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Abstract
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1 Introduction

Reactive programs implement dynamical systems which continuously interact with some environment,
by getting inputs and providing outputs. When critical systems are considered, it is important to prove
invariant properties of such systems. In some cases, when systems are finite-state ones, model-checking
is the technique of choice which allows performing these proofs in a fully automatic way. Examples of
popular model-checkers are [7, 10]. When systems are not finite state, however, some user interaction is
needed. Two approaches can be followed then, model-checking by abstraction [2] and, more generally
abstract interpretation [4], or induction. Induction is the main technique used in interactive provers [8, 15]
and in correct by construction programming [1] and is the technique considered in this paper.

Induction is proved to be a complete technique, provided an adequate strong enough auxiliary invariant
is found. Several techniques are used for finding such an invariant. For instance, some automatic generation
of invariants can be performed [3] but it is never sure that these guesses are the right ones. Another popular
technique consists of simply examining the reasons why the proof by induction fails: just looking at the
unsuccessful proof obligations can give some hint on how to strengthen the property we want to prove.

For instance, let us consider the following program (expressed in a functional style) which computes
iteratively the Fibonnacci sequence:

f(0) = 1
f(1) = 1

f(n + 2) = f(n + 1) + f(n)

and assume we want to prove that every element of this sequence is positive. The usual proof by induction
rule on sequences :

H ` P (0),
H ` ∀n, P (n) ⇒ P (n + 1)
H ` ∀n, P (n)

yields two proof obligations:

1 > 0
f(n + 2) > 0
f(n + 2) + f(n + 1) > 0

The first one is obvious but the second one cannot be proved. Examining this failure leads to “strengthen”
the property by using the rule:

H ` P (0),
H ` P (1),
H ` ∀n, P (n) ∧ P (n + 1) ⇒ P (n + 1) ∧ P (n + 2)
H ` ∀n, P (n) ∧ P (n + 1)

which simplifies to:
H ` P (0),
H ` P (1),
H ` ∀n, P (n) ∧ P (n + 1) ⇒ P (n + 2)
H ` ∀n, P (n) ∧ P (n + 1)

and yields the three obvious obligation rules

1 > 0 1 > 0

f(n + 2) > 0
f(n + 3) > 0
f(n + 3) > 0 ∧ f(n + 3) + f(n + 2) > 0

The question raised here is thus: wasn’t this result obvious and couldn’t we have skipped the first step so
as to jump directly to the second one, thus getting a “more automatic” proof? While the iterative approach
seems quite popular (see for instance [13]), this idea of a direct jump to the supposed right number of
iterations seems to be less often considered. Yet it is found in [14] where it is suggested that:
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“The length of the longest serial connection of latches (or other delay elements) is usually a
lower bound on the number of iterations needed”.

However, this suggestion is given without justification.
Clearly, this question of the number of required iterations doesn’t have a definite answer. The strongest

auxiliary invariant may require unbounded unfolding because it results from a least fix-point computation.
On the contrary, even complex programs can only need a single unfolding if the property is simple enough.
However, we will provide here some evidence that the number of memories in the program is a sensible
value for this iteration number.

The presentation is organised as follows: in a second section, we provide a formalisation of the problem
and derive the solution in section 3. An example of application, based on the Gloups tool [5], a PVS proof
obligation generator for Lustre programs [6], is presented in section 4.

2 Formalisation

In this section, we shall introduce notations for the systems and properties that we consider and we shall
formally state the problem we are interested in. We shall also give some very general properties of space-
changing which apply to our systems.

2.1 Programs, Invariant Properties and Induction

We consider only closed programs (most interesting reactive system properties only hold when the program
is considered in closed loop with its environment and, thus, have no inputs nor outputs).

A program is then described by:

• S =
n∏

i=1

Si, a state set, composed of a Cartesian product of the state spaces associated with the state

variables of the program.

• I0, a set of possible initial states:∅ ⊂ I0 ⊆ S

• T ⊆ (S × S), a transition relation. We assume here that the the relation is total,i.e., the domain of
the relationdom(T ) is equal toS. This means that we do not aim at studying dead-lock properties.

Then the property we want to prove is given by the predicateP ⊆ S.
The strongest invariant of the systemI∞ is the least solution of the fix-point equation:

I∞ = I0 ∪ T (I∞)

whereT (X) = {y | ∃x ∈ X. T (x, y)}. Equivalently,

I∞ = ∩{X | I0 ∪ T (X) ⊆ X} (1)

The propertyP is an invariant (holds on (S, I0, T )) if

I∞ ⊆ P (2)

and the induction proof principle says that:

I0 ∪ T (P ) ⊆ P (3)

proves (2). In the following, we shall use a short-hand notation for a system: the tuple(S, I0, T, P ). But
before exactly stating the problem we are interested in, we shall introduce some more notions.
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2.2 Co-images and induction

Given the total relationT ⊆ S × S we can consider its co-image:

T−(Y ) = ∪{X | T (X) ⊆ Y }

Then it is well-known that images and co-images verify the so-called “Galois connection property”:

Id ⊆ T− ◦ T (4)

T ◦ T− = Id

whereId is the identity mapping.
In the case of a system(S, I0, T, P ), we have

• if I∞ ⊆ P
· sinceI∞ = I0 ∪ T (I∞) we have alsoT (I∞) ⊆ P
· which givesI∞ ⊆ T−(P )
. henceI∞ ⊆ P ∩ T−(P )
• obviouslyI∞ ⊆ P ∩ T−(P ) givesI∞ ⊆ P

Thus, the problem(S, I0, T, P ) is logically equivalent to the problem(S, I0, T, P ∩ T−(P )) or any other
(S, I0, T,

⋂m−1
i=0 T−i(P )). However, these problems are not equivalent with respect toproofs: our aim is

to give a minimum value ofm for each class of problems, such that an inductive proof has “better chances”
to work than for any smallerm.

In order to achieve this goal, we shall now give a characterisation of the systems(S, I0, T, P ) where
(2) holds and can be proved by anm-times unfolded instance of (3).

3 Characterisation of inductively provable invariants

Our main result relies on abstractions given by some change of variable. This is why we shall introduce
change of variables and some of their properties, then we shall consider some particular cases and we shall
conclude on unfolding of inductive proofs.

3.1 Abstraction and induction

Given a state-spaceS, a change of variable is any mappingG : S → S′. Such a mapping can be naturally
lifted to sets and, then admits a co-imageG− and satisfies the Galois connection properties.

A change of variablesG generates a new system:

G(S, I0, T, P ) = (S′, I ′0, T
′, P ′) (5)

whereI ′0 = G(I0) (6)

P ′ = G(P ) (7)

T ′ = G ◦ T ◦G− (8)

In general, a change of variable doesn’t preserve properties. Yet, in [4, 9] was proved the fundamental
theorem of abstraction:

Proposition 1 If
P = G− ◦G(P ) (9)

then(S, I0, T, P ) holds ifG(S, I0, T, P ) holds

Moreover one can easily prove (using (4) and (9)) that for any setX ⊆ S

G(X) ⊆ G(P ) ⇔ X ⊆ P (10)

andT ′(G(P )) ⊆ G(P ) ⇔ T (P ) ⊆ P (11)

As a consequence, we have the following theorem:
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Proposition 2 (Inductive proof conservation) Given P = G− ◦ G(P ), there is an inductive proof of
(S, I0, T, P ) if and only if there is an inductive proof of(S′, I ′0, T

′, P ′) .

Proof
there is an inductive proof of(S, I0, T, P )

≡ I0 ⊆ P andT (P ) ⊆ P
≡ G(I0) ⊆ G(P ) andT (P ) ⊆ P by (10)
≡ G(I0) ⊆ G(P ) andT ′(G(P )) ⊆ G(P ) by (11)
≡ I ′0 ⊆ P ′ andT ′(P ′) ⊆ P ′

≡ there is an inductive proof of(S′, I ′0, T
′, P ′)

2

3.2 Changes of variables corresponding to unfolded inductions

We show here that (unfolded) induction corresponds to changing variables to the truth value of the property
we want to prove and their unfoldings.

3.2.1 Case ofP

Given a system(S, I0, T, P ), we defineG1 such that

G1 : S → Bool
G1(x) = (x ∈ P )

It is obvious thatG−
1 ◦ G1(P ) = P , since∪{X ⊆ S | G1(X) ⊆ G1(P )} = P . Therefore,P andG1

verify the hypothesis of proposition2.
Furthermore in the new system, properties can be proved by induction:

Proposition 3 G1(S, I0, T, P ) holds if and only if it is provable by induction.

Proof On the one hand, induction is sound, so that

I ′0 ⊆ P ′ andT ′(P ′) ⊆ P ′ imply I ′∞ = ∩{X | I ′0 ∪ T ′(X) ⊆ X} ⊆ P ′

On the other hand, ifI ′∞ ⊆ P ′ then

• sinceI ′∞ = I ′0 ∪ T ′(I ′∞) we haveI ′0 ⊆ P ′

• as∅ ⊂ I0 then necessarily∅ ⊂ I ′0
. thus∅ ⊂ I ′0 ⊆ P ′ ⊆ {t} which givesI ′0 = {t} = P ′

• sinceI ′∞ = I ′0 ∪ T ′(I ′∞) = I ′0 ∪ T ′(I ′0 ∪ T ′(I ′∞))
andT ′(I ′0 ∪ T ′(I ′∞)) = T ′(I ′0) ∪ T ′ ◦ T ′(I ′∞)
we have alsoT ′(I ′0) ⊆ P ′

. in other words, we haveT ′(P ′) ⊆ P ′

2

Hence the following proposition gives a characterisation of systems where invariant properties can be
proved by 1-time unfolded induction:

Proposition 4 (S, I0, T, P ) is provable by induction if and only ifG1(S, I0, T, P ) holds.

Proof
P is provable by induction

≡ I0 ⊆ P andT (P ) ⊆ P
≡ I ′0 ⊆ P ′ andT ′(P ′) ⊆ P ′ (prop.2)
≡ I ′∞ ⊆ P ′ (prop.3)

2
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3.2.2 Case ofP ∩ T−(P )

Given a system(S, I0, T, P ), we defineG2 by associating to each state, the truth value of the property at
this state and its first backward unfolding through the transition relation:

G2 : S → Bool2

G2(x) = (x ∈ P, x ∈ T−(P ))

It is easy to check thatG2 verifies G−
2 ◦ G2(P ∩ T−(P )) = P ∩ T−(P ), so that the hypothesis of

proposition2 holds. Furthermore in the new system, properties can be proved by induction:

Proposition 5 G2(S, I0, T, P ) holds if and only if it is provable by induction.

Proof On the one hand, induction is sound:

I ′0 ⊆ P ′ ∩ T ′−(P ′) andT ′(P ′ ∩ T ′−(P ′)) ⊆ P ′ ∩ T ′−(P ′)
imply I ′∞ ⊆ P ′ ∩ T ′−(P ′)

On the other hand, ifI ′∞ ⊆ P ′ ∩ T ′−(P ′) then

• sinceI ′∞ = I ′0 ∪ T ′(I ′∞) we haveI ′0 ⊆ P ′ ∩ T ′−(P ′)
• as∅ ⊂ I0 then also∅ ⊂ I ′0
. finally ∅ ⊂ I ′0 ⊆ P ′ ∩ T ′−(P ′) ⊆ {(t, t)}

henceI ′0 = P ′ ∩ T ′−(P ′) = {(t, t)}
• sinceI ′∞ = I ′0 ∪ T ′(I ′∞) = I ′0 ∪ T ′(I ′0 ∪ T ′(I ′∞))

andT ′(I ′0 ∪ T ′(I ′∞)) = T ′(I ′0) ∪ T ′ ◦ T ′(I ′∞)
we have alsoT ′(I ′0) ⊆ P ′ ∩ T ′−(P ′)

. in other words, we haveT ′(P ′ ∩ T ′−(P ′)) ⊆ P ′ ∩ T ′−(P ′)

2

Hence the characterisation follows:

Proposition 6 (S, I0, T, P ∩ T−(P )) is provable by induction if and only ifG2(S, I0, T, P ) holds.

Proof
P ∩ T−(P ) is provable by induction

≡ I0 ⊆ P ∩ T−(P ) andT (P ∩ T−(P )) ⊆ P ∩ T−(P )
≡ I ′0 ⊆ P ′ ∩ T ′−(P ′) andT ′(P ′ ∩ T ′−(P ′)) ⊆ P ′ ∩ T ′−(P ′) (Theorem2)
≡ I ′∞ ⊆ P ′ ∩ T ′−(P ′) (Proposition5)

2

3.3 Putting things together

First, we can generalise (by induction!) the previous two results:

Proposition 7 Given the change of variable

Gm(x) = (x ∈ P, . . . x ∈ T−(m−1)(P ))

(S, I0, T,
⋂m−1

i=0 T−i(P )) is provable by induction if and only ifGm(S, I0, T, P ) holds.

Then, knowing that the state spaceS =
∏n

i=1 Si is a Cartesian product of the state spaces associated
with state variables of some program, we can propose the following claim:

Claim 1 The minimum requirement for an automatic induction-based proof method is to takem = n.
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Justification Given thatS is of dimensionn, takingm < n implies that there is no injective function
from S into Bm = Boolm. In particular,Gm is not injective and thus several systems have the same image
by Gm. Hence, proving a property by (m-times unfolded) induction on one of these systems would prove
the same property on all the systems that have the same image byGm. Such a proof method would not be
specific of one system, but rather of a whole class of systems.

However, we need a proof method as specific of the underlying system as possible: the less systems
correspond to a given image byGm, the more the proof takes care of the dynamics of those systems and
the more chances we have to succeed in the proof. Therefore, we needm ≥ n, the minimum of which is
m = n.
2

In other words, our claim states that an inductive proof should be unfolded at least the number-of-
state-variables times in order to have good chances to work. Of course, some systems and properties have
inductive proofs with strictly less unfoldings: this means that due to some algebraic, symmetry or other
reasons, the given property holds on a whole class of systems, a class which is characterised by its unique
image by someGk. Yet, the number of state variables in a program is not an intrinsic notion. It may be
the case that redundant state variables are used and also that some state variables don’t participate (even
transitively) in the computation of the property. In using our rule, one should take care of not using “too
many” state variables, though we know that minimising the number of state variables is a difficult problem.

As an illustration of the use of unfolded induction, we present in the next section a real-world example
of a proof of equivalence of two circuits.

4 Example of the synchroniser

Miner and Johnson [11] proposed in 1996 a co-induction based proof for the problem of equivalence of the
outputs of two circuits which realize a fault-tolerant clock synchroniser. Their proof was far from being
automatic: they had to construct a bisimulation of the two circuits “by hand”. Our aim is to propose a more
automatic proof based on induction: the idea is that the first steps (unfolding and inducting) are performed
by a machine, the user being charged only with the concluding step. In the following, we shall present the
problem in more details, then we shall give a modelling of it and finally we shall discuss the proof itself.

4.1 Presentation of the two circuits

Standard circuit
The standard circuit receives

three boolean signals (f1 and nf
andReset which is not figured on
the schema) and one integer sig-
nal rd . The output is the integer
signalnor.

All signals are down (or 0 for
the integers) ifReset is true. Fur-
themore,nf becomes true afterf1
does.

rd
? ?

-f1

?

mux

?

latch

t1

?

-nf

?

mux

?

latch

tn

?

+

?

/2

?
nor

The standard circuit works at follows:rd is increased by 1 at every time unit. Whenx hardware clocks
have sent their synchronisation signals,f1 becomes true. Whenx + a clocks have sent their signals,nf
becomes true too, and the outputnor contains a new system-wide time, to be broadcasted back to the
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clocks. At the end of the synchronisation cycle,Reset becomes true and the cycle reiterates. Such a circuit
can be used for synchronisingn hardware clocks (withn ≥ 2x + a− 1) and toleratesx− 1 faults.

The optimised circuit receives the same set of inputs as the standard one and produces a unique output
opt. The new circuit calculates the final output progressively between the raising edge off1 and that ofnf,
rather than doing all calculations whennf raises. Thanks to this, an adder and a divider can be saved; only
an adder+1 and a few logical gates are needed. Thus, the optimisation is in fact trading space for time.

Optimized circuit

?
rd

?

+1

?

mux

?

latch

?opt

-f1
-

nf - e
- e ∧ - -

hold
latch

∧ -cin

4.2 Our model

Our aim is to prove that the two circuits give the same output (nor=opt) using an induction-based technique.
For this, we “translate” the problem into a set of fix-point equations over the (infinite) sequencesR, f1, nf ,
out, opt, t1, tn, nor, cin andrd where the scalar operators+, ∧, if then else . . . are lifted to sequences
in a point-wise manner:

nor = (t1 + tn) div 2
t1 = 0.(if R then 0 else (if f1 then t1 else tl(rd)))
tn = 0.(if R then 0 else (if nf then tn else tl(rd)))

opt = 0.(if R then 0 else
(if f1 then opt + (if cin then 1 else 0) else tl(rd))

cin = f.(hold ∧ ¬tl(nf))
hold = f.(¬tl(R) ∧ tl(f1) ∧ ¬hold)

To these equations, we add the following properties, which express the constraints imposed on environ-
ment:

rd = 0.(if R then 0 else rd + 1)
nf ⇒ f1

(R ∧ ¬f1).t
t.(R ∨ (nf ⇒ tl(nf)))

In fact, such a model can be exactly represented by a Lustre [6] program:

node Synchro( R, f1, nf: bool) returns ( nor, opt: int);
var hold, cin: bool; t1, tn, rd : int ;
let

nor = ( t1 + tn) div 2 ;
t1 = 0 → if R then 0 else (if f1 then pre t1 else rd ) ;
tn = 0 → if R then 0 else (if nf then pre tn else rd ) ;
hold = false → (not R) and f1 and (not pre hold) ;
cin = false → (pre hold) and not nf ;
opt = 0 → if R then 0 else

(if f1 then (if cin then 1 else 0)+pre opt else rd );
assert rd = 0 → if R then 0 else (pre rd + 1) ;
assert R and not f1 → true;
assert nf ⇒ f1;
assert true → R or (pre nf ⇒ nf) ;

tel;
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Having a Lustre model allows us to use existing verification tools for this language: here we use the
Gloups tool[5] to prove thatnor = opt.

4.3 Proof of the property

Gloups performs several operations on theSynchro program and on the property to prove:

1. The program is split into hypothesis on the environmentH (given by theassert clauses) and
equationsE. If P is the property we are interested in, we would like to prove some sequent stating
that “underH andE, P holds”. In fact, Gloups proposes to prove “underH andE, P andE hold”
which is logically equivalent, but it turns out to enhance automatic decision procedures of the PVS
theorem prover. Thus, the initial propertyP is transformed intoP ∧ E1.

2. Then, the newP ∧ E property is unfoldedn times (heren = 4): the property is simply rewritten
n times by left-to-right oriented equationsE. A sequent is formed: the consequent part is then-
times unfolded property, while the antecedent is given byH and all thek-times unfolded properties
for k < n. Notice that while the initial propertyP ∧E was defined on infinite sequences (for instance
rd is infinite, if R is infinite), the sequent concerns only finite sequences (and this is exactly why we
use induction here).

3. As we have now a property on finite sequences, another inductive rule is applied:

Q(ε) Q(s) ` Q(s0.s)
∀seq. Q(seq)

This rule reduces the sequent on finite sequences into a set of sequents on scalars: Gloups automati-
cally finds the inductive case and discharges all the proof obligations into PVS.

After that, if the user interactively proves the obligations in PVS, the propertynor = opt holds. In the
present case, the proofs are straightforward: it is sufficient to suggest case-splitting on the three boolean
inputs (R, f1 andnf ) and the decision procedures of PVS conclude. Thus, our inductive proof really is
more automatic than the original proof by Miner and Johnson. We give the proof obligations produced by
Gloups in appendix.

5 Conclusion

In this article, we have proposed to prove invariant properties by induction with number-of-state-variables
unfoldings. We have proved that this number of unfoldings is a minimum requirement if the inductive
proof is meant to be adapted to the underlying system: strictly less unfoldings necessitate that the property
be an invariant of more than one system.

In practice, this minimum requirement turns out to be sufficient in many cases, since it manages to take
into account all the dynamics of the underlying system. This proof strategy is implemented in our Gloups
tool, thanks to which we were able to prove the example of the fault tolerant clock synchroniser presented
in the previous section.

Still, there is unfortunately a drawback to using unfolded induction: unfolding makes the sequents
grow in quadratic2 manner in the number of equations. This is why some examples (for instance the TTA
membership algorithm [12]) resist to our effort: the resulting proof obligations are simply too big to fit in
PVS. We are currently studying ways of optimising them.

To conclude, induction-based proofs of invariants on finite or infinite systems are both popular and
needed. Our purpose was to help at automating such proofs: for that we proposed a criterion of minimum
number of to be tried unfolding a priori. Our experience tends to validate the use of such a lower bound in
actual proofs.

1EquationsE do define a conjunction of boolean properties.
2or even exponentially, if one does not take care
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Appendix

We give here the three proof obligations produced by Gloups. The first of them corresponds to the proof of
initialisation and is easy to prove:

(rd0 = 0 ∧ nor0,0 = div(t10,0 + tn0,0, 2) ∧ R0 ∧ nf0 ⇒ f10 ∧ ¬f10 ∧
nor0,0 = opt0,0 ∧ nor0,0 = div(t10,0 + tn0,0, 2) ∧ t10,0 = 0 ∧ tn0,0 = 0 ∧
¬hold0,0 ∧ ¬cin0,0 ∧ opt0,0 = 0 ∧ nor1,0 = div(t11,0 + tn1,0, 2) ∧
t11,0 = 0 ∧ tn1,0 = 0 ∧ ¬hold1,0 ∧ ¬cin1,0 ∧ opt1,0 = 0 ∧
nor1,0 = opt1,0 ∧ nor1,0 = div(t11,0 + tn1,0, 2) ∧ t11,0 = 0 ∧ tn1,0 = 0 ∧
¬hold1,0 ∧ ¬cin1,0 ∧ opt1,0 = 0 ∧ nor2,0 = div(t12,0 + tn2,0, 2) ∧
t12,0 = 0 ∧ tn2,0 = 0 ∧ ¬hold2,0 ∧ ¬cin2,0 ∧ opt2,0 = 0 ∧
nor2,0 = opt2,0 ∧ nor2,0 = div(t12,0 + tn2,0, 2) ∧ t12,0 = 0 ∧ tn2,0 = 0 ∧
¬hold2,0 ∧ ¬cin2,0 ∧ opt2,0 = 0 ∧ nor3,0 = div(t13,0 + tn3,0, 2) ∧
t13,0 = 0 ∧ tn3,0 = 0 ∧ ¬hold3,0 ∧ ¬cin3,0 ∧ opt3,0 = 0 ∧
nor3,0 = opt3,0 ∧ nor3,0 = div(t13,0 + tn3,0, 2) ∧ t13,0 = 0 ∧ tn3,0 = 0 ∧
¬hold3,0 ∧ ¬cin3,0 ∧ opt3,0 = 0 ∧ nor4,0 = div(t14,0 + tn4,0, 2) ∧
t14,0 = 0 ∧ tn4,0 = 0 ∧ ¬hold4,0 ∧ ¬cin4,0 ∧ opt4,0 = 0)
⇒
(nor4,0 = opt4,0 ∧ nor4,0 = div(t14,0 + tn4,0, 2) ∧ t14,0 = 0 ∧
tn4,0 = 0 ∧ ¬hold4,0 ∧ ¬cin4,0 ∧ opt4,0 = 0)

Thediv operator stands for integer (Euclidian) division.
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The second proof obligation deals with the state following an initialisation (i.e. Reset has previously
been true). The colours in the following sequent should help to understand how the properties given by the
equationsE are proved:

(nor0,0 = opt0,0 ∧ nor0,0 = div(t10,0 + tn0,0, 2) ∧ tn0,0 = 0 ∧ t10,0 = 0 ∧ ¬cin0,0 ∧
¬hold0,0 ∧ opt0,0 = 0 ∧ nor1,0 = opt1,0 ∧ nor1,0 = div(t11,0 + tn1,0, 2) ∧ tn1,0 = 0 ∧
t11,0 = 0 ∧ ¬cin1,0 ∧ ¬hold1,0 ∧ opt1,0 = 0 ∧ nor2,0 = opt2,0 ∧
nor2,0 = div(t12,0 + tn2,0, 2) ∧ tn2,0 = 0 ∧ t12,0 = 0 ∧ ¬cin2,0 ∧ ¬hold2,0 ∧ opt2,0 = 0 ∧
nor3,0 = opt3,0 ∧ nor3,0 = div(t13,0 + tn3,0, 2) ∧ tn3,0 = 0 ∧ t13,0 = 0 ∧ ¬cin3,0 ∧
¬hold3,0 ∧ opt3,0 = 0 ∧ nor4,0 = div(t14,0 + tn4,0, 2) ∧ ¬cin4,0 ∧ ¬hold4,0 ∧ tn4,0 = 0 ∧
t14,0 = 0 ∧ opt4,0 = 0 ∧ ¬f10 ∧ nf0 ⇒ f10 ∧ R0 ∧ rd0 = 0 ∧
rd1 = if R1 then 0 else rd0 + 1 ∧ nor0,1 = div(t10,1 + tn0,1, 2) ∧ nf1 ⇒ f11 ∧
(R1 ∨ nf0 ⇒ nf1) ∧ nor0,1 = opt0,1 ∧ nor0,1 = div(t10,1 + tn0,1, 2) ∧
t10,1 = if R1 then 0 else (if f11 then t10,0 else rd1) ∧ cin0,1 = (hold0,0 ∧ ¬nf1) ∧
tn0,1 = if R1then 0 else (if nf1 then tn0,0 else rd1) ∧ hold0,1 = (¬R1 ∧ f11 ∧ ¬hold0,0) ∧
opt0,1 = if R1 then 0 else (if f11 then (if cin0,1 then 1 else 0) + opt0,0 else rd1) ∧
nor1,1 = div(t11,1 + tn1,1, 2) ∧ t11,1 = if R1 then 0 else (if f11 then t10,0 else rd1) ∧
cin1,1 = (hold0,0 ∧ ¬nf1) ∧ tn1,1 = if R1then 0 else (if nf1 then tn0,0 else rd1) ∧
hold1,1 = (¬R1 ∧ f11 ∧ ¬hold0,0) ∧
opt1,1 = if R1 then 0 else (if f11 then (if cin0,1 then 1 else 0) + opt0,0 else rd1) ∧
nor1,1 = opt1,1 ∧ nor1,1 = div(t11,1 + tn1,1, 2) ∧
t11,1 = if R1 then 0 else (if f11 then t11,0 else rd1) ∧ cin1,1 = (hold1,0 ∧ ¬nf1) ∧
tn1,1 = if R1then 0 else (if nf1 then tn1,0 else rd1) ∧ hold1,1 = (¬R1 ∧ f11 ∧ ¬hold1,0) ∧
opt1,1 = if R1 then 0 else (if f11 then (if cin1,1 then 1 else 0) + opt1,0 else rd1) ∧
nor2,1 = div(t12,1 + tn2,1, 2) ∧ t12,1 = if R1 then 0 else (if f11 then t11,0 else rd1) ∧
tn2,1 = if R1then 0 else (if nf1 then tn1,0 else rd1) ∧ hold2,1 = (¬R1 ∧ f11 ∧ ¬hold1,0) ∧
cin2,1 = (hold1,0 ∧ ¬nf1) ∧
opt2,1 = if R1 then 0 else (if f11 then (if cin1,1 then 1 else 0) + opt1,0 else rd1) ∧
nor2,1 = opt2,1 ∧ nor2,1 = div(t12,1 + tn2,1, 2) ∧
t12,1 = if R1 then 0 else (if f11 then t12,0 else rd1) ∧ cin2,1 = (hold2,0 ∧ ¬nf1) ∧
tn2,1 = if R1then 0 else (if nf1 then tn2,0 else rd1) ∧ hold2,1 = (¬R1 ∧ f11 ∧ ¬hold2,0) ∧
opt2,1 = if R1 then 0 else (if f11 then (if cin2,1 then 1 else 0) + opt2,0 else rd1) ∧
nor3,1 = div(t13,1 + tn3,1, 2) ∧ t13,1 = if R1 then 0 else (if f11 then t12,0 else rd1) ∧
tn3,1 = if R1then 0 else (if nf1 then tn2,0 else rd1) ∧ hold3,1 = (¬R1 ∧ f11 ∧ ¬hold2,0) ∧
cin3,1 = (hold2,0 ∧ ¬nf1) ∧
opt3,1 = if R1 then 0 else (if f11 then (if cin2,1 then 1 else 0) + opt2,0 else rd1) ∧
nor3,1 = opt3,1 ∧ nor3,1 = div(t13,1 + tn3,1, 2) ∧
t13,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧ cin3,1 = (hold3,0 ∧ ¬nf1) ∧
tn3,1 = if R1then 0 else (if nf1 then tn3,0 else rd1) ∧ hold3,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
opt3,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1) ∧
nor4,1 = div(t14,1 + tn4,1, 2) ∧ t14,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧
tn4,1 = if R1then 0 else (if nf1 then tn3,0 else rd1) ∧ hold4,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
cin4,1 = (hold3,0 ∧ ¬nf1) ∧
opt4,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1))
⇒
(nor4,1 = opt4,1 ∧ nor4,1 = div(t14,1 + tn4,1, 2) ∧
t14,1 = if R1 then 0 else (if f11 then t14,0 else rd1) ∧
tn4,1 = if R1 then 0 else (if nf1 then tn4,0 else rd1) ∧ hold4,1 = (¬R1 ∧ f11 ∧ ¬hold4,0) ∧
cin4,1 = (hold4,0 ∧ ¬nf1) ∧
opt4,1 = if R1 then 0 else (if f11 then (if cin4,1 then 1 else 0) + opt4,0 else rd1))

After proving the coloured properties, we can simplify the sequent anf focus on proving the remaining
propertyP .
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. . . ∧
nor3,1 = opt3,1 ∧ nor3,1 = div(t13,1 + tn3,1, 2) ∧
t13,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧ cin3,1 = (hold3,0 ∧ ¬nf1) ∧
tn3,1 = if R1then 0 else (if nf1 then tn3,0 else rd1) ∧ hold3,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
opt3,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1) ∧
nor4,1 = div(t14,1 + tn4,1, 2) ∧ t14,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧
tn4,1 = if R1then 0 else (if nf1 then tn3,0 else rd1) ∧ hold4,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
cin4,1 = (hold3,0 ∧ ¬nf1) ∧
opt4,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1))
⇒
(nor4,1 = opt4,1)

Same colour means equality. . .

Finally, we give the last (and lengthy) proof obligation (we colour the parts of the sequent which are
involved in the proof of the equationsE):

((R1 ∨ (nf0 ⇒ nf1)) ∧ (nf1 ⇒ f11) ∧ rd1 = if R1 then 0 else rd0 + 1 ∧
nor0,1 = div(t10,1 + tn0,1, 2) ∧ t10,1 = if R1 then 0 else (if f11 then t10,0 else rd1) ∧
nor0,1 = opt0,1 ∧ tn0,1 = if R1 then 0 else (if nf1 then tn0,0 else rd1) ∧
opt0,1 = if R1 then 0 else (if f11 then (if cin0,1 then 1 else 0) + opt0,0 else rd1) ∧
cin0,1 = (hold0,0 ∧ ¬nf1) ∧ hold0,1 = (¬R1 ∧ f11 ∧ ¬hold0,0) ∧
nor1,1 = div(t11,1 + tn1,1, 2) ∧ t11,1 = if R1 then 0 else (if f11 then t10,0 else rd1) ∧
nor1,1 = opt1,1 ∧ t11,1 = if R1 then 0 else (if f11 then t11,0 else rd1) ∧
tn1,1 = if R1 then 0 else (if nf1 then tn0,0 else rd1) ∧ cin1,1 = (hold0,0 ∧ ¬nf1) ∧
tn1,1 = if R1 then 0 else (if nf1 then tn1,0 else rd1) ∧ cin1,1 = (hold1,0 ∧ ¬nf1) ∧
opt1,1 = if R1 then 0 else (if f11 then (if cin0,1 then 1 else 0) + opt0,0 else rd1)
opt1,1 = if R1 then 0 else (if f11 then (if cin1,1 then 1 else 0) + opt1,0 else rd1)
hold1,1 = (¬R1 ∧ f11 ∧ ¬hold0,0) ∧ hold1,1 = (¬R1 ∧ f11 ∧ ¬hold1,0) ∧
nor2,1 = div(t12,1 + tn2,1, 2) ∧ t12,1 = if R1 then 0 else (if f11 then t11,0 else rd1) ∧
nor2,1 = opt2,1 ∧ t12,1 = if R1 then 0 else (if f11 then t12,0 else rd1) ∧
tn2,1 = if R1 then 0 else (if nf1 then tn1,0 else rd1) ∧ cin2,1 = (hold1,0 ∧ ¬nf1) ∧
tn2,1 = if R1 then 0 else (if nf1 then tn2,0 else rd1) ∧ cin2,1 = (hold2,0 ∧ ¬nf1) ∧
opt2,1 = if R1 then 0 else (if f11 then (if cin1,1 then 1 else 0) + opt1,0 else rd1)
opt2,1 = if R1 then 0 else (if f11 then (if cin2,1 then 1 else 0) + opt2,0 else rd1)
hold2,1 = (¬R1 ∧ f11 ∧ ¬hold1,0) ∧ hold2,1 = (¬R1 ∧ f11 ∧ ¬hold2,0) ∧
nor3,1 = div(t13,1 + tn3,1, 2) ∧ t13,1 = if R1 then 0 else (if f11 then t12,0 else rd1) ∧
nor3,1 = opt3,1 ∧ t13,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧
tn3,1 = if R1 then 0 else (if nf1 then tn2,0 else rd1) ∧ cin3,1 = (hold2,0 ∧ ¬nf1) ∧
tn3,1 = if R1 then 0 else (if nf1 then tn3,0 else rd1) ∧ cin3,1 = (hold3,0 ∧ ¬nf1) ∧
opt3,1 = if R1 then 0 else (if f11 then (if cin2,1 then 1 else 0) + opt2,0 else rd1) ∧
opt3,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1) ∧
hold3,1 = (¬R1 ∧ f11 ∧ ¬hold2,0) ∧ hold3,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
nor4,1 = div(t14,1 + tn4,1, 2) ∧ t14,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧
tn4,1 = if R1 then 0 else (if nf1 then tn3,0 else rd1) ∧
opt4,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1) ∧
cin4,1 = (hold3,0 ∧ ¬nf1) ∧ hold4,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
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(R2 ∨ (nf1 => nf2)) ∧ (nf2 ⇒ f12) ∧ rd2 = if R2 then 0 else rd1 + 1 ∧
nor0,2 = div(t10,2 + tn0,2, 2) ∧ t10,2 = if R2 then 0 else (if f12 then t10,1 else rd2) ∧
nor0,2 = opt0,2 ∧ tn0,2 = if R2 then 0 else (if nf2 then tn0,1 else rd2) ∧
opt0,2 = if R2 then 0 else (if f12 then (if cin0,2 then 1 else 0) + opt0,1 else rd2) ∧
cin0,2 = (hold0,1 ∧ ¬nf2) ∧ hold0,2 = (¬R2 ∧ f12 ∧ ¬hold0,1) ∧
nor1,2 = div(t11,2 + tn1,2, 2) ∧ t11,2 = if R2 then 0 else (if f12 then t10,1 else rd2) ∧
nor1,2 = opt1,2 ∧ t11,2 = if R2 then 0 else (if f12 then t11,1 else rd2) ∧
tn1,2 = if R2 then 0 else (if nf2 then tn0,1 else rd2) ∧ cin1,2 = (hold0,1 ∧ ¬nf2) ∧
tn1,2 = if R2 then 0 else (if nf2 then tn1,1 else rd2) ∧ cin1,2 = (hold1,1 ∧ ¬nf2) ∧
opt1,2 = if R2 then 0 else (if f12 then (if cin0,2 then 1 else 0) + opt0,1 else rd2)
opt1,2 = if R2 then 0 else (if f12 then (if cin1,2 then 1 else 0) + opt1,1 else rd2)
hold1,2 = (¬R2 ∧ f12 ∧ ¬hold0,1) ∧ hold1,2 = (¬R2 ∧ f12 ∧ ¬hold1,1) ∧
nor2,2 = div(t12,2 + tn2,2, 2) ∧ t12,2 = if R2 then 0 else (if f12 then t11,1 else rd2) ∧
nor2,2 = opt2,2 ∧ t12,2 = if R2 then 0 else (if f12 then t12,1 else rd2) ∧
tn2,2 = if R2 then 0 else (if nf2 then tn1,1 else rd2) ∧ cin2,2 = (hold1,1 ∧ ¬nf2) ∧
tn2,2 = if R2 then 0 else (if nf2 then tn2,1 else rd2) ∧ cin2,2 = (hold2,1 ∧ ¬nf2) ∧
opt2,2 = if R2 then 0 else (if f12 then (if cin1,2 then 1 else 0) + opt1,1 else rd2)
opt2,2 = if R2 then 0 else (if f12 then (if cin2,2 then 1 else 0) + opt2,1 else rd2)
hold2,2 = (¬R2 ∧ f12 ∧ ¬hold1,1) ∧ hold2,2 = (¬R2 ∧ f12 ∧ ¬hold2,1) ∧
nor3,2 = div(t13,2 + tn3,2, 2) ∧ t13,2 = if R2 then 0 else (if f12 then t12,1 else rd2) ∧
nor3,2 = opt3,2 ∧ t13,2 = if R2 then 0 else (if f12 then t13,1 else rd2) ∧
tn3,2 = if R2 then 0 else (if nf2 then tn2,1 else rd2) ∧ cin3,2 = (hold2,1 ∧ ¬nf2) ∧
tn3,2 = if R2 then 0 else (if nf2 then tn3,1 else rd2) ∧ cin3,2 = (hold3,1 ∧ ¬nf2) ∧
opt3,2 = if R2 then 0 else (if f12 then (if cin2,2 then 1 else 0) + opt2,1 else rd2)
opt3,2 = if R2 then 0 else (if f12 then (if cin3,2 then 1 else 0) + opt3,1 else rd2)
hold3,2 = (¬R2 ∧ f12 ∧ ¬hold2,1) ∧ hold3,2 = (¬R2 ∧ f12 ∧ ¬hold3,1) ∧
nor4,2 = div(t14,2 + tn4,2, 2) ∧ t14,2 = if R2 then 0 else (if f12 then t13,1 else rd2) ∧
tn4,2 = if R2 then 0 else (if nf2 then tn3,1 else rd2) ∧
opt4,2 = if R2 then 0 else (if f12 then (if cin3,2 then 1 else 0) + opt3,1 else rd2) ∧
cin4,2 = (hold3,1 ∧ ¬nf2) ∧ hold4,2 = (¬R2 ∧ f12 ∧ ¬hold3,1))
⇒
(nor4,2 = opt4,2 ∧ nor4,2 = div(t14,2 + tn4,2, 2) ∧
t14,2 = if R2 then 0 else (if f12 then t14,1 else rd2) ∧
tn4,2 = if R2 then 0 else (if nf2 then tn4,1 else rd2) ∧
hold4,2 = (¬R2 ∧ f12 ∧ ¬hold4,1) ∧ cin4,2 = (hold4,1 ∧ ¬nf2) ∧
opt4,2 = if R2 then 0 else (if f12 then (if cin4,2 then 1 else 0) + opt4,1 else rd2))

Now we can focus on proving the remaining propertynor4,2 = opt4,2. The caseR2 = true yields:

(. . . ∧
opt3,2 = if R2 then 0 else (if f12 then (if cin3,2 then 1 else 0) + opt3,1 else rd2)
hold3,2 = (¬R2 ∧ f12 ∧ ¬hold2,1) ∧ hold3,2 = (¬R2 ∧ f12 ∧ ¬hold3,1) ∧
nor4,2 = div(t14,2 + tn4,2, 2) ∧ t14,2 = 0 ∧
tn4,2 = 0 ∧
opt4,2 = 0 ∧
cin4,2 = (hold3,1 ∧ ¬nf2) ∧ hold4,2 = (¬R2 ∧ f12 ∧ ¬hold3,1))
⇒
(nor4,2 = opt4,2)

this simplifies to the proof of
div(0 + 0, 2) = 0

which is true, sincediv(0 + 0, 2) =
⌊

0+0
2

⌋
= 0.
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Finally, the caseR2 = false gives the following sequent:

((R1 ∨ (nf0 ⇒ nf1)) ∧ (nf1 ⇒ f11) ∧ rd1 = if R1 then 0 else rd0 + 1 ∧
nor0,1 = div(t10,1 + tn0,1, 2) ∧ t10,1 = if R1 then 0 else (if f11 then t10,0 else rd1) ∧
nor0,1 = opt0,1 ∧ tn0,1 = if R1 then 0 else (if nf1 then tn0,0 else rd1) ∧
opt0,1 = if R1 then 0 else (if f11 then (if cin0,1 then 1 else 0) + opt0,0 else rd1) ∧
cin0,1 = (hold0,0 ∧ ¬nf1) ∧ hold0,1 = (¬R1 ∧ f11 ∧ ¬hold0,0) ∧
nor1,1 = div(t11,1 + tn1,1, 2) ∧ t11,1 = if R1 then 0 else (if f11 then t10,0 else rd1) ∧
nor1,1 = opt1,1 ∧ t11,1 = if R1 then 0 else (if f11 then t11,0 else rd1) ∧
tn1,1 = if R1 then 0 else (if nf1 then tn0,0 else rd1) ∧ cin1,1 = (hold0,0 ∧ ¬nf1) ∧
tn1,1 = if R1 then 0 else (if nf1 then tn1,0 else rd1) ∧ cin1,1 = (hold1,0 ∧ ¬nf1) ∧
opt1,1 = if R1 then 0 else (if f11 then (if cin0,1 then 1 else 0) + opt0,0 else rd1)
opt1,1 = if R1 then 0 else (if f11 then (if cin1,1 then 1 else 0) + opt1,0 else rd1)
hold1,1 = (¬R1 ∧ f11 ∧ ¬hold0,0) ∧ hold1,1 = (¬R1 ∧ f11 ∧ ¬hold1,0) ∧
nor2,1 = div(t12,1 + tn2,1, 2) ∧ t12,1 = if R1 then 0 else (if f11 then t11,0 else rd1) ∧
nor2,1 = opt2,1 ∧ t12,1 = if R1 then 0 else (if f11 then t12,0 else rd1) ∧
tn2,1 = if R1 then 0 else (if nf1 then tn1,0 else rd1) ∧ cin2,1 = (hold1,0 ∧ ¬nf1) ∧
tn2,1 = if R1 then 0 else (if nf1 then tn2,0 else rd1) ∧ cin2,1 = (hold2,0 ∧ ¬nf1) ∧
opt2,1 = if R1 then 0 else (if f11 then (if cin1,1 then 1 else 0) + opt1,0 else rd1) ∧
opt2,1 = if R1 then 0 else (if f11 then (if cin2,1 then 1 else 0) + opt2,0 else rd1) ∧
hold2,1 = (¬R1 ∧ f11 ∧ ¬hold1,0) ∧ hold2,1 = (¬R1 ∧ f11 ∧ ¬hold2,0) ∧
nor3,1 = div(t13,1 + tn3,1, 2) ∧ t13,1 = if R1 then 0 else (if f11 then t12,0 else rd1) ∧
nor3,1 = opt3,1 ∧ t13,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧
tn3,1 = if R1 then 0 else (if nf1 then tn2,0 else rd1) ∧ cin3,1 = (hold2,0 ∧ ¬nf1) ∧
tn3,1 = if R1 then 0 else (if nf1 then tn3,0 else rd1) ∧ cin3,1 = (hold3,0 ∧ ¬nf1) ∧
opt3,1 = if R1 then 0 else (if f11 then (if cin2,1 then 1 else 0) + opt2,0 else rd1) ∧
opt3,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1) ∧
hold3,1 = (¬R1 ∧ f11 ∧ ¬hold2,0) ∧ hold3,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
nor4,1 = div(t14,1 + tn4,1, 2) ∧ t14,1 = if R1 then 0 else (if f11 then t13,0 else rd1) ∧
tn4,1 = if R1 then 0 else (if nf1 then tn3,0 else rd1) ∧ hold4,1 = (¬R1 ∧ f11 ∧ ¬hold3,0) ∧
opt4,1 = if R1 then 0 else (if f11 then (if cin3,1 then 1 else 0) + opt3,0 else rd1) ∧
cin4,1 = (hold3,0 ∧ ¬nf1) ∧ (nf1 ⇒ nf2) ∧ (nf2 ⇒ f12) ∧ rd2 = rd1 + 1 ∧
nor0,2 = div(t10,2 + tn0,2, 2) ∧ t10,2 = if f12 then t10,1 else rd2 ∧ cin0,2 = (hold0,1 ∧ ¬nf2)∧
nor0,2 = opt0,2 ∧ tn0,2 = if nf2 then tn0,1 else rd2 ∧ hold0,2 = (f12 ∧ ¬hold0,1) ∧
opt0,2 = if f12 then (if cin0,2 then 1 else 0) + opt0,1 else rd2 ∧
nor1,2 = div(t11,2 + tn1,2, 2) ∧ t11,2 = if f12 then t10,1 else rd2 ∧ hold1,2 =(f12 ∧ ¬hold0,1)∧
nor1,2 = opt1,2 ∧ t11,2 = if f12 then t11,1 else rd2 ∧ hold1,2 = (f12 ∧ ¬hold1,1) ∧
tn1,2 = if nf2 then tn0,1 else rd2 ∧ tn1,2 = if nf2 then tn1,1 else rd2 ∧
opt1,2 = if f12 then (if cin0,2 then 1 else 0) + opt0,1 else rd2 ∧ cin1,2 = (hold0,1 ∧ ¬nf2) ∧
opt1,2 = if f12 then (if cin1,2 then 1 else 0) + opt1,1 else rd2 ∧ cin1,2 = (hold1,1 ∧ ¬nf2) ∧
nor2,2 = div(t12,2 + tn2,2, 2) ∧ t12,2 = if f12 then t11,1 else rd2 ∧ hold2,2 =(f12 ∧ ¬hold1,1)∧
nor2,2 = opt2,2 ∧ t12,2 = if f12 then t12,1 else rd2 ∧ hold2,2 = (f12 ∧ ¬hold2,1) ∧
tn2,2 = if nf2 then tn1,1 else rd2 ∧ tn2,2 = if nf2 then tn2,1 else rd2 ∧
opt2,2 = if f12 then (if cin1,2 then 1 else 0) + opt1,1 else rd2 ∧ cin2,2 = (hold1,1 ∧ ¬nf2) ∧
opt2,2 = if f12 then (if cin2,2 then 1 else 0) + opt2,1 else rd2 ∧ cin2,2 = (hold2,1 ∧ ¬nf2) ∧
nor3,2 = div(t13,2 + tn3,2, 2) ∧ t13,2 = if f12 then t12,1 else rd2 ∧ hold3,2 =(f12 ∧ ¬hold2,1)∧
nor3,2 = opt3,2 ∧ t13,2 = if f12 then t13,1 else rd2 ∧ hold3,2 = (f12 ∧ ¬hold3,1) ∧
tn3,2 = if nf2 then tn2,1 else rd2 ∧ tn3,2 = if nf2 then tn3,1 else rd2 ∧
opt3,2 = if f12 then (if cin2,2 then 1 else 0) + opt2,1 else rd2 ∧ cin3,2 = (hold2,1 ∧ ¬nf2) ∧
opt3,2 = if f12 then (if cin3,2 then 1 else 0) + opt3,1 else rd2 ∧ cin3,2 = (hold3,1 ∧ ¬nf2) ∧
nor4,2 = div(t14,2 + tn4,2, 2) ∧ t14,2 = if f12 then t13,1 else rd2 ∧
tn4,2 = if nf2 then tn3,1 else rd2 ∧ hold4,2 = (f12 ∧ ¬hold3,1) ∧ cin4,2 = (hold3,1 ∧ ¬nf2) ∧
opt4,2 = if f12 then (if cin3,2 then 1 else 0) + opt3,1 else rd2))
⇒
(nor4,2 = opt4,2)
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