David Stauch

Modifying Contracts with Larissa Aspects

David Stauch
Verimag, Centréquation - 2, avenue de Vignate, 3861ERES — France

January 22, 2007
Abstract:

This paper combines two successful techniques from software engineering, aspect-oriented program-
ming and design-by-contract, and applies them in the context of reactive systems. For the aspect language
Larissa and contracts expressed with synchronous observers, we show how to apply ansasieat
contractC' and derive a new contract’, such that for any program® which fulfills C, P with asp fulfills
C’. We validate the approach on a medium-sized example. A shorter version of report has been submitted
to the SLA++P '07 workshop.

1 Introduction

1.1 Synchronous Languages and Aspect-Oriented Programming

Aspect-oriented programming (AOP) offers facilities to a base language which aim at encapsuémsing
cutting concernsThese are concerns that cannot be properly captured into a module by the decomposition
offered by the base language. AOP languages express crosscutting con@spsdts andweave(i.e.
compile) them in the program with an aspect weaver.

All the aspect extensions of existing languages (like Asped)ishare two notions: pointcuts and
advice. Apointcutdescribes, with a general property, the program points (c@iedpointy where the
aspect should intervene (e.qg., all the methods of the aal the methods whose name containst
etc.). Theadvicespecifies what has to be done at each join point (execute a piece of code before the normal
code of the method, for instance).

Most existing aspect languages cannot be used in the context of reactive systems, because they lack
the semantic properties needed for formal verification, and the programming languages used for reactive
systems are often different from general-purpose programming languages. Therefore, we developed the
aspect language Lariss# fas an extension to the synchronous programming language Argos. Argos is a
hierarchical automata language, based on Mealy machines. It seems a good candidate as a base language,
as it is the simplest language with the parallel structure which we want to crosscut, and which is typical
for synchronous languages. Larissa has strong semantic properties, like the preservation of equivalence
between programs. The approach presented in this paper strongly depends on these properties.

1.2 Synchronous Languages and Design-by-Contract

Design-by-Contract1[4] is a design principle, originally introduced for object-oriented systems, where
a method is specified by a contract. A contract is a specification in form of an implication between an
assumption clause and a guarantee clause. A method fulfills its contract if after its execution, the guarantee
holds if the assumption was true when the program was called.

Contracts have been adapted to reactive systemsZy Reactive systems constantly receive inputs
from their environment, and emit outputs to it. Therefore, it seems natural to let assumptions restrict the
inputs, and let guarantees ensure properties on the outputs. Additionally, what a program is allowed to
do often depends to a large extent on previous occurrences of signals. A convenient way to express such
temporal properties over input and output traces are observers. An obs&iigea program that observes
the inputs and the outputs of the program, without modifying its behavior, and computes a safety property
(in the sense of safety/liveness properties as defined)n@bservers have a single outpart , which is
emitted to show that a trace is not accepted. They can be expressed in the same language as the program.

Verimag Research Report TR-2006-10 1/15

© 00 N o 0 b~ W N PR

e
= O

David Stauch

b/err
= irue/ 9Erro = irue/
e ruel/err ab b ruelerr
alerr Error truelerr blerr
b
(@) (b) (c)

Figure 1: The contract for the MFF. Notations: in each automaton, the initial state is denoted with a little ar-
row; the label on transitions are expressed triggering condition / outputs emitted "

e.g. a transition labelled bya/b " is triggered whera is true and emit®. Negation is expressed W|th an
overbar, and conjunction with a dot.

class c{
I« @assume i< 10 x/
/x @guarantee\result< 10 =/

int m(int i){...}
}

pointcut pcm(int i) : call(int c.m(int)) & args(i);

int around (int i) : pcm(i){
return 1 + proceed(i+1);
}

Figure 2: Example of a contract in presence of an AspectJ aspect.

As an example, consider the following contract for a mono-stable flip-flop (MFF) with one &mput
and one outpub. The contract is composed of an assumption, shown in Fitfae which states that's
always occur in pairs, and a guarantee consisting of two automata, shown in Fi¢uresd (c), which
are composed in parallel. The automaton in Figlit® guarantees that a singteis never emitted, and
the automaton in Figur&(c) guarantees that whenoccurs while nd is emitted,b is emitted in the next
instant.

1.3 Combining Contracts and Aspects

AOP and design-by-contract can hardly be used concurrently. Obviously, the contract of a program is
invalidated when an aspect is applied to it. Consider the AspectJ example in Eigline pointcut (line

7) intercepts calls to methad (line 4), and the around advice (lines 9-11) modifies the intercepted calls
by addingl to the argument, then callingnthrough the proceed statement, and adding the result.

This modifies both the initial assumption (line 2) and guarantee (line B8) blowever, we can give a new
contract formin this case. To ensure thatis called according to its initial specification, the assumption
must be changed to< 9. On the other hand, the value returnednbgnay be higher than specified by the
original guarantee in the presence of the aspect: we can only guarantereethétt< 11, providedmdoes

not call itself recursively.

Deriving such new contracts appears to be an interesting approach to combine AOP and contracts. How-
ever, this seems very difficult for contracts for Java programs and AspectJ, and it is not clear if meaningful
contracts could be derived. In this paper, we present a way to derive new contracts for Argos programs and
Larissa aspects. The idea is to apply an aspecto a contracC and obtain a new contra€t’, such that
if P fulfills C, thenP« asp fulfills C".

The remainder of the paper is structured as follows: Sedidefines Argos and Larissa; Sectign
describes how to derive a new contract from a contract and an aspect; Seedilishates the approach on
a larger example; Sectidndescribes related work; and Secti®ooncludes.

2/15 Verimag Research Report TR-2006-10

David Stauch

2 Argos and Larissa

This section presents a restriction of the Argos languagk &nd the Larissa extension][Argos is de-

fined as a set of operators on complete and deterministic input/output automata communicating via Boolean
signals. The semantics of an Argos program is given as a trace semantics that is common to a wide variety
of reactive languages.

2.1 Traces and trace semantics

Definition 1 (Traces). LetZ, O be sets of Boolean input and output variables representing signals from
and to the environment. Aimput trace it, is a function: it : N — [Z — {true ,false }]. An
output traceot, is a function:ot : N — [0 — {true ,false }|. We denote bynputTraces (resp.
OutputTraces) the set of all input (resp. output) traces. A péit, ot) of input and output traces (i/o-
traces for short) provides the valuations of every input and output at each instanfV. We denote by
it(n)[4] (resp.ot(n)[o]) the value of the input € T (resp. the outpub € O) at the instant, € N.

A set of pairs of i/o-trace$ = {(it,ot) | it € InputTraces A ot € OutputTraces} is deterministic
iff V(it,ot), (it',ot') € S. (it =it") = (ot = ot’).

A set of pairs of i/o trace$ = {(it,ot) | it € InputTraces A ot € OutputTraces} is completeiff
Vit € InputTraces . ot € OutputTraces . (it,ot) € S.

A set of traces is a way to define the semantics of an Argos pro@tagiven its inputs and outputs.
From the above definitions, a prografhis deterministicif from the same sequence of inputs it always
computes the same sequence of outputs.dbmpletevhenever it allows every sequence of every eligible
valuations of inputs to be computed. Determinism is related to the fact that the program is indeed written
with a programming language (which has deterministic execution); completeness is an intrinsic property
of the program that has to react forever, to every possible inputs without any blocking.

2.2 Argos

The core of Argos is made of input/output automata, the synchronous product, and the encapsulation.

The synchronous product allows to put automata in parallel which synchronize on their common in-
puts. The encapsulation is the operator that expresses the communication between automata with the syn-
chronous broadcast: if two automata are put in parallel, they can communicate via assigha signal
is an input of the first automaton and an output of the second. The encapsulation operator computes this
communication and then hides the sigralThe semantics of an automaton is defined by a set of traces,
and the semantics of the operators is given by translating expressions into flat automata.

Definition 2 (Automaton). AnautomatonA is a tuple A = (Q, sinit, Z, O, 7)) whereQ is the set of states,

sinit € Q is the initial state,Z and © are the sets of Boolean input and output variables respectively,

T C Q x Bool(T) x 2° x Qs the set of transitionsBool (Z) denotes the set of Boolean formulas with
variables inZ. Fort = (s,£,0,5') € T, s,s' € Q are the source and target statesc Bool(Z) is the
triggering condition of the transition, an@ C O is the set of outputs emitted whenever the transition is
triggered. Without loss of generality, we consider that automata only have complete monomials as input
part of the transition labels.

The semanticof an automatomd = (Q, sinit, Z, @, T) is given in terms of a set of pairs of i/o-traces.
This set is built using the following functions:

S_step 4 : Q X InputTraces x N — Q
O_step 4 : Q x InputTraces x N \ {0} — 2°

S_step(s, it, n) is the state reached from statafter performing: steps with the input trace; O_step(s, it,
n) are the outputs emitted at step
n=0: S_stepa(s,it,n) =s
n>0: S_stepa(s,it,n) =5 O_step4(s,it,n) = O
where3(S_stepa(s,it,n —1),£,0,s") € T A £ has value true foit(n — 1) .

Verimag Research Report TR-2006-10 3/15

David Stauch

We noteTraceg.A4) the set of all traces built following this schemiraceg.A) defines the semantics
of A. The automatond is said to bedeterministic(resp. complet# iff its set of tracesTraceg.A) is
deterministic (resp. complete) (see Definitign Two automatad,, A, aretrace-equivalentnoted.A; ~
Ay, iff Traceg.A;) = Traceg.As).

Definition 3 (Synchronous Product). Let A; = (Q1,8init1,Z1, O1,71) and Az = (Qs, Sinit2, Z2, O2, 72)
be automata. Theynchronous produdf .4, and.As; is the automatotd; || A> = (Q1 x Qa, (Sinit1, Sinit2),
71 UZs, 01 U O, T) whereT is defined by:

(81,51701,5/1) S /T1 N (32,62,0275/2) S /TQ < (8182751 /\62,01 U 02, 8,18/2) cT.

The synchronous product of automata is both commutative and associative, and it is easy to show that
it preserves both determinism and completeness.

Definition 4 (Encapsulation). Let A = (Q, sinit, Z, O, 7) be an automaton antl C 7 U O be a set of
inputs and outputs ofl. Theencapsulationf.4 w.r.t. T'is the automatotd\T" = (Q, sinit, Z\I', O\T', 7")
where7" is defined by:

(5,0,0,8Y €T ATNATCONE NTNO=0<= (5,30 .4, 0\T,s)eT

(" is the set of variables that appear as positive elements in the monéhl(t = {z € Z | (x A {) =
¢}). £~ is the set of variables that appear as negative elements in the monbth&l ¢~ = {z € T |
(T AL =1}).

Intuitively, a transition(s, ¢, O, s') € T is still present in the result of the encapsulation operation if its
label satisfies a local criterion made of two pa#s:N I' C O means that a local variable which needs to
be true has to be emitted by the same transitfion;) ' N O = () means that a local variable that needs to
be false shouldiot be emitted in the transition.

If the label of a transition satisfies this criterion, then the names of the encapsulated variables are hidden,
both in the input part and in the output part. This is expressetlby¢ for the input part, and b \ T for
the output part.

In general, the encapsulation operation does not preserve determinism nor completeness. This is related
to the so-called “causality” problem intrinsic to synchronous languages (see, for instgnce [

2.3 Contracts for Argos

An observer is an automaton which specifies a class of programmes fulfilling a certain safety property. Itis
formally defined as follows.

Definition 5 (Observer). An observer is an automatd®U{Error}, go, ZUO, {err },T) which observes
an automaton that has inpufsand outputsD. When an observer emigsr , it will go to state Error and
also emiterr in the next instant. A progran® is said toobeyan observer obs (note® = obs) iff

P||obs\ O produces no trace which emigsr .

Transitions leading to the Error state are calletbr transitions
A contract specifies a class of programs with two observers, an assumption and a guarantee. Befinition
is an auxiliary definition, used to formally define contracts in Definifion denotes the empty trace.

Definition 6 (Trace Combination). Letit : N — [Z — {true ,false }Jandot: N — [0 —
{true ,false }]be traces, wittt NO = (). Then,it.ot : N — [ZUO — {true ,false }]isatrace
st.Vi e T .it.ot(n)(i) = it(n)(i) AVo € O . it.ot(n)(o) = ot(n)(o).

Definition 7 (Contract). A contract over input§ and outputsO is a tuple (4,G) of two observers over
7 U O, whereA is the assumption an@ is the guarantee. A prograiR fulfills a contract @,G), written
PE(AG),Iff

(it.ot,€) € TracegA) = ((it, ot) € TracegP) = (it.ot,e) € TracegG)) .

4/15 Verimag Research Report TR-2006-10

David Stauch

YA clap \@ ¢
b
c/JP

(a) base program (b) pointcut (c) pointcut

Figure 3: Example pointcut.

Intuitively, a guarante&’ should only restrict the outputs of a program and an assumgtishould
only restrict the inputs. We do not require this formally, but contracts which do not respect this constraint
are of little use. Indeed, ff7 restricts the inputs more that, it follows from Definition7 that there exists
no programP s.t. P =(A,G). Conversely, a program is usually placed in an environnigrstt. £ = A. If
A restricts the outputs, no sudhexists, as the outputs are controlled By

2.4 Larissa

Argos operators are already powerful. However, there are cases in which they are not sufficient to modu-
larize all concerns of a program: a small modifications of the global program’s behavior may require that
we modify all parallel components, in a way that is not expressible with the existing operators.

The goal of aspects being precisely to specify such cross-cutting modifications of a program, we pro-
posed an aspect-oriented extension for ArddsWhich allows the modularization of a number of recurrent
problems in reactive programs, like the reinitialization. This leads to the definition of a new operator (the
aspect weaving operator), which preserves determinism and completeness of programs, as well as semantic
equivalence between programs.

Similar to aspects in other languages, a Larissa aspect consists of a pointcut, which selects a set of join
points, and an advice, which modifies these join points.

2.4.1 Join Point Selection.

To preserver semantical equivalence, pointcuts in Larissa are not expressed in terms of the internal structure
of the base program (as for instance state names), but refer to the observable behavior of the program only,
i.e., its inputs and outputs.

Therefore, observers are well suited to express pointcuts. A pointcut is thus an observer which selects
a set ofjoin point transitionsby emitting a single outpulP, the join point signal A transition T in a
program P is selected as a join point transition when in the concurrent execution of P and the pi#ntcut,
is emitted when T is taken.

Technically, we perform a parallel product between the program and the pointcut and select those
transitions in the product which emiP. However, if we simply put a programf® and an observer PC
in parallel, P's outputs© will become synchronization signals between them, as they are also inputs of
PC. They will be encapsulated, and are thus no longer emitted by the product. We avoid this problem by
introducing a new output’ for each outpub of P: o’ will be used for the synchronization with PC, and
will still be visible as an output. First, we transforfhinto P’ and PC into PG wherevo € O, ois replaced
by o’. Second, we duplicate each outputfoby putting P in parallel with one single-state automaton per
outputo defined by:dupl, = ({q¢},q,{0'},{0},{(q,0',0,9)}). The complete product, wher® is noted
{01, ...,0,}, is given by:

P(P,PQ) = (P'|[PC]|dupl,, || ... [[dupl,)\ {0}, .., 0;,}

The join point transitions are those transitiongRfP, PC) that emitJP.
Figure3illustrates the pointcut mechanism. The pointcut (b) specifies any transition whichcerinits
base program (a), the loop transition in state B is selected as a join point transition.

2.4.2 Specifying the Advice.

In aspect oriented languages, the advice expresses the modification applied to the base program. In Larissa,
we define two types of advice: in the first type, an advice replaces the join point transitionadwitie

Verimag Research Report TR-2006-10 5/15

David Stauch

T el
(

0 ;! 1/

1 ad

l2/0ad
A EN
target state T Q
Ao In On target state T
D — Q VAN target state T
l2/0aa

(a) tolnit aspect (b) toCurrent aspect

Figure 4: Schematic tolnit and toCurrent aspects. (Advice transitions are in bold.)

transitionspointing to an existing target states; in the second type, an advice introduces a Argos program
between the source state of the join point transition and an existing target state. In both cases, target states
have to be specified without referring explicitly to state names.

An adviceadv has two ways of specifying the target state T among the existing states of the base
program P. T is the state of P that would be reached by executing a finite input trace from either the initial
state of Padvis then calledolnit advice, or from the source state of the join point transitemhyis then
calledtoCurrentadvice. As the base program is deterministic and complete, executing an input trace from
any of its states defines exactipestate.

The advice weaving operataradv weaves a piece of adviayvin a program. DefinitioriLO in the
following section gives a formal definition for tolnit advice. The remainder of this section describes the
different kinds of advice informally.

Advice Transition. The first type of advice consists in replacing each join point transition with an advice
transition. Once the target state is specified by a finite input trageo ... o, the only missing infor-

mation is the label of these new transitions. We do not change the input part of the label, so as to keep the
woven automaton deterministic and complete, but we replace the output part byadeite output®,, 4.

These are the same for every advice transition, and are thus specified in the aspect. Advice transitions are
illustrated in Figurel.

Advice Program. It is sometimes not sufficient to modify single transitions, i.e. to jump to another
location in the automaton in only one step. It may be necessary to execute arbitrary code when an aspect is
activated. In these cases, we can insert an automaton between the join point and the target state.
Therefore, we use ainserted automatom;,,; thatterminates Since Argos has no built-in notion of
termination, the programmer of the aspect has to identify a final Btédenoted by filled black circles in
the figures).
We first specify a target state T as explained above. Then, for every T, a copy of the autetyaton
is inserted, which means: 1) replace every join point transifiavith target state T by a transition to the
initial state[of this instance of4;,,;. As for advice transitions, the input part of the label is unchanged and
the output part is replaced by thdvice output®),4; 2) connect the transitions that went to the final state
Fin A;,s to T. Advice programs are illustrated in Figuse

2.4.3 Fully Specifying an Aspect.

An aspect is given by the specification of its pointcut and its advieg: = (PC, adv), where PC is the
pointcut andadv is the advice.advis a tuple which contains 1) the advice outpGlg;; 2) thetype of
the target state specificatiotolnit or toCurren); 3) the finite tracer over the inputs of the program; and
optionally, 4) P,q,, the advice program. Thus, advice can be a tupl®,,,type o >, or, with an advice
program, a tuple< O,q4,typeo, Pagy >, With type € {toCurrent,toInit}. An aspect is woven into a
program by first determining the join point transitions and then weaving the advice.

6/15 Verimag Research Report TR-2006-10

David Stauch

E/Oad

\a a
? %

‘ b) target state T) b 1

(a) base program (b) inserted automatoA ;. (c) the woven program

Figure 5: Inserting an advice automaton

O (——

a alb
?true/b alb \>a,b
true/b alb
(@) (b)

Figure 6: A possible implementation of the MFF (a), with the retriggerable aspect applied to it (b).

Definition 8 (Aspect weaving). Let P be a program andisp = (PC, adv) an aspect forP. The weaving
of asp on P is defined by
P<asp = P(P,PC)<adv.

Example.

Consider the MFF example from Sectidr?. We now want to make the MFF re-triggerable, meaning that
if an a is emitted during several following instants, the MFF continues emitiing/e do this by applying
the aspectet = (PC, < b,tolnit, (a) >) to the MFF, where PC £6},S{a,b},{JP}, {(S,ablJP,S)}) is a
pointcut which selects all occurrencesaob as join points. Figuré(b) shows the result of applyingt

to the sample implementation of the MFF in Figée).

3 Weaving Aspects in Contracts

We want to apply an aspeatp not to a specific program, but to a class of programs defined by a contract
C, and obtain a new class of programs, defined by a conffacduch thatP = C' = P<asp = C'. To
constructC’, we simulate the effect that the aspect has on a program as far as possible on the assumption
and the guarantee observerstaf However, an aspect cannot be applied directly to an observer, because
the aspect has been written for a program with ingutnd outputsD, whereas for the observef) are

also inputs.

Therefore, we transform the observers of the contract first into non-deterministic automata (NDA),
which produce exactly those traces that the observer accepts. We then weave the aspects into the NDA, with
a modified definition of the weaving operator. The woven NDA are then transformed back into observers.
The obtained observers may still be non-deterministic, and are thus determinized.

Except for the aspect weaving, all of these steps are different for the assumption and the guarantee, as
far as the transitions to the Error state are concerned. This is because the assumption and the guarantee
have different functions in a contract: the assumption defines which part of the program is defined by the
contract, and the guarantee gives properties that are always true for this part.

After weaving an aspect, the assumption must exclude the undefined pastgrbgram which fulfills
the contract. Therefore, it must reject a trace (by emittimg) as soon as there exists a program for which
it cannot predict the behavior. The guarantee, on the other hand,exmitsnly for traces which cannot be
emitted by any program which fulfills the contract. Therefore, after weaving an aspect, the new guarantee
may only emiterr if it is sure that there exists no program that produces the trace.

Verimag Research Report TR-2006-10 7115

David Stauch

Indeed, a contract4,) can be rewritten adrile ,A =G). Thus, the assumption can be considered
as a negated guarantee.

3.0.4 Formal Definitions.

Definition 9 defines the transformation of an observer into a NDA through two functions, one for guarantee
observers and one for assumption observers.

Definition 9 (Observer to NDA transformation). Let obs= (Q U {Error}, qo,Z U O,{err },T) be
an observer with an error state Error over inpufsand outputsO, with Z N O = (. NDg(obg =
(Q,q0,Z, 0, Thp,,) defines a NDA, wheré\p,, is defined by(s, (7 A Lo, 0,s") € T = (s,1,45,5') €
Tnp,- ND4(oby = (Q U {Error}, qo,Z, O, Tnp,) defines a NDA, wher@yp, is defined by(s, {7 A
lo,0,8) €T = (S,€I7£$ Uo,s') € TNpg -

Note that the transitions inbswhich emiterr have no corresponding transitionsND (obs). In
the guarantee, these transitions correspond to input/output combinations which are never produced by the
program and must not be considered by the aspect. In the assumption, on the other hand, they correspond
to inputs from the environment that are not treated by the program. If the aspect replaces these transitions
in the assumption, they are also replaced in the program and can thus be accepted from the environment by
the woven program. Thus, error transitions are not removétDin(obs), so that the aspect weaving can
modify them.

We can now apply an aspect to a NDA. However, a trace may lead to several states. Thus, for each
join point transition, several advice transitions must be created, one for each target state. We only give a
definition for tolnit advice, but the extension to toCurrent advice and advice programs is straightforward.

Definition 10 (tolnit weaving for NDA). Let A = (Q, sinit,Z, O, T) be an automaton and ad¥ (Oagy,

tolnit, o) a piece of tolnit advice, witlr : [0,...,¢,] — [Z — {true ,false }] a finite input trace
of length/, + 1. Let TARG= {s|s = S_stepa(sinit, o, {s)} be the set of all states reachable with
The advice weaving operatoyweaves adv intol and returns the automatad< adv = (Q, sinit,Z, O U

Oagv, T'), whereT" is defined as follows:

((5,£,0,s) e TAIPEO) = (5,0,0,8') €T’ (1)
((s,£,0,5") € T ANJP€ O) = Vtarg € TARG. (s,(, Oaqv, targ) € 7 (2)

Transitions {) are not join point transitions and are left unchanged. Transiti&naré the join point
transitions, their final statiarg is specified by the finite input traece S_step 4 (Wwhich has been naturally
extended to finite input traces) executes the trace ddgirgjeps, from the initial state oA.

Transforming a NDA back into an observer is different for assumptions and guarantees. In the assump-
tion, we do not add additional error transitions, but only leave those already there. In the guarantee, we add
transitions to the error state from every state where the automaton is not complete. This is correct, as these
transitions correspond to traces that are never produced by any program.

Definition 11 (NDA to guarantee transformation). Let nd= (Q, ¢o,Z, O, T') be a NDA. OBg(nd) =
(QU{Error}, qo,Z U O, {err },T"UT") defines an observer, wheTé andT" are defined by

(s,0,0,8) €T = (s, Ny N v 0,s)yeT (3)
(s,£,0,s") ¢ T' A s € QA Lis acomplete monomial ov&ru O

4
= (s,¢,{err }, Error) e T” @

wherelp = A\ .o 0andls = A ., 0 for a setO of variables.

Definition 12 (NDA to assumption transformation). Let nd = (Q, qo,Z, O U {err },T) be a NDA.
OBSy(nd) = (Q,q0,ZU O, {err },T") defines an observer, wheté is defined by

(s,l,oUe,s') €T Ao C OANeC{err }é(s,ﬂ/\@o/\ﬁof\o,e,s’) eT

8/15 Verimag Research Report TR-2006-10

David Stauch

a.b

,—\b/e\rr

. E0D

blerr

(©

Figure 7: aND¢ (gMFF), b: ND (gMFF) < ret, c: OBS; (NDg (gMFF) < ret).

The resulting observer may not be deterministic. However, it can be made deterministic, as observers
are acceptor automata. Determinization for guarantees and assumptions is different: a guarantee must only
emiterr for a traceo if all programs fulfilling the contract never emit, and an assumption must emit
err if there exists a program fulfilling the contract which is not definedsfor

Existing determinization algorithms can be easily adapted to fulfill these requirements. We do not detail
such algorithms here, but instead give conditions the determinization for assumptions and guarantees must
fulfill.

Definition 13 (Assumption Determinization). Let M be a NDA with outputgerr }. Det4(M) is a
deterministic automaton such that
(it, ot) € TracegDet 4(M)) &
(it, ot) € Trace§M) A flot" . ot'(n)[err | =true A ot(n)[err | = false
Definition 14 (Guarantee Determinization). Let M be a NDA with outputderr }. Detg(M) is a
deterministic automaton such that
(it, ot) € TracegDetg(M)) <
(it, ot) € TracegM) A Pot’ . ot'(n)err | =false A ot(n)[err | = true
We can now state the following theorem.

Theorem 1.

P = (A,G)= P<asp |= (Det 4(OBS4(ND4(A)< asp)), Deta(OBS:(NDg(G)< asp)))
Proof. See appendii.

3.0.5 Example.

We apply the re-triggerable aspaet from Section2.4.3to the contract of the MFF using the method
described above and obtain the contract of kfefE. Figure7(a) showsND¢ (gMFF), the NDA equiva-

lent to gMFF. Figure/(b) showsND¢ (gMFFk ret , the same automaton with the aspect woven into it.
Figure7(c) shows this automaton, transformed back in an observer. It is already deterministic, thus there
is no need to determinize it. Figuadescribes the same steps for the assumption.

4 Example: The Tramway Door Controller

We implement and verify a larger example, taken from the Lustre tutdridl & controller of the door of

a tramway. The door controller is responsible for opening the door when the tram stops and a passenger
wants to leave the tram, and for closing the door when the tram wants to leave the station. Doors may also
include a gateway, which can be extended to allow passengers in wheelchairs enter and leave the tram.

Verimag Research Report TR-2006-10 9/15

David Stauch

aberr , alb, _a/merr , ab lerr
alerr alerr
Error Error "~ (Error
a,albla, ab a, ablja aliab
N N
a,ab a,ab a
(@) (b) (©)
Figure 8: aND 4 (aMFF), b: ND4 (aMFF)<ret, c:OBSy (ND4 (aMFF) < ret).
Controller Inputs: Controller Outputs:
inStation Tram is in station doorOK door is closed and ready to leave
leaving Tram wants to leave station openDoor | opens the door
doorOpen the door is open closeDoor | closes the door
doorClosed | the door is closed beep emits a warning sound
askForDoor | a passenger wants to leave the trar] setTimer starts a timer
timer the timer set by setTimer has run ot
Gangway Inputs: Gangway Outputs:
gwOut the gangway is fully extended extendGW | extends the gangwa)
gwin the gangway is fully retracted retractGW | retracts the gangway|
askForGW | a passenger wants to use the gangwgy
Helper Signals Outputs:
acceptReq| the passenger can ask for the door or the gw
doorReq the passenger has asked for the door to open
gwReq the passenger has asked for the gangway
deplmm the tramway wants to leave the station

Figure 9: The interfaces of the controller and the gangway, and the helper signals.

We implement the controller as an Argos program. We first develop a controller for a door without
the gangway, and then add the gangway part with aspects. The in- and outputs of the controller and
those which are added by the gangway are given in Figufiéhe controller uses additional inputs, called

Helper Signals, which are shown in Figut@nd are calculated from the original inputs by the program in
Figure10.

4.0.6 The Gangway Aspects.

Two aspects are used to add support for the gangway: one aspect that extends the gangway before the door

is opened if a passenger has asked for it, and one aspect that retracts the gangway when the tram is about
to leave, if it is extended.

The pointcut P of the extension aspect selects all transitions whgte Door.door Req.doorClosed.

gwOut is true, and the pointcut REof the retraction aspect selects all transitions whiere-O K .gwIn
is true.

Both aspects insert an automaton and return then to the initial state of the join point transitions. The
inserted automata for the aspects are shown in FigjlireThe extension aspect is specified {BCext, <
{},toCurrent (), Ix >), and the retraction aspect B§Cet, < {retractGW },toCurrent (), Iret >).

4.0.7 Verifying Safety Properties.
The tramway system must fulfill several safety requirements concerning the doors, namely:
¢ the door must be closed while the tram is out of station,

¢ the gangway must be fully retracted while the tram is out of station, and

e The gangway must not be moved when the door is not closed.

We want to verify that the controller guarantees these requirements if it is put in an appropriate environment.
Therefore, we develop a model that describes the possible behavior of the physical environment of the
controller, composed of the door, the gangway, and the tramway. These models are expressed as Argos
observers. The models for the tramway and the door are shown in Figued Figurel3 respectively.

10A5 Verimag Research Report TR-2006-10

David Stauch

| |
| |
| |
i _ I dep/ ' 4 .
; ; inStation/ ' 1 dep leavin
inStation dep | leaving doorReq 9
|
| |
| |
.. | leaving/acceptReq_ | dep/depimm _ _ _
tR :
acceptReq |
ggg:o . (askForDoor :dem acclflfth\cllv
P vaskForGW) |gWOUt askror
|
- |
depdoorOpen/doorReq : depgwOut/gwReq

dep

Figure 10: The automaton producing the helper signals.

gwOut /retractGW_ gwIn
Ry T CEE.
gwOut/extendGW gwin/retractGW
(@): Text (b): Iret

Figure 11: Inserted automata for the extension (a) and the retraction (b) aspect.

The model for the gangway is the same as for the door, where door-related signals are replaced by their
gangway-related counterparts.

The actual door controller may be a large program which is difficult to verify, therefore we abstract
it with a contract. The assumption of the contract is the model of the door shown in Figuend
the guarantee is shown in Figutd. To prove that a controller without gangway satisfies the safety
requirements, we prove that a) the controller satisfies the contract, and b) the contract never violates a
safety requirement in the environment.

To verify modularly that the program with the gangway does not violate the safety requirements, we
weave the aspects into the assumption and the guarantee, and check then that a) the environment satisfies
the new assumption, and b) the new guarantee satisfies the safety requirements in the environment.

We measured the time necessary to verify the safety properties using our implemerifatiding
source code of the door controller example is available @t [Building the sample controller shown in
Figure15with the gangway aspects and verifying it against the environment takes 11.0 seconds. Weaving
the aspects into the guarantee of the controller contract and verifying against the environment takes 3.7
seconds, verifying that the sample controller verifies the contract and verifying that the environment fulfills
the assumptions with the aspects take§.5 seconds. Thus, using this modular approach to verify the
safety properties of the controller is significantly faster than verifying the complete program. This indicates

\@ inStati
inW n inStation

.inStation @ inStation

é/’mmStation

Figure 12: Model of the tramway.

Verimag Research Report TR-2006-10 11/15

David Stauch

AN doorClosecbpenDoor

NG

doorClosed

closeDoo

openDoor
.doorClosed

.doorOpen
closeDoordoorClpsedioorOpen

(Opening

doorOpe\/r/

closeDoor openDoor
.doorClosed .doorOpen

openDoordod rCIozzadjoorOpen

doorOpen

doorOpercloseDoor

Figure 13: Model of the door.

doorOK (doorClosedopenDoor) openDoor

inStationopenDoor

doorClosedioorOK openDoor

Figure 14: The guarantee of the model of the contract of the controller.

that larger programs can be verified using our modular approach.

5 Related Work

Goldman and Katz5] modularly verify aspect-oriented programs using a LTL tableau representation of
programs and aspects. As opposed to ours, their system can verify AspectJ aspects, as tools likeBandera [
can extract suitable input models from Java programs. It is, however, limited to sovaliddly invasive
aspects, which only return to states already reachable in the base program.

Clifton and Leavensd] noted before us that aspects invalidate the specification of modules, and propose
that either an aspect should not modify a programs contract, or that modules should explicitly state which
aspects may be applied to them.

inStation/ MW (Out)
ut
doorOK C

deplmm/doorOK/inStation
doorReqdeplmm/openDoor

doorClosed doorO0en/ b
= oorOpen/openDoor
(deplmmdoorReq)/ doorClosed
closeDoor deplmm doorOpen/setTimer
doorReqdoorClosed \

timer/closeDoor

timer/beep deplmmvtimer/beep

Figure 15: A sample controller for the tramway door.

1215 Verimag Research Report TR-2006-10

David Stauch

6 Conclusion

We proposed a way to show exactly how a Larissa aspect modifies the contract of a component to which it
is applied. This allows us to calculate the effect of an aspect on a specification instead of only on a concrete
program. Furthermore, we used this approach to modularly verify an example.

We believe that the approach is exact in that it gives no more possible behaviors for the woven program
than necessary. |.e., for a contréttnd a trace € TracegC< asp), there exists a prograifd s.t. P = C
and¢ € TracegP< asp). This remains however to be proven. A more interesting direction for future
work would be to derive contracts the other way round. Given a conffaatd an aspecisp, can we
automatically derive a contra€t’ such thatC’ < asp = C? Finally, the proposed approach works only
because we have restricted Argos and Larissa to Boolean signals. It would be interesting to see if this
approach can be extended to programs with valued signals or variables.

References

[1] K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented programming for reactive systems: a
proposal in the synchronous framewoficience of Computer Programming, Special Issue on Foun-
dations of Aspect-Oriented Programmjr&g(3):297-320, 20061.1, 2, 2.4

[2] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, semantics,
implementationSci. Comput. Programming 9(2):87-152, 19922.2

[3] C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral subtyping anal-
ogy. Technical Report 03-15, lowa State University, Department of Computer Science, Dec. 2003.
5

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng. Bandera:
Extracting finite-state models from Java source code2imd International Conference on Software
Engineering pages 439-448, June 2008.

[5] M. Goldman and S. Katz. Modular generic verification of LTL properties for aspecEundations
of Aspect-Oriented Languages (FOAMar. 2006. 5

[6] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editdigebraic Methodology and Software
Technology, AMAST'9Q3une 1993.1.2

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of
Aspect].LNCS 2072:327-353, 20011.1

[8] L. Lamport. Proving the correctness of multiprocess prograf@®M Trans. Prog. Lang. SysiSE-
3(2):125-143,19771.2

[9] Compiler for Larissa. http://www-verimag.imagdrétauch/ArgosCompiler/4.0.7

[10] Argos source code for the tram example. http://www-verimag.imag.fr/
~stauch/ArgosCompiler/contracts.htmi.0.7

[11] The Lustre tutorial. http://www-verimag.imagf#faymond/edu/tp.ps.gz4

[12] F. Maraninchi and L. Morel. Logical-time contracts for reactive embedded component0thn
EUROMICRO Conference on Component-Based Software Engineering Track, ECBREIDsS,
France, Aug. 2004.1.2

[13] F. Maraninchi and Y. Bmond. Argos: an automaton-based synchronous langugaputer Lan-
guages27(1/3):61-92, 20012

[14] B. Meyer. Applying "Design by Contract'Computey 25(10):40-51, 19921.2

Verimag Research Report TR-2006-10 1315

David Stauch

A Proof for Theorem 1

Definitions. We first introduce a number of definitions.

P(p) = (A(a),G(g)) means that prograr® fulfills contract(A, G) where the initial states aP, A
andG have been set tp, a andg respectively.

Furthermore, we introduce the following notations for terms from the theorem. Let

A'<asp = OBSy(ND4(A)< asp), A< asp = Det a(A'< asp),
G'< asp = OBS;(NDg (G)< asp), and G<asp = Detg(G'<asp) .

We now define the structure of some of these terms. Let

Qp,qpro,Z,0,Tp),

=(
asp = (PC, < Ogqy, tolnit, o >),
PC= (Qpc, gpa, Z U O, {JIP}, Tpc),
= (Qa U{Error}, qa0, ZU O, {err },7Ta),
= (Q¢ U{Error}, qco,Z U O, {err },7a),
Paasp = (Qp x Qpc, (qpo, po), Z, O, Tpy),
A'<qasp = ((Qa x Qpc) U {Error}, (qa0, gpa), Z U O, {err },T4,), and
G'aasp = ((Qe x Qpc) U{Eror}, (460, tpn), ZU O, {err },Tcy) .

We prove the theorem by induction over a traceef asp. Let (it, ot) € TracegP< asp). We show
that the following induction hypothesis holds for amy

Induction hypothesis.

O_step aqasp (it.ot,n) = 0 =

(Pns pCn) = S-steppqasp (it,n) =

Ian, pe,) = S_stepamasp(it.ot,n), (gn, pcn) = S_stepguasp (it.ot, n) .
P(pn) E (A(an), G(gn)) A (gn, pen) # Error

(Pn,pCn), (an, pcs) and(gn, pey,) are the states reached when execuftiitgot) for n steps onP < asp,
A< asp and G’ < asp respectively. The existential quantifier befdie,, pc,,) and (g,,pc,,) is needed
becaused’< asp andG’< asp may be non-deterministic.

Base case. n = 0. P = (A,G) holds as it is the assumption of the implication in the theorem. If the
initial state ofG is the Error state, eithet (and A< asp) do not accept any trace, or e exists, and in
both cases we are done.

Induction step. Fromn — 1 ton.
If O_step aqasp (it.ot,n) = {err }, we are done. Otherwisé)_step arqsp (it.ot, n) = () holds because
of Definition 13, and we distinguish two cases:

e First casedP ¢ O_steppc(it.ot,n), we are not in a join point.

) W
Because ofP(p,—1) E (A(an-1),G(gn-1)), there is a transition, = (p,—1, it(n), ot(n),p,)
in 7p, a transitiont, = (a,—1,it(n) A ot(n),0,a,) in 74, and a transition, = (g,_1, it(n) A
ot(n),0, gn) in Te, such thatP(p,,) = (A(an), G(gn))- tp, ta @andt, are not modified by the weav-
ing, thus there is a transitiof(p,,—1, pcn—1), it(n), ot(n), (pn, pcn)) In Tpg, a transition((a,—1,
PCn—1), it(n)Aot(n),d, (an, pcn)) i Tag, and atransitiof(g,—1, pen—1), it(n)Aot(n), 0, (gn, pcn))
in Teq wWith (gy,, pc,,) # Error.

145 Verimag Research Report TR-2006-10

David Stauch

e Second caselP € O_steppc(it.ot,n), we are in a join point.

We haveS _steppqqsp (it,n) = S_stepp(o,ls) = po. Lets be atrace of length, such thav/i < [, .
¢(i) = O_stepp(o,1). Alljoin point transitions inG'< asp (resp.A'< asp) are replaced by transitions
to all possible target states, thus there is a transttjanc 7¢. (resp.tq« € Zaw) to a target state
(9o, PC,) (resp. (aq,pc,)) such thatS_stepg(o.s,ls) = g, (resp. S_stepa(os,l,) = ay) and
S_steppc(o.s,l,) = pc,. Because,, a, andg, can be reached with the same trgees) (resp.
(0., €) for a, andg,) from the initial state P(p,) = (A(a,), G(g,)) follows from P |= (A, G).
Furthermoreot(n) = Oagy, and we havé,, = ((an—1,pcn—1), it(n) A Oagy, 0, (as, pcs)), and
tga = ((gn-1,Pcn-1), it(n) A Oadw 0, (9o, pc»)), and thusa,, pc,) = S_steparasp (it.ot,n) and
(9o, pcs) = S_stepguasp (it.ot,n). Furthermore, we hav§y,,pc,) # Error, as otherwise, =
Error (impossible because 6f_step aasp (it.0t,n) = (), or (it, ot) ¢ TracegP), by the definition

of P = (4,G).
It follows from the induction hypothesis that

(it.ot,€) € Traceg A< asp) A (it, ot) € TracegP< asp) = (it.ot,¢) € TracegG'< asp)

and we havdit.ot,e) € TracesG’'< asp) = (it.ot,e) € TracegG < asp) by Definition 14. Thus, the
theorem follows from the induction hypothesis. O

Verimag Research Report TR-2006-10 15/15

	Introduction
	Synchronous Languages and Aspect-Oriented Programming
	Synchronous Languages and Design-by-Contract
	Combining Contracts and Aspects

	Argos and Larissa
	Traces and trace semantics
	Argos
	Contracts for Argos
	Larissa
	Join Point Selection.
	Specifying the Advice.
	Fully Specifying an Aspect.

	Weaving Aspects in Contracts
	Formal Definitions.
	Example.

	Example: The Tramway Door Controller
	The Gangway Aspects.
	Verifying Safety Properties.

	Related Work
	Conclusion
	Proof for Theorem 1

