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Abstract

The main result of this paper is that the Dolev-Yao model is a safe abstraction of the computational
model for security protocols including those that combine asymmetric and symmetric encryption,
signature and hashing. Moreover, message forwarding and private key transmission are allowed. To
our knowledge this is the first result that deals with hash functions and the combination of these
cryptographic primitives.
A key step towards this result is a general definition of correction of cryptographic primitives, that
unifies well known correctness criteria such as IND-CPA, IND-CCA, unforgeability etc.... and a
theorem that allows to reduce the correctness of a composition of two cryptographic schemes to the
correctness of each one.
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Introduction

Historically, verification of cryptographic protocols hasbeen separated in two distinct branches. In thesymbolic
approach, originating from the work of Dolev and Yao [14], cryptographic primitives are viewed as functions
on a space of symbolic terms; while in thecomputational approachthey are viewed as possibly randomized
functions on bit strings.

A rich collection ofautomaticverification methods and tools have been developed [27, 11, 29, 18, 10, 15] in
the symbolic approach. They rely upon the perfect cryptography assumption which can be roughly summarized
as follows: messages are represented as algebraic terms, nonces are represented as names and fresh nonce cre-
ation is perfect, that is, nonces range over an infinite domain of names and each nonce creation yields a different
name, the same holds for keys. Moreover, no information can be extracted from an encrypted message unless
the inverse of the key used to encrypt the message is known. Inthis approach there is a single attacker that is
modeled as an infinite process without bounds on its computational resources.

In thecomputational approach, cryptographic primitives operate on strings of bits and their security is defined
in terms of high complexity and weak probability of success [16, 7] of any attacker. Protocols as well as attackers
are randomized polynomial-time Turing machines. This computational approach is recognized as more realistic
than the symbolic approach. However, its complexity makes it very difficult to design automatic verification
tools.

Therefore, results of the type:

If protocolΠ uses the cryptographic schemesS1, · · · , SN , if each schemeSi is correct with respect
to the security notionCi then correctness of the protocol established in the symbolic model implies
its correctness in the computational one.

are of extreme importance for gaining confidence that a cryptographic protocol is secure. We call this type of
resultssoundness results of the symbolic approach.

In this paper, we present a soundness result for protocols with asymmetric and symmetric encryption, signa-
ture and hashing. We emphasize that the main difficulty here is the combination of these primitives.

The main step to get this result is the introduction of a security criterion that allows us to combine asymmetric
and symmetric key cryptography as well as signature and hashing. To understand what is going on, imagine a
cryptographic library that offers these different kinds ofprimitives. What does it mean that this library is secure?
A priori it is not clear whether it is sufficient to say that each primitive is secure when taken on its own. There
might be some unexpected effects when for instance the encryption of a signed message is hashed!

To answer this question we prove a powerful reduction theorem for security criteria. Typically, this theorem
allows us to prove results of the form: if the cryptographic schemeS1 (resp. S2) satisfies the criterionC1

(resp.C2) then their combination satisfies criterionC, whereC is some combination ofC1 andC2. Then, we
introduce a security criterion for cryptographic libraries as above and use the reduction theorem to relate our
security criterion to existing ones, namely IND-CCA, selective forgery against adaptive chosen-message attack
and collision resistance.

Related work In the last years, effort has been invested to bridge the gap between the symbolic and computa-
tional approaches. In their ground-breaking paper [2] Abadi and Rogaway prove that messageindistinguishabil-
ity in the symbolic model is valid in the computational model when making some assumptions on the encryption
scheme. In this and subsequent papers [1, 20, 26], it is showed that if two messages are not distinguishable in the
symbolic model, then their computational interpretationscannot be separated by a Turing machine in a reason-
able (polynomial) time. These papers deal with passive attackers that do not intervene during protocol execution.
Active attackers are considered in [30, 25, 4, 24, 13, 19, 12, 21]. Backes, Pflitzman and Waidner developed a
Dolev-Yao-style cryptographic library with a provably correct implementation [4, 5, 3]. The security property
considered there, calledreactive simulatability, is a very attractive and powerful notion which is robust respect
to general composition. Canetti and Herzog demonstrate in [12] how Dolev-Yao style symbolic analysis can
be used to assert the security of cryptographic protocols within the universally composable security framework.
This framework also allows for strong composability properties. Soundness of the symbolic approach for public
key encryption is considered in [30, 25]. Asymmetric encryption and digital signature are considered in [13, 21].
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Compared to our paper [21], we improve with respect to the following: 1) in [21] we only consider asym-
metric encryption and digital signature and 2) we substantially generalize the reduction theorem to be applicable
to asymmetric and symmetric encryption, digital signatureand hashing. Compared to previous versions of this
paper [22], we clarify the proof of the reduction theorem.

Paper organization The next section gives the necessary preliminaries relatedto the computational model.
In the following section, we generalize and simplify the notion of security criterion and apply it to asymmetric
encryption, signature, symmetric encryption, hashing anda mix of all these primitives. Section 3 formulates the
reduction theorem. Then, this theorem is applied to relate the combined security criterion to the simple ones.
Section 4 uses these results to show that, under some quite nonrestrictive hypotheses, the symbolic model is a
safe abstraction of the computational model. Finally, someconcluding remarks are drawn.

1 Preliminaries

1.1 Definitions for the Computational Model

An asymmetric encryption schemeAE = (KG, E ,D) is defined by three algorithms. The key generation algo-
rithm KG is a randomized function which given a security parameterη outputs a pair of keys(pk, sk), where
pk is a public key andsk the associated secret key. The encryption algorithmE is also a randomized function
which given a message and a public key outputs the encryptionof the message by the public key. Finally the
decryption algorithmD takes as input a secret key and a cipher text and outputs the corresponding plain-text,
i.e.,D(E(m, pk), sk) = m. The execution time of the three algorithms is assumed to be polynomially bounded
by η.

A symmetric encryption schemeSE = (KG, E ,D) is defined as above except thatKG generates one key
instead of a pair, and hence, we requireD(E(m, k), k) = m.

A signature schemeSS = (KG,S,V) is also defined by three algorithms. The key generation algorithm
randomly generates pairs of keys(sik, vk), wheresik is the signature key andvk is the verification key. The
signature algorithmS randomly produces a signature of a given message by a given signature key. The verifi-
cation algorithmV is given a messagem, a signatureσ and a verification keyvk and tests ifσ is a signature of
m with the signature key corresponding tovk. Hence,V(m,S(m, sik), vk) returns true for any messagem and
any pair of keys(sik, vk) generated byKG. We say thatσ is a valid signature undersik if there existsm such
thatV(m, σ, vk) returns true. We still assume that the algorithms have a polynomial complexity.

A hashing algorithmis a polynomial deterministic algorithm that, given a keyk and a bit-stringbs, computes
another bit-string of sizeη. The key generation algorithm is not important and one can suppose thatk is chosen
randomly among strings of sizeη.

1.2 Randomized Turing Machines with Oracle

An adversary for a given scheme is a Polynomial Random TuringMachine (PRTM) which has access to an
oracle. In the following, we consider Turing machines whoseexecution is polynomially bounded in the security
parameterη, i.e. there exists a polynomialP such that for any input corresponding to security parameterη, the
machine stops withinP (η) steps.

To model access to the oracle, we slightly modify the definition of Turing machines. Our Turing machines
have two additional tapes, one for arguments (of function/oracle calls) and one for the results. Then, letF be a
new action. We define our PRTM as a pair of a Turing machineA that can use transitionF and another Turing
machineF representing the oracle.F can also be described by a PRTM (which can also access oracles). The
semantics ofA/F is the standard semantics ofA except that wheneverA fires the actionF , F is executed with
the arguments tape as input and the results tape as output.

It is possible to encode access to multiple oracles usingF (by giving in the arguments tape the name of the
chosen oracle). Hence, to simplify notations, we directly writeA/f1, ..., fn wherefi are PRTM and oracles are
called using thefi action when definingA.
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A function g : R → R is negligible, if it is ultimately bounded byx−c, for each positivec ∈
�

, i.e., for all
c > 0 there existsNc such that|g(x)| < x−c, for all x > Nc.

2 Security Criteria

A security criterion is defined as an experiment involving anadversary (represented by a PRTM). The experiment
proceeds as follows. First some parametersθ are generated randomly. The adversary is executed and can use an
oracleF which depends onθ. At the end, the adversary has to answer a string of bits whichis verified by an
algorithmV which also usesθ (e.g.θ includes a bitb and the adversary has to output the value ofb).

2.1 Security Criterion

A criterionγ is a triple(Θ; F ; V ) where

• Θ is a PRTM that randomly generates some challengeθ (for example, a bitb and a pair of keys(pk, sk)).

• F is a PRTM that takes as arguments a string of bitss and a challengeθ and outputs a new string of bits.
F represents the oracles that an adversary can call to solve its challenge.

• V is a PRTM that takes as arguments a string of bitss and a challengeθ and outputs either true or false.
It represents the verification made on the result computed bythe adversary. The answer true (resp. false)
means that the adversary solved (resp. did not solve) the challenge.

Note thatΘ can generate an arbitrary number of parameters andF can represent an arbitrary number of oracles.
Thus, it is possible to define criteria with multiplesΘ andF . As soon as there is no risk for ambiguity, we use
the same notation for the challenge generatorΘ and the generated challengeθ (both are denoted usingθ).

The advantage of a PRTMA againstγ is

Adv
γ
A(η) = 2.

(

Pr[Exp
γ
A(η) = true]− PrRandγ

)

whereExp is the Turing machine defined by:

Experiment Exp
γ
A(η):

θ←Θ(η)
d←A/η, λs.F (s, θ)
return V (d, θ)

andPrRandγ is the best probability to solve the challenge that an adversary can have without using oracleF .
Formally,PrRandγ is the maximum ofPr[Exp′γ

A(η) = true] whereA ranges over any possible PRTM and
Exp′ is similar toExp except thatF cannot be used byA.

Experiment Exp′γ
A(η):

θ←Θ(η)
d←A/η
return V (d, θ)

2.2 The N-PAT-IND-CCA Criterion

We introduce a security criterion that turns out to be usefulfor protocols where secret keys are exchanged. This
definition was first given in [21] where more discussion is available. In the classicalN -IND-CCA criterion
(see [6] aboutN -IND-CCA and its reduction to IND-CCA), a random bitb is sampled. For each key, the
adversary has access to a left-right oracle (the adversary submits a pair of bit-stringsbs0, bs1 and receives the
encoding ofbsb) and a decryption oracle (that does not work on the outputs ofthe left-right oracle). The adversary
has to guess the value ofb.
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Since it has no information concerning secret keys, the adversary cannot get the encryption of a challenge
secret key under a challenge public key. Therefore, we introduceN -PAT-IND-CCA, which allows the adversary
to obtain the encryption of messages containing challenge secret keys, even if he does not know the value of
these secret keys. For that purpose, the adversary is allowed to give pattern terms to the left-right oracles.

Pattern termsare terms where new atomic constants have been added: pattern variables. These variables
represent the different challenge secret keys and are denoted by [i] (this asks the oracle to replace the pattern
variable by the value ofski). Variables can be used as atomic messages (data pattern) orat a key position (key
pattern). When a left-right oracle is given a pattern term, it replaces patterns by values of corresponding keys and
encodes the so-obtained message. More formally, patterns are given by the following grammar wherebs is a bit-
string andi is an integer. In the definition of pattern terms, we use the following binary operators : concatenation,
encryption and signature. Concatenation of patternspat0 andpat1 is written 〈pat0, pat1〉. Encryption ofpat
with key bs is denoted by{pat}bs. Signature ofpat with key bs is denoted bysig(pat, bs). Similarly, when the
key is a challenge key, it is represented by a pattern variable [i]. Finally, one unary operator, hashing, is defined
over patterns and is denoted byh.

pat ::= 〈pat, pat〉 | {pat}bs | {pat}[i] | bs | [i] | sig(pat, [i]) | sig(pat, bs) | h(pat)

The computation (valuation) made by the oracle is easily defined recursively in a contextθ associating bit-string
values to the different keys. Its result is a bit-string and it uses the encryption algorithmE and the concatenation
denoted by the operator·.

v(bs, θ) = bs

v([i], θ) = ski

v(〈p1, p2〉, θ) = v(p1, θ).v(p2, θ)

v({p}[i], θ) = E(v(p, θ), pki)

v({p}bs, θ) = E(v(p, θ), bs)

v(sig(p, bs), θ) = S(v(p, θ), bs)

v(sig(p, [i]), θ) = S(v(p, θ), ski)

v(h(p), θ) = H(k, v(p, θ))

There is yet a restriction. Keys are ordered and a pattern[i] can only be encrypted underpkj if i > j. This
restriction is well-known in cryptography and widely accepted. When the left-right pattern encryption oracle
related to keyi is given two pattern termspat0 andpat1, it tests that none contains a pattern[j] with j < i. If
this happens, it outputs an error message, else it produces the encryption of the message corresponding topatb :
v(patb, θ) encoded bypki. To win, the adversary has to guess the value of secret bitb. Note that an adversary can
submit arguments of different length to the left-right oracle but this does not create any problem (an interesting
discussion on that point appears in [2]).

Henceforth, letAE be an asymmetric encryption scheme. Then, criterionN -PAT-IND-CCA is given by
γN = (Θ; F ; V ), whereΘ randomly generatesN pairs of keys usingKG and a bitb; V verifies that the adversary
gave the right value for bitb; andF gives access to three oracles for eachi : a left-right encryption oracle that
takes as argument a pair of patterns〈pat0, pat1〉 and outputspatb completed with the secret keys (v(patb, θ))
and encoded usingpki; a decryption oracle that decodes any message not produced by the former encryption
oracle; and an oracle that simply makes the public key available.

Then,AE is saidN -PAT-IND-CCA iff for any adversaryA in PRTM , Adv
γN

A (η) is negligible. Note that
N -PAT-IND-CCA with N = 1 corresponds to IND-CCA.

2.3 The N-UNF Criterion

TheN -UNF criterion is an extension of Selective Forgery AgainstAdaptive Chosen-Message Attacks to the case
of N different keys (a good survey on properties for signature schemes is available in [17]). It was also already
defined in [21]. Here, we rephrase this definition to put it in the shape of our new criterion formalization.

The main requirement is that an adversary should not be able to forge a pair containing a messagem and
the signature ofm using the secret signature key. AnN -UNF adversaryA is givenN verification keys and has
to produce a message and its signature under one of the keys. It is also given the security parameterη andN
signature oraclesSsiki

(.).
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Let SS be a signature scheme. TheN -UNF criterion is given byγN = (Θ, F, V ), whereΘ generatesN
signature key pairs using the key generation algorithm fromSS. F permits the access to two oracles for each
signature key pair: the first one allows to sign any string of bits; the second one gives the verification key. Verifier
V checks that the output of the adversary is a pair containing amessage and its signature. This signature must
not have been produced by the signature oracle.

An adversary wins againstN -UNF when it succeeds in producing a message and its signature. Formally,SS
is saidN -UNF, if for any adversaryA, AdvN−UNF

A (η) is negligible. WhenN = 1, N -UNF can be written
UNF.

2.4 The N-PAT-SYM-CCA Criterion

A symmetric encryption scheme includes both aspects indistinguishability and authentication that are present
in asymmetric encryption and message signature respectively. We reformulate it using our criteria framework
in order to apply our reduction theorem. That is, our criterion for symmetric encryption is a combination of
IND-CCA and UNF. Indeed, a symmetric encryption should be secure in two ways. The first one is related to
IND-CCA, any PRTM should not be able to guess any informationfrom messages encoded with an unknown
key. The second one is related to UNF; any PRTM should not be able to forge an encoding without knowing the
key (the encrypted message is authenticated). Hence, oracles are similar to those presented in IND-CCA (except
that no oracles output the public key), but there are two different ways to win the challenge. The hypothesis of
acyclicity regarding keys still holds:ki can only appear encoded bykj if i > j. TheN -PAT-SYM-CCA criterion
is γN = (Θ, F, V ) whereΘ generatesN symmetric keys and a bitb; F gives access to two oracles for each key:
a left-right encryption oracle that takes as argument a pairof patterns〈pat0, pat1〉 and outputspatb completed
with the secret keys (v(patb, θ)) and encoded withki; a decryption oracle that decodes any message not produced
by the former encryption oracle. Finally,V is composed of two parts:VIND returns true when the adversary
returns bitb; VUNF returns true when the adversary outputs a message encoded byone of the symmetric key and
this message has not been produced by an encryption oracle. ThenV is satisfied ifVIND or VUNF is satisfied.
We require that there is no string that satisfies bothVIND andVUNF (this can be done by asking the name of the
challenge together with its solution to the adversary). Thecriterion related to IND(Θ, F, VIND) (resp. to UNF
(Θ, F, VUNF )) is denoted byN -PAT-SYM-CCA/IND (resp.N -PAT-SYM-CCA/UNF).

A symmetric encryption schemeSE is saidN -PAT-SYM-CCA iff for any adversaryA in PRTM ,Adv
γN

SE,A(η)
is negligible, whereγN is a criterion including the oracles explained above.

Existence of a1-PAT-SYM-CCA encryption scheme can be proved under the assumption that there exists
an IND-CCA asymmetric encryption scheme and an UNF signature scheme (see appendixA). The 1-PAT-
SYM-CCA criterion is equivalent to the authenticated encryption criterion IND-CPA∧ INT-CTXT which is the
strongest notion introduced in [8] for authenticated encryption.

2.5 The HASH Criterion

The HASH criterion is a combination of an IND-CCA criterion,an UNF criterion and a collision free criterion.
A hashing algorithm needs to verify three properties to be secure. First an adversary cannot obtain information
on a bit-stringbs when looking atH(k, bs). The second property is that if an adversary does not know a bit-string
bs, it cannot produceH(k, bs) even if it knows hashing of messages similar tobs. Finally, it must be hard for an
adversary to find two different messages which have the same hash for a given key. More details about criteria
related to HASH can be found in [9].

The HASH criterion isγ = (Θ, F, V ), whereΘ generates a bitb, a keyk and a random bit-stringNH of
sizeη. OracleF gives access to two oracles: an oracle which gives the value of key k and a left-right hashing
oracle which takes as input a pair〈pat0, pat1〉 of hollow patterns (these patterns can ask for inclusion ofNH

and have to ask for it at one position at least) and outputsH(k, patb[N
H ]). Moreover, each pattern can only

be submitted once to this oracle in order to avoid guessing attacks. VerifierV is the disjunction of three parts:
VIND returns true if the adversary outputs the challenge bitb; VUNF returns true if the adversary outputs a pair
〈h, pat〉 such thath = H(k, pat[NH ]) andh was not produced byF ; VCF returns true if the adversary outputs
a pair〈bs0, bs1〉 such thatH(k, bs0) = H(k, bs1), and bit-stringsbs0 andbs1 are different.
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A hashing algorithm is said HASH iff for any adversaryA in PRTM , Adv
γH

A (η) is negligible.
The criterion related to IND(Θ, F, VIND) (resp. to UNF(Θ, F, VUNF )) is denoted by HASH/IND (resp.

HASH/UNF). The last criterion related to collision free is denoted HASH/CF.

Proposition 2.1 If an algorithmH is secure against HASH/IND and HASH/CF andPrRandCF andPrRandUNF

are negligible, thenH verifies HASH/UNF and so is secure against HASH.

Proof: This proof is detailed in appendixB.
Let us spend a few words explaining our requirements on hashing algorithms: indistinguishability and col-

lision freeness. In the cryptographic literature, one usually finds one-wayness1 and collision freeness as re-
quirements. We require, however, indistinguishability instead of one-wayness. This is because, exactly as for
asymmetric encryption, one-wayness is too weak as it shouldnot be possible to infer any information onm just
by looking ath(m).

Note that it is not clear to us whether there exists an algorithm satisfying our requirements. However our
requirements seem necessary to prove soundness of the symbolic model.

2.6 Mixing all Criteria

Let us now consider an encryption scheme, or rather a cryptographic library, that includes the cryptographic
primitives above, i.e., asymmetric encryption, symmetricencryption, signature and hashing. The security of
such a library can be defined as a game, where an adversary has access to each of the oracles above and wins the
game, if it succeeds to guess the value of the bitb, forge a signature, forge an encryption by a symmetric key,
or construct a hash-collision. There are some restriction on the patterns the adversary can use. The restriction
essentially forbids cycles, as in the case of asymmetric encryption. We say that a cryptographic library satisfies
the N -PASSH-CCA criterion, if the advantage of any adversary against this combined criterion is negligible.
More formally, we have the followingN -PASSH-CCA criterion:γ = (Θ, F, V ) whereΘ is composed of four
parts:

• Θa generatesN pairs of asymmetric keys(pk1, sk1) to (pkN , skN ).

• Θb generatesN symmetric keysk1 to kN .

• Θc generatesN pairs of signature keys(sik1, vk1) to (sikN , vkN ).

• Θd generates a nonceNH , a keyk as well as a challenge bitb.

F is also split in four parts:

• Fa corresponds to the oracles usingθa as inN -PAT-IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signature of a message,signature keys, hashing of a message and nonce
NH . Fa depends onθa, θb, θc andθd.

• Fb corresponds to oracles usingθb as inN -PAT-SYM-CCA, patterns are also extended but cannot include
asymmetric keys fromθa. Fb depends onθb, θc andθd.

• Fc corresponds to oracles usingθc as inN -UNF, Fc depends only onθc.

• Fd corresponds to oracles usingθd as in HASH,Fd depends only onθc.

Finally V is also a disjunction of five parts:

• VIND answers true if its argument if the bitb in Θd.

• VUNF−SY M answers true if it receives a symmetric encryption not forged byFb.

• VUNF−SIGN answers true if it receives a signature not forged byFc.

1Intuitively, a functionf is one-way, if givenf(x) but notx it is hard to find a valuey such thatf(y) = f(x).
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• VUNF−HASH answers true if it receives a pairh, pat whereh = H(k, v(pat, NH) and h has not been
forged usingFd.

• VCF−HASH answers true if it receives a pair of distinct bit-stringsbs0, bs1 that have the same hash.

Let us define theN -PAT-ASYM-SYM-SIGN-HASH-CCA (N -PASSH-CCA) criterion asγ = (Θ, F, V )
whereΘ is composed of four parts:

• Θa generatesN pairs of asymmetric keys(pk1, sk1) to (pkN , skN ).

• Θb generatesN symmetric keysk1 to kN .

• Θc generatesN pairs of signature keys(sik1, vk1) to (sikN , vkN ).

• Θd generates a nonceNH , a keyk as well as a challenge bitb.

F is also split in four parts:

• Fa corresponds to the oracles usingθa as inN -PAT-IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signature of a message,signature keys, hashing of a message and nonce
NH . Fa depends onθa, θb, θc andθd.

• Fb corresponds to oracles usingθb as inN -PAT-SYM-CCA, patterns are also extended but cannot include
asymmetric keys fromθa. Fb depends onθb, θc andθd.

• Fc corresponds to oracles usingθc as inN -UNF, Fc depends only onθc.

• Fd corresponds to oracles usingθd as in HASH,Fd depends only onθc.

Finally V is also a disjunction of five parts:

• VIND answers true if its argument if the bitb in Θd.

• VUNF−SY M answers true if it receives a symmetric encryption not forged byFb.

• VUNF−SIGN answers true if it receives a signature not forged byFc.

• VUNF−HASH answers true if it receives a pairh, pat whereh = H(k, v(pat, NH) and h has not been
forged usingFd.

• VCF−HASH answers true if it receives a pair of distinct bit-stringsbs0, bs1 that have the same hash.

3 Reductions of Criteria

In this section, we present a generic result allowing to prove that a security criterionγ1 can be reduced to a
criterionγ2. This means that if there exists an adversary that breaksγ2 then there exists an adversary that breaks
γ1. The proof is constructive in the sense that such an adversary for γ1 can be effectively computed.

This result can be seen as a tool for proving that a criterionγ is at least as secure as a criterionγ′ but also
allows to decompose and split a criterion into simpler ones.We begin by presenting a simple version of the
theorem.
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3.1 Criterion Partition and the Reduction Theorems

Let γ = (θ1, θ2; F1, F2; V2) be a criterion. Letγ1 andγ2 be two criteria such that:

• There exist two PRTMG andH such that:

G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2) (1)

G(H(s, θ2, θ
′
2), 0, θ1) = F1(s, θ1, θ

′
2) (2)

OracleG operates on a string of bits, thus it must receive two challenge information, a bitb andθ1.

• γ2 = (θ2; F2; V2) andγ1 = (b, θ1; G; verifb) whereb generates a random bit andverifb is the PRTM
verifying that the output of the adversary isb: verifb(s, b, θ1) = (s⇔ b).

• F2(s, θ1, θ2) andV2(s, θ1, θ2) do not depend onθ1.

Then we say that(γ1, γ2) is avalid simplified partitionof γ.

Theorem 3.1 (Simplified Reduction Theorem)Let (γ1, γ2) be a valid simplified partition ofγ. For any PRTM
A, there exist two PRTMAo andB such that

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|

The proof appears in appendixC. Notice that in applying the reduction theorem above, the difficulty is not to find
arbitrary functionsG andH that satisfy the Equations (1) and (2) but rather to find such functions that induce
criteriaγ1 andγ2 with negligible corresponding advantages.

The applicability of the simplified reduction theorem is restricted by the fact that the verfication algorithm
V only dependsθ2. We show now that we can avoid this restriction. So let us assume that the PRTMV is
represented two PRTM’sV1 andV2 such thatV1 (resp.V2) depends only onθ1 (resp.θ2) andV returns true ifV1

or V2 returns true. By abuse of notation we writeV1 ∨ V2 to underpin this. The criteriaγ1 andγ2 are defined as
above but now a new criterionγ3 = (b, θ1; G; V1) occurs in the partition. Then, we say that(γ1, γ2, γ3) is a valid
partition ofγ, if there is no strings such thatV1 andV2 are both verified ons (intuitively, the adversary should
know which part of the challenge he is trying to win).

Theorem 3.2 (Reduction Theorem)Let (γ1, γ2, γ3) be a valid partition ofγ. For any PRTMA, there exist
three PRTMAo,A1 andB such that

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)| + |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

3.2 Applications of the Reduction Theorems

This section contains application examples of our reduction theorems. These applications are mainly useful for
composition of security criteria.

The first proposition (which was already given in [21]) states thatN -PAT-IND-CCA is equivalent to IND-
CCA. This proposition is useful as the criterion is well-studied in the literature and as there are algorithms proven
to be IND-CCA.

Proposition 3.1 ( [21]) If an encryption scheme is secure against IND-CCA, then itis secure againstN -PAT-
IND-CCA for anyN .

Proofs for all the proposition in this section appear in appendix D

Proposition 3.2 If a symmetric encryption scheme is secure against SYM-CCA/IND and SYM-CCA/UNF, then it
is secure againstN -PAT-SYM-CCA for anyN .

The following proposition states that the combination of secure encryption schemes is a secure encryption
scheme. In other words, combining secure encryption schemes is harmless as long as cycles are avoided.

8/23 Verimag Research Report no 03



R. Janvier, Y. Lakhnech and L. Mazaré

Proposition 3.3 If an asymmetric encryption schemeAE is IND-CCA, a symmetric encryption schemeSE
is SYM-CCA, a signature schemeSS is UNF and a hashing algorithmH is HASH, then the composition
(AE ,SE ,SS,H) is N -PASSH-CCA.

Proof: We only present here the first step of the proof, the other steps are similar. LetΘ1 be(Θa, Θb) andΘ2 be
(Θc, Θd). In the same way,F1 (resp.F2) can be used to accessFa andFb (resp.Fc andFd). V1 is VUNF−SY M

andV2 is the disjunction ofVUNF−SIGN , VUNF−HASH , VCF−HASH andVIND. H is defined as above for
IND-CCA or UNF andG is also defined as above for encryption, decryption (asymmetric and symmetric keys)
and public key.F1, F2, V1 andV2 depend on the right parameters hence we define a valid partition of γ. The
reduction theorem gives that for any PRTMA, there exist three PRTMB,Ao andA1 such that:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)| + |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

Criteriaγ1, γ2 andγ3 can easily be partitioned in a similar way to get the conclusion.

3.3 Unbounded Number of Challenges

We want to consider the case where the number of challenges isnot bounded any more like inN -IND-CCA
where onlyN keys are generated for anyη. For that purpose, criteria are extended to a polynomial number of
challenges. For example, ifP is a polynomial, then theP -IND-CCA criterion usesP (η) keys. The objective
here is to generalize the previous results to this case.

Proposition 3.4 LetP andQ be two polynomials from
�

[X ]. LetD be a PRTM that given an integeri returns
Ci, a PRTM whose execution takes less thanQ(η) steps. If the execution ofD also takes less thanQ(η) steps,
then for any criterionγ, there exists a PRTMC whose execution takes less than2.Q(η) + P (η) steps such that
for anyη:

Adv
γ
C(η) =

1

P (η)

P (η)
∑

i=1

Adv
γ
Ci

(η)

AdversaryC randomly chooses the PRTMCi that it is going to use and executes it.

Adversary C:
r←[1..P (η)]
Cr ← D/r
d←Cr/η
return d

This property allows us to consider the case of a polynomial number of challenge (and also the case of an
unbounded number of challenges as only a finite part of them can be used). If the advantage of any PRTMA
againstγP is the sum of the advantages ofP (η) PRTM againstγ. Then if each of the latest PRTM are bounded in
time using a same polynomialQ, the advantage ofA is also equal (modulo a division byP (η)) to the advantage
of a PRTM againstγ. Hence, if the considered scheme is secure againstγ, it is also secure againstγP .

This method applies on all the previous applications of our reduction theorems. Hence, we have:

Proposition 3.5 If an encryption scheme is secure against IND-CCA, then it issecure againstP -IND-CCA for
any polynomialP .

If a symmetric encryption scheme is secure against SYM-CCA/IND and SYM-CCA/UNF, then it is secure
againstP -PAT-SYM-CCA for any polynomialP .

If an asymmetric encryption schemeAE is IND-CCA, a symmetric encryption schemeSE is SYM-CCA, a
signature schemeSS is UNF and a hashing algorithmH is HASH, then the composition(AE ,SE ,SS,H) is
P -PASSH-CCA for any polynomialP .
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4 Dolev-Yao is a Safe Abstraction

4.1 Definitions for the Symbolic Model

In this section, we give the basic definitions that are used tointroduce the symbolic aspects of protocol checking.
Symbolic studies rely on the concept of messages which are first order terms. To define messages, we first
introduce three infinite disjoint sets :Nonces, Identity andKeys. Elements ofNonces are usually denoted
by N and can be thought as random numbers. Thus, it is impossible for an intruder to guess the value of a nonce
without indications. Elements ofIdentity are the possible names of agents involved in the protocol. Finally,
elements ofKeys represent asymmetric encryption keys, symmetric encryption keys and signature keys. There
is a unary function overKeys associating each keyk to its inversek−1 such thatk = (k−1)

−1
. For symmetric

encryption, the inverse of a key is itself:k = k−1. The following binary operators are defined over messages:
concatenation, encryption and signature. Concatenation of messagesm andn is written 〈m, n〉. Encryption of
messagem with keyk is denoted by{m}k. Signature of messagem with keyk is denoted bysig(m, k). Finally,
one unary operator, hashing, is defined over messages and is denoted byh.

Next, we recall the definition of theentailmentrelationE ` m (introduced in [14]) whereE is a finite set of
messages andm a message. Intuitively,E ` m means thatm can be deduced from the set of messagesE. This
relation is defined as the least binary relation verifying:

• If m ∈ E, thenE ` m.

• If E ` m andE ` n, thenE ` 〈m, n〉.

• If E ` m andE ` k thenE ` sig(m, k).

• If E ` 〈m, n〉, thenE ` m.

• If E ` 〈m, n〉, thenE ` n.

• If E ` m andE ` k, thenE ` {m}k.

• If E ` {m}k andE ` k−1, thenE ` m.

• If E ` sig(m, k) thenE ` m.

• If E ` m, thenE ` h(m).

4.2 Symbolic and Computational Semantics

For the sake of presentation, we consider protocols that only involve a single role. Moreover, this role is only
instantiated in one session. This is done without loss of generality when a bounded number of sessions is con-
sidered. Indeed, each interleaving of the actions of the different participants can be seen as a different protocol.

Thus, a protocol is described by a list of actions which are either emission!m or reception?m of a message
m. We consider the classical adversary model where the adversary controls the network, receives all the outputs
(!m) and submits some forged message to the inputs (?m).

Henceforth, let us consider an arbitrary fixed protocol‡1t1...‡ktk, where‡i is either ”!” or ”?” and ti is a
term. There are two different execution models, one for the symbolic setting and one for the computational
setting producing a symbolic and a computational trace, respectively. A symbolic action sequenceis a list of
actionss m wheres is either? or ! andm is a ground (closed) message. Asymbolic traceis a symbolic action
sequence‡1m1...‡k′mk′ with k′ ≤ k that satisfies the following conditions:

1. There exists a ground substitutionσ such that for anyi, tiσ = mi;

2. For anyi, if ‡i is ”?”, thenmi is deducible from the previous messagesm1 to mi−1 and the initial
knowledge of the adversaryE0,i.e.,

E0, m1, ..., mi−1 ` mi.
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The setE0 contains the atomic messages of themi’s that do not appear in anyti, i.e.E0 =
⋃

i atoms(mi)\
⋃

i atoms(ti).

The settrace(Π) contains the possible traces for protocolΠ.
A computational action sequenceis a list of actions‡ bs wherebs is a bit-string and‡ is either”?” or ”!”.

A computational traceis the result of the interaction of an adversaryA, which is a polynomial random Turing
machine, and the protocol. This interaction is defined usingthe Turing machineExec(A, Π). Since we are
interested in relating the symbolic and computational semantics we defineExec in such way that along the
computational trace it outputs a corresponding symbolic action sequence. We then show that the symbolic action
sequence is a trace except for negligible probability. The reader should be convinced that producing the symbolic
action sequence by no means interferes with the computational semantics.

To simplify the presentation of theExec algorithm, we only give pseudo-code using the following functions:

• init(Π) generates the keys and nonces and that are chosen by the protocol Π, i.e., those inatoms(Π), and
not by the adversary. It returns a substitutionθ associating bit-string values to these elements.

• parse(bs, t, θ, σ) parses the bit-stringbs using prototypet and knowledge fromθ, it returns the updated
version ofθ as well as an updated symbolic substitutionσ.

• concr(m, θ) concretizes messagem using knowledge fromθ and returns the corresponding bit-string.

• compl(σ) completes the symbolic substitutionσ by associating remaining free variables to a distinct fresh
nonces.

The Exec algorithm uses two substitutions: the symbolic substitution σ that links protocol variables to
messages and the computational substitution that links variables to strings of bits. The adversary can decide to
stop interacting with the protocol by providing an answer other than an updated memorymem and a bit string
bs when an action?t is to be executed.

Algorithm Exec(A, ‡1n1...‡knk):
θ ← init(‡1n1...‡knk)
mem← []
for i in [1, k] do

if ‡i =! then
bs← concr(ni, θ)
mem← A(bs, mem)
tc ← append(‡ibs, tc)

else
X ← A(mem)
if X = bs, mem then

σ, θ ← parse(bs, mi, θ, σ)
tc ← append(‡ibs, tc)

else goto done
done
σ ← compl(σ)
return (‡1m1...‡imi−1)σ, tc

The next proposition relates precisely the computational trace and symbolic action sequence thatExec out-
puts. A computational tracetc is a possible concretizationof a symbolic action sequencetf if there exists a
computational substitutionθ such that one of the possible valuation oftf usingθ is tc.

Proposition 4.1 LetA be an adversary andΠ a protocol. IfExec(A, Π) outputstf , tc, thentc is a possible
concretization oftf .
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4.3 Relating the Symbolic and Computational Models

The main result of this section is that under some conditionsthe computational adversary acts as a symbolic
adversary with overwhelming probability. This means that the computational adversary, even with all the com-
puting power of polynomial-time random Turing machines, cannot have a behavior not represented by a symbolic
adversary.

Hypotheses over Cryptographic Schemes and Protocols

In order to be able to use the former results, the cryptographic schemes used in the implementation of the protocol
should verify the following properties.

• The asymmetric encryption schemeAE used in the protocol is IND-CCA.

• The symmetric encryption schemeSE is 1-PAT-SYM-CCA and the probability to forge a cyphertext with-
out access to the oracles is negligible.

• The signature schemeSS is UNF and the probability to forge a signature without access to the oracles is
negligible.

• The hashing algorithmH is HASH and the probability to construct a hash-collision isnegligible.

These are also some restrictions onΠ that are defined in the symbolic world (as they are easier to check there
with automated tools).

• In an asymmetric encoding usingpk, anything can appear except secret keys generated beforepk (and the
secret key related topk too).

• In a symmetric encoding usingk, forbidden messages are any secret keys nor any symmetric keys gener-
ated beforek.

• In a signature usingsik and in any hashed message, there cannot be any secret keys, symmetric keys nor
any signature keys.

• The protocol has to be secure for its secret, symmetric and signature keys: using the Dolev-Yao model,
these keys related to an honest agent cannot be revealed to anintruder (this assumption is reasonable as a
protocol should not reveal any key).

• Each hash message in a session between honest agents contains a nonce that remains secret.

We now formulate the main theorem. It states that if the conditions given above are met, then the probability that
a computational trace is NDY is negligible. A less general version of this theorem was first given in [25] but only
for public key cryptography and protocols with just one layer of encryption. It was then extended to protocols
involving emission of secret keys and signature in [21]. Here we give a more general version of this theorem
that combines the main cryptographic primitives: public key and symmetric cryptography, digital signature and
hashing. The proof is a reduction argument: Given an adversary A interacting with the protocol, we construct
an adversaryB aginstN -PASSH-CCA such that the probability thatA produces a NDY trace is polynomially
bounded by the advantage ofB.

Theorem 4.1 For any concrete adversaryA:

pr
(

tf , tc ← Exec(A, Π) and tf /∈ traces(Π)
)

is negligible

Using this theorem, it is possible to relate symbolic and computational properties. This is easy to achieve
for trace properties as shown in [25] and [21], but can also be done for strong secrecy [13]. In this last case, the
adversary built in the proof of theorem4.1has to be modified.
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Conclusion

The main contribution of this paper is a proof of correctnessof the Dolev-Yao model for protocols that may
combine asymmetric and symmetric encryption schemes, signature schemes as well as hash functions. This is
important as there is a number of automatic verification tools for protocols that are based on the Dolev-Yao
model. The proof of our theorem induces some restrictions onthe protocols that are in practice easily met.

As future work, it would be of interest to investigate whether correctness of Dolev-Yao can be proved under
weaker assumptions on the cryptographic primitives. Moreover, it would be significant to extend this result to
other security properties. A proof of the soundness of the symbolic model when Diffie-Hellman exponentiation
is considered is given in [23].
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A Existence of a N-PAT-SYM-CCA Algorithm

To show that our new criterion makes sens, we prove the existence of a symmetric encryption scheme that is
N -PAT-SYM-CCA. However, the algorithm built here is very inefficient as it uses an underlying asymmetric
encryption scheme. LetAE = (KG1, E1,D1) be an asymmetric encryption scheme that is IND-CCA. Let
SS = (KG2,S,V) be a signature scheme secure against UNF. Then the symmetricencryption schemeSE =
(KG, E ,D) is defined by:KG generates a pair of asymmetric keys(pk, sk) usingKG1 as well as a pair of
signature keys(sik, vk); the encryption algorithm is defined byE(m, (pk, sk, sik, vk)) = m′.S(m′, sik) where
m′ = E1(m, pk); and the decryption algorithm verifies that the signature part is valid and decodes the signed
messagem′.

To prove thatSE is N -PAT-SYM-CCA, it is sufficient to prove thatSE is PAT-SYM-CCA/IND and PAT-
SYM-CCA/UNF (this is proven by proposition3.2).

Let A be an adversary against PAT-SYM-CCA/UNF. Then it is easy to construct an adversaryA′ from A
working against UNF that has the same advantage.

LetA be an adversary against PAT-SYM-CCA/IND. Then we build an adversaryA′ fromA working against
IND-CCA such that:A′ is still polynomial;A′ andA have the same advantage.A′ has to generate a signature
key pair and executesA. It uses IND-CCA oracles to simulate its encryption oracle.Note that for the decryption
oracle, two cases may occur:m′ has not been produced by the IND-CCA encryption oracle, thusthe IND-CCA
decryption oracle can be used;m′ has been produced by the IND-CCA encryption oracle but the signature part
is fresh. Then the former adversary (against UNF) can be modified to have the related advantage.

B HASH/IND and HASH/CF imply HASH

LetH be a hash function that is secure against HASH/IND and HASH/CF. Let us suppose that there exists an
adversaryA against HASH/UNF which advantage is not negligible. Then webuild the adversaryB against
HASH/IND which runA (A uses directly oracles given toB).

Adversary B:
pat, bs←A
N ′ ← {0, 1}η

pat′ ← 〈[], N ′〉
bs′ = Hb(pat, pat′)
if bs = bs′ return 0
elseb′ ← {0, 1}

return b′

The advantage ofB against IND is detailed thereafter.

AdvIND
B = pr(B → 0 in ExpIND

B |b = 0)

−pr(B → 0 in ExpIND
B |b = 1)

= pr(ExpUNF
A = t) +

1

2
.pr(ExpUNF

A = f)

−pr(ExpUNF
A′ = t)−

1

2
.pr(ExpUNF

A′ = f)

WhereA′ is an adversary againstUNF defined by:

AdversaryA′:
pat, bs←A
N ′ ← {0, 1}η

pat′ ← 〈[], N ′〉
return pat′, bs
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We obtain

2.AdvIND
B = AdvUNF

A −AdvUNF
A′

Hence, asAdvIND
B is negligible andAdvUNF

A is not,A′ has a non negligible advantage against HASH/UNF.
Finally, we build fromA an adversaryC against collision free which advantage is related to the advantage of

A′. For that purpose,C generates a nonceNH in order to simulate with a functionρ the hash oracle used byA.

Adversary C:
NH ← {0, 1}η

pat, bs←A/k, ρ
N ′ ← {0, 1}η

N ′′ ← {0, 1}η

pat′ ← 〈[], N ′〉
pat′′ ← 〈[], N ′′〉
return pat′[NH ], pat′′[NH ]

Then, asPrRandCF is negligible, the probability thatC finds a collision is negligible. Moreover, this probability
is greater than the probability thatC finds a collision and the hash ofpat′[NH ] is equal to thebs produced by
A. In the following, events likeH(pat′[NH ]) = bs means: after the random execution ofExpUNF

A′ , we obtain
pat′, NH andbs such that this equality holds. To deduce the second inequality, we use lemmaB.1 that is given
later in this appendix.

pr(ExpNC
C = t) ≥ pr

(

H(pat′[NH ]) = bs = H(pat′′[NH ])
)

≥ pr(H(pat′[NH ]) = bs)

.pr(H(pat′′[NH ]) = bs)

≥
(

pr(ExpUNF
A′ = t)

)2

There is a contradiction asA′ has a non negligible advantage andPrRandUNF is negligible. HenceH verifies
HASH/UNF.

Lemma B.1 Let X , Y andY ′ be three random variables.X is chosen randomly in a finite setSX , Y andY ′

are chosen randomly in the finite setSY . LetE be a predicate overSX × SY . Then

pr
(

E(X, Y ) ∧ E(X, Y ′
)

≥
[

pr
(

E(X, Y )
)]2

To prove this lemma, letp be the left probability. Hence,

p = pr
(

E(X, Y ) ∧ E(X, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
(

E(x, Y ) ∧E(x, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
(

E(x, Y )
)

.pr
(

E(x, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
[(

E(x, Y )
)]2
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Then, using lemmaB.2, we get:

p ≥
1

|SX |2

∑

x,x′∈SX

pr
[(

E(x, Y )
)]

.pr
[(

E(x′, Y )
)]

≥
( 1

|SX |

∑

x∈SX

pr
[(

E(x, Y )
)]

)2

≥
(

pr
[(

E(X, Y )
)]

)2

Lemma B.2 Let (ai)1≤i≤n ben real numbers. Then

∑

1≤i≤n

a2
i ≥

1

n

∑

1≤i,j≤n

ai.aj

By developing(ai − aj)
2 ≥ 0, we obtain

a2
i + a2

j ≥ 2.ai.aj

∑

1≤i,j≤n

a2
i + a2

j ≥ 2.
∑

1≤i,j≤n

ai.aj

2.n.
∑

1≤i≤n

a2
i ≥ 2.

∑

1≤i,j≤n

ai.aj

∑

1≤i≤n

a2
i ≥

1

n

∑

1≤i,j≤n

ai.aj

C Proof of the Simplified Reduction Theorem

The intuition of the proof relies on the following principle: the adversaryAo is built usingA as a sub-routine.
However, asAo works againstγ2, requests made byA to F1 are answered using some fresh challengeθ. The
adversaryB also usesA as a sub-routine and works againstγ1. It is designed in such a way that whenever the
challenge bitb of γ1 equals1, the experiment involvingB againstγ1 is similar to the experiment involvingA
againstγ. Whenb equals0 then the experiment involvingB againstγ1 is similar to the experiment involvingAo

againstγ2.
The formal definitions for adversariesAo andB are detailed thereafter:

AdversaryAo:
θ1←Θ1(η)
θ′2←Θ2(η)
s←A/η, λs.F1(s, θ1, θ

′
2), F2

return s

Adversary B:
θ2←Θ2(η)
θ′2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ

′
2)), λs.F2(s, θ2)

if V2(s, θ2) return 1
else return0

It is now possible to relate the advantages of our three different adversaries. For that purpose, note that the
experiment involvingB is successful in two cases:

• If b = 1 andB outputs1. Then the experimentExp
γ1

B is similar toExp
γ
A To prove this, we detail the two

experiments:
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Experiment Exp
γ1

B (η):
b←[0, 1]
θ1←Θ(η)
θ2←Θ2(η)
θ′2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ

′
2), b, θ1),

λs.F2(s, θ2)
if V2(s, θ2) return verifb(1)
else returnverifb(0)

Experiment Exp
γ
A(η):

θ1←Θ1(η)
θ2←Θ2(η)
s←A/η, λs.F1(s, θ1, θ2),

λs.F2(s, θ2)
return V2(s, θ2)

Using the assumption onG, G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2) the equivalence of the two experiments

appears clearly in the caseb = 1. Moreover,B outputs1 means thatA solved its challenge.

• In a similar way, if b = 0 then the experimentExp
γ1

B is similar to Exp
γ2

Ao (their boolean outputs
are opposite),B outputs0 means thatAo failed to solve the challenge. Using the assumption onG,
G(H(s, θ2, θ

′
2), 0, θ1) = F1(s, θ1, θ

′
2) the equivalence between the two experiment is immediate.

Experiment Exp
γ1

B (η):
b←[0, 1]
θ1←Θ(η)
θ2←Θ2(η)
θ′2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ

′
2), b, θ1),

λs.F2(s, θ2)
if V2(s, θ2) return verifb(1)
else returnverifb(0)

Experiment Exp
γ2

A0(η):
θ2←Θ2(η)
θ1←Θ1(η)
θ′2←Θ2(η)
s←A/η, λs.F1(s, θ1, θ

′
2),

λs.F2(s, θ2)
return V2(s, θ2)

Adv
γ1

B (η) = 2.
(

Pr[Exp
γ1

B (η) = true]− PrRandγ1
)

= Pr[Exp
γ
A(η) = true]

+Pr[Exp
γ2

Ao(η) = false]− 1

= Pr[Exp
γ
A(η) = true]− PrRandγ

+PrRandγ2 − Pr[Exp
γ2

Ao(η) = true]

=
1

2
Adv

γ
A(η) −

1

2
Adv

γ2

Ao(η)

In this computation, we used thatPrRandγ1 = 1/2 as bitb is chosen among two possible values. We also used
thatPrRandγ = PrRandγ2 which is true becauseγ andγ2 have the same verification oracleV2.

This gives the awaited result:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|

Proof of the Reduction Theorem

AdversaryA1 represents adversaryA trying to solve its challenge againstV1.

AdversaryA1:
θ2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ2)), λs.F2(s, θ2)
return s
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PRTMA can gain its advantage by solving challengeV1 or challengeV2. As we suppose that a string can
solve at most one challenge, the following equality holds whereγ, Vi denotes criterionγ using onlyVi as verifier.

Adv
γ
A(η) = Adv

γ,V1

A (η) + Adv
γ,V2

A (η)

Then, by keeping the same construction as above, the advantage againstV2 is known. Moreover, the advantage
of A againstV1 is equal to the advantage ofA1 againstγ3.

Adv
γ
A(η) = Adv

γ3

A1(η) + Adv
γ2

Ao + 2.Adv
γ1

B (η)

This gives the conclusion of the theorem:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)| + |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

D Application of the Reduction Theorems

D.1 From N-PAT-IND-CCA to IND-CCA

In order to reduce theN -PAT-IND-CCA criterion (denoted byγN ), we only need the simplified version of the
reduction theorem. InN -PAT-IND-CCA, encoded messages can be patterns and there isan order among keys:
ski can be encoded usingpkj iff i > j. The reduction operates fromγN+1 to γN andγ (i.e. IND-CCA) as
follows.

• Θ1 generates the key pair(pk1, sk1).

• Θ2 generates the other key pairs(pk2, sk2) to (pkN+1, skN+1) as well as the challenge bitb.

• F1 (resp.F2) is the oracle for encryption, decryption, public key related to key pairs inθ1 (resp. inθ2).

• V2 verifies that bitb has been correctly guessed.

• H is the identity when considering decryption and public key emission andG is exactlyF1 in that case.

• G is the classical left-right encryption andH(s, θ2, θ
′
2) is defined as follows:

H(〈pat0, pat1〉, θ2, θ
′
2) = 〈v(patb′

2
, θ′2), v(patb2 , θ2)〉

Whereb2 (resp.b′2) is the challenge bit contained inθ2 (resp.θ′2).

We first want to verify that(γ, γN ) defines a valid simplified partition ofγN+1.

• As secret keysk1 cannot occur under any public key,F2 only depends onθ2.

• Verifier V2 only depends onθ2.

As (γ, γN ) is a valid simplified partition ofγN+1, it is possible to apply the simplified version of the reduction
theorem. For any PRTMA, there exist two PRTMB andAo such that:

|Adv
γN+1

A (η)| ≤ 2.|Adv
γ
B(η)|+ |Adv

γN

Ao (η)|

It is then possible to conclude using a simple recursion.
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D.2 From N-PAT-SYM-CCA to SYM-CCA/IND and SYM-CCA/UNF

In order to reduce theN -PAT-SYM-CCA criterion (denoted byγN ), we need the full version of the reduction
theorem. As inN -PAT-IND-CCA, encoded messages can be patterns and there isan order among keys:ki can
be encoded usingkj iff i > j, but there are also two ways to win the challenge, either by guessing the value of bit
b (criterion SYM-CCA/IND) or by forging an encoded message without using the encryption oracles (criterion
SYM-CCA/UNF).

The reduction operates fromγN+1 to γN , γIND (i.e. SYM-CCA/IND) andγUNF (i.e. SYM-CCA/UNF) as
follows.

• Θ1 generates keyk1.

• Θ2 generates the other keysk2 to kN+1 as well as the challenge bitb.

• F1 (resp.F2) is the oracle for encryption and decryption related to key(s) in θ1 (resp. inθ2).

• V2 verifies that bitb has been correctly guessed or that the final output is an encoded message by a key
from θ2 that has not been produced by an encryption oracle.

• V1 verifies that the output message is encoded byk1 and has not been produced byF1.

• H is the identity when considering decryption andG is exactlyF1 in that case.

• G is the classical left-right encryption andH(s, θ2, θ
′
2) is defined as follows:

H(〈pat0, pat1〉, θ2, θ
′
2) = 〈v(patb′

2
, θ′2), v(patb2 , θ2)〉

Whereb2 (resp.b′2) is the challenge bit contained inθ2 (resp.θ′2).

We first want to verify that(γIND, γN , γUNF ) defines a valid partition ofγN+1.

• As keyk1 cannot occur under any public key,F2 only depends onθ2.

• Verifier V2 only depends onθ2 andV1 only depends onθ1

Partition(γIND, γN , γUNF ) is a valid partition ofγN+1, it is possible to apply the reduction theorem. For any
PRTMA, there exist three PRTMB,Ao andA1 such that:

|Adv
γN+1

A | ≤ 2.|Adv
γIND

B |+ |Adv
γN

Ao |+ |Adv
γUNF

A1 |

It is then possible to conclude using a simple recursion.

D.3 Mixing all Criteria

Let us define theN -PAT-ASYM-SYM-SIGN-HASH-CCA (N -PASSH-CCA) criterion asγ = (Θ, F, V ) where
Θ is composed of four parts:

• Θa generatesN pairs of asymmetric keys(pk1, sk1) to (pkN , skN ).

• Θb generatesN symmetric keysk1 to kN .

• Θc generatesN pairs of signature keys(sik1, vk1) to (sikN , vkN ).

• Θd generates a nonceNH , a keyk as well as a challenge bitb.

F is also split in four parts:

• Fa corresponds to the oracles usingθa as inN -PAT-IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signature of a message,signature keys, hashing of a message and nonce
NH . Fa depends onθa, θb, θc andθd.

20/23 Verimag Research Report no 03



R. Janvier, Y. Lakhnech and L. Mazaré

• Fb corresponds to oracles usingθb as inN -PAT-SYM-CCA, patterns are also extended but cannot include
asymmetric keys fromθa. Fb depends onθb, θc andθd.

• Fc corresponds to oracles usingθc as inN -UNF, Fc depends only onθc.

• Fd corresponds to oracles usingθd as in HASH,Fd depends only onθc.

Finally V is also a disjunction of five parts:

• VIND answers true if its argument if the bitb in Θd.

• VUNF−SY M answers true if it receives a symmetric encryption not forged byFb.

• VUNF−SIGN answers true if it receives a signature not forged byFc.

• VUNF−HASH answers true if it receives a pairh, pat whereh = H(k, v(pat, NH) and h has not been
forged usingFd.

• VCF−HASH answers true if it receives a pair of distinct bit-stringsbs0, bs1 that have the same hash.

E Proof of Theorem4.1

The intuition is that if an adversaryA can produce a NDY trace, then it is able to break one of the cryptographic
schemes. LetQ be the number of atoms (keys and nonces) that occur inA. We build aQ-PASSH-CCA (criterion
denoted byγ) adversaryB such that ifp is the probability:

p = Pr
[

tf , tc ← Exec(A, Π) and tf /∈ traces(Π)
]

We have the following majoration ofp.

p ≤
(

2.Q + 7
)

.Adv
γ
B(η) + f(η) (3)

wheref is a negligible function. Using proposition3.3, it is possible to deduce that the probability forA to
produce a non Dolev-Yao trace is negligible.

Our Q-PASSH-CCA adversaryB usesA as a subroutine and deduces a string solving its challenge (for
example the challenge bitb or a new signature) as soon asExec(A, Π) produces an invalid trace. Using its own
oracles,B simulatesExec(A, Π) and produces the formal trace in order to find a non-deducible(NDY) message.

During its initialization, the adversaryB randomly chooses an integeri between0 andQ. If i 6= 0, then the
ith nonce generated byB (denoted byN ) is trapped. In order to answer queries fromA, B randomly generates
identities and nonces fromΠ exceptN . B uses its challenge keys for the different keys inΠ. For nonceN , B
generates two noncesN0 andN1,B uses its oracles in such a way that messages involvingN usesN0.N

H (resp.
N1.N

H ) when the challenge bitb is 0 (resp.1). NH is the challenge nonce related to hashing in PASSH-CCA
(asB does not know ifN0 or N1 is used, this is required in order to compute the hashing of a message involving
N using an oracle).

WhenA waits for a messagem, B has to forgem = 〈m1, ..., mn〉 where messagesmi are not pairs of
messages. ThenB generates eachmi using its oracles (e.g. ifmi is an encoding usingpk, B uses the left-right
encryption oracle related topk). If N appears ”under” a left-right oracle, thenN0.[N

H ] (resp.N1.[N
H ]) is used

for the left (resp. right) argument of the oracle. IfN appears anywhere else it is impossible forB to continue the
protocol simulation. HenceB aborts its execution. Note thatB cannot be asked to reveal a secret key, a signature
key or a symmetric key in a messagemi (such keys have to be protected by an encryption layer and so aleft-right
oracle is used with a pattern asking for the key).

WhenA emits a messagem, m is parsed according to the protocol specification. During parsing, ifB has to
decrypt a message then either this message has been producedusing a left-right encryption oracle and there is no
new information inside orB can use its decryption oracles. To achieve parsing,B has to be able to test whether
a string is a secret/signature/symmetric key, this can easily be achieved using oracles.
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Eventually,A stops. ThenB checks that there are no collisions between two messages parsed as hash. If this
is not the case,B wins against HASH/CF, this event is denoted byE0. Else if the trace is NDY thenB knows the
first NDY messagem and a recursive procedure is applied onm in order to win the challenge.

1. If m is N0.N
H or N1.N

H , B deduces the challenge bitb.

2. If m is another nonce,B aborts.

3. If m is a secret key or a symmetric key,B also deducesb.

4. If m is a signature key,B can forge a new fresh signature and thus wins its challenge.

5. If m is a pair〈m1, m2〉, thenm1 or m2 is NDY and this procedure is applied recursively.

6. If m is an asymmetric encryption{m′}pk, asm is NDY it has not been produced by an oracle (otherwise,
m would have circulated not protected). Hence using the decryption oracle,B obtainsm′ which is also
NDY.

7. If m is a signature or a symmetric encoding,m is NDY thus it has not been produced by an oracle andB
has forged a new signature or a new symmetric encoding.

8. If m is a hashingh(m′), thenm′ has to be known (to testm during the protocol execution). Ifm′ contains
N , thenB can deduce a hollow patternpat such thatH(k, v(pat, NH)) = h. HenceB wins. Else,B
aborts.

9. If m is a hashingh(m′) andm′ does not containN , thenB aborts.

WheneverB decides to abort, it answers a random bit for the challenge bit b.
If A produces an invalid trace, then we consider the different answers that the former procedure can have

produced.Ei denotes the event where the procedure stopped in theith case of the list. Hence,

p =
9

∑

i=0

Pr(Ei)

As nonceN is chosen randomly,Pr(E2) andPr(E9) are lower than respectivelyQ.Pr(E1) andQ.Pr(E8).
Moreover, eventsEi for i different from2, 5 and9 imply thatB wins its challenge without aborting. Let us call
B (resp.¬B) the event whereB does not abort (resp. aborts). Hence,

p ≤
(

2.Q + 7
)

.P r(B)

As PrRand is negligible for criteria related to UNF, there exists a negligible functiong such that:

Adv
γ
B(η) = 2.P r(Bwins)− 1− g(η)

= 2.P r(B) + Pr(¬B) − 1− g(η)

= Pr(B) − g(η)

Hence, it is easy to obtain formula3 and the awaited result.

Nonces are Probably Different

We consider that anytime a computational adversary picks upsome nonces, they are different one from another.
The adversary can only get a numberm of nonces that is polynomial inη and we suppose that the numbern of
possible nonces is exponential inη (som < n). Let P be the probability that the adversary gets two times the
same nonces.

1− P =
n

n

n− 1

n
...

n− (m− 1)

n
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Thus, we have the following inequalities:

0 ≤ P ≤ 1−
(

1−
m− 1

n

)m

Proposition E.1 For anyx ∈ [0, 1[ anda ≥ 1,

(

1− x
)a
≥ 1− x.a

Proof: Consider the functionf(x) =
(

1− x
)a
− 1 + x.a. Derive it twice to get the result.

Applying the proposition, we get:

0 ≤ P ≤
m.(m− 1)

n

As m is polynomial andn is exponential inη, P is negligible inη. When considering an adversary that has
a non-negligible advantage against something, it still hasits advantage if we consider only executions where
nonces are distinct.
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