampling over the whole state space leads to a strong
bias in selection of the points on the boundary of the tree, and the interior of
the reachable set can only be explored after a large number of iterations. Indeed,
if the reachable was known, sampling within the reachable set would produce
better coverage results. In the gRRT algorithm, in each iteration, the sampling
distribution is guided towards optimizing the coverage, using the discrepancy
information of the current set of explored points.

Fig. 5. Competing species model: phase portrait.

Linear Systems. We implemented the test generation algorithm using C++ in
a prototype tool, and the results reported here were obtained by running the
tool on a 1.4 GHz Pentium III. First, to demonstrate the performance of our
algorithm, we use a set of examples of linear systems ẋ = Ax + u in various
dimensions. In this experiment, we did not exploit the linearity of the dynamics
and the tested systems were randomly generated: the matrix A is in Jordan
canonical form, each diagonal value of which is randomly chosen from [−3, 3]
and the input set U contains 100 values randomly chosen from [−0.5, 0.5]n. We
fix a maximal number Kmax = 50000 of visited states. In terms of coverage, the
star discrepancy of the results obtained by our algorithm and the classic RRT
algorithm are shown in Table 1 (left), which indicates that our algorithm has
better coverage quality. These discrepancy values were computed for the final
set of visited states, using a partition optimal w.r.t. to the imprecision bound
in (6). Note that in each iteration of our test generation algorithm we do not
compute such a partition because it is very expensive. The results obtained on

Fig. 6. Competing species model: results using the basic RRT algorithm (above) and
results obtained using the gRRT algorithm (below).

a 2-dimensional system are visualized in Figure ??. Table 1 (right) shows the
time efficiency of our algorithm for linear systems of dimensions up to 100.

dim n Lower bound Upper bound

Algo 1 RRT Algo 1 RRT

3 0.451 0.546 0.457 0.555

5 0.462 0.650 0.531 0.742

10 0.540 0.780 0.696 0.904

dim n Time (min)

5 1

10 3.5

20 7.3

50 24

100 71

Table 1. Discrepancy results and computation time for some linear systems.

Hybrid Systems. To illustrate the application of our algorithm to hybrid systems,
we use the well-known aircraft collision avoidance problem [30]. The dynamics of
each aircraft is as follows: ẋi = vcos(θi) + d1sin(θi) + d2cos(θ2), ẏi = vsin(θi)−
d1cos(θi) + d2sin(θ2), θ̇i = ω where xi, yi describe the position and θi is the
relative heading. The continuous inputs are d1 and d2 describing the external
disturbances on the aircrafts and −δ ≤ d1, d2 ≤ δ. There are three discrete
modes. At first, each aircraft begins in straight flight with a fixed heading (mode
1). Then, as soon as two aircrafts are within the distance between each other,
they enter mode 2, at which point each makes an instantaneous heading change
of 90 degrees, and begins a circular flight for π time units. After that, they switch
to mode 3 and make another instantaneous heading change of 90 degrees and
resume their original headings from mode 1. Thus for N aircrafts, the system has
3N + 1 continuous variables (one for modeling a clock). The result for N = 2
aircrafts with the disturbance bound δ = 0.06 is shown in Figure 7. In this
example, the collision distance is 5 and no colission was detected after visiting
10000 states. The computation time was 0.9 min. For the same example with
N = 10 aircrafts (see Figure 8), the computation time was 10 min and a collision
was detected after visiting 50000 states.

8 Related work

The RRT algorithm have been used to solve a variety of reachability-related
problems such as hybrid systems planning, control, verification and testing (see
for example [14, 15, 6] and references therein). In this section, we only discuss a
comparison of our approach with some existing RRT-based approaches for the
validation of continuous and hybrid systems.

The problem of defining a coverage measure was investigated in [15], where
the authors proposed a discretized version of dispersion, defined over a set of

Fig. 7. Two-aircraft collision avoidance (10000 visited states, computation time: 0.9
min).

Fig. 8. Eight-aircraft collision avoidance (50000 visited states, computation time: 10
min).

grid points with a fixed size δ. The spacing sg of a grid point g is the distance
from g to the tree if it is smaller than δ, and sg = δ otherwise. Let S be the
sum of the spacings of all the grid points. This means that the value of S is
the largest when the tree is empty. Then, the coverage measure is defined in
terms of how much the vertices of the tree reduce the value of S. While in our
work, the coverage measure is used to guide the simulation, in [15] it is used
as a termination criterion. On the other hand, the star discrepancy was also
used in a number of deterministic variants of the probabilistic path and motion
planning algorithms (see for example [13]). This is to enhance the uniformity
of sampled goal points over the state space, compared to the methods based on
pseudo-random number generations. In our work, we use this notion to describe
the actual coverage of the explored points.

In the definition and computation of a nearest neighbor, besides the use of
different distances, controllability can be taken into account by exploiting the
particularity of the dynamics and the exploration history [14, 15, 6]. Our nearest
neighbor approximation can be thought of as a special definition of nearest
neighbors. We remark that, in this paper we did not yet exploit the controllability
information.

Finally, our idea of guiding the simulation via the sampling process has some
similarity with the sampling domain control [29]. As mentioned earlier, the RRT
exploration is biased by the Voronoi diagram of the vertices of the tree. If there
are obstacles around such vertices, the expansion from them is limited and choos-
ing them frequently can slow down the exploration. In the dynamic-domain RRT
algorithm, the domains over which the goal points are sampled need to reflect
the geometric and differential constraints of the system, and more generally, the
controllability of the system. A similar idea was used in [15] where the number
of successful iterations is used to define an adaptive biased sampling. Thus, the
difference which is also the novelty in our guiding method is that we use the in-
formation about the current coverage of the explored points in order to improve
it. However, this can be combined with controllability information to achieve
more efficient guiding strategies.

9 Conclusion

In this paper we described a simulation-based approach for the validation of
continuous and hybrid systems. This approach is built upon the RRT algorithm,
a robotic motion planning technique. The contribution of our paper is a way
to guide the simulation by a coverage measure defined in terms of the star dis-
crepancy of the explored points. The final result of the paper is gRRT, a guided
version of the RRT algorithm. The experimental results obtained using an im-
plementation of the gRTT algorithm show its scalability to high dimensional
systems and an improvement in simulation coverage quality. A number of di-
rections for future research can be identified. One direction is to extend the

approach to hybrid systems. Convergence rate of the gRRT algorithm is another
interesting theoretical problem to tackle. This problem is particular hard espe-
cially in the verification context where the system is subject to uncontrollable
inputs. We are also interested in defining a measure for trace coverage. Finally,
we intend to apply the results of this research to develop a simulation-based tool
specialized for analog and mixed-signal circuits, a domain where simulation is a
widely used technique.

Although the paper focused on analog systems, the results can be straightfor-
wardly extended to hybrid systems by using a hybrid systems numerical simu-
lator, such as Simulink/Matlab. We intend to continue this work in a number of
directions. On one hand, we are currently working on a coverage measure allow-
ing a better bias towards the behaviors interesting with respect to the property to
prove. This measure should also take into account discrete transitions in hybrid
models. On the other hand, in this paper we assumed a reliable simulator which
accurately computes new successor points. However, there are delicate numerical
analysis problems associated with high index differential algebraic equations of
a number of practical circuits which, if not handled carefully, may lead to unre-
liable simulation results or to prohibitively-slow computation. We thus intend to
combine our RRT-based method with a recent numerical integration technique
based on the non-smooth approach [1], developed at INRIA Rhônes-Alpes.

References

1. V. Acary and F. Pérignon. SICONOS: A software platform for modeling, simu-
lation, analysis and control of Non Smooth Dynamical system. Proc. of MATH-
MOD, ARGSIM Verlag, 2006.

2. P. Cheng and S. M. LaValle, Resolution complete rapidly-exploring random
trees, In Proc. IEEE Int’l Conference on Robotics and Automation, pages 267–
272, 2002.

3. L. O. Chua, C. A. Desoer, and E. S. Kuh. Linear and nonlinear circuits.
McGraw-Hill Book Company, 1987.

4. T. Dang, A. Donzé, and O. Maler. Verification of analog and mixed-signal
circuits using hybrid systems techniques. In FMCAD, LNCS, Springer, 2004.

5. T. Dang and T. Nahhal. Randomized simulation of hybrid systems. Technical
report, Verimag, IMAG, May 2006.

6. A. Bhatia and E. Frazzoli. Incremental Search Methods for Reachability Anal-
ysis of Continuous and Hybrid Systems. HSCC, LNCS 2993, pages 142-156,
Springer, 2004.

7. Proceeding of Workshop on Formal Verification of Analog Circuits (ETAPS
Satellite Event), Edinburgh, ENTCS 153(2), 2005.

8. W. Hartong, L. Hedrich, and E. Barke. On discrete modelling and model check-
ing for nonlinear analog systems. In Computer Aided Verification, LNCS 2404,
401–413, Springer, 2002.

9. J. Kim, J. M. Esposito, and V. Kumar. An RRT-based Algorithm for Testing
and Validating Multi-Robot Controllers. In Robotics: Science and Systems,
Cambridge, MA, 2005.

10. J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Proc. IEEE Int. Conf. on Robotics and Automation,
995–1001, 2000.

11. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Algorithmic and Computational Robotics: New Directions, pages
293–308. A K Peters, Wellesley, MA, 2001.

12. J. Beck and W. W. L. Chen. Irregularities of Distribution. Cambridge Univer-
sity Press, 1987.

13. S.M. LaValle, M.S. Branicky, and S.R. Lindemann. On the relationship between
classical grid search and probabilistic roadmaps. Intl. Journal of Robotics Re-
search. 23(7-8):673-692, August 2004.

14. M. S. Branicky, M. M. Curtiss, J. Levine, and Stuart Morgan. Sampling-based
reachability algorithms for control and verification of complex systems. Proc.
Thirteenth Yale Workshop on Adaptive and Learning Systems, New Haven, CT,
30 May-1 June 2005.

15. J.M. Esposito, J. Kim, and V. Kumar. Adaptive RRTs for validating hybrid
robotic control systems. In Int. Workshop on the Algorithmic Founddations of
Robotics , Zeist, Netherlands, 2004.

16. D. Dobkin and D. Eppstein. Computing the discrepancy. In Proceedings of the
Ninth Annual Symposium on Computational Geometry, pages 47-52, 1993.

17. Entacher, K. Discrepancy Estimates Based on Haar Functions. Math. Comput-
ers in Simulation 55, 49-57, 2001.

18. B. Krogh, J. Kapinski, O. Maler, and O. Stursberg. On systematic simulation
of continuous systems. In Hybrid Systems: Computation and Control HSCC’03,
LNCS 2623, pages 283-297, 2003.

19. L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley,
New York, 1974.

20. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Algorithmic and Computational Robotics: New Directions, pages
293–308. A K Peters, Wellesley, MA, 2001.

21. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Int.
Journal of Robotic Research 20, 378-400, 2001.

22. S. M. LaValle and J. Kuffner. Randomized kinodynamic planning. In Proc. of
the 1999 IEEE Int. Conf. on Robotics and Automation, 1999.

23. S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technival report 98-11, Iowa State University, Ames, IA, 1998.

24. H. Niederreiter. Discrepancy and convex programming. Ann. Mat. Pura Appl.
93, pp 89-97, 1972.

25. J. Matousek. Geometric Discrepancy. Springer-Verlag, 1999.
26. E. Thiémard. Computing bounds for the star discrepancy. Computing

65(2):169-186, 2000.
27. E. Thiémard. An algorithm to compute bounds for the star discrepancy. J.

Complexity 17(4):850, Dec 2001.
28. J. Tretmans. Testing Concurrent Systems: A Formal Approach. In Int. Con-

ference on Concurrency Theory CONCUR, LNCS 1664, Springer, 1999.
29. A. Yershova, L. Jaillet, T. Simeon, and S.M. LaValle. Dynamic-domain RRTs:

Efficient exploration by controlling the sampling domain. In Proc. IEEE Inter-
national Conference on Robotics and Automation, 2005.

30. I. Mitchell and C. Tomlin. Level Set Methods for Computation in Hybrid
Systems HSCC, LNCS 1790, Springer, 2000.

31. P. Winker and K.-T. Fang. Application of threshold accepting to the evaluation
of the discrepancy of a set of points. SIAM J. Numer. Anal. 34, pp 20282042,
1997.

32. H. Zhu, P.A.V. Hall, and J.H.R. May. Software Unit Test Coverage and Ade-
quacy. In ACM Computing Surveys, 29, 4. Dec. 1997.

