Unité Mixte de Recherche 5104 CNRS - INPG - UJF

Centre Equation
2, avenue de VIGNATE
H F-38610 GIERES
erlmaG tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

The Lucky language
Reference Manual

Erwan Jahier, Pascal Raymond

Report n° TR-2004-6

Initial version: March 12, 2004
Last update: June 1, 2004

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

The Lucky language Reference Manual

Erwan Jahier, Pascal Raymond

Initial version: March 12, 2004
Last update: June 1, 2004

Abstract

The main challenge to automate a testing or a simulation process is to be able to automate the
generation ofealistic input sequences to feed the program. In other words, we need an exe-
cutable model of the program environment which inputs are the program outputs, and which
outputs are the program inputs.

In the first Lurette prototype — an automated testing tool of reactive programs designed at
Verimag —, the System Under Test (SUT) environment behaviour was described by Lustre
observers which were specifying what realistic SUT inputs should be. In other words, the en-
vironment was modelled by a set of (linear) constraints over Boolean and numeric variables.
The work of Lurette was to solve those constraints, and to draw a value among the solutions
to produce one SUT input vector.

But, from a language expressing power point of view, Lustre observers happen to be too
restrictive, in particular to express sequences of different testing scenarios, or to have some
control on the probabilistic distribution of the drawn solution. It was precisely to overcome
those limitations that a new language, Lucky, was designed.

A Lucky program is an interpreted automaton whose transitions define the reactions of the
machine. More precisely, each transition is associated to (1) a set of constraints (a lustre-like
formula) that defines the set of the possible outputs, and (2) a weight that defines the relative
probability for each transitions to be taken, i.e., to be used to produce the output vector for the
current step.

Keywords: Reactive systems, validation, automatic test case generation, lurette, lustre
Reviewers Nicolas Halbwachs

Notes

How to cite this report:

@techreport,

title = { The Lucky language Reference Manpal
authors ={ Erwan Jahier, Pascal Raymdnd
institution ={ Verimag Technical Repof,
number ={TR-2004-§,

year ={ },

note ={ }

}

Contents

1 Introduction 2
2 The Lucky language principles 2
2.1 OVEIVIEW . . o o it e e e e e e 2
2.2 Definitions. e e e 4
2.3 Operational Semantics 5
2.4 AlLuckyprogram Example 6
3 The Lucky concrete syntax 8
3.1 Identifiers, Blanksand Comments. Lo 8
3.2 Boolean, Integer and Floating-pointliterals. 8
3.3 Type Definitions and Type Expressians i 8
3.4 \Variabledeclarations. 8
3.5 EXPressions. e 9
3.6 NodedeclarationsandNodes 9
3.7 Transitions 9
3.8 Luckyfiles e 9
3.9 Pragmas e e 10
4 Numeric solver issues 11
4.1 Solvingintegerconstraints L 11
4.2 Fairnessversus efficiency. e 11
4.3 Fair mode and precision and the computations. 12
5 The Lucky file interpreter 13
A More Lucky program Examples 15
A.1 The Lucky programofFigurg. 15
A.2 lllustration oftheuse of Polyhedra. 17
A.3 lllustration of the use of infiniteweights 18
A.4 lllustration of the use of dynamicweights, 19
A.5 lllustration of the use of structured types. 20
B Automata Product 22

22

1 Introduction

Motivations. Synchronous programs3{) |] deterministically produce outputs
from input values. To be able to compile, synchronous programs need to be fully deterministic. How-
ever, sometimes, we want to be able to describe synchronous systems in a non deterministic manner:

¢ if one wants to describe (and simulate) an intrinsically non-deterministic system. A typical example
is when one want to describe the environment of a reactive program; it can be very useful for testing
and simulation purposes.

¢ Another potential use of the animation of non-deterministic code is when one wants to simulate par-
tially written reactive programs (some components are missing). The idea is then to take advantage
of program signatures, pre/post conditions, or code chunks to simulate those programs the more re-
alisticly as possible, taking into account the available constraints, and drawing the non-deterministic
parts. This can be very useful to simulate and test applications at every stage of the development
process.

We call amon-deterministic prograrsuch pieces of code that produce their outputs non-deterministically.
Lucky is a language to describe such non-deterministic programs. Basically, it is an interpreted automa-
ton which transitions are labelled by Boolean expressions. As in Lustre, expressions are formulas over
Boolean and numeric valukthat define an atomic reaction (in the synchronous sense). The key difference
with lustre is that those equations may admit several solutions, hence the first source of non-determinism.
The second source of non-determinism is due to the fact that several expressions can be reached from the
current state; the choice is done according to weights that also label transitions. Those weights let one
assign probabilities to the different temporal scenarios defined by the automaton. Lucky can be seen as a
language to program stochastic processes (Markov chains).

Plan. We first present the Lucky language principles in Secfipand give its syntax rules in Secti@n
Then, we briefly present tHacky command-line tool in Sectiof. Finally, In Appendix, we provide
several commented Lucky programs.

2 The Lucky language principles

A reactive system is an automated system that indefinitely responds to its environment. We are particu-
larly interested here in control and embedded applications, where the environment is often the physical
world. During the development of such systems, non-determinism is often useful, for describing a partially
designed system and/or its environment.

2.1 Overview
We propose a model where a basic qualitative model describing a set of behaviours is extended with a
probabilistic mechanism. The main features of this model are presented here.

Symbolic state/transition systems. The basic qualitative model consists in a very general state/transition
system, characterised by:

e a memory: a finite set of variables with no special restrictions on their domains (to simplify, we will
consider here just Boolean, integer and rational values);

e an interface: variables are declared as inputs, outputs, or locals;

¢ afinite control structure: an interpreted finite automaton, whose transitions are representing reactions
of the machine.

1A restriction is that numeric constraint ought to be linear (e:gh, v > 3, but notz? 4+ y2 > 2 norlog s + sin r > €°).

22

A global state of the system is then a pair made of the current control point in the automaton (the
control-stat@, and a current valuation of its memory (ttata-statg¢. Therefore the set of global states is
potentially infinite.

Synchronous relations. We adopt the synchronous approach for the reactions: all values in the memory
are changing simultaneously when a reaction is performed. The previous value of the memory corresponds
to the source data-state, and the current value to the next data-state. The transitions are labelled with
information denoting what are the possible values of the current memory depending on the current data-
state. This information is quite general: it isedation between the past and current values of the variables.

In particular, no distinction is made between uncontrollable (inputs and past values) and controllable (locals
and outputs) variables. Performing a reaction will consist in finding solutions to such a formula. This
problem induces a restriction: we suppose that, once reduced according to the past and input values, the
constraints are solvable by some actual procedure

Weights instead of probabilistic distribution. Since we have to deal with uncontrollable variables,
defining a sound notion of distribution must be done carefully: depending on those variables, a formula
may be infeasible, and thus its actual probability is zero. In other terms, if we want to use probabilistic
distributions, we would have to define a reaction as a map from the {spiegce state, past values, input
values to a distribution over the pairgontrollable values, next stateExpressing and exploiting this kind

of model would be too complex. We prefer a pragmatic approach where probabilities are introduced in a
more symbolic way.

The main idea is to keep the distinction between the probabilistic information and the constraint infor-
mation. Since constraints are influencing probabilities (zero or non-zero), this information does not express
the probability to be drawn, but pragmatically, the probability tared. In order to emphasise the dif-
ference, we do not use distributions (i.e., set of positive values the sum of which isr&)ative weights
A relative weight is a positive rational value, not necessarily less than one, the meaning of which is only
defined relatively to another weight: if two possible reactions (i.e., the corresponding constraints are both
satisfiable) are labelled respectively with the weightandw’, then the probability to perform the former
is w/w’ times the probability to perform the latter.

Static weights versus dynamic weights. The simplest solution is to define weights as constants, but in
this case, the expressive power can be too weak. With such static weights, the uncontrollable variables
qualitatively influence the probabilities (zero or not, depending on the constraints) but not quantitatively:
the idea is then to defirsyynamic weightas numerical functions of the inputs and the past-values. Taking
numerical past-values into account can be particularly useful. A good example is when simulatiivg an
processwvhere the system has a known average life expectancy before breaking down; at each reaction, the
probability to work properly dependsimericallyon an internal counter of the process age.

Transient states. For the time being, we have only one notion of state: a state is a stable control point,
and a transition between two states defines an atomic reaction. However, we think it may be convenient to
introduce the notion adfransient stateand, as a consequence a notion of micro-step: a complete reaction

is then a sequence of transitions between two stable states, where all the intermediate states are transient.
Transient states do not affect the synchronous interpretation of the variable changes: intuitively, if we
abstract probabilities, a reactign/_t_9 ¢/, is qualitatively equivalent tg/"\9. In contrast, transient states

affect probabilities, and may be helpful to express complex conditional relative weights.

Global concurrency. Concurrency (i.e., parallel execution) is a central paradigm for reactive systems.
The problem of merging sequential and parallel constructs has been largely studied: classical solutions are
hierarchical automatala StateCharts'l] \], or statement-based languages like Esté&iel§21].

Our opinion is that deeply merging sequence and parallelism is a problem of high-level language, and that
it is sufficient to have a notion of global parallelism: intuitively, local parallelism can always be made

2concretely, we have developed a constraint solver for mixed Boolean/linear constraints.

22

global by adding extra idle states. As a consequence, concurrency is a top level notion in our model: a
complete system is a set of concurrent automata, each one producing its own constraints on the resulting
global behaviour.

Weights and parallelism. In terms of control structures, parallelism corresponds to a kind of syn-
chronous product of automata. Transient states make this “product” more complex than a simple Cartesian
product, but do not involve big difficulties. For formulas, the product is simply the logarad™ Unfor-

tunately, there is no obvious way for combining stochastic information: as they are defined, they are only
local information and they may induce paradoxes when combined into a parallel composition.

o O O O O

|
4 B : v AANY/a BAX/x
N AT
|
Jelite

Figure 1: Weights and parallelism: the parallel compositita),(and, assuming that A X is infeasible,
the product solutionlp) and the arbiter solutiori€).

A simple example is shown in Figufe: the first automaton (resp. the second) has the choice between
the constraintsA or B (resp. X or Y) both satisfiable. In the first automaton, the choiceddfias a big
weighta >> 1 compared ta3 (1 by default), and in the second od¢é has a big weight >> 1 comparing
to Y. Suppose that the data-state makes it impossible to satigfyX, it follows that it is impossible to
satisfy the stochastic demand of both components. There are mainly two ways to solve the problem:

e Consider that weights are not only local information, but are also influencing the parallel compo-
sition: for instance, ifz is much bigger than;, that means that the stochastic demand of the first
component is much stronger than the one of the second. The simplest way to implement this notion
is to combine weights with multiplication, as shown in Figlibe

e The problem is treated at the parallel composition level, where some indications are added to express
priority for satisfying stochastic demands. Intuitively, the components of a parallel composition are
treated sequentially: the first one is perfectly served, according to its own local weights, then the
second is served according to what was decided by the first one, etc. The order of components is, in
general non-deterministic, and stochastic information may be added to influence it. TheIeigure
shows a product where a first fair choice is made to decide which component will “play” first (note
that all intermediate states are transient).

There is no obvious argument to prefer one solution to another: both are consistent, and none is clearly
more natural than the other. As a consequence, we plan to implement both and let the user choose between
them. For the time being, only the first one is implemented.

Those two product algorithms are described into more details in Appé&hdix

2.2 Definitions

Variables. Lucky programs variables are eittiaput, output local, orprevious V =V, 6wV, 0 V; w V},.

The previous variables are meant to refer to previous values of the other variablgs+nV; W V, & V;.

Each previous variable is denoted &y wherev € V,,. Moreover, each variable i, is defined with a

default value: the value just before the first reaction. Local variables can be seen as output variables that
are hidden from the outside.

22

Valuations. A valuationis a mapping from variables to values.data-contexis a pair(c;, o), Where

o; (input valuation) associates a value with each input,an¢previous valuation) associates a value with
each previous variable. Previous valuations are also cdléaltstate In particular, the default values of
variables are defining thaitial data-state denoted byrg.

Formula. A formula is any well-typed Boolean expression made of variables, constants, and classic
logical and numerical operators {,v,=,>,<,>,<,+,—,+,/). We noteF the set of well-typed formula.

Control structure. At the top level, the behaviour of a system is described by a non-empty set of concur-
rent Lucky programs sharing the same variables. Each Lucky programs is an interpreted automaton, where
transitions are labelled by qualitative and stochastic constraints, as presented in the sequel.

Nodes (or control states). The set ofcontrol-statesis divided intostablestates andransientstates:
Q = Q. W Q.. The initial control state is a particular stable stgtec Q..

Weights. Weights are positive numerical functions of the uncontrollable variabtgs: ¥; x ¥, —

N U {oc}. More concretely, they are given as numerical expressions made of inputs, previous variables,
classical operators or predefined computable functions. cbhealue is introduced to express a sound
notion of mandatory choice: a transition with the infinite weight has priority on any finite weighted transi-
tion. There is a single notion of infinite weight: two feasible transitions with infinite weight have the same
probability. In order to express relative probabilities between mandatory choices, it is necessary to detail
the control structure by introducing transient states.

Transitions. The set of transitions is a relatio? C Q x F x W x @, and we noteq%q’ eTa
transition fromg to ¢’ labelled by the formulg and the weightw.

Note that 2 transitions can have the same origin and the same target. Note also that at most one outgoing
transition can have an infinite weight — which not really a restriction since an equivalent automaton can be

. . . f f f f f
written using transient states, q@ﬂ?QQ7Q1;QQ7 ~t={a ?q’, q’qug,q’mqg, o

Transitional loops. We do not try to give sense to infinite loops of transient control states: models
containing such combinational loops are statically rejected.

2.3 Operational Semantics

The Lucky programs are defined in such a way that their operational semantics is straightforward. In some
sense, they arexecutabldy definition. We give here the main lines of the simulation algorithm.

In the sequel, we suppose that we have a single automaton, obtained with one of the product operations
defined above. Note that, in the concrete implementation, the global product is not statically built: local
products are simply buildn the flyto avoid space state explosion.

Execution. A Lucky program executig@ccording to a given input histoty™),,>¢ is a sequence of pairs
made of a stable state and a valuati¢st:, 0™),,>9 € N — Q5 x X, such that:

¢ s¥ is the initial control state andg is the default map of the variables,

and for eaclk:

e of = v¥ (the valuation history meets the input history)

. afp = aj,f“ (the current-part of the valuation meets the previous-part of the next valuation)

o (5% 0k oF)os.or k1 is a feasible, fair reaction according to the control structure. We detail in the
sequel the algorithm for finding such a reaction.

22

Reaction. Intuitively, a step in an execution is done by drawing, according to weight directives and
current values of uncontrollable variables, a path in the automaton from the current (stable) state to a next
stable state. More formally, let = ¢o be the current control-state,, the current data-state amnd the

current inputs. For alt, we note©;, = {qk%q} the set of transitions leaving,, and we use the notation
w., to denote the weight attached to a transitior\ccording to the current data context, the sum of weights
Wy = ZTe@k w,(op, 0;) IS @ numerical constant. If there exist some transitidnom gy, to g1, the
probability to complete a patfyo, g1, .- ,qk) with g1 is then:w, (op, 0;)/Wi. This process is repeated

until a stable node,, = s’ is reachedqu1%q2 “Qn— 1L>s where allgy, - - - ¢,,_1 are transient.

The conjunction of all formulas labelling the drawn path is the elected formfila: /\ fk

substitute inf input and previous variablegi(, ,,), and solve it. A valuation of output and Iocal variables
for the current step is obtained by performing a fair toss among the solutions of that formgila,, Ifis
unsatisfiable, another path is drawn. If no satisfiable path can be drawn, the machine stops.

Note that infeasible paths are detected as soon as possible (by marking them) to avoid divergence.

2.4 A Lucky program Example

e =0A-0On

V; = {O?’L, T}, Vo - {t}: Vvl — {&j}a Vp - {.ta.j}v QS = {Soru Soff7 Sopen}v qo = Son

Figure 2: A Lucky program that simulates the temperature in a room with a heater and a window.

The automaton of Figur@ represents a Lucky program that models the temperature in a room con-
taining a heater and a window which is opened from times to times. The version of this automaton given
in Lucky concrete syntax is provided in Sectiérl. Input variables are a Booleapn, which is true if
the heater in on, and a re&l| which indicates the temperature outside the room. The only output variable
is a realt, indicating the temperature inside the room. Local variables are the redlich is used to
compute the new temperature, and the integevhich is used to count the number of steps the window
remains open. Previous variables at@ndej. Stable states are denotedddy;, oz, andsype,. The other
unnamed states are transient. The initial nodg,is

If the heater is Initially on (resp. off), only 2 transitions are possible among the 3 output transitions
of s.,, Since the transition labelled byOn (resp. On) is unsatisfiable. The first possible transition has
weight 100, and the other one has weight 1.

e The first transition will therefore be drawn with a probabilitylof/101. It leads to a transient state
which has only one output transition leading backp (resp.s,#); the elected formula is therefore
0<d<02At=et+ 0. Itstates that the local variablewill be uniformly drawn betweef and
0.2 (resp.—0.1 and 0), and thai is then used to increase the temperature. This is intended to model
that, when the heater is on (resp. off), the temperature slightly increases (resp. decreases).

22

e The second transition will be drawn with a probabilitylofi01. After two transient states, the only
stable node that is reachablesjs.,, and the elected formula is therefareie A 10 < j < 15Nt =
%. It states that the local integer variablés drawn uniformly between 10 and 15, and defines
how the new temperature is computed. This is intended to model that, whenever the window is open,
the temperature becomes closer from the temperature outside.

For the next step, from,,.,, 3 transitions are possible, but they are labelled by formulas that can
not be true at the same time (they form a partition): as longiagreater than 0, the window will
remain openj is decremented at each step, and when it reaches 0, the control gets back tg gither
or s, depending on the variab@n.

The concrete syntax version of this Lucky automata is given in Seétibn

22

3 The Lucky concrete syntax

The syntax rules are given in an extended-BNF-like notation, where the meta-symbo}$ (', *)’ 2",

and +’ have the usual meaning. Non-terminals are in bold between brackéts this>) and terminals
are in typewriter fontlike that).

3.1 Identifiers, Blanks and Comments

<ident> — (<letter> | _) (<letter> | 0.. 9| _]| ')*
<letter> - A .. Z| a .. z

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage re-
turn, line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, and literals. Single
line comments are introduced by the two charactets . Multi-line comments are introduced by the
two character$(*" , and terminated by the charactéty' . Comments cannot occur inside string or
character literals, and can be nested.

3.2 Boolean, Integer and Floating-point literals

<bool> — true | false
<int> — infinity | (-)? (0. 9)+
<float> — (-)? (0... 9)+ (. (0... 9*)? ((e|]E) (+]-)? (0... 9)+)

3.3 Type Definitions and Type Expressions
<type_def> — <ident> = <type_exp>

<type.exp> — <ident> | <basictype> | <array> | <struct> | <enum>
<basictype> — bool | int | float

<array> — <typeexp> ~ <int>

<enum> — (<ident> (, <ident>)*)

<struct> — { <ident> : <type.exp> (; <ident> : <typeexp>)* }

The syntax for type expression is the same as the one of Scade and Lustre. Examples of type definitions
are:

ex_array = bool ~ 3; -- A Boolean Array of size 3
ex_struct = { aint; b:ex_array }; -- A structure with 2 fields
ex_enum = (red, white, blue); -- An enum with 3 values

3.4 Variable declarations

<var_dech — <ident>: <typeexp> (<flag> <exp>)*
<flag> — "min | "max | “default | Talias | Tinit

Variable declaratior:flag>s of course only make sense for output and local variables.niiheflag
(respmax) lets one define a global lower bound (resp upper) to a variable. The Default values for min and
max are—10000 and 10000 respectively. The flagefault lets one assign a default value to variables
that have not been constrained. The fiigs states that the variable is an alias for an expressep>;
alias variables are inlined. The flagt lets one assign an initial value to variables so thatea on that
variable can be done at the first instant — otherwise, an error is raised at runtime.

22

3.5 Expressions

<exp> — (<exp>)

<int> | <float> | <bool> | (pre)* <ident>
<opl> <exp> | <exp> <op2> <exp>

if <exp> then <exp> else <exp>

<array access | <struct_access

<array _exp> | <struct_exp>

<opl> — not | -
<op2> — and | or | nor | xor | =| = | <> | <| >| <=] >=
| +1 - *| /| mod| div | abs

<array_access — <exp>[<int>]

<struct_access — <exp>. <ident>

<array exp> — [<exp> (; <exp> Y*] | <exp> = <int>
<struct_exp> — { <ident> = <exp> (; <ident> = <exp>)* }

The syntax for lucky expresssions is basically the same as the one of lustre expressions. One difference
is that (for the time being)dre are only allowed over identifiers.

The typing rules for lucky expressions are the lustre ones.

3.6 Node declarations and Nodes

<nodesdeck — <nodes> (, <nodes>)* : (<nodemode>)
<nodemode> — ftransient | stable | final
<nodes> — <ident>

final nodes are a special kindstfiable nodes: if the execution stops on a final node, the interpreter
exits normally; otherwise it returns an error code and an error message.

3.7 Transitions

<transition> — <nodes> -> <nodes> (<transition_flag>)*
<transition flag> — “weigth <weight> | “cond <exp>
<weight> — <int> | (pre)* <ident>

<weight> can either be integers or variable identifiers that ought to be bound to some integer value.
The default weigth is 1. The default constraintrise .
* dire dans la doc que on ne peut avoir gu’au plus une transition sortante avec un poids infini (ca n'a

pas un sens bien clair et on peut toujours faire autrement). Dire aussi que 2 transitions ne peuvent a la fois
avoir meme origine et arrive.

3.8 Lucky files
<lucky_file> —
(typedef (<typedef> ; * })?

*

{

inputs { (<var_deck ;)* }

outputs { (<var.deck ;)* }

locals { (<var_deck ;)* }
{

nodes (<nodesdeck ;)* <nodesdeck }
start_node { (<nodes> ;)* <nodes }
transitions { (<transition> ;)* <transition> }

22

3.9 Pragmas

<pragma.list> — % <pragma> (; <pragma>)* %
<pragma> — " <ident>":" <ident>"

Pragma can occur after any ident or operator. A pragma is a pair of string list that begins and ends with
the terminaPs They are intended to be used for source recovering.

22

4 Numeric solver issues

Since we target the test of real-time software, we put the emphasis on the efficiency of the solver.

In order to solve numeric linear constraints, we use the library of convex polyhedron pelal]
which is reasonably efficient, at least for small dimension of manipulated polyhedra — the complexity of
the algorithms are exponential in the dimension of polyhedron. Polyhedron of dimension biggey that
generally leads to unreasonable response time.

Note however that independent variables — namely, variables that do not appear in the same constraint —
are handled in different polyhedra. This means the limitation of 15 dimensions does not lead to a limitation
of 15 variables.

4.1 Solving integer constraints

For the sake of efficiency, we do not use classical methods such as linear logic for solving integer con-
straints: we solve those constraints in the domain of rational numbers and then we truncate. The problem
is of course that the result may not be a solution of the constraints. For example, consider a constraint
0 < z < 5 that leads to the drawn vallel; if we truncate it to0, we obtain a wrong solution.

Even worse, a non-empty polyhedron in the rational domain may have no solution in the integer domain.
We plan to ameliorate this situation in the near future.

4.2 Fairness versus efficiency

Lucky (and Lurette) can be run in two different modes; one that emphasises the fairness of the draw; the
other one that emphasises the efficiency. Indeed, suppose we want to solve the following constraint:

(bAa1) V(bA) Aas A (agVas)

whereb is a Boolean, and where; are atomic numeric constraints of the forin;, a;z; < cst. The
first step is to find solution from the Boolean point of view. This leads to the four solutions:

balchagoﬂag,, ba1@a3a4075, bailag()égmagh boTlagaga4OT5

Now, suppose that:
a1 =100>2z, ag=200>2, ag=2>0, acuy =x>2x, as=z>1

wherezx an integer variable that has to be generated by Lucky. We use the convex polyhedron library to
solve the numeric constraints, which lead respectively to the following sets of solutions:

Sl=bAxz€[2;100]; S2=bAx=0; S3=bAT€[2;200]; S4=bAT=0

In order to perform a fair draw among the set of all solutions, we need to compute the number of
solutions in each of the s8t. But this computation is very very expensive for polyhedron of big dimension.
Moreover, as we use Binary Decision Diagrarasn9g to solve the Boolean part, associating a volume
to each numeric part results in a lost of sharing in BBDs.

Therefore, we have adopted a pragmatic approach:

e implement an efficient mode that is fair with respect to the Boolean part only;
e implement a fair mode that performs an approximation of the polyhedron volume.

The polyhedron volume is approximated by the smallest hypercube containing the polyhedron. Note
that this leads to no approximation for polyhedron of dimension 1 (intervals), and reasonable approximation
in dimension 2. But the error made increases exponentionally in the dimension. Therefore, for polyhedron
of big dimension, it is better to use the efficient mode, and to rely only the probability defined by transition
weights.

Note that when there are only Boolean variables as output or local variables, the two modes are com-
pletely equivalent.

22

4.3 Fair mode and precision and the computations

In the fair mode, we compute an approximation of polyhedron volume. But how to mix set of solutions
that involves both integers and floats (which are necessarily computed by distinct polyhedra)?

The solution we have adopted is the following: relate both domain via the precision of the computations,
which is a parameter of Lucky and Lurette. For example, with a precision of 2 digit after the dot, we
condiser that the set € [0; 3] contains300 solutions.

22

5 The Lucky file interpreter

The Lucky drawing engine is the main component of the Lurette testing toINH98, | }.
However, we, at Verimag, also provide an unpluggled version of this engine under the form of a command-
line Lucky file interpreter. Its work on PC/Linux, Sun/Solaris, and PC/Windows-cygwin. Its usage is
summarised in Figura.

usage: lucky [options]* (<file>.luc)+
where ‘<file>.luc contains a lucky automaton description.
Automata that share output variables are executed
as if they were multiplied.

The options are:
--boot, -boot, -b
The lucky engine starts generating values.
--with-seed, --seed, -seed
Set the value of the seed the random engine is initialised with.
--step-number, -
Set a bound on the number of steps to perform.
--precision, -precision, -p
Set the precision used for numerical values (number of digits).
--draw-inside
Draw inside the convex hull of solutions.
--draw-edges
Draw inside the convex hull of solutions, but a little
bit more at edges and vertices.
--draw-vertices
Draw among the vertices of the convex hull of solutions.
--locals, -locals, -loc
Shows local variables.
--compute-poly-volume
Compute the polyhedra volume before drawing: more fair,
but more expensive.

Figure 3: The lucky file command-line interpreter usage

References

[And96] C. Andre. Representation and analysis of reactive behaviors: a synchronous approach. In
IEEE-SMC’96, Computational Engineering in Systems Applicatibilie, France, jul 1996.
2

[BG92a] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, seman-
tics, implementationScience of Computer Programmirip(2):87-152, 19921

[BG92b] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, seman-
tics, implementationScience of Computer Programmirif(2):87-152, 19922

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language lustreProceedings of the IEEEF9(9):1305-1320, September 19911.

[Jah04] E. Jahier.The Lurette User Guidelan 2004. www-verimag.imag.fsynchron/tools.html.5

22

[Jea02] B. Jeannet. The Polka Convex Polyhedra library Edition 2.0May 2002.
www.irisa.fr/prive/bjeannet/newpolka.htmi

[JRO4] E. Jahier and P. RaymondThe Lucky Reference Language Manudan 2004. www-
verimag.imag.fri-synchron/tools.html.5

[LBBG86] P.LeGuernic, A. Benveniste, P. Bournai, and T. Gautier. Signal , a data flow oriented language
for signal processindEEE-ASSP34(2):362—-374, 19861

[Mar92] F. Maraninchi. Operational and compositional semantics of synchronous automaton compo-
sitions. INCONCUR’92 Stony Brook, August 1992. LNCS 630, Springer Verldy.

[RWNH98] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems.
In 19th IEEE Real-Time Systems SymposiMiedrid, Spain, December 199&

[Som98] F. SomenziCUDD: CU Decision Diagram Package Release 2,3.998. 4.2

22

A More Lucky program Examples

A.1 The Lucky program of Figure 2

-- This program simulates the temperature in a room that contains a
-- heater and a window which is opened from times to times.

-- Input variables are a Boolean On, which is true if the
-- heater in on and false otherwise; and a rational T, which indicates
-- the temperature outside the room (behind the window).

inputs {
T: real;
On: bool;
}

-- The only output variable is a rational t, which simulates the
-- temperature inside the room.
outputs {
t. real
}

-- Local variables are the real delta, which is used to compute
-- the new temperature, and the integer cpt, which is used to count
-~ the number of steps the window remains open (before rebooting).
locals {

delta: real "min -10.0 “max 10.0;

jiint “init 0 "min 0 "max 20 “default O

-- Stable nodes are s_on, s_off, and s_open. Note that node labels are
-- just identifiers; the names we give them here serve only as

-- documentation.

nodes {
s_init : stable s on . stable s_off stable s open : stable
init : transient;
tl : transient; t2 : transient; t3 : transient; t4 : transient

}

start_node { init }
transitions {

init -> s_init “cond t = 17.0;
-- By convention, no weight label stands for a weight of 1.

s_init -> t1 “cond On;

s_init -=> t2 “cond not On;

s on -> tl “weight 100 “cond On;

s on -> t2 “weight 100 “cond not On;
s_on -> t3;

s off -> t1 “weight 100 “cond On;
s_off -> t2 “weight 100 “cond not On;

22

s_off -> t3;

tl1 -> s on “cond

0.0 < delta and delta < 0.5 and
t = pre t + delta;
t2 -> s off “cond
- 0.5 < delta and delta < 0.0 and

t = pre t + delta;

t3 -> t4 “cond (10 <=))

t4 -> s open “condt = (3.0 * (

s_open -> t1 “cond pre j
s_open -> t2 “cond pre |
s _open -> t4 “cond pre j

and (j <= 15) ;

VoIl

0 and On ;
0 and not On;
0 and j = (pre

pre t) + T)/ 4.0 ;

-1

22

A.2 lllustration of the use of Polyhedra

outputs { a:real ; b: real ; c: real }

nodes { 1 : stable }
start_node { 1 }

transitions {
1-> 1 “cond abs ¢ < 1.0
and (a <= 40.0 - b) and (2.0 * a >= b - 10.0)
and (a >= -3.0 * b + 30.0)

Generated bjucky --draw-inside -l 3000

A.3 lllustration of the use of infinite weights

-- A lucky example illustrating the use of infinite weigths
-- as well as the “default option

inputs { }
outputs {
cpt : int
“init 0
-- initial value of pre cpt is 0
“default (pre cpt + 1)
-- if cpt does not appear in a transition,
-- it is incremented at each step

}

locals { }

nodes { 0 : stable ; 1 : stable; 2 : stable; 3 : final}

start_node { 0 }

transitions {
0->0;

0 -> 1 “weight infinity “cond pre cpt = 3 and cpt =

-- This infinitely weighted transition will be always taken

-- as soon as it is possible (ie, when pre cpt = 3)

1>1;
1 -> 2 “weight infinity “cond pre cpt =
2 -> 2;
2 -> 3 “weight infinity “cond pre cpt =

-- generates the sequence of integers:
- 1, 2,3, 3,45,6,6, 7 8 9, 10, 10

-- The integer 3 is generated twice:
-- * once at step 3 when cpt is bound to 3

6 and cpt

10 and cpt

pre cpt;

pre cpt;

pre cpt

- * once at step 4 because the transition "0 -> 1" is satisfiable

-- iff the previous value of cpt is 3.

-- Ditto for 6 and 10

22

A.4 lllustration of the use of dynamic weights

-- A lucky example illustrating the use of dynamic weigths

inputs { }
outputs {
X : real
}
locals {
cpt : int “init O
}
nodes { In_use : stable ; Breakdown : stable }
start_node { In_use }

transitions {
In_use -> In_use
“weight 100
“cond cpt= pre cpt +1 and 50 < x and x < 10.0;
In_use -> Breakdown
“weight pre cpt
-- Breaking down becomes more and more likely to happen
“cond x = 0.0;
Breakdown -> Breakdown “cond x = -1.0

}

-- Generates sequences such as:
-- 5.33 546 7.92 891 9.45 7.58 8.63 5.13 9.51 5.26 8.13 8.74
-- 7.67 9.04 7.46 5.64 0.00 -1.00 -1.00 -1.00 ...

A.5 lllustration of the use of structured types

A lucky example illustrating the use of strutured types,
or, an obfuscated way to generate sequences of integers
and floats betwenn 0 and 10.

typedef {

enum = (zero, one, two) ;
array = int ~ 4 ;
array_strange = array = 2 ~ 5 ;

struct = { fl:bool; f2:enum; f3:array_strange }
}
inputs { }
outputs { s : struct “default {f1 = false ; f2=two ; f3= 0°472°5
locals { t : array_strange "min 0°4°2°5 "max 1000°4°2°5 }
nodes { start : stable ; 1 : stable; 2 : stable }

start'node { start }

transitions {

start -> 1 ;

1 ->1 “cond s.f3 =
1 -> 1 “cond s.f3[1]
1->1 "conds = {

and s.f2 = zero ;
[1,3,5,7]2 and s.f2

t
= one ;
fl1 = true ; f2 = two ; f3

[

generates sequences such as:
step 1
f20000000000
00000O0OO0O0OO0OO0DO
step 2

t 2 885 852 15 688 195 748 211 330 571 544 916 734 982 86 422

168 519 533 609 981 819 671 839 414 821 123 581 93 504 150
739 702 273 108 375 591 216 649 21 354
step 3

t 2 22 593 338 695 230 234 742 568 716 761 791 728 378 599 135

0o0o0O0O0OO0OO0OOOOOOOOOOOOO

I

452 579 140 564 959 313 705 220 24 865 625 146 10 978 903 560

862 148 491 922 685 718 252 564 207
step 4

f1000000001357135700000000000000
0000O0OO0O0O

00
step 5

t 2 136 612 115 790 190 364 79 160 883 916 550 810 706 729 0 369
362 58 726 606 640 538 484 739 380 416 745 127 856 718 443 596

272 219 31 174 104 302 833 206
step 6

t 2 48 622 432 676 379 6 96 414 703 779 726 700 748 426 827 955
426 253 295 559 897 835 559 889 206 370 436 247 545 953 391 356

921 88 195 789 317 145 830 308
step 7
f1200000000
0000O0OO0OO0O0OO
step 8

13571357000000000000000

f O 377 457 252 923 747 577 756 306 817 558 31 134 713 762 47 578

22

501 701 508 946 440 390 347 554 517 551 705 52 203 287 1 46 134
272 117 289 639 625 286 553
step 9
f 0 998 821 27 986 203 666 325 995 726 536 991 574 132 714 825 161
517 546 589 454 182 323 235 691 854 659 751 282 527 58 724 852
830 96 268 8 313 106 656 508
step 10
f10000000013571357000000000000000
0000O0OO0OO0OO

22

B Automata Product

First of all, the behaviour which is in general expressed as a a set of concurrent automata, is semantically
equivalent to the one of a singbeoduct automatonTwo different products are defined, depending on the
semantics chosen for weights composition (FiglreThe simplest one is almost a classisghchronous
product

e the global state space is the Cartesian product of the component state spaces; the global initial state
is the tuple of initial states; a global state is stable if it is composed of stable states only.

¢ the definition of global transitions is almost a classical composition where constraints are combined
with the A operator, and weights with theoperator. The only problem is to enforce the synchro-
nisation on stable states; we notg s, stable statest, t, transient states angl, ¢o any states,
so:

fl/\f2

w1 kw2

PP (graq) i 1125 (0) andity 2 (g2)

— (s1,82), — (q1,q2) iff SlL((h) andsz%((h)

(tlatQ)
- (sl,tQ) (81,QQ) iff t2—>(q2) and symmetrically foftq, s2).

The second kind of “product” (as shown in Figute) is a little bit tricky: the idea is to introduce, for
each component, an additiorsghrtingtransient staté and an additionalvaiting transient stat& for each
stable state. The global state space is then defined as the Cartesian product over the extended component
state spaces. The definition of initial and stable global states does not change. The transitions are defined
in such a way that each component performs its reaction in turn. We only give the rules where the first
component starts, the other case is similar:

o from a global stable state, the first component may start while the other Waitsz) (81, $2),
e the starting component performs its first transition:
f1 f1
(81, 52) (@1, 82) iff 51 a1,
e the startlng componentis not yet in a stable state, and it performs another trar(sﬂ',l@@) (ql, 89)

iff ¢4 7;)—1“11,

e the starting component has reached a stable state, and the waiting one starts its r(eacﬁph%(gh q2)

f2
iff so w0, 42

e the second component performs transitions until it reaches a stable staxeg) (sl,qQ) iff

f2
to o, 22

22

	Introduction
	The Lucky language principles
	Overview
	Definitions
	Operational Semantics
	A Lucky program Example

	The Lucky concrete syntax
	Identifiers, Blanks and Comments
	Boolean, Integer and Floating-point literals
	Type Definitions and Type Expressions
	Variable declarations
	Expressions
	Node declarations and Nodes
	Transitions
	Lucky files
	Pragmas

	Numeric solver issues
	Solving integer constraints
	Fairness versus efficiency
	Fair mode and precision and the computations

	The Lucky file interpreter
	More Lucky program Examples
	The Lucky program of Figure 2
	Illustration of the use of Polyhedra
	Illustration of the use of infinite weights
	Illustration of the use of dynamic weights
	Illustration of the use of structured types

	Automata Product

