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1 Introduction

Reactive programs implement dynamical systems which continuously interact with some environment,
by getting inputs and providing outputs. When critical systems are considered, it is important to prove
invariant properties of such systems. In some cases, when systems are finite-state ones, model-checking
is the technique of choice which allows performing these proofs in a fully automatic way. Examples of
popular model-checkers aré, [L0]. When systems are not finite state, however, some user interaction is
needed. Two approaches can be followed then, model-checking by abstragtard[ more generally
abstract interpretatior!], or induction. Induction is the main technique used in interactive provgrsj

and in correct by construction programmirig &nd is the technique considered in this paper.

Induction is proved to be a complete technique, provided an adequate strong enough auxiliary invariant
is found. Several techniques are used for finding such an invariant. For instance, some automatic generation
of invariants can be performed][but it is never sure that these guesses are the right ones. Another popular
technique consists of simply examining the reasons why the proof by induction fails: just looking at the
unsuccessful proof obligations can give some hint on how to strengthen the property we want to prove.

For instance, let us consider the following program (expressed in a functional style) which computes
iteratively the Fibonnacci sequence:

fo) = 1
F1) = 1
fn+2) = f(n+1)+ f(n)

and assume we want to prove that every element of this sequence is positive. The usual proof by induction
rule on sequences :

HFE P(0),

HFEVn,P(n)= P(n+1)

H F¥n,P(n)

yields two proof obligations:

f(n+2)>0
1>0 fn+2)+ f(n+1)>0

The first one is obvious but the second one cannot be proved. Examining this failure leads to “strengthen”
the property by using the rule:

H I+ P(0),

H+ P(1),

HEFVn,P(n)ANP(n+1)= P(n+1)AP(n+2)
HEVYn,P(n)ANP(n+1)

which simplifies to:
HF+ P(0),
HE P(1),
HEVn,P(n)AP(n+1)= P(n+2)
HFEVn,P(n)AP(n+1)

and yields the three obvious obligation rules

f(n+2)>0
f(n+3)>0
1>0 1>0 fn+3)>0Af(n+3)+ f(n+2) >0

The question raised here is thus: wasn't this result obvious and couldn’t we have skipped the first step so
as to jump directly to the second one, thus getting a “more automatic” proof? While the iterative approach
seems quite popular (see for instanc€]], this idea of a direct jump to the supposed right number of
iterations seems to be less often considered. Yet it is fount/jnwfhere it is suggested that:
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“The length of the longest serial connection of latches (or other delay elements) is usually a
lower bound on the number of iterations needed”.

However, this suggestion is given without justification.

Clearly, this question of the number of required iterations doesn’t have a definite answer. The strongest
auxiliary invariant may require unbounded unfolding because it results from a least fix-point computation.
On the contrary, even complex programs can only need a single unfolding if the property is simple enough.
However, we will provide here some evidence that the number of memories in the program is a sensible
value for this iteration number.

The presentation is organised as follows: in a second section, we provide a formalisation of the problem
and derive the solution in section 3. An example of application, based on the Gloups]t@dPVS proof
obligation generator for Lustre progranid,[is presented in section 4.

2 Formalisation
In this section, we shall introduce notations for the systems and properties that we consider and we shall

formally state the problem we are interested in. We shall also give some very general properties of space-
changing which apply to our systems.

2.1 Programs, Invariant Properties and Induction

We consider only closed programs (most interesting reactive system properties only hold when the program
is considered in closed loop with its environment and, thus, have no inputs nor outputs).
A program is then described by:

n
e S =[] S;, a state set, composed of a Cartesian product of the state spaces associated with the state

=1
variables of the program.
e I, a set of possible initial stateg:c I, C S

e T C (S x 9), atransition relation. We assume here that the the relation is tetathe domain of
the relationdom(T') is equal toS. This means that we do not aim at studying dead-lock properties.

Then the property we want to prove is given by the predi¢ate S.
The strongest invariant of the systdm is the least solution of the fix-point equation:

Io =Ty UT(I)
whereT'(X) ={y | 3z € X. T(x,y)}. Equivalently,
Io=n{X | LUT(X)C X} (1)
The propertyP is an invariant (holds onS, Iy, T)) if
I.CP )
and the induction proof principle says that:
IybUT(P)C P 3)

proves R). In the following, we shall use a short-hand notation for a system: the tSple, T, P). But
before exactly stating the problem we are interested in, we shall introduce some more notions.
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2.2 Co-images and induction
Given the total relatiol” C S x S we can consider its co-image:
T=(Y)=U{X |T(X)CY}
Then it is well-known that images and co-images verify the so-called “Galois connection property”:

Id C T oT 4)
ToT™ = 1Id

whereld is the identity mapping.
In the case of a syste(i$, Iy, T, P), we have

o fI CP
sincel, = [ UT(I) we have als@'(I) C P
which givesl,, C T~ (P)

> hencel,, C PNT~(P)

e obviouslyl,, C PNT~(P)givesl, C P

Thus, the probleniS, Iy, T, P) is logically equivalent to the problerS, Iy, T, P N T~ (P)) or any other

(S, I, T,N;' T~*(P)). However, these problems are not equivalent with respeictofs our aim is

to give a minimum value of for each class of problems, such that an inductive proof has “better chances”
to work than for any smallety.

In order to achieve this goal, we shall now give a characterisation of the sy§teis T, P) where
(2) holds and can be proved by antimes unfolded instance oB).

3 Characterisation of inductively provable invariants

Our main result relies on abstractions given by some change of variable. This is why we shall introduce
change of variables and some of their properties, then we shall consider some particular cases and we shall
conclude on unfolding of inductive proofs.

3.1 Abstraction and induction

Given a state-spacg, a change of variable is any mappi6g: S — S’. Such a mapping can be naturally
lifted to sets and, then admits a co-image and satisfies the Galois connection properties.
A change of variable& generates a new system:

G(S,I,,T,P) = (S 1,,T P (5)
wherel] = G(Ip) (6)

P = G(P) (7)

T = GoToG~ (8)

In general, a change of variable doesn’t preserve properties. Yet, i} vas proved the fundamental
theorem of abstraction:

Proposition 1 If
P =G oG(P) (©)

then(S, Iy, T, P) holds ifG(S, Iy, T, P) holds
Moreover one can easily prove (using) and ©)) that for any sefX C S

G(X)CG(P) & XCP (10)
andT’(G(P)) CG(P) & T(P)CP (11)

As a consequence, we have the following theorem:
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Proposition 2 (Inductive proof conservation) Given P = G~ o G(P), there is an inductive proof of
(S, I, T, P) if and only if there is an inductive proof ¢&’, I,, T/, P’) .

Proof
there is an inductive proof dfS, I, T, P)

Iy CPandT(P)C P

G(ly) CG(P)andT(P)C P by (10)
G(Io) C G(P) andT'(G(P)) C G(P) by (1))
I} C P’ andT"(P') C P’

there is an inductive proof dfs’, 1), 7", P’)

a

3.2 Changes of variables corresponding to unfolded inductions

We show here that (unfolded) induction corresponds to changing variables to the truth value of the property
we want to prove and their unfoldings.

3.2.1 Caseof

Given a systentS, Iy, T, P), we defineG; such that

Gy . S — Bool
Gi(z) = (zeP)

It is obvious thatG; o G1(P) = P, sinceU{X C S | G1(X) C G1(P)} = P. Therefore,P andG;
verify the hypothesis of propositich
Furthermore in the new system, properties can be proved by induction:

Proposition 3 G+ (S, Iy, T, P) holds if and only if it is provable by induction.

Proof On the one hand, induction is sound, so that
I C PlandT’(P') C P' imply I, =n{X | [UT'(X)C X} CPF
On the other hand, i, C P’ then

sincel’, = Iy UT'(I.,) we havel| C P’

as() C I, then necessaril§ C I

thus) C Ij; C P’ C {t} which gives[) = {t} = P’
sincel,, = IZUT'(IL,) = [, UT (I UT'(I))
andT’ (I, UT'(IL,)) =T (I) UT o T'(IL,)

we have als@” (1)) C P’

> in other words, we havé’(P’) C P’

e V e e

0
Hence the following proposition gives a characterisation of systems where invariant properties can be
proved by 1-time unfolded induction:

Proposition 4 (S, Iy, T, P) is provable by induction if and only &, (.S, Iy, T, P) holds.

Proof
P is provable by induction
= IpCPandT(P)C P
= I, CPandT’'(P")C P (prop.2)
= I_CP (prop. 3)
O
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3.2.2 CaseofPNT~(P)

Given a systeni.S, Iy, T, P), we defineGG, by associating to each state, the truth value of the property at
this state and its first backward unfolding through the transition relation:

Gy : S — Bool?
Ga(x) = (xePxeT (P))

It is easy to check thatry verifies G5 o Go(P N T~ (P)) = P NT~(P), so that the hypothesis of
proposition2 holds. Furthermore in the new system, properties can be proved by induction:

Proposition 5 G»(S, Iy, T, P) holds if and only if it is provable by induction.

Proof On the one hand, induction is sound:

I, C P'NT'~(P)andT’(P' NT'~(P')) C P'NT'~(P)
imply I’ C P'NT'~(P')

On the other hand, if., C P’ NT"~(P’) then

e sincell = I, UT'(I.)wehavel) C P'NT'~(P)
e asl C Ipthenalsd) C I}
finally Cc I, C P'nNT'~(P') C{(¢,t)}
hencel) = P NT'~(P') = {(t,t)}
e sincel’, = IjUT'(I') = I, UT (I, UT'(I,))
andT’(IpUT'(IL)) =T (I5) UT o T'(IL,)
we have als@”(I}) C P'NT'~(P’)
> in other words, we hav&’ (P’ NT'~(P')) C P'NT'—(P’)

O
Hence the characterisation follows:

Proposition 6 (S, Iy, T, P N'T—(P)) is provable by induction if and only &2 (S, Iy, T, P) holds.

Proof
P NT~(P)is provable by induction
= [, CPNT(P)andT(PNT~(P)) C PNT~(P)
= I,C P NT'~(P)andT'(P'NT'~(P)) C P'NT'~(P') (Theorem?)
= I CPNT'—(P) (Propositionb)
O

3.3 Putting things together

First, we can generalise (by induction!) the previous two results:
Proposition 7 Given the change of variable
Gm(z)=(z € P,...c € T~ D (P))
(S, Iy, T, ;' T~*(P)) is provable by induction if and only &, (S, I, T, P) holds.

Then, knowing that the state spage= [];_, S; is a Cartesian product of the state spaces associated
with state variables of some program, we can propose the following claim:

Claim 1 The minimum requirement for an automatic induction-based proof method is toitake.
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Justification Given thatS is of dimensionn, takingm < n implies that there is no injective function
from S'into B,,, = Bool™. In particular,G,,, is not injective and thus several systems have the same image
by G,.. Hence, proving a property by-times unfolded) induction on one of these systems would prove
the same property on all the systems that have the same imagg bguch a proof method would not be
specific of one system, but rather of a whole class of systems.

However, we need a proof method as specific of the underlying system as possible: the less systems
correspond to a given image I6¥,,, the more the proof takes care of the dynamics of those systems and
the more chances we have to succeed in the proof. Therefore, werneed, the minimum of which is
m =n.

O

In other words, our claim states that an inductive proof should be unfolded at least the number-of-
state-variables times in order to have good chances to work. Of course, some systems and properties have
inductive proofs with strictly less unfoldings: this means that due to some algebraic, symmetry or other
reasons, the given property holds on a whole class of systems, a class which is characterised by its unique
image by somé&;.. Yet, the number of state variables in a program is not an intrinsic notion. It may be
the case that redundant state variables are used and also that some state variables don’t participate (even
transitively) in the computation of the property. In using our rule, one should take care of not using “too
many” state variables, though we know that minimising the number of state variables is a difficult problem.

As an illustration of the use of unfolded induction, we present in the next section a real-world example
of a proof of equivalence of two circuits.

4 Example of the synchroniser

Miner and Johnsonl[l] proposed in 1996 a co-induction based proof for the problem of equivalence of the
outputs of two circuits which realize a fault-tolerant clock synchroniser. Their proof was far from being
automatic: they had to construct a bisimulation of the two circuits “by hand”. Our aim is to propose a more
automatic proof based on induction: the idea is that the first steps (unfolding and inducting) are performed
by a machine, the user being charged only with the concluding step. In the following, we shall present the
problem in more details, then we shall give a modelling of it and finally we shall discuss the proof itself.

4.1 Presentation of the two circuits

rd
L — L —
f, -~ mux nf— mux Standard circuit
The standard circuit receives
t ! three boolean signalg;(and nf
latch latch andReset which is not figured on
1 T the schema) and one integer sig-
t tn nalrd. The output is the integer
signalnor.
¢ J All signals are down (or O for
+ the integers) iReset is true. Fur-
1 themorenf becomes true aftei
/2 does.
v
nor

The standard circuit works at followsd is increased by 1 at every time unit. Whemhardware clocks
have sent their synchronisation signdlsbecomes true. When + a clocks have sent their signaksf
becomes true too, and the outpwdr contains a new system-wide time, to be broadcasted back to the
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clocks. At the end of the synchronisation cydReset becomes true and the cycle reiterates. Such a circuit
can be used for synchronisimghardware clocks (witlh > 2z 4+ a — 1) and tolerates: — 1 faults.

The optimised circuit receives the same set of inputs as the standard one and produces a unique output
opt. The new circuit calculates the final output progressively between the raising efigenaf that ofnf,
rather than doing all calculations whahraises. Thanks to this, an adder and a divider can be saved; only
an adder+1 and a few logical gates are needed. Thus, the optimisation is in fact trading space for time.

nf % . I—
L A cin "
O A = latch rd
i hold A
mux
1
Optimized circuit latch

£ opt

4.2 Our model

Our aim is to prove that the two circuits give the same outpait£opt) using an induction-based technique.
For this, we “translate” the problem into a set of fix-point equations over the (infinite) sequenges: f,
out, opt, t1, t,, nor, cin andrd where the scalar operatos A, if then else. .. are lifted to sequences
in a point-wise manner:

nor = (t1+t,)div2
t1 = 0.(if RthenOelse (if fithenty else tl(rd)))
t, = 0.(if RthenOelse (if nf thent, else tl(rd)))
opt = 0.(if Rthen0 else
(if f1then opt + (if cinthen 1 else 0) else ti(rd))
cin. = f.(hold A —tl(nf))
hold = £.(~tl(R) At(f1) A —hold)

To these equations, we add the following properties, which express the constraints imposed on environ-
ment:
rd =0.(if RthenOelserd+1)

nf=fi
(R N _‘fl).t
t.(RV (nf = tl(nf)))
In fact, such a model can be exactly represented by a Lugtpedgram:

node Synchro( R, fy, nf: bool) returns ( nor, opt: int);
var hold, cin: bool; ty, t,, rd: int;
let
nor = (tl1 + tn) div 2 ;
t; = 0 — if R then 0 else (if f; then pre t; else rd) ;
t, = 0 — if R then 0 else (if nf then pre t, else rd) ;
hold = false — (not R) and f; and (not pre hold) ;

cin
opt

false — (pre hold) and not nf ;
0 — if R then O else
(if f; then (if cin then 1 else 0)+pre opt else rd);
assert rd = 0 — if R then O else (pre rd + 1) ;
assert R and not f; — true;
assert nf = fq;
assert true — R or (pre nf = nf) ;
tel;
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Having a Lustre model allows us to use existing verification tools for this language: here we use the
Gloups toolp] to prove thatnor = opt.

4.3 Proof of the property
Gloups performs several operations on 8ymchro program and on the property to prove:

1. The program is split into hypothesis on the environm&h{given by theassert clauses) and
equationsE. If P is the property we are interested in, we would like to prove some sequent stating
that “underH and E, P holds”. In fact, Gloups proposes to prove “undérand £, P and E hold”
which is logically equivalent, but it turns out to enhance automatic decision procedures of the PVS
theorem prover. Thus, the initial prope®/is transformed inta® A E*.

2. Then, the newP A E property is unfolded: times (heren = 4): the property is simply rewritten
n times by left-to-right oriented equatioris. A sequent is formed: the consequent part isrthe
times unfolded property, while the antecedent is giveribgnd all thek-times unfolded properties
for k < n. Notice that while the initial property? A E was defined on infinite sequences (for instance
rd is infinite, if R is infinite), the sequent concerns only finite sequences (and this is exactly why we
use induction here).

3. As we have now a property on finite sequences, another inductive rule is applied:

Q)  Q(s) - Q(s0-5)
Vseq. Q(seq)

This rule reduces the sequent on finite sequences into a set of sequents on scalars: Gloups automati-
cally finds the inductive case and discharges all the proof obligations into PVS.

After that, if the user interactively proves the obligations in PVS, the propasty= opt holds. In the

present case, the proofs are straightforward: it is sufficient to suggest case-splitting on the three boolean
inputs R, f; andnf) and the decision procedures of PVS conclude. Thus, our inductive proof really is
more automatic than the original proof by Miner and Johnson. We give the proof obligations produced by
Gloups in appendix.

5 Conclusion

In this article, we have proposed to prove invariant properties by induction with number-of-state-variables
unfoldings. We have proved that this number of unfoldings is a minimum requirement if the inductive
proof is meant to be adapted to the underlying system: strictly less unfoldings necessitate that the property
be an invariant of more than one system.

In practice, this minimum requirement turns out to be sufficient in many cases, since it manages to take
into account all the dynamics of the underlying system. This proof strategy is implemented in our Gloups
tool, thanks to which we were able to prove the example of the fault tolerant clock synchroniser presented
in the previous section.

Still, there is unfortunately a drawback to using unfolded induction: unfolding makes the sequents
grow in quadratié¢ manner in the number of equations. This is why some examples (for instance the TTA
membership algorithml[]) resist to our effort: the resulting proof obligations are simply too big to fit in
PVS. We are currently studying ways of optimising them.

To conclude, induction-based proofs of invariants on finite or infinite systems are both popular and
needed. Our purpose was to help at automating such proofs: for that we proposed a criterion of minimum
number of to be tried unfolding a priori. Our experience tends to validate the use of such a lower bound in
actual proofs.

1EquationsE do define a conjunction of boolean properties.
2or even exponentially, if one does not take care
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Appendix

We give here the three proof obligations produced by Gloups. The first of them corresponds to the proof of
initialisation and is easy to prove:

(Tdo =0 A norgp = dZ"U(t].OYO + tng,o, 2) AN Ry AN nfyg= flg A =flg A
norg,o = optoo N\ norgg = di’l}(tlo,o + tno,o, 2) AN tlo’o =0 A tngo = 0A
—\hOldo)o A _\C’L"n,o’() A optoo = 0 A norio = div(t11,0 + tnq,0, 2) A

t1170 =0 A tnl,o =0 A _‘hOZdLO A —\CinLo A Optl,O =0A

noryo = opti o N\ norip = div(tll,o +tn1,0, 2) ANtlig=0 Atniog=0A
—holdig A —cinig A optio =0 A noreg = div(tla g + tnag,2) A

tlg’o =0 A tng o = 0 A ﬁholdg’o AN ﬁCiTLQ’Q N opty g = 0A

norg o = opta g A\ Nors g = div(tlg,o + tno.o, 2) A\ tlg’() =0 A tng o = 0OA
—\hOldz,o A _|C7;’n,270 A optaog = 0A nors o = div(t13,0 + tns,o, 2) A

t1370 =0 A t’ﬂ370 =0 A _‘h0ld370 A\ —|cin370 N 0pt370 =0A

norsg = opts g A norzg = div(tlg,o +tns,o, 2) A tlzgo=0 A tnzgo=0A
—holdsg N —cingo A optso =0 A norso = div(tlseo+tnag,2) A

t14’0 =0 A tngo = 0 A ﬁhold470 N ﬁcz'n4,0 N optyog = O)

=

(nor470 =optyo N norgg = div(t14,0 + tny,0, 2) A tlyog=0A

tn470 =0 A _\hOld470 A —|cin470 A\ Opt4’0 = 0)

Thediv operator stands for integer (Euclidian) division.
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The second proof obligation deals with the state following an initialisatien Reset has previously
been true). The colours in the following sequent should help to understand how the properties given by the
equationsF are proved:

(7’LO7‘0,0 = opto,0 N\ norgo = di’U(tlo,O + tno,o, 2) A tnoo = 0 A tlo,o =0 A ﬁCi?’Lo,o AN
_|h0ld070 A optoo = 0 A norio = opti 0 N\ norig = div(tll,o + tn1,0, 2) A tnio= 0A
t1170 =0 A —|CZ"II170 A —\hOldl,o A 0pt170 =0 A norao = Optg,o N

norg o = d’iv(tlgyo + tn270, 2) N tn270 =0 A tlz,o =0 A _‘Cin270 A _|h0ld270 A Opt270 =0A
nors o = Optg’o A nors o = dZ'U(t].gyo + t’ﬂg,o, 2) N ffl,:g"(] =0 A tlg_() =0 A _‘Cing’o A
—holds o N optso =0 A norgo = div(tlag + tnap,2) A —cingg A —holdsg A tngo=0A
t1470 =0 A optyo =0A ~flg A nfo= flg AN Ry N rdg=0A

rdy = if Ry thenQelserdy +1 A norg1 = div(tle1 +tno,1,2) A nfi = f11 A

(R1 \ Tlf() = Tlfl) AN norg,1 = 0pt071 AN norg,1 = div(tloﬂ + tn071, 2) N

tlo1 =if Ry thenOelse (if fli thentlyg elserdi) A cing1 = (holdgo A —nfi) A

tno,1 = if Rithen 0 else (if nf1 thentng elserdy) A holdg1 = (—R1 A f11 A =holdgo) A
optor =if Ry then 0else (if f11 then (if cingy then 1 else 0) + optoo else rdy) A

nory 1 = div(tly 1 +1tn11,2) A tlig =if Ry then 0 else (if f1q thently elserdy) A
cing1 = (holdpo A —nf1) A tni1 =if Rithen 0 else (if nf1 thentngg elserdy) A

hOldLl = (_\Rl AN f].1 A ﬁhOldo,o) AN

opti,1 =1if Ry then 0else (if f1y then (if cing1 then 1 else 0) + opto o else rdy) A

noryy = opti1 A noriq = div(tly g +tni g, 2) A

tl11 =if Ry thenOelse (if fl1 thently g elserdy) A cinig = (holdio A —nf1) A

tni1 = if Rithen 0 else (if nf1 thentnygelserdy) A holdi 1 = (=Rq1 A f11 A =holdy o) A
opti1 =1if Ry then 0else (if fl1 then (if cini i then 1 else Q)+ opti o elserdr) A

norg1 = div(tley +tng1,2) A tloy =if Ry thenQelse (if f1li thently g elserdy) A
tng1 = if Rithen 0 else (if nf1 thentnygelserdy) A holda1 = (—R1 A f11 A =holdy o) A
Cing)l = (hOldLo A —\nfl) A

optay =1if Ry then 0else (if f11 then (if cingy then 1 else Q)+ opty o else rdy) A

nora 1 = Optg,l A nora 1 = div(tlll + t’ﬂ271, 2) A

tlo1 =if Ry thenOelse (if fli thentlagelserdi) A cing1 = (holdag A —njfi) A

tne1 = if Rithen 0 else (if nf1 then tnagelserdy) A holda1 = (—R1 A f11 A —holdso) A
optan =if Ry then 0else (if f1 then (if cingy then 1 else 0) + opta g else rdy) A

norsq = div(tls 1 +1tng1,2) A tlz1 =1if Ry then0else (if f1q thentls elserdy) A
tng1 = if Rithen 0 else (if nfi thentng g elserdy) A holds 1 = (—Rq1 A f11 A =holda o) A
Cl.n3,1 = (hOldgyo A _|7lf1) A

opts.1 =1if Ry then 0else (if f1y then (if cing 1 then 1 else 0) + opta o else rdy) A

norsy = opts1 A norsy = div(tls 1 + tng1,2) A

tlg1 =if Ry thenOelse (if fl1 thentlsgelserdy) A cingy = (holdso A —nfi) A

tng1 = if Rithen 0 else (if nf1 thentnsg elserdy) A holds1 = (—Rq1 A f11 A =holds o) A
opts1 =1if Ry then 0else (if fli then (if cins 1 then 1 else Q)+ opts o elserdi) A

nory = dZ'U(t].471 + tn4_,1, 2) A f14_1 = Lf Rl then 0 else (If f]-l then t13"(] else ‘T‘dl) AN
tnay =if Rithen 0 else (if nfi thentnsgelserd;) A holdsy = (=Ry A f11 A =holds ) A
cingq = (holds o A —nf1) A

opts1 =1if Ry then 0 else (if f1y then (if cing . then 1 else 0) 4 opts o else rdy))

=

(noray = opta1 A noryy = div(tlas +tnai,2) A

tlyy =if Ry thenOelse (if f11 thentlyg elserdy) A

tna1 =1if Ry then0else (if nfi thentngelserdy) A holdsy, = (—Ry A f11 A —holdso) A
cing1 = (holdyo A —mf1) A

optar =1if Ry then 0else (if f1q then (if cing then 1 else 0) 4 opty else rdy))

After proving the coloured properties, we can simplify the sequent anf focus on proving the remaining
propertyP.
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N

nors 1 = optz 1 A norsq = di’l}(/,lgﬁ'[ +tns 1, 2) A

tl3q = if Ry then Oelse (if f1y thentlselserdy) A cing1 = (holdso A —nfi) A

tng1 = if Rithen 0 else (if nfi then tnggelserdy) A holds1 = (=Ry A f11 A —holdsz o) A
opts.1 =if Ry then 0else (if f1y then (if cing 1 then 1 else 0) + opts o else rdy) A

noryy = div(tlyy +1tna1,2) A tlyy =if Ry then Oelse (if f1i then tlsgelserdy) A
tny1 = if Rithen 0 else (if nfy thentns elserdy) A holdy1 = (—R1 A f11 A =holds o) A
CZ.H471 = (hOldg,() A —\’I”Lfl) A

optan =if Rithen 0 else (if fli then (if cingq then 1 else Q)+ opts o elserdy))

=

(nory 1 = optaq)

Same colour means equality

Finally, we give the last (and lengthy) proof obligation (we colour the parts of the sequent which are
involved in the proof of the equatiors):

(R V (nfo=nf1)) A (nfi = f11) A rdy =if Ry thenQelserdy+ 1A

norg,1 = div(tlo1 +tno1,2) A tlo1 =if Ry thenQelse (if f1i thentlyg elserd;) A
norg1 = opto1 A tng1 = if Ry then 0else (if nfi then tngo else rdy) A

optor = if Rithen 0 else (if f1q then (if cing1 then 1 else 0) + opto,o else rdy) A
CZ"IIQJ = (hOldo’o A _|’I’Lf1) A hOldoJ = (—|R1 A f11 AN _‘hOld070) A

nory 1 = div(tli 1 +1tn11,2) A tli1 =14if Ry then 0else (if fl1 thentlyg elserdi) A
noriy =optiq A tlig =if Ry thenOelse (if f1i thently g elserdy) A

tni1 =if Ry then0else (if nfi thentnggelserdy) A cinyy = (holdgo A —nf1) A
tni1 =if Ry thenOQelse (if nfi thentnygelserdy) A cinyi = (holdio A —nfi) A
opt11 =1if Rithen 0 else (if f1q then (if cing1 then 1 else 0) + opto o else rdy)
opti11 =1if Rithen0else (if f1q then (if ciny 1 then 1 else 0) + opty o else rdy)
hOldLl = (_|R1 A fll A ﬁholdovo) A hOldLl = (_|R1 A fll A ﬁhOldl)o) A

nore1 = div(tla 1 +1tng1,2) A tla1 =if Ry then0else (if f1i thently g elserd;) A
norgy = opta1 A tlag =if Ry thenQelse (if fl1 then tlag else rdy) A

tng1 = if Ry then 0else (if nfi thentnygelserdy) A cing1 = (holdyo A —nfi) A
tno1 = if Ry then 0 else (if nfi thentnggelse rdy) A cing1 = (holdao A —nfi) A
opta1 = 1if Rithen 0 else (if f1q then (if ciniq then 1 else Q)+ opti o else rdy)
opta1 =if Ry then 0else (if f1y then (if cing1 then 1 else 0) + opta o else rdy)
hOldg)l = (ﬁRl A fli A ﬁholdLo) A\ hOldg’l = (ﬁRl A fli A ﬁhOldzo) A\

norsy = div(tls 1 +1tns1,2) A tls1 =1if Ry then 0else (if f11 thentls g elserdi) A
norsq1 = optz1 A tlsy =if Ry thenQelse (if f1y thentls g elserdy) A

tng1 = if Ry then 0else (if nfi thentnggelserdy) A cingi = (holdao A —nfi) A
tng1 = if Ry then0else (if nfi thentnsgelserdy) A cingi = (holds o A —nfi) A
opts.1 =if Ry then0else (if f1y then (if cing 1 then 1 else 0) + opta o else rdy) A
opts.1 =if Ry then 0else (if f1y then (if cins 1 then 1 else 0) + opts o else rdy) A
hOld3,1 = (—\Rl A f11 AN ﬁhOldgp) AN h()ldgj = (ﬁR'[ A\ fl] N ﬁh()l(];g‘o) A

nory = div(tlys +1tna1,2) A tlyq =if Ry then 0else (if flq thentls g elserd;) A
tng1 =if Ry then 0else (if nfi then tngg else rdy) A

opty1 =if Ry then 0else (if f1y then (if cing then 1 else 0) + opts o else rdy) A
cing1 = (holdso AN —nf1) A hold,; = (=Ri A f11 A =holds o) A
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(RaV (nfi =>nf3)) A (nfa = fla) A rde =if Ry thenOelserd, +1 A

norg o = div(tlo s +tne2,2) A tlge =1if Rothen 0else (if fls thently: else rds) A
norg2 = optoa A tngz2 =if Rathen 0else (if nfy then tng elserdy) A

opto2 = if Rathen 0else (if flathen (if cing o then 1else 0) + opto,1 else rda) A
cin()’g = (holdo,l A\ ﬁ’nfg) 74\ hOldO’Q = (ﬁRQ A fla A ﬁhold(),l) A\

nory g = div(tly e +1tnq12,2) A tli o =1if Rothen 0else (if flg thently s else rds) A
nori o = opti o A tlio =if Ry thenQelse (if flg then tly 1 else rdy) A

tnio =if Ry then 0 else (if nfs thentng: else rdy) A cing g = (holdp1 A —nfa) A
tni o =1if Ry then 0else (if nfs then tnyy else rda) A cing o = (holdi i A —nfa) A
opt1 2 =if Rathen 0 else (if flgthen (if cinga then 1 else 0) + opto 1 else rds)
opt1 2 =if Rothen 0 else (if flgthen (if cing gz then 1 else0)+ opty 1 else rds)
holdl,Q = (_‘R2 A f12 N ﬁhOldoJ) A\ hOldLQ = (_‘RQ N flg 74\ _'hOldLl) A\

nors o = div(tle s +tng2,2) A tlao =1if Rothen 0else (if fla thently 1 elserds) A
norgs = optag A tloo =if Rothen 0else (if flathentls elserds) A

tnoo = if Ry then 0else (if nfsthentny elserdy) A cingo = (holdy i A —nfa) A
tngo = if Ry then 0else (if nfs then tngq else rdy) A cingo = (holda1 A —nfa) A
opta o =if Rothen 0 else (if flathen (if cing o then 1 else0)+ opt1 1 else rds)
opta o =1if Rothen 0else (if fla then (if cing o then 1 else 0) + opts 1 else rds)
hOldQ,Q = (_‘RQ A f12 A ﬁhOldlyl) A hOleQ = (_‘R2 A f].2 A ﬁholdg)l) AN

nors o = div(tls e +tng2,2) A tlso =1if Rathen 0else (if flg thentls; else rds) A
nors o = optza A tlgo =if Ry then Oelse (if fla then tls else rdy) A

tngo = if Ry then 0else (if nfs then tngq else rdy) A cing o = (holda1 A —nfa) A
tngo = if Ry then 0else (if nfs then tns else rdy) A cingo = (holds 1 A —nfs) A
opt3 o =1f Rothen 0 else (if fla then (if cing o then 1 else Q)+ opta 1 else rdy)
opts 2 =if Rathen 0else (if flathen (if cing g then 1else Q) + opts 1 else rds)
hOldg)Q = (ﬁRQ A fla A ﬁholdg’l) A\ hOld3’2 = (ﬁRQ A fla A ﬁhold371) A\

nory o = div(tlys +tnag,2) A tlyo =if Rothen 0else (if flythentlsq elserds) A
tng 2 =1if Rothen 0 else (if nfy then tns elserds) A

optys =if Raothen 0else (if flythen (if cing o then 1 else 0) + opts y else rds) A
('/L"II4’2 = (h()ldg_l A ﬁTLfg) AN ]l()ld4"2 - (ﬁHQ A le N ﬁ]’L()Zd;;,l))

=

(norye = optaa A norys = div(tlys +tng2,2) A

tlyo =if Rothen 0else (if flg then tly s else rds) A

tng o =1if Ry then 0else (if nfa then tny else rdsy) A

holdy o = (mRa2 A fla A =holdy 1) A cings = (holdyy A —nfa) A

optyo =if Ry then 0else (if flathen (if cingo then 1 else Q) + optyy else rdy))

Now we can focus on proving the remaining propettys » = opts 2. The caseR, = true yields:

(... A

opts o =1if Rathen 0else (if flgthen (if cingga then 1 else0) + opts 1 else rds)
hOldg’g = (—\RQ N flg A\ ﬁhOlng) N hOld372 = (_‘R2 N flg A _‘hOld371) 74\

nor4,2 = d’L’U(fl42 + tn4‘2, 2) A t14’2 =0A

t7L4"2 =0A

()pt472 =0A

CZ'TL472 = (hOld3,1 A\ ﬁ’nfg) AN hold472 = (ﬁRg A fla A ﬁholdg’l))
=

(nor4,2 = Opt/LQ)

this simplifies to the proof of
div(0+0,2) =0

which is true, sincéiv(0 + 0,2) = | 22| = 0.
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Finally, the cas&?, = false gives the following sequent:

((R1V (nfo=nf1)) A (nfi = fl1) A rdy =if Ry thenOelserdy+1A

norg1 = div(tle1 +tno1,2) A tlor =1if Rithen0else (if f1q thently elserdy) A
norg1 = opto1 A tng1 =if Ry then 0 else (if nfi thentngg elserdi) A

optop1 = if Rithen 0else (if fli then (if cing: then 1 else Q)+ optoo else rdi) A

Cino’l = (hOldO’O AN —|nf1) AN hOldoﬁl = (—|R1 A fly A ﬁholdo’o) AN

nory 1 = div(tly g +1tn11,2) A tlig =if Ry then 0else (if f1q then tlo elserdy) A
noryy = opti1 A tlig =if Ry thenOQelse (if f11 then tly g else rdy) A

tni1 = if Ry then Oelse (if nfi thentngg elserdi) A cinia = (holdgo A —nf1) A

tni,1 = if Ry then Oelse (if nfi thentnigelserdi) A cinia = (holdi o A —nfi) A

opti1 =1if Ry then 0else (if f1y then (if cing1 then 1 else 0) + opto o else rdy)

opti1 =1if Ry then 0else (if f11 then (if cingy then 1else 0)+ opty o else rdy)

hOldLl = (_\Rl A f11 A —\hOldo)o) A hOldl)l = (—\Rl A fly A —\holdlyo) A

nory 1 = div(tla 1 +1tng1,2) A tlor =if Ry then 0 else (if f1q thently g elserdy) A
norg = opta1 A tlo1 =if Ry thenOelse (if f1i thentls g else rdy) A

tng1 =if Ry then 0else (if nfithentnygelserdy) A cingy = (holdy o A —nf1) A

tno1 = if Ry then Oelse (if nfi thentnag else rdy) A cing1 = (holdao A —nf1) A

optay =if Ry then 0else (if f1i then (if cingy then 1else Q)+ opty o elserdy) A

opta1 =1if Ry then 0 else (if f1i then (if cing 1 then 1 else 0) 4 opta g else rdy) A

hOld271 = (“Rl A fll A _\hOldl,o) A hOld271 == (_\R1 AN fll A ﬁhOleQ) A

norsy = div(tls 1 +tns1,2) A tlz1 =if Ry then Qelse (if fli thentlagelserdy) A
norsy = opts1 A tls1 =if Ry thenOelse (if f11 then tlsg else rdy) A

tng1 = if Ry then Oelse (if nfi thentnag else rdy) A cing1 = (holdao A —nf1) A

tng1 = if Ry then Oelse (if nfi thentnsgelserdy) A cingy = (holdso A —nf1) A

opts.1 = if Ry then0else (if f1y then (if cing i then 1 else 0) + opta g else rdy) A

opts1 =1if Rithen 0else (if fli then (if cins 1 then 1 else Q)+ opts o elserdi) A

hOldg’l = (_\Rl A f].1 AN ﬁholdg’o) A hOldg’l = ("Rl AN fll AN ﬁhOldgﬁo) AN

noryy = div(tly s +1tna1,2) A tlag =if Ry then 0else (if f1q then tls o elserdy) A

tng1 = if Ry then Oelse (if nfi thentnsgelserdy) A holds1 = (=R1 A f11 A —holds o) A
optsn =1if Ry then 0else (if f11 then (if cingq then 1 else Q)+ opts o else rdy) A

CZ.TL4,1 = (hOld&o A _|nf1) A (’ﬂfl = nfz) A (Tlfz = f12) A rdyo =rdy +1A

norop2 = dZ‘U(tloyg + tno,g, 2) A tlo,g = Zf f].g then t].()’l else TdQ AN Cl.no’g = (hOldOJ AN _|’I71f2)/\
norg s = optoa A tnge =if nfsthentngi elserds A holdyo = (fla A —holdy 1) A

opto 2 =1if flathen (if cing o then 1 else 0) 4 opto 1 else rdy A

noriy2 = div(tllg + tnl,g, 2) A tll,g = Zf flg then t1071 else ’I“dQ A hOldLQ = (flg A —\hOldQ,l)/\
nory2 = Optl,g A t1172 = ’Lf flg then tll,l else T’d2 A hOldLQ = (flg A _‘hOZdLl) A

tnie =if nfathentng 1 else rda A tny o =if nfs thentng 1 elserds A

opti2 =4f flathen (if cingo then 1 else 0) + opto 1 else rdy A cing o = (holdy1 A —nfa) A
opt1,2 =1if flathen (if cing o then 1else 0) 4 opty1 elserds A cing o = (holdy 1 A —nfa) A
nora 2 = di’l)(t1272 + tle,g, 2) AN tlg,g = Zf f12 then t1171 else ’I“dg A hOld272 = (f12 A —\holdl,l)/\
nora 2 = Optg,g A t1272 = Zf flg then t1271 else ng A\ hOld272 = (flg A\ _‘hOZdQJ) A\

tngo = if nfathentny i elserdy A tngo = if nfathentno; elserds A

optes =if flgthen (if cing o then 1else 0) + opty 1 else rdy A cinga = (holdy 1 A —nfa) A
optee =if flathen (if cing g then 1 else 0) + opta 1 else rdy A cing o = (holds 1 A —nfa) A
nors a2 = div(tlg.g + t?lgﬁg, 2) A\ tlg)g = Zf f12 then t1271 else ’I“dg A hOld372 = (f12 A _\holdg,l)/\
norz g = optso A tlso =if flgthentlsy else rdy A holdse = (fla A —holds 1) A

tnz o =if nfathentna elserdy A tnzo = if nfythentns i elserds A

optso = if flathen (if cing o then 1else Q) + optay else rdy A cing o = (holda 1 A —nfa) A
optso =if flgthen (if cing o then 1 else 0) + opts 1 else rdy N cinga = (holds 1 A —nfa) A
nory s = div(tly s +1tnso,2) A tlys =if flothentls, else rdy A

tnyo =if nfythentngy else rds A holdss = (fla A—holds 1) A cing s = (holdsy A —nfa) A
optas =1if flothen (if cing o then 1 else 0) + opts 1 else rds))

=

(nory s = opty o)
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