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Abstract

The main result of this paper is that the Dolev-Yao model iafa abstraction of the computational
model for security protocols including those that combirsgnametric and symmetric encryption,
signature and hashing. Moreover, message forwarding avat@key transmission are allowed. To
our knowledge this is the first result that deals with hastcfioms and the combination of these
cryptographic primitives.

A key step towards this result is a general definition of attiom of cryptographic primitives, that
unifies well known correctness criteria such as IND-CPA, I8DA, unforgeability etc.... and a
theorem that allows to reduce the correctness of a composifitwo cryptographic schemes to the
correctness of each one.
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Introduction

Historically, verification of cryptographic protocols hiasen separated in two distinct branches. Insymabolic
approach originating from the work of Dolev and Yad {], cryptographic primitives are viewed as functions
on a space of symbolic terms; while in themputational approackhey are viewed as possibly randomized
functions on bit strings.

A rich collection ofautomaticverification methods and tools have been develogedi[l, 29, 18, 10, 15]in
the symbolic approach. They rely upon the perfect crypiolgyaassumption which can be roughly summarized
as follows: messages are represented as algebraic terntesare represented as names and fresh nonce cre-
ation is perfect, that is, nonces range over an infinite doroinames and each nonce creation yields a different
name, the same holds for keys. Moreover, no information eaextracted from an encrypted message unless
the inverse of the key used to encrypt the message is knowthidapproach there is a single attacker that is
modeled as an infinite process without bounds on its comipa&tresources.

In thecomputational approactcryptographic primitives operate on strings of bits aredrthecurity is defined
in terms of high complexity and weak probability of succeiss [] of any attacker. Protocols as well as attackers
are randomized polynomial-time Turing machines. This cotational approach is recognized as more realistic
than the symbolic approach. However, its complexity make®ry difficult to design automatic verification
tools.

Therefore, results of the type:

If protocolIT uses the cryptographic schems - - - , Sy, if each schems; is correct with respect
to the security notioi®; then correctness of the protocol established in the syrolnatidel implies
its correctness in the computational one.

are of extreme importance for gaining confidence that a ogmaphic protocol is secure. We call this type of
resultssoundness results of the symbolic approach

In this paper, we present a soundness result for protoctisagiymmetric and symmetric encryption, signa-
ture and hashing. We emphasize that the main difficulty teetlee combination of these primitives.

The main step to get this result is the introduction of a secariterion that allows us to combine asymmetric
and symmetric key cryptography as well as signature anditngsfio understand what is going on, imagine a
cryptographic library that offers these different kindgpamitives. What does it mean that this library is secure?
A priori it is not clear whether it is sufficient to say that bgmrimitive is secure when taken on its own. There
might be some unexpected effects when for instance the ptimnyof a signed message is hashed!

To answer this question we prove a powerful reduction thedo security criteria. Typically, this theorem
allows us to prove results of the form: if the cryptographsbemesS; (resp. S;) satisfies the criterior;
(resp. Cs) then their combination satisfies criteriéhy whereC' is some combination of'; andCs. Then, we
introduce a security criterion for cryptographic librarias above and use the reduction theorem to relate our
security criterion to existing ones, namely IND-CCA, s#ikexforgery against adaptive chosen-message attack
and collision resistance.

Related work In the last years, effort has been invested to bridge the gapden the symbolic and computa-
tional approaches. In their ground-breaking paggAbadi and Rogaway prove that messaggistinguishabil-

ity in the symbolic model is valid in the computational model wineaking some assumptions on the encryption
scheme. In this and subsequent papérs(, 26, it is showed that if two messages are not distinguishabtbe
symbolic model, then their computational interpretatioasnot be separated by a Turing machine in a reason-
able (polynomial) time. These papers deal with passiveletta that do not intervene during protocol execution.
Active attackers are considered v 25, 4, 24, 13, 19, 12, 21]. Backes, Pflitzman and Waidner developed a
Dolev-Yao-style cryptographic library with a provably cect implementations, 5, 3]. The security property
considered there, calledactive simulatabilityis a very attractive and powerful notion which is robuspess

to general composition. Canetti and Herzog demonstratéZhHow Dolev-Yao style symbolic analysis can
be used to assert the security of cryptographic protocdtsmihe universally composable security framework.
This framework also allows for strong composability prdjes. Soundness of the symbolic approach for public
key encryption is considered ii(, 25]. Asymmetric encryption and digital signature are conséden [13, 21].
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Compared to our paper[], we improve with respect to the following: 1) i2{] we only consider asym-
metric encryption and digital signature and 2) we substéiptijeneralize the reduction theorem to be applicable
to asymmetric and symmetric encryption, digital signatamd hashing. Compared to previous versions of this
paper P7], we clarify the proof of the reduction theorem.

Paper organization The next section gives the necessary preliminaries relat¢éde computational model.
In the following section, we generalize and simplify theiootof security criterion and apply it to asymmetric
encryption, signature, symmetric encryption, hashingamix of all these primitives. Section 3 formulates the
reduction theorem. Then, this theorem is applied to relsdecobmbined security criterion to the simple ones.
Section 4 uses these results to show that, under some quitestactive hypotheses, the symbolic model is a
safe abstraction of the computational model. Finally, scoreluding remarks are drawn.

1 Preliminaries

1.1 Definitions for the Computational Model

An asymmetric encryption schem = (KG, £, D) is defined by three algorithms. The key generation algo-
rithm KG is a randomized function which given a security paramegteutputs a pair of key$pk, sk), where
pk is a public key andk the associated secret key. The encryption algorithis also a randomized function
which given a message and a public key outputs the encrypfithhe message by the public key. Finally the
decryption algorithmD takes as input a secret key and a cipher text and outputs thesponding plain-text,
i.e., D(E(m, pk), sk) = m. The execution time of the three algorithms is assumed tobsmpmially bounded
by n.

A symmetric encryption schen# = (KG, &, D) is defined as above except tHag generates one key
instead of a pair, and hence, we requr¢€ (m, k), k) = m.

A signature schem&8S = (KG,S,V) is also defined by three algorithms. The key generation lgor
randomly generates pairs of keygk, vk), wheresik is the signature key andk is the verification key. The
signature algorithn& randomly produces a signature of a given message by a gigeatare key. The verifi-
cation algorithmy is given a message, a signaturer and a verification keyk and tests ity is a signature of
m with the signature key correspondingute. Hence,V(m, S(m, sik), vk) returns true for any messageand
any pair of keygsik, vk) generated byCG. We say that is a valid signature undeiik if there existsn such
thatV(m, o, vk) returns true. We still assume that the algorithms have anpohyal complexity.

A hashing algorithnis a polynomial deterministic algorithm that, given a kegnd a bit-strings, computes
another bit-string of sizg. The key generation algorithm is not important and one capase thak is chosen
randomly among strings of size

1.2 Randomized Turing Machines with Oracle

An adversary for a given scheme is a Polynomial Random Tuvlaghine (PRTM) which has access to an
oracle. In the following, we consider Turing machines whesecution is polynomially bounded in the security
parameter, i.e. there exists a polynomi&l such that for any input corresponding to security paramegtére
machine stops withi®(n) steps.

To model access to the oracle, we slightly modify the deéiniof Turing machines. Our Turing machines
have two additional tapes, one for arguments (of functi@ole calls) and one for the results. Then,Aebe a
new action. We define our PRTM as a pair of a Turing macbirtbat can use transitiof' and another Turing
machineF’ representing the oracld:’ can also be described by a PRTM (which can also access oratles
semantics ofd/ F' is the standard semantics dfexcept that whenevet fires the actior¥’, F' is executed with
the arguments tape as input and the results tape as output.

It is possible to encode access to multiple oracles uBirfgy giving in the arguments tape the name of the
chosen oracle). Hence, to simplify notations, we directlitev4/ f1, ..., f,, wheref; are PRTM and oracles are
called using thef; action when definingd.
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A functiong : R — R is negligible if it is ultimately bounded by:—¢, for each positive € N, i.e., for all
¢ > 0 there existsV, such thalg(z)| < z~¢, forallz > N..

2 Security Criteria

A security criterion is defined as an experiment involvingdmersary (represented by a PRTM). The experiment
proceeds as follows. First some parametease generated randomly. The adversary is executed and eanus
oracle F" which depends of. At the end, the adversary has to answer a string of bits wkieerified by an
algorithmV” which also use8 (e.g.6 includes a bib and the adversary has to output the valué)of

2.1 Security Criterion
A criterion-y is a triple(©; F'; V') where
e Ois a PRTM that randomly generates some challeh@fer example, a bib and a pair of key$pk, sk)).

e F'is a PRTM that takes as arguments a string of basid a challengé and outputs a new string of bits.
F represents the oracles that an adversary can call to selebatlenge.

e V is a PRTM that takes as arguments a string of bigmd a challengé and outputs either true or false.
It represents the verification made on the result computatidpadversary. The answer true (resp. false)
means that the adversary solved (resp. did not solve) tHenba.

Note that® can generate an arbitrary number of parameters/aondn represent an arbitrary number of oracles.
Thus, it is possible to define criteria with multipl®sand F'. As soon as there is no risk for ambiguity, we use
the same notation for the challenge gener@t@nd the generated challengéboth are denoted usir@).

The advantage of a PRTM againsty is

Adv’y(n) = 2.(Pr[Exp)y(n) = true] — PrRand")
whereExp is the Turing machine defined by:

Experiment Exp’ (n):
0—O(n)
d—A/n,As.F(s,0)
return V(d, )

and PrRand” is the best probability to solve the challenge that an adwgrsan have without using oraclé
Formally, PrRand” is the maximum ofPr[Exp’’,(n) = true] whereA ranges over any possible PRTM and
Exp’ is similar toExp except thaf” cannot be used byl.

Experiment Exp’’ (n):
0—0O(n)
d—A/n
return V(d, )

2.2 The N-PAT-IND-CCA Criterion

We introduce a security criterion that turns out to be uskfuprotocols where secret keys are exchanged. This
definition was first given in41] where more discussion is available. In the classi¥aND-CCA criterion
(see ] about N-IND-CCA and its reduction to IND-CCA), a random Hitis sampled. For each key, the
adversary has access to a left-right oracle (the adversiéryits a pair of bit-stringésg, bs; and receives the
encoding obs;) and a decryption oracle (that does not work on the outputssdeft-right oracle). The adversary
has to guess the value &f
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Since it has no information concerning secret keys, theradwg cannot get the encryption of a challenge
secret key under a challenge public key. Therefore, wednite N-PAT-IND-CCA, which allows the adversary
to obtain the encryption of messages containing challeegeeskeys, even if he does not know the value of
these secret keys. For that purpose, the adversary is altmgive pattern terms to the left-right oracles.

Pattern termsare terms where new atomic constants have been added:npedtéables. These variables
represent the different challenge secret keys and are elkigt|i] (this asks the oracle to replace the pattern
variable by the value ofk;). Variables can be used as atomic messages (data pattexrina ey position (key
pattern). When a left-right oracle is given a pattern tetmeplaces patterns by values of corresponding keys and
encodes the so-obtained message. More formally, pattezrggveen by the following grammar whebe is a bit-
string andi is an integer. In the definition of pattern terms, we use thevidng binary operators : concatenation,
encryption and signature. Concatenation of pattents andpat; is written (pato, pat1). Encryption ofpat
with key bs is denoted by{pat },s. Signature opat with key bs is denoted byig(pat, bs). Similarly, when the
key is a challenge key, it is represented by a pattern var{éblFinally, one unary operator, hashing, is defined
over patterns and is denoted by

pat = (pat,pat) | {pat}ss | {pat} | bs | [i] | sig(pat, [i]) | sig(pat,bs) | h(pat)

The computation (valuation) made by the oracle is easilynddfrecursively in a contegtassociating bit-string
values to the different keys. Its result is a bit-string angses the encryption algorithéhand the concatenation
denoted by the operatar

EH’Z; i ZZ v({p}bs, 0) E(v(p,0),bs)

) = i v(sig(p, bs),0) S(v(p,0),bs)

v({(prp2),0) = v(p1,0)-v(p2,0) v(sig(p, [i]),0) = S(v(p,0), sk:)
o({pha0) = E(u(p,0),pky) .

v(h(p),0) = H(k,v(p,0))

There is yet a restriction. Keys are ordered and a pafteoan only be encrypted undgk; if i > j. This
restriction is well-known in cryptography and widely actsh When the left-right pattern encryption oracle
related to keyi is given two pattern termgat, andpat, it tests that none contains a patt¢ihwith j < . If
this happens, it outputs an error message, else it prodoeestryption of the message correspondingit@ :
v(paty, §) encoded byk;. To win, the adversary has to guess the value of secrkt Nibte that an adversary can
submit arguments of different length to the left-right dedlout this does not create any problem (an interesting
discussion on that point appears ij)[

Henceforth, letAE be an asymmetric encryption scheme. Then, criteAGRPAT-IND-CCA is given by
v~ = (0; F; V), where®© randomly generate¥ pairs of keys usingCG and a bith; V' verifies that the adversary
gave the right value for bit; and F' gives access to three oracles for eacta left-right encryption oracle that
takes as argument a pair of pattefpat, pat1) and outputdat, completed with the secret keys(paty, 0))
and encoded usingk;; a decryption oracle that decodes any message not prodycie former encryption
oracle; and an oracle that simply makes the public key availa

Then, A¢ is said N-PAT-IND-CCA iff for any adversary4 in PRT M, Adv’)" (n) is negligible. Note that
N-PAT-IND-CCA with N = 1 corresponds to IND-CCA.

2.3 The N-UNF Criterion

The N-UNF criterion is an extension of Selective Forgery Agaihdaptive Chosen-Message Attacks to the case
of N different keys (a good survey on properties for signatuhestes is available inl[/]). It was also already
defined in P1]. Here, we rephrase this definition to put it in the shape ofrmw criterion formalization.

The main requirement is that an adversary should not be aliterge a pair containing a messageand
the signature ofn using the secret signature key. AtUNF adversary4 is given NV verification keys and has
to produce a message and its signature under one of the kdgsal$o given the security parameteand N
signature oracleS;y, (.).
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Let SS be a signature scheme. Th&UNF criterion is given byyy = (©, F, V'), where® generatesV
signature key pairs using the key generation algorithm f&#n F' permits the access to two oracles for each
signature key pair: the first one allows to sign any stringits; bhe second one gives the verification key. Verifier
V' checks that the output of the adversary is a pair containimgssage and its signature. This signature must
not have been produced by the signature oracle.

An adversary wins againd{-UNF when it succeeds in producing a message and its signdtarmallySS
is said N-UNF, if for any adversaryd, Adv’ YV (5) is negligible. WhenV = 1, N-UNF can be written
UNF.

2.4 The N-PAT-SYM-CCA Criterion

A symmetric encryption scheme includes both aspects indisishability and authentication that are present
in asymmetric encryption and message signature resplctié reformulate it using our criteria framework
in order to apply our reduction theorem. That is, our criterfor symmetric encryption is a combination of
IND-CCA and UNF. Indeed, a symmetric encryption should bausein two ways. The first one is related to
IND-CCA, any PRTM should not be able to guess any informatiom messages encoded with an unknown
key. The second one is related to UNF; any PRTM should not leetalfiorge an encoding without knowing the
key (the encrypted message is authenticated). Hencegesraie similar to those presented in IND-CCA (except
that no oracles output the public key), but there are tweedsffit ways to win the challenge. The hypothesis of
acyclicity regarding keys still holds:; can only appear encoded byif < > j. The N-PAT-SYM-CCA criterion
isyn = (0, F, V) where© generateV symmetric keys and a bit F’ gives access to two oracles for each key:
a left-right encryption oracle that takes as argument agfgatterns{pato, pat1) and outputpat, completed
with the secret keysi(pats, §)) and encoded witk;; a decryption oracle that decodes any message not produced
by the former encryption oracle. Finally, is composed of two parts/;yp returns true when the adversary
returns bith; Vi y r returns true when the adversary outputs a message encodeé oy the symmetric key and
this message has not been produced by an encryption orde®.VTis satisfied ifi;yp or Vi is satisfied.
We require that there is no string that satisfies Bgthp andV; v ¢ (this can be done by asking the name of the
challenge together with its solution to the adversary). @titerion related to INX©, F, V;nyp) (resp. to UNF
(O, F, Vynr)) is denoted byV-PAT-SYM-CCA/IND (resp.N-PAT-SYM-CCA/UNF).

A symmetric encryption schen®€ is saidNV-PAT-SYM-CCA iff for any adversaryl in PRT M, Adv}’g a(n)
is negligible, wherey; is a criterion including the oracles explained above.

Existence of al-PAT-SYM-CCA encryption scheme can be proved under theragian that there exists
an IND-CCA asymmetric encryption scheme and an UNF sigrasgcheme (see append®. The 1-PAT-
SYM-CCA criterion is equivalent to the authenticated emptign criterion IND-CPAA INT-CTXT which is the
strongest notion introduced iB][for authenticated encryption.

2.5 The HASH Criterion

The HASH criterion is a combination of an IND-CCA critericary UNF criterion and a collision free criterion.
A hashing algorithm needs to verify three properties to lmeise First an adversary cannot obtain information
on a bit-stringhs when looking at(k, bs). The second property is that if an adversary does not knotvstring
bs, it cannot producei(k, bs) even if it knows hashing of messages similabsoFinally, it must be hard for an
adversary to find two different messages which have the sasie for a given key. More details about criteria
related to HASH can be found i

The HASH criterion isy = (O, F, V'), where® generates a bii, a keyk and a random bit-string/ # of
sizen. OracleF' gives access to two oracles: an oracle which gives the vdllkeyok and a left-right hashing
oracle which takes as input a pdjrato, pat;) of hollow patterns (these patterns can ask for inclusioiVéf
and have to ask for it at one position at least) and outpi(ts pat,[N']). Moreover, each pattern can only
be submitted once to this oracle in order to avoid guessitaglet. VerifierV is the disjunction of three parts:
Vinp returns true if the adversary outputs the challengé;di; y » returns true if the adversary outputs a pair
(h, pat) such thath = H(k, pat[N¥]) andh was not produced b¥’; Vo returns true if the adversary outputs
a pair(bsg, bs1) such that{(k, bsg) = H(k, bs1), and bit-stringds, andbs; are different.
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A hashing algorithm is said HASH iff for any adversafyin PRT M, Adv’’ () is negligible.
The criterion related to INOO, F, V;np) (resp. to UNF(O, F, Vv r)) is denoted by HASH/IND (resp.
HASH/UNF). The last criterion related to collision free isrtbted HASH/CF.

Proposition 2.1 If an algorithm? is secure against HASH/IND and HASH/CF aRdRand“ " and PrRand" N ¥
are negligible, thert{ verifies HASH/UNF and so is secure against HASH.

Proof: This proofis detailed in appendi ]

Let us spend a few words explaining our requirements on hgsigorithms: indistinguishability and col-
lision freeness. In the cryptographic literature, one ligdmds one-wayness$ and collision freeness as re-
guirements. We require, however, indistinguishabilityt@ad of one-wayness. This is because, exactly as for
asymmetric encryption, one-wayness is too weak as it shmtlthe possible to infer any information emjust
by looking ath(m).

Note that it is not clear to us whether there exists an algaerisatisfying our requirements. However our
requirements seem necessary to prove soundness of thelgymbdel.

2.6 Mixing all Criteria

Let us now consider an encryption scheme, or rather a cryapbdc library, that includes the cryptographic
primitives above, i.e., asymmetric encryption, symmegmcryption, signature and hashing. The security of
such a library can be defined as a game, where an adversarydess & each of the oracles above and wins the
game, if it succeeds to guess the value of theéhbibrge a signature, forge an encryption by a symmetric key,
or construct a hash-collision. There are some restrictiothe patterns the adversary can use. The restriction
essentially forbids cycles, as in the case of asymmetrigyption. We say that a cryptographic library satisfies
the N-PASSH-CCA criterion, if the advantage of any adversaryirsgighis combined criterion is negligible.
More formally, we have the followingv-PASSH-CCA criterionry = (©, F, V') where® is composed of four
parts:

e O, generatedV pairs of asymmetric key@k;, ski) to (pkn, skn).
e O, generatedv symmetric keyg, to k.
e O, generatesV pairs of signature key&ik,, vky) to (sikn, vkn).
e O, generates a nondé’’, a keyk as well as a challenge Hit

Fis also split in four parts:

e F, corresponds to the oracles usifigas in N-PAT-IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signature of a messageature keys, hashing of a message and nonce
NH. F, depends o#,, 65, 6. andd,,.

e F, corresponds to oracles usifigas in N-PAT-SYM-CCA, patterns are also extended but cannot irelud
asymmetric keys from,. I}, depends o#,, 6. andf,.

e F, corresponds to oracles usifigas in N-UNF, F,. depends only of..
e F,; corresponds to oracles usifigas in HASH,F,; depends only of..
Finally V' is also a disjunction of five parts:
e V;np answers true if its argument if the biin © .
o Vunr—_syn answers true if it receives a symmetric encryption not fdigg £,

e VunF_sicn answers true if it receives a signature not forgedpy

Lintuitively, a functionf is one-way, if givenf (z) but notz it is hard to find a valug such thatf (y) = f(x).
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e Vunr_masy answers true if it receives a pdit pat whereh = H(k,v(pat, N) and h has not been
forged usingty.

e Vor_masy answers true if it receives a pair of distinct bit-strirkgs, bs; that have the same hash.

Let us define theV-PAT-ASYM-SYM-SIGN-HASH-CCA (V-PASSH-CCA) criterion agy = (0, F, V)
where® is composed of four parts:

e O, generatedV pairs of asymmetric key@k;, ski1) to (pkn, skn).
e O, generatedv symmetric keyg:, to k.
e O, generatesV pairs of signature keyik;, vki) to (sikn, vky).
e O, generates a nondé’’, a keyk as well as a challenge Hit
Fis also split in four parts:
e F, corresponds to the oracles usifigas in N-PAT-IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signature of a messageature keys, hashing of a message and nonce

NH. F, depends o#,, 65, 6. andd,,.

e F, corresponds to oracles usifigas in N-PAT-SYM-CCA, patterns are also extended but cannot irelud
asymmetric keys from,. I}, depends o#,, 6. andf,.

e F, corresponds to oracles usifigas in N-UNF, F,. depends only of..
e F,; corresponds to oracles usifigas in HASH,F,; depends only oA..
Finally V' is also a disjunction of five parts:
e Vinp answers true if its argument if the biin ©.
o Vunr_syn answers true if it receives a symmetric encryption not fdrgg F,.
e Vunr_srian answers true if it receives a signature not forgedby

e Vunr_masy answers true if it receives a pdit pat whereh = H(k,v(pat, N) and h has not been
forged usingty.

e Vor_masy answers true if it receives a pair of distinct bit-strirkgs, bs; that have the same hash.

3 Reductions of Criteria

In this section, we present a generic result allowing to prthat a security criterion; can be reduced to a
criterion,. This means that if there exists an adversary that breaksen there exists an adversary that breaks
~1. The proofis constructive in the sense that such an adyeiisat; can be effectively computed.

This result can be seen as a tool for proving that a critefiimat least as secure as a criterigrbut also
allows to decompose and split a criterion into simpler or& begin by presenting a simple version of the
theorem.
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3.1 Criterion Partition and the Reduction Theorems
Lety = (64, 02; F1, F»; V) be a criterion. Lety; and~, be two criteria such that:

e There exist two PRTM~ and H such that:

G(H(57927912>a1791) = F1(5a91792) (1)
G(H(579279/2>a0791) = Fl(saelveé) (2)

OracleG operates on a string of bits, thus it must receive two chgéiénformation, a bib andé;.

o o = (02; F3; V) andy; = (b, 01; G;verify,) whereb generates a random bit améri f, is the PRTM
verifying that the output of the adversaryisverif,(s, b, 61) = (s < b).

o F5(s,01,02) andVi(s, 61, 62) do not depend ot .
Then we say thaty, v2) is avalid simplified partitionof ~.

Theorem 3.1 (Simplified Reduction Theorem)Let (1, 72) be a valid simplified partition of. For any PRTM
A, there exist two PRTML° and B such that

[Adv ()] < 2.[Advg ()] + [Adv i, (n)]

The proof appears in appendix Notice that in applying the reduction theorem above, tfffecdity is not to find
arbitrary functiong7 and H that satisfy the Equationd) and @) but rather to find such functions that induce
criteriay; and~, with negligible corresponding advantages.

The applicability of the simplified reduction theorem istriesed by the fact that the verfication algorithm
V only depend®,. We show now that we can avoid this restriction. So let usrassthat the PRTM/ is
represented two PRTMEB; andV; such thall; (resp.V:) depends only 0f; (resp.d2) andV returns true ifi;
or V5 returns true. By abuse of notation we write vV V5 to underpin this. The criterig; and~, are defined as
above but now a new criteriopy = (b, 61; G; V1) occurs in the partition. Then, we say thiat, 72, v3) is a valid
partition of, if there is no strings such thafl; andV; are both verified o (intuitively, the adversary should
know which part of the challenge he is trying to win).

Theorem 3.2 (Reduction Theorem)Let (v1,v2,73) be a valid partition ofy. For any PRTMA, there exist
three PRTMA®, A! and B such that

[Adv ()] < 2.|Advis (n)] + [Adv ()] + [Adv i ()]

3.2 Applications of the Reduction Theorems

This section contains application examples of our redadti@orems. These applications are mainly useful for
composition of security criteria.

The first proposition (which was already given inl]) states thatV-PAT-IND-CCA is equivalent to IND-
CCA. This proposition is useful as the criterion is wellgid in the literature and as there are algorithms proven
to be IND-CCA.

Proposition 3.1 ( [21]) If an encryption scheme is secure against IND-CCA, theaa fecure againsiv-PAT-
IND-CCA for anyN.

Proofs for all the proposition in this section appear in ajjpeD

Proposition 3.2 If a symmetric encryption scheme is secure against SYM-GIDANd SYM-CCA/UNF, then it
is secure againsv-PAT-SYM-CCA for anyv.

The following proposition states that the combination ofuse encryption schemes is a secure encryption
scheme. In other words, combining secure encryption sché@rmless as long as cycles are avoided.
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Proposition 3.3 If an asymmetric encryption scher&€ is IND-CCA, a symmetric encryption schei§ié
is SYM-CCA, a signature schens& is UNF and a hashing algorithri{ is HASH, then the composition
(AE,8E,8S8,H) is N-PASSH-CCA.

Proof: We only present here the first step of the proof, the othessigpsimilar. Le®; be(6,,0;) and©, be
(0©¢,04). Inthe same wayF; (resp.Fs) can be used to acceBs andF, (resp.F. andFy). V1 isVunr—sy m
andV; is the disjunction oVynr_sran, Vunr—mAasH, Vor—aase andViyp. H is defined as above for
IND-CCA or UNF andG is also defined as above for encryption, decryption (asymicretd symmetric keys)
and public key.F}, F», V1 andV; depend on the right parameters hence we define a valid partifiy. The
reduction theorem gives that for any PRTM) there exist three PRTMS, .4° and.A! such that:

[Adv ()] < 2.|Advs (n)| + [AdV . ()] + [AdV i ()]

Criteria~y1, 2 and~vs can easily be partitioned in a similar way to get the conclusi [

3.3 Unbounded Number of Challenges

We want to consider the case where the number of challengest isounded any more like iiV-IND-CCA
where onlyN keys are generated for any For that purpose, criteria are extended to a polynomialbrarof
challenges. For example, I? is a polynomial, then thé-IND-CCA criterion usesP(n) keys. The objective
here is to generalize the previous results to this case.

Proposition 3.4 Let P and @ be two polynomials froffN[X]. Let D be a PRTM that given an integéreturns
C;, a PRTM whose execution takes less thiHm) steps. If the execution @ also takes less tha@(n) steps,
then for any criteriorny, there exists a PRTM' whose execution takes less thag)(n) + P(n) steps such that
for anyn:

P(n)

Adv).(n) = % Z Adv, (1)

AdversaryC randomly chooses the PRT#, that it is going to use and executes it.

Adversary C:
T(—[l..P(n)]
Cy — D/r
d—C,/n
return d

This property allows us to consider the case of a polynomiativer of challenge (and also the case of an
unbounded number of challenges as only a finite part of thembeaused). If the advantage of any PRTM
againstyp is the sum of the advantages®fn) PRTM againsty. Then if each of the latest PRTM are bounded in
time using a same polynomi@), the advantage ofl is also equal (modulo a division by(n)) to the advantage
of a PRTM against. Hence, if the considered scheme is secure agaijnsts also secure againsp.

This method applies on all the previous applications of eduction theorems. Hence, we have:

Proposition 3.5 If an encryption scheme is secure against IND-CCA, thense@ire againsP-IND-CCA for
any polynomialP.

If a symmetric encryption scheme is secure against SYM{GIDAAnd SYM-CCA/UNF, then it is secure
againstP-PAT-SYM-CCA for any polynomiél.

If an asymmetric encryption scher is IND-CCA, a symmetric encryption scheii& is SYM-CCA, a
signature schemé&S is UNF and a hashing algorithrit is HASH, then the compositiqd&, SE, SS, H) is
P-PASSH-CCA for any polynomiél.

Verimag Research Report 03 9/23



R. Janvier, Y. Lakhnech and L. Magar

4 Dolev-Yao is a Safe Abstraction

4.1 Definitions for the Symbolic Model

In this section, we give the basic definitions that are usadttoduce the symbolic aspects of protocol checking.
Symbolic studies rely on the concept of messages which atediider terms. To define messages, we first
introduce three infinite disjoint setsNonces, Identity and Keys. Elements ofNonces are usually denoted
by N and can be thought as random numbers. Thus, it is impossibéafintruder to guess the value of a nonce
without indications. Elements dfdentity are the possible names of agents involved in the protocolalllyj
elements ofi{eys represent asymmetric encryption keys, symmetric enagkeys and signature keys. There
is a unary function oveK eys associating each keyto its inversek—! such thatc = (k*l)*l. For symmetric
encryption, the inverse of a key is itsel: = k~!. The following binary operators are defined over messages:
concatenation, encryption and signature. Concatenafioressages: andn is written (m, n). Encryption of
messagen with key & is denoted by{m } ;. Signature of message with key & is denoted byig(m, k). Finally,
one unary operator, hashing, is defined over messages aedated byh.

Next, we recall the definition of thentailmentrelation £ - m (introduced in [4]) where E is a finite set of
messages ana a message. Intuitivelyy - m means thatn can be deduced from the set of messakjed his
relation is defined as the least binary relation verifying:

o If m € E, thenE + m.

e If EFmandE + n,thenE F (m,n).

e If EFmandE + kthenE b sig(m, k).
o If EF (m,n), thenE F m.

o If B+ (m,n), thenE F n.

o If EFmandE | k, thenE - {m},.

o If E+ {m}yandE + k!, thenE + m.
o If B+ sig(m,k)thenE F m.

e If E+ m,thenE F h(m).

4.2 Symbolic and Computational Semantics

For the sake of presentation, we consider protocols thgtioablve a single role. Moreover, this role is only
instantiated in one session. This is done without loss oégdity when a bounded number of sessions is con-
sidered. Indeed, each interleaving of the actions of tHerdift participants can be seen as a different protocol.

Thus, a protocol is described by a list of actions which atfeegiemissiom or receptiori?m of a message
m. We consider the classical adversary model where the aatyerentrols the network, receives all the outputs
(m) and submits some forged message to the infuitg.(

Henceforth, let us consider an arbitrary fixed protagel ...1,tx, whereg, is either ”1” or "?” and¢; is a
term. There are two different execution models, one for §mab®lic setting and one for the computational
setting producing a symbolic and a computational tracgees/ely. Asymbolic action sequende a list of
actionss m wheres is either? or ! andm is a ground (closed) message.spmbolic tracds a symbolic action
sequencé,m;...T,, my With ¥’ < k that satisfies the following conditions:

1. There exists a ground substitutiersuch that for any, t;oc = my;

2. For anyi, if 1, is 7?7, thenm; is deducible from the previous messages to m,_; and the initial
knowledge of the adversa#y,i.e.,
Eo,ml, ceey M1 - my;.
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The setf,; contains the atomic messages ofthgs that do not appear in arty, i.e. £y = |J, atoms(m;)\
U, atoms(t;).

The setirace(IT) contains the possible traces for protofol

A computational action sequentea list of actions; bs wherebs is a bit-string and: is either”?” or ”!”,
A computational traces the result of the interaction of an adversatywhich is a polynomial random Turing
machine, and the protocol. This interaction is defined u#iiregTuring machindzzec(.A,II). Since we are
interested in relating the symbolic and computational seios we defineEzec in such way that along the
computational trace it outputs a corresponding symbotioasequence. We then show that the symbolic action
sequence is a trace except for negligible probability. Bagler should be convinced that producing the symbolic
action sequence by no means interferes with the compugsemantics.

To simplify the presentation of thBxec algorithm, we only give pseudo-code using the followingditions:

¢ init(Il) generates the keys and nonces and that are chosen by thegbfdtoe., those irutoms(II), and
not by the adversary. It returns a substitutfbassociating bit-string values to these elements.

e parse(bs,t,0,0) parses the bit-strings using prototype and knowledge frond, it returns the updated
version off as well as an updated symbolic substitution

e concr(m, ) concretizes message using knowledge frond and returns the corresponding bit-string.

e compl (o) completes the symbolic substitutierby associating remaining free variables to a distinct fresh
nonces.

The Ezec algorithm uses two substitutions: the symbolic substitutr that links protocol variables to
messages and the computational substitution that linkahlas to strings of bits. The adversary can decide to
stop interacting with the protocol by providing an answérestthan an updated memaonryem and a bit string
bs when an actior?t is to be executed.

Algorithm Ezec(A, f1ny...5nk):
0 — init(fyna... 1)

mem «— ||
for iin [1,k] do
if {, =!then

bs — concr(n;, )
mem «— A(bs, mem)
t. < append(i;bs, tc)
else
X — A(mem)
if X = bs, mem then
0,0 — parse(bs,m;, 0,0)
t. < append(i;bs,t.)
else goto done
done
o «— compl(o)
return (fymq...5,mi—1)o, te

The next proposition relates precisely the computatiaaakt and symbolic action sequence thatc out-
puts. A computational track is apossible concretizationf a symbolic action sequendg if there exists a
computational substitutiofi such that one of the possible valuatiortplusingé is t...

Proposition 4.1 Let A be an adversary andl a protocol. If Exec(A,II) outputsty, ¢., thent, is a possible
concretization ot .
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4.3 Relating the Symbolic and Computational Models

The main result of this section is that under some condittbescomputational adversary acts as a symbolic
adversary with overwhelming probability. This means th&t ¢omputational adversary, even with all the com-
puting power of polynomial-time random Turing machinesyuat have a behavior not represented by a symbolic
adversary.

Hypotheses over Cryptographic Schemes and Protocols

In order to be able to use the former results, the cryptodcaahemes used in the implementation of the protocol
should verify the following properties.

e The asymmetric encryption schemd& used in the protocol is IND-CCA.

e The symmetric encryption schen§€¢ is 1-PAT-SYM-CCA and the probability to forge a cyphertext with
out access to the oracles is negligible.

e The signature schem®S is UNF and the probability to forge a signature without asdesthe oracles is
negligible.

e The hashing algorithrit{ is HASH and the probability to construct a hash-collisionégligible.

These are also some restrictionsldrihat are defined in the symbolic world (as they are easier ¢glcthere
with automated tools).

e In an asymmetric encoding usipg, anything can appear except secret keys generated héfdaed the
secret key related tpk t00).

e In a symmetric encoding usirng forbidden messages are any secret keys nor any symmegsgkaer-
ated beforé.

e In a signature usingik and in any hashed message, there cannot be any secret keysesic keys nor
any signature keys.

e The protocol has to be secure for its secret, symmetric ayihgire keys: using the Dolev-Yao model,
these keys related to an honest agent cannot be revealedrioiater (this assumption is reasonable as a
protocol should not reveal any key).

e Each hash message in a session between honest agentssantairce that remains secret.

We now formulate the main theorem. It states that if the dimal given above are met, then the probability that
a computational trace is NDY is negligible. A less generasiom of this theorem was first given iéq] but only

for public key cryptography and protocols with just one lagéencryption. It was then extended to protocols
involving emission of secret keys and signatureZn]] Here we give a more general version of this theorem
that combines the main cryptographic primitives: publig ked symmetric cryptography, digital signature and
hashing. The proof is a reduction argument: Given an adierdanteracting with the protocol, we construct
an adversary aginstN-PASSH-CCA such that the probability thdt produces a NDY trace is polynomially
bounded by the advantage Bf

Theorem 4.1 For any concrete adversauy:
pr(ts.te — Exec(A,Il) and ty ¢ traces(Il)) is negligible

Using this theorem, it is possible to relate symbolic and potational properties. This is easy to achieve
for trace properties as shown in5) and [21], but can also be done for strong secrety][ In this last case, the
adversary built in the proof of theorefnl has to be modified.
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Conclusion

The main contribution of this paper is a proof of correctnelsthe Dolev-Yao model for protocols that may
combine asymmetric and symmetric encryption schemesatignschemes as well as hash functions. This is
important as there is a number of automatic verificationgdof protocols that are based on the Dolev-Yao
model. The proof of our theorem induces some restrictionthemrotocols that are in practice easily met.

As future work, it would be of interest to investigate whetberrectness of Dolev-Yao can be proved under
weaker assumptions on the cryptographic primitives. Meeedt would be significant to extend this result to
other security properties. A proof of the soundness of timetmlic model when Diffie-Hellman exponentiation
is considered is given ir?[3].
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A Existence of a N-PAT-SYM-CCA Algorithm

To show that our new criterion makes sens, we prove the existef a symmetric encryption scheme that is
N-PAT-SYM-CCA. However, the algorithm built here is very ffieient as it uses an underlying asymmetric
encryption scheme. Ledé = (KGi,&1,D1) be an asymmetric encryption scheme that is IND-CCA. Let
SS = (KG2,S,V) be a signature scheme secure against UNF. Then the symmmtrigption schemé&¢& =
(KG,E&,D) is defined by: G generates a pair of asymmetric kelyg:, sk) using G, as well as a pair of
signature keyssik, vk); the encryption algorithm is defined BYm, (pk, sk, sik,vk)) = m’.S(m/, sik) where

m’ = &1 (m, pk); and the decryption algorithm verifies that the signatum isavalid and decodes the signed
messagen’.

To prove thatS€ is N-PAT-SYM-CCA, it is sufficient to prove thaf€& is PAT-SYM-CCA/IND and PAT-
SYM-CCA/UNEF (this is proven by propositiad. 2).

Let A be an adversary against PAT-SYM-CCA/UNF. Then it is easyotestruct an adversapt’ from A
working against UNF that has the same advantage.

Let A be an adversary against PAT-SYM-CCA/IND. Then we build aveashryA’ from A working against
IND-CCA such that:A’ is still polynomial;.A’ and. A have the same advantagd’ has to generate a signature
key pair and executed. It uses IND-CCA oracles to simulate its encryption orablete that for the decryption
oracle, two cases may occuri’ has not been produced by the IND-CCA encryption oracle, thei$ND-CCA
decryption oracle can be used; has been produced by the IND-CCA encryption oracle but tieasure part
is fresh. Then the former adversary (against UNF) can befieddb have the related advantage.

B HASH/IND and HASH/CF imply HASH

Let H be a hash function that is secure against HASH/IND and HASHI@t us suppose that there exists an
adversaryA against HASH/UNF which advantage is not negligible. Thenhwuéd the adversary against
HASH/IND which runA (A uses directly oracles given 18).

Adversary B:

pat, bs—A

N« {0,1}"

pat’ — ([, N')

bs' = HO(pat, pat’)

if bs = bs’ return 0

elsed’ — {0,1}
return b’

The advantage df against IND is detailed thereafter.

Advy¥P = pr(B — 0inExpg Plb=0)
—pr(B — 0in Expg P|b=1)

1
= pr(Bxp" =1)+ S pr(Expl"" =)

1
—pr(BExpQNt =1t) - E.pr(Exp%VF =f)

Where A’ is an adversary againgtV F' defined by:

Adversary A’
pat, bs—A
N« {0,1}"
pat’ — ([, N
return pat’, bs
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We obtain
2.Advy" P = AdviNE — AdviYF

Hence, asAdvy" ” is negligible andAdv% ™" is not, A’ has a non negligible advantage against HASH/UNF.

Finally, we build fromA an adversarg against collision free which advantage is related to theathge of
A’. For that purpose] generates a nondg” in order to simulate with a functionthe hash oracle used by.

Adversary C:
N — {0,1}7
pat, bs—A/k, p
N —{0,1}"
N" —{0,1}"
pat’ — ([, N')
pat” — ([}, N")
return pat'[NH], pat"[NH]

Then, asPrRand®" is negligible, the probability that finds a collision is negligible. Moreover, this probability
is greater than the probability thatfinds a collision and the hash p&it’'[ V] is equal to thebs produced by
A. In the following, events liké1(pat'[N*]) = bs means: after the random executionatp’" ', we obtain
pat’, NH andbs such that this equality holds. To deduce the second indguak use lemma®.1 that is given
later in this appendix.

pr(Expd© =t) > pr(H(pat'[N"]) = bs = H(pat”[N"]))
> pr(H(pat'[N"]) =
pr(H(pat” [N ]) )
> (pr(ExpYMt = 1))

There is a contradiction a4’ has a non negligible advantage aRgRand” N ¥ is negligible. Hencé verifies
HASH/UNF.

LemmaB.1 Let X, Y andY”’ be three random variablesX is chosen randomly in a finite s8t;, Y andY”’
are chosen randomly in the finite s&t. Let £/ be a predicate ovefxy x Sy. Then

pr(E(X,Y)AEX,Y') > [pr(E(X,Y))]’

To prove this lemma, let be the left probability. Hence,

p = (E(X Y)AE(X, Y’))
— |S | > pr(BE@Y)AE,Y"))
wESx
1 /
= @zgxpT(E(x,Y)).pr(E(x7Y))
! 2
= T & e
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Then, using lemm8.2, we get:

1

R > pr[(B@Y)].pr[(E@,Y))]

z,x’'€ESx

(e X wlEEy)])

TESx

> (i)

Lemma B.2 Let(a;)1<i<n ben real numbers. Then

By developing(a; — a;)* > 0, we obtain
af + a? > 2.a;.a;

Z ai + a3 > 2. Z a;.a;

1<i,j<n 1<i,j<n

2.n. Z a?22. Z a;.a;

1<i<n 1<4,j<n

Z a?Z% Z a;.a;

1<i<n 1<i,5<n

C Proof of the Simplified Reduction Theorem

The intuition of the proof relies on the following principléhe adversary4® is built using.4 as a sub-routine.
However, as4® works againsty,, requests made hy to F; are answered using some fresh challefig@he
adversary3 also uses4 as a sub-routine and works against It is designed in such a way that whenever the
challenge bit of v; equalsl, the experiment involving againsty; is similar to the experiment involvingl
againsty. Whenb equald) then the experiment involvin againsty; is similar to the experiment involving®
againstys.

The formal definitions for adversarie®’ andB are detailed thereafter:

Adversary A°: Adversary B:
02O2(n)
01-01(n) 06
Oy=O2(1) 52<_A/37(n)\)s G(H(s,02,05%)), As.Fa(s, 02)
- / — ’ B4 yV2,U9)), L72(o, U2
fetuﬁ/??s, As-Fi(s, 01,63), Py if Va(s,6) return 1

else return0

It is now possible to relate the advantages of our threereiffieadversaries. For that purpose, note that the
experiment involvings is successful in two cases:

e If b =1 andB outputsl. Then the experimexp};" is similar toExp’;, To prove this, we detail the two
experiments:
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Experiment Exp}; (n):

b[0,1]

61—06(n) Experiment Exp’, (1):

020O2(n) 01-01(n)

050O2(n) f2—©2(n)

s—A/n, As.G(H (s, 02,04),b,01), s—A/n, As.Fy(s,01,02),
)\S.FQ(S, 92) )\S.FQ(S, 92)

if Va(s,02) return verify(1) return Va(s, 62)

else returnveri f;,(0)

Using the assumption o, G(H (s, 62,05),1,01) = Fi(s, 0, 02) the equivalence of the two experiments
appears clearly in the case= 1. Moreover,5 outputsl means tha4 solved its challenge.

e In a similar way, ifb = 0 then the experimenExp}; is similar to Exp’;, (their boolean outputs
are opposite) B outputsO means thatA® failed to solve the challenge. Using the assumptioncn
G(H (s,62,05),0,01) = Fi(s,01,0}) the equivalence between the two experiment is immediate.

Experiment Exp}; (n):
b—[0,1]

Experiment Exp™3, (n):
01—0(n) p(;w@Q(n) P
0205 (n) 0r—O1(n)
S<—A/’I7,)\S.G(H(S,9279/2),b,91), S(Q_A/Q s F. (5 0 9/)
As.Fa(s,05) N Ea oy

if Va(s,02) return verify(1)

else returnveri f,(0) return V5 (s, 62)

Adv(n) = 2.(PrlExpj (n) = true] — PrRand™)
= Pr[Exp(n) = true]
+Pr[Expl.(n) = false] — 1
= Pr[Exp)(n) = true] — PrRand”
+PrRand™ — Pr[Expf, (n) = true]

1 1
In this computation, we used thBr Rand” = 1/2 as bitb is chosen among two possible values. We also used

that PrRand” = PrRand”* which is true becausg and~, have the same verification oradle.
This gives the awaited result:

[Adv ()] < 2.|Advg ()] + [Adv i, (1)]

Proof of the Reduction Theorem

AdversaryA! represents adversagtrying to solve its challenge againigt.

Adversary A':
02—0O2(n)
5<—.A/77, )\SQ(H(S, 92, 92)), )\S.FQ(S, 92)
return s
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PRTM A can gain its advantage by solving challerigeor challengel,. As we suppose that a string can
solve at most one challenge, the following equality holdekeh, V; denotes criteriory using onlyV; as verifier.

Adv (1) = Adv " () + Adv ™ ()

Then, by keeping the same construction as above, the adeaagminsi; is known. Moreover, the advantage
of A againstl/; is equal to the advantage df' againstys.

Adv)y(n) = Adv} () + Advi, +2.Adv) (1)
This gives the conclusion of the theorem:

[Adv ()] < 2.|Advyy (n)| + [AdV . ()] + [AdV ()]

D Application of the Reduction Theorems

D.1 From N-PAT-IND-CCA to IND-CCA

In order to reduce théV-PAT-IND-CCA criterion (denoted by ), we only need the simplified version of the
reduction theorem. 1V-PAT-IND-CCA, encoded messages can be patterns and tharededer among keys:
sk; can be encoded using:; iff ¢+ > j. The reduction operates fromy; to vy and~y (i.e. IND-CCA) as
follows.

e O, generates the key paipk, sk1).

e O generates the other key pafysiz, sk2) to (pkn 1, skv+1) as well as the challenge it

Fy (resp.Fy) is the oracle for encryption, decryption, public key retato key pairs if; (resp. inds).

V5 verifies that bith has been correctly guessed.

e H is the identity when considering decryption and public keyssion and~ is exactlyF; in that case.

G is the classical left-right encryption add(s, 62, 85) is defined as follows:
H({pato, pat), 02, 65) = (v(pat,,05), v(paty,, 02))
Whereb, (resp.b;) is the challenge bit contained i (resp.65).
We first want to verify thaty, v ) defines a valid simplified partition ofy ;1.
e As secret keyk; cannot occur under any public ke only depends ofis.
o Verifier V5 only depends of..

As (v,vn) is a valid simplified partition ofyx 1, it is possible to apply the simplified version of the redoiti
theorem. For any PRTM, there exist two PRTM3 and.A° such that:

[ AV (n)] < 2.|Advi(n)] + [Adv i ()]

Itis then possible to conclude using a simple recursion.
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D.2 From N-PAT-SYM-CCA to SYM-CCA/IND and SYM-CCA/UNF

In order to reduce th&/-PAT-SYM-CCA criterion (denoted by ), we need the full version of the reduction
theorem. As inN-PAT-IND-CCA, encoded messages can be patterns and thanedsder among keys:; can
be encoded using; iff i > j, but there are also two ways to win the challenge, either legging the value of bit
b (criterion SYM-CCA/IND) or by forging an encoded messagéhwut using the encryption oracles (criterion
SYM-CCA/UNF).

The reduction operates frotry 1 to vy, vrnp (i.e. SYM-CCA/IND) andyyy g (i.e. SYM-CCA/UNF) as
follows.

e O generates key; .

O, generates the other kegs to k1 as well as the challenge it

Fy (resp.Fy) is the oracle for encryption and decryption related to keir(6; (resp. infs).

V5 verifies that bith has been correctly guessed or that the final output is an edooé@ssage by a key
from 6, that has not been produced by an encryption oracle.

V; verifies that the output message is encodedbgnd has not been produced By.

H is the identity when considering decryption afds exactlyF; in that case.

G is the classical left-right encryption add(s, 62, 65) is defined as follows:

H({pato, pat), 02, 65) = (v(paty,,65), v(paty,, 02))
Whereb, (resp.b,) is the challenge bit contained i (resp.65).
We first want to verify thaty:np, vv, yunr) defines a valid partition of 1.
e As keyk; cannot occur under any public ke only depends ofl,.
o Verifier V5 only depends ofl; andV; only depends of;

Partition(v;np,vn,YunF) is a valid partition ofyy 11, it is possible to apply the reduction theorem. For any
PRTM A, there exist three PRTM, A° and.A! such that;

|[Adv T < 2.|Adv NP | 4 [AdVT |+ [Adv G

Itis then possible to conclude using a simple recursion.

D.3 Mixing all Criteria

Let us define théV-PAT-ASYM-SYM-SIGN-HASH-CCA (V-PASSH-CCA) criterion ag = (0, F, V') where
O is composed of four parts:

e O, generatedV pairs of asymmetric key@k;, ski) to (pkn, skn).
e O, generatesvV symmetric keys; to ky.
e O, generatesV pairs of signature key&ik, , vky) to (siky, vkn).
e O, generates a nondé’?, a keyk as well as a challenge it

Fis also split in four parts:

e F, corresponds to the oracles usifigas in N-PAT-IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signature of a messageature keys, hashing of a message and nonce
NH._ F, depends o#,, 65, 6. andd,,.
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e F, corresponds to oracles usifigas in N-PAT-SYM-CCA, patterns are also extended but cannot irelud
asymmetric keys from,. I}, depends o#,, 6. andd,.

e F, corresponds to oracles usifigas in N-UNF, F,. depends only of..
e F,; corresponds to oracles usifigas in HASH,F,; depends only of..
Finally V' is also a disjunction of five parts:
e V;np answers true if its argument if the biin ©,.
e Vunr_syn answers true if it receives a symmetric encryption not fdigg £y,
e Vunr_srian answers true if it receives a signature not forged-by

o Vunr_masm answers true if it receives a pdit pat whereh = H(k,v(pat, NI) and h has not been
forged usingty.

o Vor_masp answers true if it receives a pair of distinct bit-strirkgs, bs; that have the same hash.

E Proof of Theorem4.1

The intuition is that if an adversary can produce a NDY trace, then it is able to break one of thetogypphic
schemes. Lef) be the number of atoms (keys and nonces) that occdr MWe build aQ-PASSH-CCA (criterion
denoted byy) adversary3 such that ifp is the probability:

p = Prlty,tc — Exec(A,II) and ty ¢ traces(I)]
We have the following majoration of,

p < (2.Q+7).Advji(n) + f(n) (3)

where f is a negligible function. Using propositiah3 it is possible to deduce that the probability fdrto
produce a non Dolev-Yao trace is negligible.

Our Q-PASSH-CCA adversar$s uses.A as a subroutine and deduces a string solving its challeroge (f
example the challenge Hitor a new signature) as soon Bsec(A, IT) produces an invalid trace. Using its own
oraclesB simulatesEzec( A, IT) and produces the formal trace in order to find a non-dedu@ii®’) message.

During its initialization, the adversai§y randomly chooses an integebetweer) and@. If ¢ # 0, then the
it" nonce generated by (denoted byN) is trapped. In order to answer queries fremB randomly generates
identities and nonces froil exceptN. B uses its challenge keys for the different keydlinFor nonceN, B
generates two noncég, andN;, B uses its oracles in such a way that messages involVingesN,. N (resp.
N;.NH) when the challenge bitis 0 (resp.1). N is the challenge nonce related to hashing in PASSH-CCA
(asB does not know ifVy or N7 is used, this is required in order to compute the hashing ofssage involving
N using an oracle).

When A waits for a messager, B has to forgen = (my,...,m,) where messages; are not pairs of
messages. Thefi generates each; using its oracles (e.g. i, is an encoding usingk, B uses the left-right
encryption oracle related tak). If N appears "under” a left-right oracle, théfy.[N*] (resp.N;.[N]) is used
for the left (resp. right) argument of the oracle Nfappears anywhere else it is impossiblefaio continue the
protocol simulation. HencB aborts its execution. Note th&tcannot be asked to reveal a secret key, a sighature
key or a symmetric key in a messagg (such keys have to be protected by an encryption layer ande$braght
oracle is used with a pattern asking for the key).

When.A emits a message, m is parsed according to the protocol specification. Duringipa, if B has to
decrypt a message then either this message has been pradireed left-right encryption oracle and there is no
new information inside o8 can use its decryption oracles. To achieve pardihlgas to be able to test whether
a string is a secret/signature/symmetric key, this canyelasiachieved using oracles.
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Eventually,A stops. TherB checks that there are no collisions between two messagssduas hash. If this
is not the casef3 wins against HASH/CF, this event is denotediy Else if the trace is NDY theB knows the
first NDY messagen and a recursive procedure is appliedrann order to win the challenge.

1. Ifmis No.NH or N;.N", B deduces the challenge bit
. If m is another noncd3 aborts.
. If m is a secret key or a symmetric ké¥also deduces.

2

3

4. If m is a signature key3 can forge a new fresh signature and thus wins its challenge.
5. If mis a pair{my,ms), thenm; or ms is NDY and this procedure is applied recursively.
6

. If m is an asymmetric encryptiofin’},, asm is NDY it has not been produced by an oracle (otherwise,
m would have circulated not protected). Hence using the giicny oracle 5 obtainsm’ which is also
NDY.

7. If m is a signature or a symmetric encodimgjs NDY thus it has not been produced by an oracle And
has forged a new signature or a new symmetric encoding.

8. If mis a hashind:(m’), thenm’ has to be known (to test during the protocol execution). #f’ contains
N, thenB can deduce a hollow pattepmit such thatH(k, v(pat, N*')) = h. HenceB wins. Else,B
aborts.

9. If mis a hashingi(m’) andm’ does not contaiV, then5 aborts.

Whenevei3 decides to abort, it answers a random bit for the challenige bi
If A produces an invalid trace, then we consider the differeatvans that the former procedure can have
produced E; denotes the event where the procedure stopped iif'ttease of the list. Hence,

9
p= Z Pr(E;)
i=0

As nonceN is chosen randomiyPr(E>) and Pr(Eg) are lower than respectively. Pr(E;) andQ.Pr(Esg).
Moreover, eventgy; for i different from2, 5 and9 imply that B wins its challenge without aborting. Let us call
B (resp.—B) the event wher# does not abort (resp. aborts). Hence,

p<(2.Q+7).Pr(B)

As PrRand is negligible for criteria related to UNF, there exists aligggle functiong such that:

Adv)(n) = 2.Pr(Bwins)—1—g(n)
= 2.Pr(B) + Pr(-B) —1—g(n)
= Pr(B)—gn)

Hence, it is easy to obtain formubeand the awaited result.

Nonces are Probably Different

We consider that anytime a computational adversary picksoupe nonces, they are different one from another.
The adversary can only get a numbeiof nonces that is polynomial in and we suppose that the numbeof
possible nonces is exponentiabjn(som < n). Let P be the probability that the adversary gets two times the
same nonces.

—1 n—(m-1
j_ponn=t nz(m=-1

n n n
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Thus, we have the following inequalities:

m—1\m
0<P<1—(1—- - )

Proposition E.1 For anyz € [0,1[ anda > 1,

(1739)“2171.(1

Proof: Consider the functiorf (z) = (1 — x)a — 1+ z.a. Derive it twice to get the result. ]
Applying the proposition, we get:
0<P< m.(m —1)
n

As m is polynomial andr is exponential inp, P is negligible inn. When considering an adversary that has
a non-negligible advantage against something, it still itmadvantage if we consider only executions where
nonces are distinct.
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