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1 Introduction

This work is a continuation of previous efforts ([8, 6, 13] toward building a satisfactory theory
of hybrid computing system approximation. The motivations for building such a theory are the
following:

1.1 Model-based design in computer science and control

Model-based design is advocated in both theories as a method of choice for efficiently and safely
building systems. However these theories differ on the way of achieving this goal:

In computer science, the proposed method (see for instance [1]) is based on successive re-
finements: a large specification is designed first, imprecise (non deterministic) in general, but
sufficient for meeting the desired properties of the system. Then implementation details are
brought in progressively, making the specification more and more precise, while keeping the
properties, up to a point when it can be implemented. Clearly, this is an ideal scheme which is
rarely respected, but which has a paradigmatic value.

In control science, on the contrary, an exact model is built first, which allows a control system
to be designed. Then the various uncertainties that may affect the system behaviour are progres-
sively introduced and it is checked that the designed controller is robust enough to cope with
them.

Clearly, these two schemes are not, in practice, too far from each other. But, as control
systems are mostly implemented by now on computers, some effort is needed, if we want them to
match more closely and this can be valuable in the prospect of making easier the communication
between the computer and control cultures. A way to achieve this goal can be to see the initially
precise control model as representing a large class of models, those models which fall into some
“distance” of this model. This distance would then represent the maximal uncertainty around
this model and further refinements would make this uncertainty more precise. This goal requires
thus some notion of control system approximation.

1.2 Sampling discrete event and hybrid systems

Another point of interest is that large modern control systems mix very closely continuous and
discrete event systems. This is due for instance, to mode changes, alarms, fault tolerance and
supervisory control. From a theoretical point of view, computer implementations of these two
kinds of activity are quite different. Continuous control is dealt with through periodic sampling
(time-triggered computations [12]) while discrete event systems use event-triggered implemen-
tation. However, in practice, many mixed continuous control and discrete event control systems
are implemented through periodic sampling. This is the case, for instance, Airbus fly-by-wire
systems and many safety-critical control systems. The problem is that there is no theory for doing
it and practitioners rely on in-house “ad-hoc” methods. Building a consistent sampling theory for
mixed continuous control and discrete event systems would help in strengthening these practices.
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1.3 Fault-tolerance in GALS systems

Though the theory of distributed fault-tolerant systems advocates the use of clock synchronisa-
tion [16, 12], still many critical real-time systems are based on the GALS (globally asynchronous,
locally synchronous), and more precisely the “Quasi-Synchronous” [7] paradigm: in this frame-
work, each computer is time-triggered but the clocks associated with each computer are not syn-
chronised and communication is based on periodic sampling: each computer has its own clock
and periodically samples its environment,i.e., the physical environment but, also, the activities
of the other computers with which it communicates. When such an architecture is used in critical
systems, there is a need for a thorough formalisation of fault tolerance in this framework.

1.4 Previous works

In a previous paper [8] we already formalised the concepts of threshold and delay voters. How-
ever there was in this paper some lack of symmetry between the two concepts: sampling con-
tinuous signals and threshold voting were very simply based on topological notions like uniform
continuity andL∞ norm. On the contrary, sampling discrete event signals and associated delay
voting were based on moread-hocnotions.

Later [6], we found that the use of the Skorokhod distance [4] was a way to overcome this
lack of symmetry. More precisely, we showed that the discrete signals that could be sampled
were those that were uniformly continuous with respect to this distance. This opened the way
toward a generalisation to hybrid (mixed continuous-discrete) signals. Moreover, we remarked
that our previous study on voters was incomplete: in practice, it appears that people do not only
use threshold voters and delay voters but also, and mainly, mixed threshold and delay voters.
In these voters, a failure is detected if two signals differ for more than a given threshold during
more than a given delay. But, when we tried to relate those two issues [13] we found unexpected
difficulties linked to the fact that the Skorokhod topology is too fine and distinguishes too many
systems. It should be noted that this would be also the case for another topology which has also
been proposed for robust hybrid systems [10].

1.5 Report organisation

In this report, we propose a simpler topology which seems to better meet our needs in that it:

• generalises theL∞ norm to non continuous signals and systems;

• allows us to uniformly handle errors and bounded delays;

• provides a setting where samplable signals are those uniformly continuous with respect to
this topology, and where asymptotically stable systems and combinational boolean systems
are uniformly continuous systems;

• provides a foundation to mixed error and delay voters.
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More precisely, we show that if two signals are within a given neighbourhood and if both of them
are uniformly continuous with respect to that topology, then we can design a 2x2 hybrid voter
which will not raise an alarm as long as these conditions are fulfilled. In practice, this result
allows us to finely tune the voter parameters as a function of the nominal (non-faulty) errors and
delays resulting from:

• the numerical and delay analysis of sensors,

• the algorithms used for computing outputs1

• and the architecture of communication between computing locations.

The report is organised as follows: in a second section, we provide basic definitions. Section
3 addresses the classical theory of sampling continuous signals and systems. In Section 4, we
define our topology and prove the report main result on the property of signals and systems
which are uniformly continuous with respect to that topology. Section5 applies this result to the
sampling and approximation problem .Finally, section 6 recalls basic voting schemes, presents
the mixed (hybrid) voter and applies the theory to this voting scheme.

1.6 Related Works

Several approaches seem to have been followed for addressing the question:

• The topological approach initiated by Nerode [17, 5] explicitly introduces the approxi-
mation and then tries to characterise it as a continuous mapping. This leads to equip the
approximation space with anad-hoc(small) topology.

• The equivalence or property preserving approaches followed for instance in [15, 2, 9, 11]
tries to construct an approximation of a given system and to check whether it is equivalent
to or preserves some properties of the original system expressed in some logic.

• Finally, M. Broucke [14] mixes the two approaches and uses the Skorokhod distance in
order to define an approximate bisimulation between several classes of hybrid systems. In
this sense, her work is quite close from ours. However, the motivations are slightly differ-
ent: it doesn’t seem that uniformity is addressed and that a result similar to proposition4.3
is obtained.

1We can remark that this kind of method allows the use of diverse programming [3] which is one of the ways for
tolerating design and software faults
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2 Basic definitions

2.1 Signals and systems

We consider systems that have to operate continuously for a long time, for instance a nuclear
plant control that is in operation for weeks or an aircraft control that flies for several hours.
Thus, the horizon of our signals is not bounded. Hence, asignalx is for us simply a piece-wise
continuous function from< to<, that is to say, a function which is continuous but on a finite or
diverging sequence of times{t0, . . . tn, . . .}. This means, in particular, that left and right limits
exist at each point in time. Furthermore, we assume that discontinuities are only of the first kind,
such that the value at a given time is always within the interval made of left and right limits:

For all t,

x(t) ∈ [inf(x(t−), x(t+)), sup(x(t−), x(t+))]

where, as usual,x(t−), (x(t+)) is the left (right) limit ofx at t.
Finally, we assume that the signal remains constant before the first discontinuity timet0.
Concerning boolean signals, the fact that the sequence of discontinuity points diverges does

not prevent from getting two consecutive discontinuity points arbitrarily close. This is why, in
many cases we may need a stronger restriction:

Definition 2.1 A boolean signalx has uniform bounded variability (UBV) if the interval between
two consecutive discontinuities is lower bounded. i.e., there exists a positive (stable time)Tx

between any two successive discontinuities ofx.

A systemis simply a functionS causally transforming signals, that is to say, such thatS(x)(t)
is only function ofx(t′), t′ < t.

Thedelay operator∆τ is such that(∆τ x)(t) = x(t− τ), and a system isstationary(or time
invariant) if∀τ, S(∆τ x) = ∆τ (S x).

An even more restricted class of systems is the class ofstatic or combinationalsystems, that
is to say, systems that are the “unfolding” of a scalar function:

Sf (x)(t) = f(x(t))

3 A sampling theory for continuous signals and systems

3.1 Uniformly continuous signals

A signal x is uniformly continuous (UC)(figure 1) if there exists a positive functionηx from
errors to delays, such that:

∀ε > 0,∀t, t′
|t− t′| ≤ ηx(ε) ⇒ |x(t)− x(t′)| ≤ ε
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ε

ηx(ε)

x x′

Figure 1: A uniformly continuous signal
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-

Figure 2: A periodic sampling retiming

Such a definition can be rephrased in a functional way by introducing the|| ||∞ norm on
signals,i.e., for our piece-wise continuous signals with only first kind discontinuities:||x||∞ =
supt |x(t)|,.

Then, a signalx is uniformly continuous if there exists a positive functionηx from errors to
delays, such that:

∀ε > 0,∀τ, |τ | ≤ ηx(ε) ⇒ ||x−∆τ x)||∞ ≤ ε

3.2 Retiming and sampling

A retiming function r ∈ Ret is a non decreasing function from< to <. This is a very general
definition which provides many possibilities. For instance, a piece-wise constant retiming func-
tion can be seen as a sampler: ifx′ = x ◦ r, and if r is piece-wise constant, then, at each jump
of r, a new value ofx is taken and maintained up to the next jump. This allows us to define a
periodic samplerr, of periodTr as the piece-wise constant function (see figure2):

r(t) = bt/TrcTr

wherebc is the floor function.
A desirable property of retimings is to have a bounded deviation with respect to identity.
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Definition 3.1 (Bounded retiming) A bounded retiming is a retiming which has a deviation
dev(r) = supt |r(t)− t|

Finally, retimings allow us to characterise static (or combinational) systems as those systems
which commute with retiming:

Proposition 3.1 (Static systems)A static systemS is such that, for anyr ∈ Ret,

S ◦ r = r ◦ S

3.3 Sampling

Retiming allows us to restate the uniformly continuous signal definition, by saying that a signal
x is uniformly continuous if there exists a positive functionηx from errors to delays, such that:

∀ε > 0,∀ retiming r,
dev(r) ≤ ηx(ε) ⇒ ||x− x ◦ r||∞ ≤ ε

whereid is the identity function (neutral retiming).
We can then define asamplablesignal as a signal such that the sampling error can be con-

trolled by tuning the sampling period:

Definition 3.2 (Samplable Signal)A signalx is samplable if there exists a positive functionηx

from errors to sampling periods, such that:

∀ε > 0,∀ periodic sampling r,
Tr ≤ ηx(ε) ⇒ ||x− x ◦ r||∞ ≤ ε

Then the following property obviously holds:

Proposition 3.2 A signal is samplable if and only if it is uniformly continuous.

3.4 From signals to systems

This framework extends quite straightforwardly to systems by saying that a systemS is uniformly
continuous (figure3) if there exists a positive functionηS from errors to errors such that:

∀ε > 0,∀x, x′,
||x− x′||∞ ≤ ηS(ε) ⇒ ||(S x)− (S x′)||∞ ≤ ε

and state the following proposition:

Proposition 3.3 A uniformly continuous stationary system, fed with a uniformly continuous sig-
nal outputs a uniformly continuous signal.
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System

ηS(ε)

ε

Figure 3: A uniformly continuous system

Proof:
The proof is straightforward and is repeated from [6].

Givenx UC, S UC, andε > 0, ∀x′,

||x− x′||∞ ≤ ηS(ε) ⇒ ||(S x)− (S x′)||∞ ≤ ε

and∀τ ,

|τ | ≤ ηx(ηS(ε)) ⇒ ||x− (∆τ x)||∞ ≤ ηS(ε)

Thus,∀τ ,

|τ | ≤ ηx(ηS(ε)) ⇒ ||(S x)− (S (∆τ x)||∞ ≤ ε

But S(∆τ x) = ∆τ (S x). We thus get

ηSx = ηx ◦ ηS

End

This property says that given an acyclic network of UC systems, one can compute maximum
delays on system interconnection, sampling periods and maximum errors on input signals such
that errors on output signals be lower than given bounds. This provides us thus with a nice
approximation theory.
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4 A hybrid topology

The difficulties met with the Skorokhod topology have led us to propose the following definition:

4.1 Topology definition

Let us consider the following family of open balls centred at arbitrary signalsx, with positive
parametersT, ε:

B(x; T, ε) = {y | sup
t

∫ t+T

t

|x− y|
T

< ε}

Proposition 4.1 This family defines a topology.

Proof:
It suffices to show that any point of a ball is the centre of another ball which is a subset of the
former.

Let x′ ∈ B(x; T, ε). It yields:

sup
t

∫ t+T

t

|x′ − x|
T

= d < ε

Let us take

• T ′ = T

• ε′ = (ε− d)

Let x′′ ∈ B(x′; T ′, ε′) and let us show thatx′′ belongs toB(x; T, ε): for anyt,∫ t+T

t
|x′′ − x| ≤

∫ t+T

t
|x′′ − x′|+

∫ t+T

t
|x′ − x|

∫ t+T

t
|x′′ − x| < ε′T + dT∫ t+T

t
|x′′ − x| < (ε− d)T + dT

∫ t+T

t
|x′′ − x| < εT

End

Example: Figure4 shows two boolean signals that can be made arbitrarily close in this topol-
ogy by decreasing the durationh. It is easy to see conversely that this is not the case, neither
with theL∞ distance nor the Skorokhod distance nor the tube distance of [10].
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x′

x

h

Figure 4:x andx′ are close to each other whenh is small in the given topology.

Closed Balls: Let us denote as̄B(x; T, ε) the corresponding closed balls.

B̄(x; T, ε) = {y | sup
t

∫ t+T

t

|x− y|
T

≤ ε}

4.2 Product topology

When dealing with signal tuples, we consider product topologies. For instance, the topology
associated with couples(x, y) will be defined by the balls:

B(x; Tx, εx)×B(y; Ty, εy)

Yet, another solution would be to consider the two-dimension balls:

B(x, y; T, ε) = {x′, y′ | sup
t

∫ t+T

t

|x− x′|+ |y − y′|
T

< ε}

What are the relations between the two generated topologies ?

Proposition 4.2 These topologies are equivalent

Proof:

It suffices to show that each ball of one family is included in one ball of the other family:

1: Assumex′, y′ belongs toB(x; Tx, εx)×B(y; Ty, εy).
Then

sup
t

∫ t+Tx

t

|x− x′|
Tx

< εx

sup
t

∫ t+Ty

t

|y − y′|
Ty

< εy

Taking

T = inf{Tx, Ty}

ε =
εxTx

T
+

εyTy

T
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yields

sup
t

∫ t+T

t

|x− x′|+ |y − y′|
T

< ε

2: Conversely, taking

sup
t

∫ t+T

t

|x− x′|+ |y − y′|
T

< ε

obviously yields

sup
t

∫ t+T

t

|x− x′|
T

< ε

sup
t

∫ t+T

t

|y − y′|
T

< ε

End

4.3 Uniformly continuous signals

Definition 4.1 A signalx is uniformly continuous with respect to the hybrid topology (UCht) if
there exists a positive functionηx(T, ε) such that

• For all ε, T > 0,

• For all r with dev(r) ≤ ηx(T, ε)

x ◦ r belongs toB̄(x; T, ε)

Examples:

• Uniform bounded variability signals areUCht.

• Uniformly continuous signals in the usual sense areUCht.

4.4 Fundamental property ofUCht signals

Proposition 4.3 Letx be aUCht signal and letηx be the corresponding error function.
Then, there exists, for any positiveε, T , in any interval of durationT , a sub-interval of

durationh = inf{T, ηx(T, ε)} such that, for anyt, t′ in this interval

|x(t)− x(t′)| ≤ 2ε
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T

h′

h

h′ h′

h

h

Figure 5: Interval partition

Proof:
The proof is by contradiction: let us assume that in each sub-interval of durationh the signal
variation is larger than2ε and show that there exists a retimingr of deviation smaller than or
equal toh such thatx ◦ r does not belong tōB(x; T, ε).

Let us cover an arbitrary intervalI of durationT into n sub-intervalsIi, i = 0, n − 1 of
durationh wheren = dT/he. We choose these sub-intervals such that they equally overlap
(unlessh exactly dividesT ). We then partitionT into n sub-intervalsI ′i, i = 0, n− 1 of duration
h′ = T/n (see figure5).

We can thus write:
T = nh′ = nh− r

with r < h. More precisely,

I = [t, t + T ]

Ii = [t + i(h− r

n− 1
), t + i(h− r

n− 1
) + h]

I ′i = [t + ih′, t + (i + 1)h′]

By assumption, there exists, in each sub-intervalIi, ti andt′i such that:

2ε < x(ti)− x(t′i)

Furthermore,

• eitherti andti+1 do not belong toIi ∩ Ii+1 andti ≤ ti+1

• or we can rearrange them by assigning:

t := argmax{x(ti), x(ti+1)};
ti := t;

ti+1 := t;

which also yieldsti ≤ ti+1. Moreover, this rearrangement preserves the property2ε <
x(ti)− x(t′i).
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The same rearrangement can be performed on the(t′i) sequence, Thus, the two sequences(ti),
(t′i) are loosely increasing ones.

Let us consider the two retimingsr et r′ such that :

• for all t ∈ I ′i, r(t) = ti

• for all t ∈ I ′i, r′(t) = t′i

It can be seen that the corresponding deviations are less thanh.

t + i(h− r

n− 1
) + h− (t + ih′) = h− r

i

n(n− 1)
≤ h

t + (i + 1)h′ − (t + i(h− r

n− 1
)) = h− r

n− i− 1

n(n− 1)
≤ h

Thus,

dev(r) ≤ ηx(T, ε)

dev(r′) ≤ ηx(T, ε)

Now we can see that ∫
I

|x ◦ r − x ◦ r′|
T

=
n∑
1

h′

T
[x(ti)− x(t′i)] > 2ε

By triangular inequality, we get:

∫
I

|x− x ◦ r|
T

+
∫

I

|x− x ◦ r′|
T

> 2ε

This means that at least one of the two integrals is larger thanε. The corresponding retiming
violates theUCht assumption.

End

We clearly see now how our new topology generalises the usual one concerning uniform
continuity: In the usual definition, for anyε, we can findη such that, in any interval of duration
η, the signal variation is smaller than or equal toε. In our new framework, for anyT, ε, we can
findη such that, in any interval of durationT , there exists a sub-interval of durationη where the
signal variation is smaller than or equal toε. This is clearly a generalisation and it is the price
to be paid for tolerating the discontinuities inherent to discontinuous signals like booleans and
for encompassing in the same framework continuous signals and boolean signals. Furthermore,
having been able to encompass both classes of signals allows us to also deal with hybrid piece-
wise continuous ones.
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Moreover, we can show that this property is quite tight by considering the example of a
boolean signalx with uniform bounded variability,i.e., such that the interval between two dis-
continuities is larger thanT .

It is easy to show, by taking a delayr(t) = t− Tε, with ε < 1/2, that

ηx(T, ε) = Tε

Now, in any interval of durationT , there truly exists an interval of durationTε < T/2 where the
boolean signal remains constant and, thus,

xM − xm ≤ 2ε < 1

16/30 Verimag Research Report no 2005-19
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5 Sampling hybrid signals and systems

5.1 Sampling hybrid signals

The fundamental property4.3allows us first to find a condition on sampling periods. The idea,
here, is that hybrid signals are made of stable intervals, where the signal variation is smooth,
separated by intervals where discontinuous perturbations are present. Property4.3 gives us a
condition on sampling periods such that at least one sample is taken in each stable intervals.
More precisely:

Definition 5.1 An ε stable interval (ε SI) of a signalx is an intervalI such that, for anyt, t′ in
I, |x(t)− x(t′)| ≤ ε

Definition 5.2 A ε maximal stable interval (ε MSI) of a signalx is anε SI which is not contained
in a larger one.

Proposition 5.1 Given a UCht signal x, a sampling retimingr of deviation dev(r) ≤
supT ηx(T, ε/2) takes at least one sample in eachε MSI.

5.2 Checking theUCht property

Property4.3also gives us a way of approximatedly checking theUCht property. The idea is that,
if we sample a signal in such a way that at least two samples are taken in eachε MSI, we know
that in eachT interval, at least two consecutive samples should not vary of more thanε and we
can rise an alarm if this is not the case. This is the basis of Airbus confirmation functions.

Definition 5.3 (Confirmation function)

Confirm(x, h, nmax, ε) = y where y, n = if |x−∆h
x0

x| ≤ ε
then x, 0
else if ∆h

0n < nmax− 1
then ∆h

x0
y, ∆h

0n + 1
else alarm

where∆h
x0

is thedelay operatorsuch that∆h
x0

x(t) = x(t− h) with initial valuex0.

Notations: In this definition and in the sequel, algorithms are expressed using a functional
notation, that is to say by abstracting over time indices, in order to stay consistent with design
tools like Simulink2 or Scade3. Thus, a signal definitionx1 = x2 means∀n ∈ N : x1(nT ) =
x2(nT ) whereT is the period of the computing unit running the algorithm.

• this function maintains a countern with initial value0, and its previous output, with some
known initial valuex0,

2http://www.mathworks.com
3http://www.esterel-technologies.com
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• whenever the input and the preceding one don’t differ from more thanε, it outputs the input
and resets the counter,

• else, if the counter has not reachednmax − 1, it increments it and outputs the previous
output,

• else it raises an alarm.

Proposition 5.2 If

• x is UCht,

• h < ηx(T, ε/2)/2

• nmax =
⌈

T−ηx(T,ε/2)
h

e

Confirm(x, h, nmax, ε) never raises an alarm

This is in fact a corollary of proposition4.3.
We can go a bit further and improve the bound onnmax. As a matter of fact, the maximum

interval between two consecutiveε SMI may not be as large asT − ηx(T, ε/2). The idea, here,
is that the property4.3is true for anyT interval. By sliding the interval, as soon as aSMI starts
disappearing at the left side of the interval, another one should have already appeared at the right
side of the interval:

Proposition 5.3 If x is UCht, in any interval of durationT , the maximum interval between two
consecutivesε SMIs is smaller than or equal toT − 2ηx(T, ε/2)

Proof:
The proof is by contradiction: assume such an intervalI = [t1, t2] with t2−t1 > T−2ηx(T, ε/2).
Consider theT interval [(t1 + t2 − T )/2, (t1 + t2 + T )/2] centred at the centre ofI . This
interval should contain at least anε SMI of duration at leastηx(T, ε/2) but there is no room for
it in the space left byI.

End

5.3 Smoothing hybrid signals

Yet, confirmation functions have also additional interesting properties, in that their output is a
smooth delayed version of their input: the output is freezed once not in aε SMI, and thus
“jumps” from SMI to SMI.

18/30 Verimag Research Report no 2005-19



Hybrid Approximation Chiheb Kossentini and Paul Caspi

5.4 UCht systems

This framework also allows us to provide elements of a sampling and approximation theory for
hybrid systems.

Definition 5.4 A systemS is UCht if there exists a positive functionηS(T, ε) such that:

• for all T, ε > 0,

• for all x, x′ wherex′ belongs toB̄(x; ηS(T, ε))

S(x′) belongs toB̄(S(x); T, ε)

Clearly,

Proposition 5.4 Asymptotically stable linear time-invariant systems areUCht.

Proof:
An asymptotically stable LTI systemS is such that there exists a an impulse responsehS with:

S(x)(t) =
∫ ∞

−∞
hS(u)x(t− u)

and ∫ ∞

−∞
|hS| = KS < ∞

Thus, for anyx, x′, T, t,∫ t+T

t
|S(x′(v)− S(x)(v)|/T =

∫ t+T

t
|
∫ ∞

−∞
hS(u)x′(v − u)− x(v − u)|/T

≤
∫ t+T

t

∫ ∞

−∞
|hS(u)||x′(v − u)− x(v − u)|/T

≤
∫ ∞

−∞
|hS(u)|

∫ t+T

t
|x′(v − u)− x(v − u)|/T

≤
∫ ∞

−∞
|hS(u)| sup

t

∫ t+T

t
|x′(v − u)− x(v − u)|/T

≤ KS sup
t

∫ t+T

t
|x′(v − u)− x(v − u)|/T

It suffices then to choose:

ηS(T, ε) = T,
ε

KS

to get the announced result.

End

But we also have this very nice property:
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Proposition 5.5 Boolean combinational systems areUCht.

Proof:
Let us show the proof for a boolean functionf with two inputs. It suffices to take:

ηf (T, ε) = (T, ε)

and to notice that, for a boolean functionf , we have for anyx, x′, y, y′, t:

|f(x, y)− f(x′, y′)|(t) ≤ |x− x′|(t) + |y − y′|(t)

End

Noting that combinational functions commute with retiming, we can reuse the proof of3.3
to state a similar property for networks of boolean functions:

Proposition 5.6 A uniformly continuous combinational system, fed with a uniformly continuous
signal outputs a uniformly continuous signal.

This property says that given an acyclic network ofUCht combinational systems, one can
compute maximum delays on system interconnection, sampling periods and maximum errors on
input signals such that errors on output signals, in the sense of our topology, be lower than given
bounds. This provides us thus with a nice approximation theory which also nicely combines with
voting, in that this “error calculus” allows voter parameters to be correctly set.
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alarm

x1

x2

Figure 6: Threshold voting

6 Hybrid voting

In this section we recall the classical threshold and delay voting schemes. Then we propose a 2/2
hybrid voter which is a mixture of these two aspects.4

6.1 Threshold Voting

Threshold voting is a classical voting scheme. Assume that signalsx, x′ are redundantly com-
puted signals. In theory, the two signals should be equal but, because they are not computed at
the same time, in the same computer, from the same sensor values, and possibly by dissimilar
algorithms, their values can be slightly different. The figure6 shows a tolerance tube around the
reference signalx. Whenever the signalx′ remains within the tolerance tube, the voted value is
the reference one. If the signalx′ gets out the tube, an alarm is raised.

Knowing bounds on the normal deviation between values that should be equal, easily allows
the design of threshold voters. For instance, ifx is uniformly continuous and if

x′ = x ◦ r + e

with

• ||r − id||∞ ≤ ηx(ε)

• ||e||∞ ≤ ε

We can find a thresholdε′ = 2ε and design a2/2-voter:

voter2/2(x, x′, ε′) = if |x− x′| ≤ ε′

then x
else alarm

such that the voter delivers a correct output in the absence of failure and, otherwise, delivers an
alarm.

4In the usual terminology for voters,n1/n2 means thatn1 units out ofn2 redundant ones should operate correctly
in order that the redundant system operates correctly.
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6.2 Delay voting

Delay voting is the discontinuous equivalent to the threshold one. The figure7 shows this scheme
principle. Whenever the two signals are equal, the voted value is the common one. Else, the voter
holds its output and waits for a new agreement during a predefined temporal window. If there is
no agreement, an alarm is latched.

Let us consider boolean UBV signalsx1 andx2 which is, in normal operation, a delayed
image ofx1:

x2 = x1 ◦ r

with a boundτ on the delay in correct operation:

dev(r) ≤ τ

There signals are received by some unit of periodT . However, the assumption that correct
computers have perfect clocks. is clearly not realistic. To be more realistic, one should consider
clock drifts. A frequent assumption is that clock drifts are bounded, either because the mission
time is bounded or extra mechanisms allow for detecting exceedingly large drifts. Then there
exist lower (Tm) and upper (TM ) bounds forT and, in each condition involvingT , it should be
replaced by the bound which makes it more pessimistic. We thus assumeTm ≤ T ≤ TM .

We also assumeτ + TM < Tx. This assumption guarantees that the joint effect of the delay
and the sampling at rateT (which can induce an additional delay) cannot lead to miss any change
of input value (which, by assumption lasts at leastTx). Then,

• the maximum time interval during which the two signals may continuously disagree is
obviouslyτ ,

• the maximum number of samples where two correct copies continuously disagree is

nmax =
⌊

τ

Tm

⌋
+ 1

This allows us to designdelay votersfor delay booleans signals. For instance, a2/2 voter could
be:

Definition 6.1 (2/2 delay voter)

voter2/2(x1, x2, nmax) = x where x, n = if x1 = x2

then x1, 0
else if ∆T

0 n < nmax− 1
then ∆T

x0
x, ∆T

0 n + 1
else alarm

• this voter maintains a countern with initial value 0, and its previous output, with some
known initial valuex0,
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alarm

δ

x1

x2

v

Figure 7: Bounded delay voting

• whenever the two inputs agree, it outputs one input and resets the counter,

• else, if the counter has not reachednmax − 1, it increments it and outputs the previous
output,

• else it raises an alarm.

Proposition 6.1 voter2/2 raises an alarm if the two inputs disagree for more thannmaxTM

and otherwise delivers the correct value with maximum delay(nmax + 1)TM .

6.3 Hybrid delay-threshold voting

Can we mix now the two previous voters, the threshold and the delay one? This would amount
to define an hybrid voter that is illustrated at figure8:

Definition 6.2 (2/2hybrid voter)

hyb voter2/2(x, x′, nmax, ε′) = y where y, n = if |x− x′| ≤ ε′

then x, 0
else if ∆T

0 n < nmax− 1
then ∆T

x0
y, ∆T

0 n + 1
else alarm

• this voter maintains a countern with initial value 0, and its previous output, with some
known initial valuex0,

• whenever the two inputs threshold-agree, it outputs one input and resets the counter,

• else, if the counter has not reachednmax − 1, it increments it and outputs the previous
output,

• else it raises an alarm.

On which condition could we state the following desirable proposition?
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x2

alarm

v

x1

τ τ

ε

Figure 8: Hybrid threshold-delay voting

Proposition 6.2 (Hybrid voter property) hyb voter2/2 raises an alarm if the two inputs dif-
fer for more thanε′ during more thannmaxTM and otherwise delivers the correct value with
maximum delay(nmax + 1)TM .

Answering this question is the object of the next section.

6.4 UCht signals and votes

We can now state this proposition which provides a positive answer to the question raised in6.2:

Proposition 6.3 If x andx′ areUCht and

x′ ∈ B̄(x; T, ε)

then in any interval of durationT , there exists a sub-interval of durationh =
inf{T, ηx(T, ε), ηx′(T, ε)} over which anyt yields

|x(t)− x′(t)| ≤ 3ε

Proof:
The proof is very similar to the one of property4.3 and proceeds by contradiction: assume, in
any sub-interval of durationh, some timet such that|x(t)−x′(t)| > 3ε. Then some of the initial
assumptions is not satisfied.

We define the coverIi, i = 0, n− 1 and partitionI ′i, i = 0, n− 1 as previously. Letti in Ii be
such that|x(ti) − x′(ti)| > 3ε. After some possible rearrangement, the(ti) sequence is loosely
increasing and we can define the retimingr by:

∀t ∈ I ′i, r(t) = ti

As previously we can check that this retiming has a deviation smaller than or equal toh. Thus
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dev(r) ≤ inf{ηx(T, ε), ηx′(T, ε)}

We then get ∫
I

|x ◦ r − x′ ◦ r|
T

> 3ε

By triangular inequality,∫
I

|x ◦ r − x

T
+

∫
I

|x− x′|
T

+
∫

I

|x′ − x′ ◦ r|
T

> 3ε

Here also, at least one of these integrals is larger thanε and the corresponding assumption is
violated.

End
Clearly this property provides a foundation to the use of mixed threshold and delay voters.
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7 Conclusion

This report has intended to provide a satisfactory theory for merging together threshold voters
adapted to continuous signals and delay voters adapted to boolean signals in order to cope with
hybrid piece-wise continuous signals. One problem in performing this merge was that, while
threshold voters are based on uniform continuity, delay voters are based on a moread-hocno-
tion of uniform bounded variability. After having previously tried the Skorokhod topology, we
propose here a new topology for hybrid systems which seems to better match our purpose. In
particular, it allows us to merge in a very uniform way the theory of threshold voters and the
theory of delay voters and to build a theory of hybrid mixed threshold and delay voters.

Moreover, this voting problem is clearly related to the more general sampling problem for
hybrid systems and the results provided here may also help in defining which classes of hybrid
systems can be accurately sampled. This can be a subject for future work.

Identifying uniformly continuous signals and systems enables us to handle in a safe way re-
configuration issues by using finely tuned voting schemes. These schemes guarantee recovering
the overall stability of switched hybrid systems. The ”error calculus” introduced in this report is
a starting point for a further work closely linking uniform continuity to the more general field of
robustness.
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