
David Stauch

Modifying Contracts with Larissa Aspects

David Stauch

Verimag, Centréequation - 2, avenue de Vignate, 38610 GIÈRES — France

January 22, 2007

Abstract:

This paper combines two successful techniques from software engineering, aspect-oriented program-
ming and design-by-contract, and applies them in the context of reactive systems. For the aspect language
Larissa and contracts expressed with synchronous observers, we show how to apply an aspectasp to a
contractC and derive a new contractC ′, such that for any programP which fulfills C, P with asp fulfills
C ′. We validate the approach on a medium-sized example. A shorter version of report has been submitted
to the SLA++P ’07 workshop.

1 Introduction

1.1 Synchronous Languages and Aspect-Oriented Programming

Aspect-oriented programming (AOP) offers facilities to a base language which aim at encapsulatingcross-
cutting concerns. These are concerns that cannot be properly captured into a module by the decomposition
offered by the base language. AOP languages express crosscutting concerns inaspects, andweave(i.e.
compile) them in the program with an aspect weaver.

All the aspect extensions of existing languages (like AspectJ [7]) share two notions: pointcuts and
advice. Apointcutdescribes, with a general property, the program points (calledjoin points) where the
aspect should intervene (e.g., all the methods of the classX, all the methods whose name containsvisit ,
etc.). Theadvicespecifies what has to be done at each join point (execute a piece of code before the normal
code of the method, for instance).

Most existing aspect languages cannot be used in the context of reactive systems, because they lack
the semantic properties needed for formal verification, and the programming languages used for reactive
systems are often different from general-purpose programming languages. Therefore, we developed the
aspect language Larissa [1] as an extension to the synchronous programming language Argos. Argos is a
hierarchical automata language, based on Mealy machines. It seems a good candidate as a base language,
as it is the simplest language with the parallel structure which we want to crosscut, and which is typical
for synchronous languages. Larissa has strong semantic properties, like the preservation of equivalence
between programs. The approach presented in this paper strongly depends on these properties.

1.2 Synchronous Languages and Design-by-Contract

Design-by-Contract [14] is a design principle, originally introduced for object-oriented systems, where
a method is specified by a contract. A contract is a specification in form of an implication between an
assumption clause and a guarantee clause. A method fulfills its contract if after its execution, the guarantee
holds if the assumption was true when the program was called.

Contracts have been adapted to reactive systems by [12]. Reactive systems constantly receive inputs
from their environment, and emit outputs to it. Therefore, it seems natural to let assumptions restrict the
inputs, and let guarantees ensure properties on the outputs. Additionally, what a program is allowed to
do often depends to a large extent on previous occurrences of signals. A convenient way to express such
temporal properties over input and output traces are observers. An observer [6] is a program that observes
the inputs and the outputs of the program, without modifying its behavior, and computes a safety property
(in the sense of safety/liveness properties as defined in [8]). Observers have a single outputerr , which is
emitted to show that a trace is not accepted. They can be expressed in the same language as the program.

Verimag Research Report no TR-2006-10 1/15

David Stauch

Error

true/err
a

a

a/err

(b)(a)

b

b

Error
b

b

b/err

true/err

(c)

Error
b/err
b

true/err
a.b

Figure 1: The contract for the MFF. Notations: in each automaton, the initial state is denoted with a little ar-
row; the label on transitions are expressed by “triggering condition / outputs emitted ”,
e.g. a transition labelled by “a/b ” is triggered whena is true and emitsb. Negation is expressed with an
overbar, and conjunction with a dot.

1 c l a s s c{
2 /∗ @assume i< 10 ∗ /
3 /∗ @guarantee\result< 10 ∗ /
4 i n t m(i n t i) { . . .}
5 }
6

7 po i n t cu t pcm (i n t i) : c a l l (i n t c .m(i n t)) && args (i) ;
8

9 i n t around (i n t i) : pcm (i){
10 re turn 1 + proceed(i + 1) ;
11 }

Figure 2: Example of a contract in presence of an AspectJ aspect.

As an example, consider the following contract for a mono-stable flip-flop (MFF) with one inputa
and one outputb. The contract is composed of an assumption, shown in Figure1(a), which states thata’s
always occur in pairs, and a guarantee consisting of two automata, shown in Figures1(b) and (c), which
are composed in parallel. The automaton in Figure1(b) guarantees that a singleb is never emitted, and
the automaton in Figure1(c) guarantees that whena occurs while nob is emitted,b is emitted in the next
instant.

1.3 Combining Contracts and Aspects

AOP and design-by-contract can hardly be used concurrently. Obviously, the contract of a program is
invalidated when an aspect is applied to it. Consider the AspectJ example in Figure2. The pointcut (line
7) intercepts calls to methodm(line 4), and the around advice (lines 9–11) modifies the intercepted calls
by adding1 to the argument, then callingm through the proceed statement, and adding1 to the result.
This modifies both the initial assumption (line 2) and guarantee (line 3) ofm. However, we can give a new
contract formin this case. To ensure thatmis called according to its initial specification, the assumption
must be changed toi < 9. On the other hand, the value returned bymmay be higher than specified by the
original guarantee in the presence of the aspect: we can only guarantee that\result< 11, providedmdoes
not call itself recursively.

Deriving such new contracts appears to be an interesting approach to combine AOP and contracts. How-
ever, this seems very difficult for contracts for Java programs and AspectJ, and it is not clear if meaningful
contracts could be derived. In this paper, we present a way to derive new contracts for Argos programs and
Larissa aspects. The idea is to apply an aspectasp to a contractC and obtain a new contractC ′, such that
if P fulfills C, thenP / asp fulfills C ′.

The remainder of the paper is structured as follows: Section2 defines Argos and Larissa; Section3
describes how to derive a new contract from a contract and an aspect; Section4 validates the approach on
a larger example; Section5 describes related work; and Section6 concludes.

2/15 Verimag Research Report no TR-2006-10

David Stauch

2 Argos and Larissa

This section presents a restriction of the Argos language [13], and the Larissa extension [1]. Argos is de-
fined as a set of operators on complete and deterministic input/output automata communicating via Boolean
signals. The semantics of an Argos program is given as a trace semantics that is common to a wide variety
of reactive languages.

2.1 Traces and trace semantics

Definition 1 (Traces). Let I, O be sets of Boolean input and output variables representing signals from
and to the environment. Aninput trace, it, is a function: it : N −→ [I −→ {true , false }]. An
output trace, ot, is a function:ot : N −→ [O −→ {true , false }]. We denote byInputTraces (resp.
OutputTraces) the set of all input (resp. output) traces. A pair(it, ot) of input and output traces (i/o-
traces for short) provides the valuations of every input and output at each instantn ∈ N . We denote by
it(n)[i] (resp.ot(n)[o]) the value of the inputi ∈ I (resp. the outputo ∈ O) at the instantn ∈ N .

A set of pairs of i/o-tracesS = {(it, ot) | it ∈ InputTraces ∧ ot ∈ OutputTraces} is deterministic
iff ∀(it, ot), (it′, ot′) ∈ S . (it = it′) =⇒ (ot = ot′).

A set of pairs of i/o tracesS = {(it, ot) | it ∈ InputTraces ∧ ot ∈ OutputTraces} is completeiff
∀it ∈ InputTraces . ∃ot ∈ OutputTraces . (it, ot) ∈ S.

A set of traces is a way to define the semantics of an Argos programP , given its inputs and outputs.
From the above definitions, a programP is deterministicif from the same sequence of inputs it always
computes the same sequence of outputs. It iscompletewhenever it allows every sequence of every eligible
valuations of inputs to be computed. Determinism is related to the fact that the program is indeed written
with a programming language (which has deterministic execution); completeness is an intrinsic property
of the program that has to react forever, to every possible inputs without any blocking.

2.2 Argos

The core of Argos is made of input/output automata, the synchronous product, and the encapsulation.
The synchronous product allows to put automata in parallel which synchronize on their common in-

puts. The encapsulation is the operator that expresses the communication between automata with the syn-
chronous broadcast: if two automata are put in parallel, they can communicate via a signals. This signal
is an input of the first automaton and an output of the second. The encapsulation operator computes this
communication and then hides the signals. The semantics of an automaton is defined by a set of traces,
and the semantics of the operators is given by translating expressions into flat automata.

Definition 2 (Automaton). AnautomatonA is a tupleA = (Q, sinit , I,O, T) whereQ is the set of states,
sinit ∈ Q is the initial state,I andO are the sets of Boolean input and output variables respectively,
T ⊆ Q × Bool(I) × 2O × Q is the set of transitions.Bool(I) denotes the set of Boolean formulas with
variables inI. For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q are the source and target states,` ∈ Bool(I) is the
triggering condition of the transition, andO ⊆ O is the set of outputs emitted whenever the transition is
triggered. Without loss of generality, we consider that automata only have complete monomials as input
part of the transition labels.

Thesemanticsof an automatonA = (Q, sinit , I,O, T) is given in terms of a set of pairs of i/o-traces.
This set is built using the following functions:

S stepA : Q× InputTraces×N −→ Q
O stepA : Q× InputTraces×N \ {0} −→ 2O

S step(s, it, n) is the state reached from states after performingn steps with the input traceit; O step(s, it,
n) are the outputs emitted at stepn:

n = 0 : S stepA(s, it, n) = s

n > 0 : S stepA(s, it, n) = s′ O stepA(s, it, n) = O

where∃(S stepA(s, it, n− 1), `, O, s′) ∈ T ∧ ` has value true forit(n− 1) .

Verimag Research Report no TR-2006-10 3/15

David Stauch

We noteTraces(A) the set of all traces built following this scheme:Traces(A) defines the semantics
of A. The automatonA is said to bedeterministic(resp. complete) iff its set of tracesTraces(A) is
deterministic (resp. complete) (see Definition1). Two automataA1,A2 aretrace-equivalent, notedA1 ∼
A2, iff Traces(A1) = Traces(A2).

Definition 3 (Synchronous Product). LetA1 = (Q1,sinit1, I1,O1, T1) andA2 = (Q2, sinit2, I2,O2, T2)
be automata. Thesynchronous productofA1 andA2 is the automatonA1‖A2 = (Q1×Q2, (sinit1, sinit2),
I1 ∪ I2,O1 ∪ O2, T) whereT is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒ (s1s2, `1 ∧ `2, O1 ∪O2, s

′
1s
′
2) ∈ T .

The synchronous product of automata is both commutative and associative, and it is easy to show that
it preserves both determinism and completeness.

Definition 4 (Encapsulation). LetA = (Q, sinit , I,O, T) be an automaton andΓ ⊆ I ∪ O be a set of
inputs and outputs ofA. TheencapsulationofAw.r.t. Γ is the automatonA\Γ = (Q, sinit , I\Γ,O\Γ, T ′)
whereT ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒ (s,∃Γ . `, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in the monomial` (i.e. `+ = {x ∈ I | (x ∧ `) =
`}). `− is the set of variables that appear as negative elements in the monomiall (i.e. `− = {x ∈ I |
(x ∧ `) = `}).

Intuitively, a transition(s, `, O, s′) ∈ T is still present in the result of the encapsulation operation if its
label satisfies a local criterion made of two parts:`+ ∩ Γ ⊆ O means that a local variable which needs to
be true has to be emitted by the same transition;`− ∩ Γ ∩ O = ∅ means that a local variable that needs to
be false shouldnot be emitted in the transition.

If the label of a transition satisfies this criterion, then the names of the encapsulated variables are hidden,
both in the input part and in the output part. This is expressed by∃Γ . ` for the input part, and byO \Γ for
the output part.

In general, the encapsulation operation does not preserve determinism nor completeness. This is related
to the so-called “causality” problem intrinsic to synchronous languages (see, for instance [2]).

2.3 Contracts for Argos

An observer is an automaton which specifies a class of programms fulfilling a certain safety property. It is
formally defined as follows.

Definition 5 (Observer). An observer is an automaton(Q∪{Error}, q0, I∪O, {err }, T) which observes
an automaton that has inputsI and outputsO. When an observer emitserr , it will go to state Error and
also emiterr in the next instant. A programP is said toobey an observer obs (notedP |= obs) iff
P‖obs\ O produces no trace which emitserr .

Transitions leading to the Error state are calledError transitions.
A contract specifies a class of programs with two observers, an assumption and a guarantee. Definition6

is an auxiliary definition, used to formally define contracts in Definition7. ε denotes the empty trace.

Definition 6 (Trace Combination). Let it : N −→ [I −→ {true , false }] andot : N −→ [O −→
{true , false }] be traces, withI ∩O = ∅. Then,it.ot : N −→ [I ∪O −→ {true , false }] is a trace
s.t.∀i ∈ I . it.ot(n)(i) = it(n)(i) ∧ ∀o ∈ O . it.ot(n)(o) = ot(n)(o).

Definition 7 (Contract). A contract over inputsI and outputsO is a tuple (A,G) of two observers over
I ∪ O, whereA is the assumption andG is the guarantee. A programP fulfills a contract (A,G), written
P |= (A,G), iff

(it .ot , ε) ∈ Traces(A) ⇒ ((it , ot) ∈ Traces(P) ⇒ (it .ot , ε) ∈ Traces(G)) .

4/15 Verimag Research Report no TR-2006-10

David Stauch

0 1
A B b/c

(a) base program

a

b
c/JP

(b) pointcut (c) pointcut

c

c/JP

Figure 3: Example pointcut.

Intuitively, a guaranteeG should only restrict the outputs of a program and an assumptionA should
only restrict the inputs. We do not require this formally, but contracts which do not respect this constraint
are of little use. Indeed, ifG restricts the inputs more thanA, it follows from Definition7 that there exists
no programP s.t.P |=(A,G). Conversely, a program is usually placed in an environmentE, s.t.E |=A. If
A restricts the outputs, no suchE exists, as the outputs are controlled byP .

2.4 Larissa

Argos operators are already powerful. However, there are cases in which they are not sufficient to modu-
larize all concerns of a program: a small modifications of the global program’s behavior may require that
we modify all parallel components, in a way that is not expressible with the existing operators.

The goal of aspects being precisely to specify such cross-cutting modifications of a program, we pro-
posed an aspect-oriented extension for Argos [1], which allows the modularization of a number of recurrent
problems in reactive programs, like the reinitialization. This leads to the definition of a new operator (the
aspect weaving operator), which preserves determinism and completeness of programs, as well as semantic
equivalence between programs.

Similar to aspects in other languages, a Larissa aspect consists of a pointcut, which selects a set of join
points, and an advice, which modifies these join points.

2.4.1 Join Point Selection.

To preserver semantical equivalence, pointcuts in Larissa are not expressed in terms of the internal structure
of the base program (as for instance state names), but refer to the observable behavior of the program only,
i.e., its inputs and outputs.

Therefore, observers are well suited to express pointcuts. A pointcut is thus an observer which selects
a set ofjoin point transitionsby emitting a single outputJP, the join point signal. A transition T in a
program P is selected as a join point transition when in the concurrent execution of P and the pointcut,JP
is emitted when T is taken.

Technically, we perform a parallel product between the program and the pointcut and select those
transitions in the product which emitJP. However, if we simply put a programP and an observer PC
in parallel,P ’s outputsO will become synchronization signals between them, as they are also inputs of
PC. They will be encapsulated, and are thus no longer emitted by the product. We avoid this problem by
introducing a new outputo′ for each outputo of P : o′ will be used for the synchronization with PC, ando
will still be visible as an output. First, we transformP intoP ′ and PC into PC′, where∀o ∈ O, o is replaced
by o′. Second, we duplicate each output ofP by puttingP in parallel with one single-state automaton per
outputo defined by:duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q)}). The complete product, whereO is noted
{o1, ..., on}, is given by:

P(P, PC) = (P ′‖PC′‖duplo1
‖ ... ‖duplon

) \ {o′1, ..., o′n}

The join point transitions are those transitions ofP(P, PC) that emitJP.
Figure3 illustrates the pointcut mechanism. The pointcut (b) specifies any transition which emitsc : in

base program (a), the loop transition in state B is selected as a join point transition.

2.4.2 Specifying the Advice.

In aspect oriented languages, the advice expresses the modification applied to the base program. In Larissa,
we define two types of advice: in the first type, an advice replaces the join point transitions withadvice

Verimag Research Report no TR-2006-10 5/15

David Stauch

JPJP

JP

JP

σ1

σn

σn

σ1

target state T
σnσ1

target state T
target state T

(a) toInit aspect (b) toCurrent aspect

`1/Oad

`2/Oad

`1/Oad

`2/Oad

Figure 4: Schematic toInit and toCurrent aspects. (Advice transitions are in bold.)

transitionspointing to an existing target states; in the second type, an advice introduces a Argos program
between the source state of the join point transition and an existing target state. In both cases, target states
have to be specified without referring explicitly to state names.

An adviceadv has two ways of specifying the target state T among the existing states of the base
program P. T is the state of P that would be reached by executing a finite input trace from either the initial
state of P,adv is then calledtoInit advice, or from the source state of the join point transition,adv is then
calledtoCurrentadvice. As the base program is deterministic and complete, executing an input trace from
any of its states defines exactlyonestate.

The advice weaving operator/adv weaves a piece of adviceadv in a program. Definition10 in the
following section gives a formal definition for toInit advice. The remainder of this section describes the
different kinds of advice informally.

Advice Transition. The first type of advice consists in replacing each join point transition with an advice
transition. Once the target state is specified by a finite input traceσ = σ1 . . . σn, the only missing infor-
mation is the label of these new transitions. We do not change the input part of the label, so as to keep the
woven automaton deterministic and complete, but we replace the output part by someadvice outputsOad.
These are the same for every advice transition, and are thus specified in the aspect. Advice transitions are
illustrated in Figure4.

Advice Program. It is sometimes not sufficient to modify single transitions, i.e. to jump to another
location in the automaton in only one step. It may be necessary to execute arbitrary code when an aspect is
activated. In these cases, we can insert an automaton between the join point and the target state.

Therefore, we use aninserted automatonAins that terminates. Since Argos has no built-in notion of
termination, the programmer of the aspect has to identify a final stateF (denoted by filled black circles in
the figures).

We first specify a target state T as explained above. Then, for every T, a copy of the automatonAins

is inserted, which means: 1) replace every join point transitionJ with target state T by a transition to the
initial stateI of this instance ofAins. As for advice transitions, the input part of the label is unchanged and
the output part is replaced by theadvice outputsOad; 2) connect the transitions that went to the final state
F in Ains to T. Advice programs are illustrated in Figure5.

2.4.3 Fully Specifying an Aspect.

An aspect is given by the specification of its pointcut and its advice:asp = (PC, adv), where PC is the
pointcut andadv is the advice.adv is a tuple which contains 1) the advice outputsOad; 2) the typeof
the target state specification (toInit or toCurrent); 3) the finite traceσ over the inputs of the program; and
optionally, 4)Padv, the advice program. Thus, advice can be a tuple< Oad,type, σ >, or, with an advice
program, a tuple< Oad,type,σ, Padv >, with type ∈ {toCurrent, toInit}. An aspect is woven into a
program by first determining the join point transitions and then weaving the advice.

6/15 Verimag Research Report no TR-2006-10

David Stauch

I

b

a

... ...

I

b

a

...

(c) the woven program(b) inserted automatonAins(a) base program

...

join point J

target state T target state T

`/JP `/Oad

Figure 5: Inserting an advice automaton

a

true/b

true/b

(a) (b)

a

a/b
a/b

a/b

a/b

Figure 6: A possible implementation of the MFF (a), with the retriggerable aspect applied to it (b).

Definition 8 (Aspect weaving). Let P be a program andasp = (PC, adv) an aspect forP . The weaving
of asp onP is defined by

P / asp = P(P, PC)/ adv.

Example.

Consider the MFF example from Section1.2. We now want to make the MFF re-triggerable, meaning that
if an a is emitted during several following instants, the MFF continues emittingb. We do this by applying
the aspectret = (PC, < b, toInit, (a) >) to the MFF, where PC =({S},S,{a,b},{JP}, {(S,a.b/JP,S)}) is a
pointcut which selects all occurrences ofa.b as join points. Figure6(b) shows the result of applyingret
to the sample implementation of the MFF in Figure6(a).

3 Weaving Aspects in Contracts

We want to apply an aspectasp not to a specific program, but to a class of programs defined by a contract
C, and obtain a new class of programs, defined by a contractC ′, such thatP |= C ⇒ P / asp |= C ′. To
constructC ′, we simulate the effect that the aspect has on a program as far as possible on the assumption
and the guarantee observers ofC. However, an aspect cannot be applied directly to an observer, because
the aspect has been written for a program with inputsI and outputsO, whereas for the observer,O are
also inputs.

Therefore, we transform the observers of the contract first into non-deterministic automata (NDA),
which produce exactly those traces that the observer accepts. We then weave the aspects into the NDA, with
a modified definition of the weaving operator. The woven NDA are then transformed back into observers.
The obtained observers may still be non-deterministic, and are thus determinized.

Except for the aspect weaving, all of these steps are different for the assumption and the guarantee, as
far as the transitions to the Error state are concerned. This is because the assumption and the guarantee
have different functions in a contract: the assumption defines which part of the program is defined by the
contract, and the guarantee gives properties that are always true for this part.

After weaving an aspect, the assumption must exclude the undefined part ofanyprogram which fulfills
the contract. Therefore, it must reject a trace (by emittingerr) as soon as there exists a program for which
it cannot predict the behavior. The guarantee, on the other hand, emitserr only for traces which cannot be
emitted by any program which fulfills the contract. Therefore, after weaving an aspect, the new guarantee
may only emiterr if it is sure that there exists no program that produces the trace.

Verimag Research Report no TR-2006-10 7/15

David Stauch

Indeed, a contract (A,G) can be rewritten as (true ,A ⇒G). Thus, the assumption can be considered
as a negated guarantee.

3.0.4 Formal Definitions.

Definition9 defines the transformation of an observer into a NDA through two functions, one for guarantee
observers and one for assumption observers.

Definition 9 (Observer to NDA transformation). Let obs= (Q ∪ {Error}, q0, I ∪ O, {err }, T) be
an observer with an error state Error over inputsI and outputsO, with I ∩ O = ∅. NDG(obs) =
(Q, q0, I,O, TNDG

) defines a NDA, whereTNDG
is defined by(s, `I ∧ `O, ∅, s′) ∈ T ⇒ (s, `I , `+O, s′) ∈

TNDG
. NDA(obs) = (Q ∪ {Error}, q0, I,O, TNDA

) defines a NDA, whereTNDA
is defined by(s, `I ∧

`O, o, s′) ∈ T ⇒ (s, `I , `+O ∪ o, s′) ∈ TNDG
.

Note that the transitions inobswhich emiterr have no corresponding transitions inNDG(obs). In
the guarantee, these transitions correspond to input/output combinations which are never produced by the
program and must not be considered by the aspect. In the assumption, on the other hand, they correspond
to inputs from the environment that are not treated by the program. If the aspect replaces these transitions
in the assumption, they are also replaced in the program and can thus be accepted from the environment by
the woven program. Thus, error transitions are not removed inNDA(obs), so that the aspect weaving can
modify them.

We can now apply an aspect to a NDA. However, a trace may lead to several states. Thus, for each
join point transition, several advice transitions must be created, one for each target state. We only give a
definition for toInit advice, but the extension to toCurrent advice and advice programs is straightforward.

Definition 10 (toInit weaving for NDA). LetA = (Q, sinit , I,O, T) be an automaton and adv= (Oadv,
toInit, σ) a piece of toInit advice, withσ : [0, ..., `σ] −→ [I −→ {true , false }] a finite input trace
of length`σ + 1. Let TARG= {s|s = S stepA(sinit , σ, `σ)} be the set of all states reachable withσ.
The advice weaving operator/, weaves adv intoA and returns the automatonA/ adv = (Q, sinit , I,O ∪
Oadv, T ′), whereT ′ is defined as follows:(

(s, `, O, s′) ∈ T ∧ JP /∈ O
)

=⇒ (s, `, O, s′) ∈ T ′ (1)(
(s, `, O, s′) ∈ T ∧ JP∈ O

)
=⇒ ∀targ ∈ TARG. (s, `, Oadv, targ) ∈ T ′ (2)

Transitions (1) are not join point transitions and are left unchanged. Transitions (2) are the join point
transitions, their final statetarg is specified by the finite input traceσ. S stepA (which has been naturally
extended to finite input traces) executes the trace during`σ steps, from the initial state ofA.

Transforming a NDA back into an observer is different for assumptions and guarantees. In the assump-
tion, we do not add additional error transitions, but only leave those already there. In the guarantee, we add
transitions to the error state from every state where the automaton is not complete. This is correct, as these
transitions correspond to traces that are never produced by any program.

Definition 11 (NDA to guarantee transformation). Let nd= (Q, q0, I,O, T) be a NDA. OBSG(nd) =
(Q∪ {Error}, q0, I ∪ O, {err }, T ′ ∪ T ′′) defines an observer, whereT ′ andT ′′ are defined by

(s, `, o, s′) ∈ T ⇒ (s, ` ∧ `o ∧ `O\o, ∅, s
′) ∈ T ′ (3)

(s, `, ∅, s′) /∈ T ′ ∧ s ∈ Q ∧ ` is a complete monomial overI ∪ O
⇒ (s, `, {err }, Error) ∈ T ′′ (4)

wherelO =
∧

o∈O o andlO =
∧

o∈O o for a setO of variables.

Definition 12 (NDA to assumption transformation). Let nd = (Q, q0, I, O ∪ {err }, T) be a NDA.
OBSA(nd) = (Q, q0, I ∪ O, {err }, T ′) defines an observer, whereT ′ is defined by

(s, `, o ∪ e, s′) ∈ T ∧ o ⊆ O ∧ e ⊆ {err } ⇒ (s, ` ∧ `o ∧ `O\o, e, s
′) ∈ T ′

8/15 Verimag Research Report no TR-2006-10

David Stauch

Error

(a) (b) (c)

true/b

true/b

a

true/b a/b

a, a/b

a, a/b

a/b

a/b

a/b

a.b
a.b

a.b

a.b

a

a.b

a/b

a
true/b

a.b

b/err

b/err
aa

a

a.ba/b

Figure 7: a:NDG(gMFF), b: NDG(gMFF)/ ret, c:OBSG(NDG(gMFF)/ ret).

The resulting observer may not be deterministic. However, it can be made deterministic, as observers
are acceptor automata. Determinization for guarantees and assumptions is different: a guarantee must only
emit err for a traceσ if all programs fulfilling the contract never emitσ, and an assumption must emit
err if there exists a program fulfilling the contract which is not defined forσ.

Existing determinization algorithms can be easily adapted to fulfill these requirements. We do not detail
such algorithms here, but instead give conditions the determinization for assumptions and guarantees must
fulfill.

Definition 13 (Assumption Determinization). Let M be a NDA with outputs{err }. DetA(M) is a
deterministic automaton such that

(it , ot) ∈ Traces(DetA(M)) ⇔
(it , ot) ∈ Traces(M) ∧ @ot ′ . ot ′(n)[err] = true ∧ ot(n)[err] = false .

Definition 14 (Guarantee Determinization). Let M be a NDA with outputs{err }. DetG(M) is a
deterministic automaton such that

(it , ot) ∈ Traces(DetG(M)) ⇔
(it , ot) ∈ Traces(M) ∧ @ot ′ . ot ′(n)[err] = false ∧ ot(n)[err] = true .

We can now state the following theorem.

Theorem 1.

P |= (A,G) ⇒ P / asp |= (DetA(OBSA(NDA(A)/ asp)),DetG(OBSG(NDG(G)/ asp)))

Proof. See appendixA.

3.0.5 Example.

We apply the re-triggerable aspectret from Section2.4.3to the contract of the MFF using the method
described above and obtain the contract of MFF/ret. Figure7(a) showsNDG(gMFF), the NDA equiva-
lent to gMFF. Figure7(b) showsNDG(gMFF)/ ret , the same automaton with the aspect woven into it.
Figure7(c) shows this automaton, transformed back in an observer. It is already deterministic, thus there
is no need to determinize it. Figure8 describes the same steps for the assumption.

4 Example: The Tramway Door Controller

We implement and verify a larger example, taken from the Lustre tutorial [11], a controller of the door of
a tramway. The door controller is responsible for opening the door when the tram stops and a passenger
wants to leave the tram, and for closing the door when the tram wants to leave the station. Doors may also
include a gateway, which can be extended to allow passengers in wheelchairs enter and leave the tram.

Verimag Research Report no TR-2006-10 9/15

David Stauch

Error
a/err

Error
a

Error
a/err

a, a/ba, a/b

a,a/b a

a/b,a/b,err ,

(a) (b) (c)

a, a/b

a,a/b

a

a/b,err , a.b
a/err

a.b

Figure 8: a:NDA(aMFF), b: NDA(aMFF)/ ret, c:OBSA(NDA(aMFF)/ ret).

Controller Inputs: Controller Outputs:
inStation Tram is in station doorOK door is closed and ready to leave
leaving Tram wants to leave station openDoor opens the door
doorOpen the door is open closeDoor closes the door
doorClosed the door is closed beep emits a warning sound
askForDoor a passenger wants to leave the tram setTimer starts a timer
timer the timer set by setTimer has run out
Gangway Inputs: Gangway Outputs:
gwOut the gangway is fully extended extendGW extends the gangway
gwIn the gangway is fully retracted retractGW retracts the gangway
askForGW a passenger wants to use the gangway
Helper Signals Outputs:
acceptReq the passenger can ask for the door or the gw
doorReq the passenger has asked for the door to open
gwReq the passenger has asked for the gangway
depImm the tramway wants to leave the station

Figure 9: The interfaces of the controller and the gangway, and the helper signals.

We implement the controller as an Argos program. We first develop a controller for a door without
the gangway, and then add the gangway part with aspects. The in- and outputs of the controller and
those which are added by the gangway are given in Figure9. The controller uses additional inputs, called
Helper Signals, which are shown in Figure9 and are calculated from the original inputs by the program in
Figure10.

4.0.6 The Gangway Aspects.

Two aspects are used to add support for the gangway: one aspect that extends the gangway before the door
is opened if a passenger has asked for it, and one aspect that retracts the gangway when the tram is about
to leave, if it is extended.

The pointcut PCext of the extension aspect selects all transitions whereopenDoor.doorReq.doorClosed.
gwOut is true, and the pointcut PCret of the retraction aspect selects all transitions wheredoorOK.gwIn
is true.

Both aspects insert an automaton and return then to the initial state of the join point transitions. The
inserted automata for the aspects are shown in Figure11. The extension aspect is specified by(PCext, <
{}, toCurrent, (), Iext >), and the retraction aspect by(PCret, < {retractGW}, toCurrent, (), Iret >).

4.0.7 Verifying Safety Properties.

The tramway system must fulfill several safety requirements concerning the doors, namely:

• the door must be closed while the tram is out of station,

• the gangway must be fully retracted while the tram is out of station, and

• The gangway must not be moved when the door is not closed.

We want to verify that the controller guarantees these requirements if it is put in an appropriate environment.
Therefore, we develop a model that describes the possible behavior of the physical environment of the
controller, composed of the door, the gangway, and the tramway. These models are expressed as Argos
observers. The models for the tramway and the door are shown in Figure12 and Figure13 respectively.

10/15 Verimag Research Report no TR-2006-10

David Stauch

inStation/
dep

inStation doorReq

dep/
leaving

leaving/acceptReq dep/depImm

leavingdep

doorOpen
dep∨ acceptReq.

(askForDoor
∨askForGW)

dep.doorOpen/doorReq

dep∨
gwOut

acceptReq.
askForGW

dep.gwOut/gwReq

dep

Figure 10: The automaton producing the helper signals.

gwOut/extendGW

gwOut

(a): Iext

gwIn

gwIn/retractGW

/retractGW

(b): Iret

Figure 11: Inserted automata for the extension (a) and the retraction (b) aspect.

The model for the gangway is the same as for the door, where door-related signals are replaced by their
gangway-related counterparts.

The actual door controller may be a large program which is difficult to verify, therefore we abstract
it with a contract. The assumption of the contract is the model of the door shown in Figure13, and
the guarantee is shown in Figure14. To prove that a controller without gangway satisfies the safety
requirements, we prove that a) the controller satisfies the contract, and b) the contract never violates a
safety requirement in the environment.

To verify modularly that the program with the gangway does not violate the safety requirements, we
weave the aspects into the assumption and the guarantee, and check then that a) the environment satisfies
the new assumption, and b) the new guarantee satisfies the safety requirements in the environment.

We measured the time necessary to verify the safety properties using our implementation [9]. The
source code of the door controller example is available at [10]. Building the sample controller shown in
Figure15 with the gangway aspects and verifying it against the environment takes 11.0 seconds. Weaving
the aspects into the guarantee of the controller contract and verifying against the environment takes 3.7
seconds, verifying that the sample controller verifies the contract and verifying that the environment fulfills
the assumptions with the aspects takes< 0.5 seconds. Thus, using this modular approach to verify the
safety properties of the controller is significantly faster than verifying the complete program. This indicates

In

Out Dep

Error

OK

inStation

inStation

doorOK.inStation
inStation

inStation
leaving
.inStation

Figure 12: Model of the tramway.

Verimag Research Report no TR-2006-10 11/15

David Stauch

Closing Opening

Open

openDoor
.doorOpen

Error

Error

closeDoor
.doorClosed

Closed

openDoor.doorClosed.doorOpen

closeDoor.doorClosed.doorOpen

doorOpen

doorClosed

doorOpen

doorClosed

.doorClosed
closeDoor

doorOpen.closeDoor

openDoor

doorClosed.openDoor

.doorOpen

Figure 13: Model of the door.

Out DepIn

Error
openDoor

inStation.openDoor

openDoor

inStation.openDoor

doorOK.(doorClosed∨openDoor)

doorClosed.doorOK.openDoor

Figure 14: The guarantee of the model of the contract of the controller.

that larger programs can be verified using our modular approach.

5 Related Work

Goldman and Katz [5] modularly verify aspect-oriented programs using a LTL tableau representation of
programs and aspects. As opposed to ours, their system can verify AspectJ aspects, as tools like Bandera [4]
can extract suitable input models from Java programs. It is, however, limited to so-calledweakly invasive
aspects, which only return to states already reachable in the base program.

Clifton and Leavens [3] noted before us that aspects invalidate the specification of modules, and propose
that either an aspect should not modify a programs contract, or that modules should explicitly state which
aspects may be applied to them.

Open

Closing

Beep

Closed

Opening

OutOK

doorClosed.
(depImm.doorReq)/
closeDoor

inStation/
doorOK

depImm∨timer/beep

doorOpen/setTimer

doorReq.depImm/openDoor
inStation

doorOpen/openDoor

timer/beep

inStation

depImm/doorOK

timer/closeDoor

depImm.
doorReq.doorClosed

doorClosed

Figure 15: A sample controller for the tramway door.

12/15 Verimag Research Report no TR-2006-10

David Stauch

6 Conclusion

We proposed a way to show exactly how a Larissa aspect modifies the contract of a component to which it
is applied. This allows us to calculate the effect of an aspect on a specification instead of only on a concrete
program. Furthermore, we used this approach to modularly verify an example.

We believe that the approach is exact in that it gives no more possible behaviors for the woven program
than necessary. I.e., for a contractC and a tracet ∈ Traces(C/ asp), there exists a programP s.t.P |= C
and t ∈ Traces(P / asp). This remains however to be proven. A more interesting direction for future
work would be to derive contracts the other way round. Given a contractC and an aspectasp, can we
automatically derive a contractC ′ such thatC ′ / asp |= C? Finally, the proposed approach works only
because we have restricted Argos and Larissa to Boolean signals. It would be interesting to see if this
approach can be extended to programs with valued signals or variables.

References

[1] K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented programming for reactive systems: a
proposal in the synchronous framework.Science of Computer Programming, Special Issue on Foun-
dations of Aspect-Oriented Programming, 63(3):297–320, 2006.1.1, 2, 2.4

[2] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, semantics,
implementation.Sci. Comput. Programming, 19(2):87–152, 1992.2.2

[3] C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral subtyping anal-
ogy. Technical Report 03-15, Iowa State University, Department of Computer Science, Dec. 2003.
5

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng. Bandera:
Extracting finite-state models from Java source code. In22nd International Conference on Software
Engineering, pages 439–448, June 2000.5

[5] M. Goldman and S. Katz. Modular generic verification of LTL properties for aspects. InFoundations
of Aspect-Oriented Languages (FOAL), Mar. 2006. 5

[6] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,Algebraic Methodology and Software
Technology, AMAST’93, June 1993.1.2

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of
AspectJ.LNCS, 2072:327–353, 2001.1.1

[8] L. Lamport. Proving the correctness of multiprocess programs.ACM Trans. Prog. Lang. Syst., SE-
3(2):125–143, 1977.1.2

[9] Compiler for Larissa. http://www-verimag.imag.fr/∼stauch/ArgosCompiler/.4.0.7

[10] Argos source code for the tram example. http://www-verimag.imag.fr/
∼stauch/ArgosCompiler/contracts.html.4.0.7

[11] The Lustre tutorial. http://www-verimag.imag.fr/∼raymond/edu/tp.ps.gz.4

[12] F. Maraninchi and L. Morel. Logical-time contracts for reactive embedded components. In30th
EUROMICRO Conference on Component-Based Software Engineering Track, ECBSE’04, Rennes,
France, Aug. 2004.1.2

[13] F. Maraninchi and Y. Ŕemond. Argos: an automaton-based synchronous language.Computer Lan-
guages, 27(1/3):61–92, 2001.2

[14] B. Meyer. Applying ”Design by Contract”.Computer, 25(10):40–51, 1992.1.2

Verimag Research Report no TR-2006-10 13/15

David Stauch

A Proof for Theorem 1

Definitions. We first introduce a number of definitions.
P (p) |= (A(a), G(g)) means that programP fulfills contract(A,G) where the initial states ofP , A

andG have been set top, a andg respectively.
Furthermore, we introduce the following notations for terms from the theorem. Let

A′/ asp = OBSA(NDA(A)/ asp), A/ asp = DetA(A′/ asp),
G′/ asp = OBSG(NDG(G)/ asp), and G/ asp = DetG(G′/ asp) .

We now define the structure of some of these terms. Let

P = (QP , qP0, I,O, TP),
asp = (PC, < Oadv, toInit, σ >),
PC= (QPC, qPC0, I ∪ O, {JP}, TPC),
A = (QA ∪ {Error}, qA0, I ∪ O, {err }, TA),
G = (QG ∪ {Error}, qG0, I ∪ O, {err }, TG),

P / asp = (QP ×QPC, (qP0, qPC0), I,O, TP/),
A′/ asp = ((QA ×QPC) ∪ {Error}, (qA0, qPC0), I ∪ O, {err }, TA/), and

G′/ asp = ((QG ×QPC) ∪ {Error}, (qG0, qPC0), I ∪ O, {err }, TG/) .

We prove the theorem by induction over a trace ofP / asp. Let (it , ot) ∈ Traces(P / asp). We show
that the following induction hypothesis holds for anyn.

Induction hypothesis.

O stepA/asp(it .ot , n) = ∅ ⇒
(pn, pcn) = S stepP/asp(it , n) ⇒
∃(an, pcn) = S stepA′/asp(it .ot , n), (gn, pcn) = S stepG′/asp(it .ot , n) .

P (pn) |= (A(an), G(gn)) ∧ (gn, pcn) 6= Error

(pn, pcn), (an, pcn) and(gn, pcn) are the states reached when executing(it , ot) for n steps onP / asp,
A′ / asp andG′ / asp respectively. The existential quantifier before(an, pcn) and (gn, pcn) is needed
becauseA′/ asp andG′/ asp may be non-deterministic.

Base case. n = 0. P |= (A,G) holds as it is the assumption of the implication in the theorem. If the
initial state ofG is the Error state, eitherA (andA/ asp) do not accept any trace, or noP exists, and in
both cases we are done.

Induction step. Fromn− 1 to n.
If O stepA/asp(it .ot , n) = {err }, we are done. Otherwise,O stepA′/asp(it .ot , n) = ∅ holds because

of Definition13, and we distinguish two cases:

• First case:JP /∈ O stepPC(it .ot , n), we are not in a join point.

Because ofP (pn−1) |= (A(an−1), G(gn−1)), there is a transitiontp = (pn−1, it(n), ot(n), pn)
in TP , a transitionta = (an−1, it(n) ∧ ot(n), ∅, an) in TA, and a transitiontg = (gn−1, it(n) ∧
ot(n), ∅, gn) in TG, such thatP (pn) |= (A(an), G(gn)). tp, ta andtg are not modified by the weav-
ing, thus there is a transition((pn−1, pcn−1), it(n), ot(n), (pn, pcn)) in TP/, a transition((an−1,
pcn−1), it(n)∧ot(n), ∅, (an, pcn)) in TA/, and a transition((gn−1, pcn−1), it(n)∧ot(n), ∅, (gn, pcn))
in TG/ with (gn, pcn) 6= Error.

14/15 Verimag Research Report no TR-2006-10

David Stauch

• Second case:JP∈ O stepPC(it .ot , n), we are in a join point.

We haveS stepP/asp(it , n) = S stepP (σ, lσ) = pσ. Let ς be a trace of lengthlσ such that∀i ≤ lσ .
ς(i) = O stepP (σ, i). All join point transitions inG′/ asp (resp.A′/ asp) are replaced by transitions
to all possible target states, thus there is a transitiontg′/ ∈ TG′/ (resp. ta′/ ∈ TA′/) to a target state
(gσ, pcσ) (resp. (aσ, pcσ)) such thatS stepG(σ.ς, lσ) = gσ (resp. S stepA(σ.ς, lσ) = aσ) and
S stepPC(σ.ς, lσ) = pcσ. Becausepσ, aσ andgσ can be reached with the same trace(σ, ς) (resp.
(σ.ς, ε) for aσ andgσ) from the initial state,P (pσ) |= (A(aσ), G(gσ)) follows fromP |= (A,G).

Furthermore,ot(n) = Oadv, and we haveta′/ = ((an−1, pcn−1), it(n) ∧ Oadv, ∅, (aσ, pcσ)), and
tg′/ = ((gn−1, pcn−1), it(n) ∧ Oadv, ∅, (gσ, pcσ)), and thus(aσ, pcσ) = S stepA′/asp(it .ot , n) and
(gσ, pcσ) = S stepG′/asp(it .ot , n). Furthermore, we have(gσ, pcσ) 6= Error, as otherwiseaσ =
Error (impossible because ofO stepA′/asp(it .ot , n) = ∅), or (it , ot) /∈ Traces(P), by the definition
of P |= (A,G).

It follows from the induction hypothesis that

(it .ot , ε) ∈ Traces(A/ asp) ∧ (it , ot) ∈ Traces(P / asp) ⇒ (it .ot , ε) ∈ Traces(G′/ asp)

and we have(it .ot , ε) ∈ Traces(G′ / asp) ⇒ (it .ot , ε) ∈ Traces(G/ asp) by Definition 14. Thus, the
theorem follows from the induction hypothesis.

Verimag Research Report no TR-2006-10 15/15

	Introduction
	Synchronous Languages and Aspect-Oriented Programming
	Synchronous Languages and Design-by-Contract
	Combining Contracts and Aspects

	Argos and Larissa
	Traces and trace semantics
	Argos
	Contracts for Argos
	Larissa
	Join Point Selection.
	Specifying the Advice.
	Fully Specifying an Aspect.

	Weaving Aspects in Contracts
	Formal Definitions.
	Example.

	Example: The Tramway Door Controller
	The Gangway Aspects.
	Verifying Safety Properties.

	Related Work
	Conclusion
	Proof for Theorem 1

