
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

The Lurette V2 User Guide

Erwan Jahier

Report no TR-2004-5

Initial version: March 12, 2004
Last update: June 1, 2004

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

The Lurette V2 User Guide

Erwan Jahier

Initial version: March 12, 2004
Last update: June 1, 2004

Abstract

Lurette is an Automatic Test Generator forReactive Programs. It is automated in two main
ways. Realistic input sequences are generated from non-deterministic formal descriptions of
the System Under TestEnvironment properties (pre-conditions). The test decision is done
with a formal description of the desired properties – correct behaviours – of the SUT (post-
conditions).

Of course, formal verification should be used whenever possible. However, because program
verification is undecidable, testing will always be necessary. Lurette therefore concentrates
on cases where formal verification is limited: programs and complex properties, in particular
involving numerical aspects.

Lurette has been redesigned from scratch. This document is a User Guide for this new version
of Lurette. Its provides an – hopefully – exhaustive description of its features, as well as a
tutorial.

Keywords: Reactive systems, validation, automatic test case generation, lurette, lustre

Reviewers: Nicolas Halbwachs

Notes:

How to cite this report:

@techreport{ ,
title = { The Lurette V2 User Guide},
authors ={ Erwan Jahier},
institution ={ Verimag Technical Report},
number ={TR-2004-5},
year ={ },
note ={ }
}

The Lurette V2 User Guide Erwan Jahier

Contents

1 Introduction 2

2 Lurette principles 3
2.1 Describing and simulating the System Under Test (SUT) Environment. 3
2.2 The Test Oracle. 3
2.3 The Lurette testing process. 3
2.4 The XLurette Main window parameters. 5

2.4.1 The SUT . 5
2.4.2 The SUT Environment. 5
2.4.3 The Oracle. 5
2.4.4 The compiling modes. 5
2.4.5 The Extra Environment variables window. 6

2.5 The Test Parameters window. 7
2.5.1 The Test Length . 7
2.5.2 The Test Thickness. 7
2.5.3 The step mode. 7
2.5.4 The random engine seed. 7
2.5.5 Fairness versus efficiency. 9
2.5.6 Running Lurette step by step. 9
2.5.7 Call sim2chro when Lurette resumes. 9
2.5.8 Put local variable in generated data file. 9
2.5.9 Precision . 9
2.5.10 Base RIF file name. 9

3 Supported Architectures and languages 10

4 Installation and configuration issues 11

5 A small tutorial illustrating Lurette in action 12
5.1 A fault-tolerant heater controller in Lustre. 12
5.2 A first test session using a fake environment. 12
5.3 A test session using hard-wearing sensors. 13
5.4 Specifying an oracle. 15
5.5 A test session using wearing sensors. 15

A The fault-tolerant heater controller 19

B Lurette Architecture – Components Description 21
B.1 Interfacing Lurette with the SUT. 21
B.2 Interfacing Lurette with the Oracle. 21
B.3 Interfacing Lurette with the Environment simulator. 21

C The RIF conventions 23

Verimag Research Report no TR-2004-5 1/24

Erwan Jahier The Lurette V2 User Guide

1 Introduction

The Lurette testing tool is based on the principles described in [RWNH98]. We first recall those principles,
before describing the new tool into more details.

What kind of testing? Of course, formal verification should be used whenever possible. However, be-
cause program verification is undecidable, testing will always be necessary. In this work we concentrate
on cases where formal verification cannot be applied, i.e.,

• for complex programs and properties, involving numerical aspects;

• for black-box programs, (a part of) the source of which is not available or written in a low level
language.

The last point means that Lurette will focus on functional testing: the program will be a black box, for
which we want to check some properties.

Testing reactive systems: specific problems.In addition to usual problems of test case generation —
selection of realistic test cases, oracle and diagnosis, defining and improving coverage —, testing reactive
systems raises some specific problems:

• test cases are not just input values, butsequencesof input values, and these sequences can be very
long;

• a reactive system is often intended to control its environment. As a consequence, realistic test se-
quences can depend on the behaviour of the System Under Test (SUT). More precisely, the selection
of an input value, at a given sequence point, can depend on the reaction (previous outputs) of the SUT
to the previous elements of the sequence. Hence, realistic sequences cannot be generated off-line,
and the SUT must be involved in the generation.

Testing reactive systems: the proposed solution.[RWNH98] proposed to generate test sequences
from a user-given specification of realistic (or “interesting”) scenarios. Such a specification is a non-
deterministic description of sequences involving both input and output variables of the SUT. The only
restriction is that the constraints on inputsi, at a given point of a sequence, may only depend on thepast
values of outputso. Moreover, the user can also provide another specification, which describes correct
behaviours or desired properties of the SUT.

Lurette generates input sequences as follows: it first selects a input vectori satisfying the Environment
specificationΣ; then it provides the vectori to the SUT for one reaction, and gets back the corresponding
output vectoro; i ando are checked against the oracleΩ; then the internal state ofΣ andΩ are updated
according toi ando, and a new step can start.

Description of non-deterministic behaviours. An important point is the way behaviours are specified.
Basically, such a specification behaves as an automaton, providing constraints oni according to its internal
state, and moving from state to state according to the current values ofi ando. In the previous version of
Lurette, this specification was an observer written in Lustre. In the new version, we want to allow various
formalisms for that, because Lustre observers are neither always convenient, nor powerful enough: for
instance, it is often interesting to drive the generation using weights or probabilities. This why the tool is
organised around the intermediary language Lucky, into which other formalisms can be translated. Lucky
is not described in this document; please refer the Lucky Reference Manual [JR04] for more information.

2/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

2 Lurette principles

2.1 Describing and simulating the System Under Test (SUT) Environment

SUT Input sequence generation. The main challenge to automate the testing process is to able to au-
tomate the generation ofrealistic input sequences to feed the SUT. In other words, we need an executable
model of the environment which inputs are the SUT outputs, and which outputs are the SUT inputs.

Note that realistic input sequences can not be generated off-line, since the SUT generally influences
the behaviour of the environment it is supposed to control, and vice-versa. Imagine, for example, a heater
controller which input is the temperature in the room, and which output is a Boolean signal telling the
heater whether to heat or not.

In the first Lurette prototype, the SUT environment behaviour was described by Lustre observers which
were specifying what realistic SUT inputs should be. In other words, the environment was modelled by
a set of (linear) constraints over Boolean and numeric variables. The work of Lurette was to solve those
constraints, and to draw a value among the solutions to produce one SUT input vector.

But, from a language point of view, Lustre observers happen to be too restrictive, in particular to
express sequences of different testing scenarios, or to have some control on the probabilistic distribution
of the drawn solution. It was precisely to overcome those limitations that a new language, Lucky, was
designed.

The Lucky language. A Lucky program is an automaton whose transitions define the reactions of the
machine. More precisely, each transition is associated to (1) a set of constraints (a formula) that defines the
set of the possible outputs, and (2) a weight that defines the relative probability for each transitions to be
taken (i.e., to be used to produce the output vector for the current step). Please refer to the Lucky language
reference manual [JR04] for more information.

The Lutin Language. One of the goal when designing Lucky was to have a language with a sim-
ple operational semantics (it is a simple interpreted automaton) that is sufficiently general to model any
non-deterministic formal description. In particular, the Synchronous team, at Verimag designed another
language, Lutin [RR02], which compiles into Lucky. Lutin also aims at describing and simulating non-
deterministic systems, but it is based on regular expressions instead of an explicit automaton, which gener-
ally makes the description of non-deterministic systems easier. Please refer to the Lutin language reference
manual [Rou04] for more information.

Lustre observers. Moreover, a gateway from Lustre observers to Lucky programs can easily be done: it
will result in a somewhat degenerated Lucky automaton with one explicit control state and one (looping)
transition labelled by the Lustre observer equations.

2.2 The Test Oracle

The second thing that needs to be automated in the testing process is the test result perusal. In other words,
we need to be able to decide automatically whether or not the test succeeded. To do that, we will use
exactly the same technique as in the first Lurette prototype: namely, via the use ofLustre observers. A
Lustre observer is a Lustre program that returns exactly one Boolean variable. It lets one express any
safety property – but no liveness property.

Users therefore need to write a Lustre (or a Scade) program which inputs are the SUT inputs and
outputs, and which output is a single Boolean that is true if and only if the test vectors are correct w.r.t.
a given property. That property can be, for example, a property that a verification tool failed to prove –
which is precisely when testing techniques are useful.

2.3 The Lurette testing process

We recall now how the different entities (SUT, oracle, environment) work all together inside Lurette.

Verimag Research Report no TR-2004-5 3/24

Erwan Jahier The Lurette V2 User Guide

Test Manager

Environment

Oracle

SUT

try Ii Oi

boot i

Oi

try Ii

Ii

ok

Figure 1: Lurette start-up.

Figure1 shows what happens when Lurette starts up. Since the environment outputs serve as SUT
inputs, and SUT outputs serve as environment inputs (the first step excepted), in order to be able to start
such a looped design, one entity have to start first. The choice has been made that the environment will.
This means that a valid environment for Lurette is one that can generate values without any input at the
first instant.

The role ofboot keyword of Figure1 is precisely to indicate that the environment is indeed starting
first; once the environment received theboot signal, it (non-deterministically) produces an output vector
I, which will be used by the SUT.try I means that once one step is done in the SUT to compute its output
O, the previous state of the SUT is immediately restored. This allows several input vectorsI to be tried
at each step, to perform a kind ofthick test. In Figure1, the different tries are distinguished thanks to the
index i. Hence, at theith tries, the vectorsIi andOi, respectively produced by the environment and the
SUT, are tried in the oracle.

Test Manager

Environment

Oracle

SUT

step Ij

step Ij Oj

step j

Figure 2: Lurette steps

Test Manager

Environment

Oracle

SUT

Ii

try Ii

try Ii Oi

Oi

try i oj

ok

Figure 3: Lurette tries.

Once a sufficient number of tries has been done (the thickness of the test is one of the Lurette parameters
users have control on, cf. Section2.4), one index is chosen, sayj, and the step corresponding to that index
is really1 done (Figure2). Note that since the SUT and the oracle are deterministic machines, we just
need to give them the vectorIj andOj once more. But this is not true for the environment, which is
non-deterministic; that is the reason why we give it the indexj; of course, this means that the environment
interpreter needs to remember which index led to which internal state.

Then the process continues as in Figure1; the only difference, as shown in Figure3, is that the envi-
ronment is fed with the SUT output vectorOj which was elected at the previous step (instead ofboot i).

1is the sense that the previous state of machines is not restored this time.

4/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

2.4 The XLurette Main window parameters

The most important test parameters can be set directly from the main Xlurette window. A snapshot of
the part of the main window that is dedicated to the setting of test parameters is shown in Figure4 (For
a snapshot of the whole Main window, see e.g., Figure7). In the following, we describe each of those
parameters in turn.

Figure 4: Part of the main window.

2.4.1 The SUT

The first line in Figure4 lets one set the SUT. The first combo-box is to set the SUT file
name. One can either:

1. type directly the name of the file;

2. Use the pull dow menu of the combo-box if the SUT file is in the lurette current directory;

3. Use the Browse button if the SUT is not in the current directory. Note that once one has selected
with the browse button a SUT in a directory that is not the same as the current one, the directory of
the selected file becomes the new current directory.

The second combo box is to set the SUT node.
The third combo box is to set the compiling mode. The various compiling modes are described below

(2.4.4).

2.4.2 The SUT Environment

The second line in Figure4 lets one set the SUT environment file. Note that one can set several environ-
ment files (cf lucky manual [JR04]). In order to add a environment file to the list without discarding the
previously entered files, one has to type it manually (separating files with at least one blank), or use the
rigth-most browse button decorated with a “+” (which stands for “add”).

Note that the current directory does not change if an environment is selected in a directory that is not
the same as the current one.

2.4.3 The Oracle

The third line in Figure4 lets one set the oracle. The only diffrences with the SUT is that setting an oracle
is optional, and that the current directory does not change if an oracle is selected in a directory that is not
the same as the current one.

2.4.4 The compiling modes

The SUT and the oracle can be either.saofdm , .lus or .c files. When the SUT is a.saofdm , there
is no ambiguity: the scade compiler should be used.

Verimag Research Report no TR-2004-5 5/24

Erwan Jahier The Lurette V2 User Guide

However, for.lus files, lurette needs to know whether to use the Verimag or the Scade compiler. Fur-
thermore, for.c files, lurette needs to know whether they follow the Verimag and the Scade conventions.

Users can specify the compiler mode using the combo boxes at the rigth-hand-side of the node names
(cf, Figure4). They can choose between:

• verimag

• scade

• stdin/stdout

The first two items correspond to the verimag and the scade conventions that we have been just talk-
ing about. The third item correspond to an (experimental) completely different execution mode. In this
mode, users do not specify a SUT/oracle file and node name, but a system call that launches a program
that reads/writes its input/output on the standard input/output (stdin/stdout). The inputs must follow the
RIF convention (cf AppendixC), and the outputs will. For example, one can enter the string"ecexe
heater control.ec" , because theecexe ec files interpreter reads and writes data on stdin/stdout
following the RIF conventions.

Watch out: in the verimag andscade modes, the link between the SUT, the environment and the
oracle is done viavariable names, whereas in thestdin/stdout mode, it is done via thevariable
positionsof their declaration in the interface.

Note also that the test thickness parameters (cf2.5.2) are (currently) ignored in thestdin/stdout
mode.

2.4.5 The Extra Environment variables window

One can launch the “Extra Environment Parameters” window by clicking on the button just below the
oracle line. A snapshot of this window is shown on Figure5.

Figure 5: Setting extras environment variables window.

This window is meant to help users to add extras files or paths that are sometimes necessary for the
SUT or the oracle to compile. Thoses are used in the Makefile that builds the final test executable.

• EXTRACFILES lets one add C files. For example, the scade compiler sometimes generates a file
named<sut> const.c that contains the definitions of the some of the SUT constants. C files
appearing inEXTRACFILES are compiled and linked with the SUT by lurette.

• EXTRALIBS lets one add libraries (<file>.a).

• EXTRALIBDIRS lets one add paths to directories containing librairies.

• EXTRAINCLUDEDIRS lets one add paths to directories containing C header files.

For all those environment variables, one can put several items (separated by blanks), either manually
or using the browse button.

6/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

2.5 The Test Parameters window

The “Test Parameters window” lets one set additional parameters; one can launch it by clicking on the
button. A snapshot of the Xlurette parameters window is shown on Figure6. In the following, we describe
each of the available Lurette parameters – note that tool-tips are displayed if you leave your mouse pointer
long enough over each buttons or boxes in Xlurette GUI.

All those parameters can be saved to be used later in a next Xlurette session by clicking on button
(cf Figure7). A file named.lurette-rc is then created (or updated) in the current directory.

2.5.1 The Test Length

The Test Length is the number of steps (or cycles) that should be generated.

2.5.2 The Test Thickness

We call the Test Thickness the number of test vectors that are generated by the test manager at each step.
Note that each vector is tried w.r.t. the oracle, but only one of them is elected to continue the testing process,
namely, to carry on with the next step.

The test thickness can be changed in several ways:

1. The Draw Formula Number (DF). From any of the environment control points (cf [JR04]), several
formulas can be chosen to generate a SUT input vector. TheDF indicates whether we try one or all
of them.

2. The Draw Number for Boolean variables (DB). For any formula that is used to generate a SUT input
vector, several Boolean values can generally be generated. TheDB indicates how many of them we
do try.

3. The Draw Number Inside polyhedron (DI). For each Boolean solution of a formula corresponds a
(set of) polyhedron used to represent the solutions for the numeric variables. TheDI indicates how
many points inside the polyhedron we try at each step.

4. The Draw Number at polyhedron Edges (DE). It plays a similar role as theDI, except that points
are drawn with the following heuristic: points at vertices, and then on the edges, and then inside
faces, and so for greater dimensions, are more likely to be drawn.

5. The Draw Number at polyhedron Vertices (DV). Points are drawn among the polyhedron vertices.
One can either set the number of vertices to be drawn (Some button), or ask to draw all of them (All
button).

The Test Thickness (TT) is therefore given by the formula:

TT = DF ×DB × (1 + DI + DE + DV)

Note that if one of the Draw All Formula (viaDF) or Draw All Vertices (viaDV) modes is on, the
TT might change from one step to another.

2.5.3 The step mode

Thestep Modeis the policy that is used to draw solutions for numeric variables for performing the step. In
other words,DI, DE, andDV are used for Lurette tries, whereas the step mode is used for Lurette steps.

2.5.4 The random engine seed

The pseudo-random engine needs a seed to be initialised. One can either let Lurette draw a seed before
each run, or set its own one manually; this can be very useful to replay a run. Note also that, in theRandom
mode, the integer next to theManual button is set to automatically drawn seed. This means that if you
select thatManual button, the seed will be the one of the previous run.

Verimag Research Report no TR-2004-5 7/24

Erwan Jahier The Lurette V2 User Guide

Figure 6: The Xlurette parameters window.

8/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

2.5.5 Fairness versus efficiency

Emphasise the draw fairness over the computation time. This issue is detailed in the Section “The Lucky
Numeric solver” in the Lucky reference manual [JR04].

2.5.6 Running Lurette step by step

This mode can be set on and off via (so called) radio-buttons. When on, Lurette is run step by step, updating
a post-script visualisation of the Lucky automata (graph and current nodes) at each step. This requires dot
(a graph drawing tool [KN91]) and a post-script visualiser (gv) to be installed.

2.5.7 Call sim2chro when Lurette resumes

This mode can be set on and off via (so called) radio-buttons.

2.5.8 Put local variable in generated data file

This mode can be set on and off via (so called) radio-buttons.

2.5.9 Precision

The precision sets the number of digit after the dot used by the environment to perform numeric computa-
tions.

2.5.10 Base RIF file name

It is the first part of the RIF (seeC) file name used to save the generated test data. The name of that
generated file is of the shape:<rif-file-name>-<int>.rif , where the integer is chosen in such a
way that the file does not previously exist in the current directory. If empty, a default string will be used: it
is made of the name of the sut, the name of the environment, and the test length.

Verimag Research Report no TR-2004-5 9/24

Erwan Jahier The Lurette V2 User Guide

3 Supported Architectures and languages

Lurette has been tested with the following architectures:

• Ultra-sparc machine running Solaris 2.8;

• i686 running Linux;

• i686 running WindowsNt and Cygwin.

The System Under Test can either be:

• an academic Lustre program (.lus);

• a Scade2 program (.saofdm);

• a C file, provided that it follows the Verimag [Ray99] or the Scade code generators conventions.

Note that the SUT and the oracle can be in C (provided that they follow the poc or the scade conven-
tions), but the SUT environment descriptions needs to be in Lutin, Lustre, or Lucky. Indeed, in the Lurette
testing process, the SUT and the oracle just need to be compiled and executed, whereas the environment
description needs to be parsed and interpreted.

2only tested with the 4.2 version

10/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

4 Installation and configuration issues

The short story. Hopefully, you should only need to untar the package and run theINSTALL script.

> tar xvfz luretteV2-1.19.tgz
> cd luretteV2-1.19
> ./INSTALL

The xlurette tool is in the luretteV2-1.19/<arch>/bin/ directory, therefore you might
want to add it in yourPATHenv variable.

You can check that the installation works correctly by going to thetest directory and launch amake
test command in your shell.

The long story. If you run into problems during the use of Xlurette, it might be useful for you to under-
stand a little bit how things are organised to try to figure out how problems might be fixed.

The INSTALL script generates theluretteV2-1.19/<arch>/set env var file, that defines
various environment variables. Xlurette evaluates this file before running; therefore, it might be useful for
you to check the content of that file to see whether the information it contains seems correct. Be aware that
this file will be overridden if you run theINSTALL script again.

Another important file isluretteV2-1.19/<arch>/Makefile.lurette . It is the makefile
that is used to generate the final executable that Lurette runs. If Lurette runs fail, it might be useful for you
to check the content of that file, in particular in you use a scade version different from the 4.1.4, which is
the only one that has been tried.

Environment variables. Here is the list of all the environment variables that users can set to override
default values. The default values are set by the INSTALL script. You can consult them by looking at the
luretteV2-1.19/<arch>/set env var file.

• PS VIEWER: to set the tool used to visualize post-script files. Its default value is"gv" .

• AWK: to override the awk that is used.

• DOT: to override the dot (a graph drawing tool) that is used. Its default value is"dot" .

• SIM2CHRO: to override the rif viewer that is used.

• LUS2EC: to override the lustre to ec verimag compiler. Its default value is"lus2ec" .

• EC2C: to override the ec to C verimag compiler. Its default value is"ec2c" .

• SCADE2LUSTRE:to override the scade to lustre compiler. Its default value is"scade2lustre" .

• SCADECG: to override the scade code generator. Its default value is"scade cg" .

• LUSTRE2C: to override the lustre to C scade compiler. Its default value is"lustre2c" .

• SCADECOMPILOPTION: to override additionnal options to be given to the scade compilers. Its
default value is" -noexp @ALL@ " .

Indeed, it is sometimes useful to override those default values to explicitely specify the full path of
tools that are used by Lurette.

Verimag Research Report no TR-2004-5 11/24

Erwan Jahier The Lurette V2 User Guide

5 A small tutorial illustrating Lurette in action

In this Section, we assume that you have read the Lucky Reference Manual [JR04], since examples are
given in Lucky. All the files necessary to perform this tutorial are in the directory
lurette-V2-xxx/demo-xlurette/fault-tolerant-heater/ of the Lurette distribution.

5.1 A fault-tolerant heater controller in Lustre

We want to test a fault-tolerant heater controller which has three sensors (namely, three reals inputs) mea-
suring the temperature in a room, and which returns a Boolean value saying to the heater whether it should
heat or not.

A Lustre implementation of such an heater is provided in AppendixA. We only provide here its
(informal) specification, which is enough from the Lurette black-box testing point of view.

The main task of that controller is to perform a vote to guess what the temperature is (Tguess).
Then, if that guessed temperature is smaller than a minimum value (TMIN), it heats; if it is bigger than a
maximum value (TMAX), it does not heat; otherwise, it keeps its previous state. The voter works as follows:
it compares the values of each sensors two by two, and consider sensors broken as soon as they differ too
much.

V12 = abs(T1-T2) < DELTA; -- true iff T1 and T2 are valid
V13 = abs(T1-T3) < DELTA; -- true iff T1 and T3 are valid
V23 = abs(T2-T3) < DELTA; -- true iff T2 and T3 are valid

Hence, there are four cases, depending on the values ofV12, V13, andV23:

1. If the three comparisons are valid, it returns the median value of the three sensors;

2. If only one comparison is false, it considers it as a false alarm (e.g., becauseDELTAwas too small)
and still returns the median value.

3. If two comparisons are false (sayV12 andV13), it deduces the broken sensor (T1) and returns the
average of the other two (T2+T3/2.0);

4. If the three comparisons are false, it is difficult to know whether two or three sensors are broken, and
it safely decides not to heat in that case.

Technical remark: In order to test that program, there are two things we need to simulate: the real
temperature in the room, and the sensors that measure that temperature. A priori, the real temperature
could be a variable local to the SUT environment. But, in order to write oracles that have access to that
temperature, we need to add it in the SUT interface. That is the (technical) reason why the Lustre program
of AppendixA has an additional inputT which it does not use.

5.2 A first test session using a fake environment

We launch the Xlurette tool in the directory containing the SUT: a snapshot of Xlurette is given in Fig-
ure 7. We first need to fill in the System Under Test fields – the file name and the node name – ei-

ther manually or via so-called combo boxes . In Figure7, the SUT is a file named
heater control.lus , with the nodeheater control .

Then, we click on the run button . We can observe on the Figure8 that the following things (ought
to) happen:

• The SUT environment field has been filled in with a file named
heater control env.luc

• The test completed, and no property has been violated, which is not too surprising since we did not
provide any oracle yet.

12/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

Figure 7: Lurette snapshot: selecting a SUT and a node with combo-boxes.

inputs { Heat : bool }
outputs { T: real ;

T1: real ; T2: real ; T3: real }
nodes { 0 : stable }
start node { 0 }
transitions {

0 -> 0
˜cond

0.0 < T and T < 1.0
and 0.0 < T1 and T1 < 1.0
and 0.0 < T2 and T2 < 1.0
and 0.0 < T3 and T3 < 1.0 }

Figure 9: The generated Lucky file.

The content of that automatically generated envi-
ronment file is given in Figure9. It is a Lucky program
that has:

• one input variable (the output of the SUT): the
BooleanHeat on , which is true iff the heater
heats;

• and four output variables (the inputs of the
SUT): the true temperature in the roomT, as
well as the temperature as it is measured by the
3 sensors:T1, T2, andT3.

This Lucky program is rather stupid; at each step,
it draws a real value between 0 and 1 for each of the
four outputs. The main advantage of this generated
program is that it provides a good start for writing a (more) sensible environments for the SUT, as the right
inputs and outputs have been declared. This can be convenient for programs that have a lot of inputs and
outputs.

Now, if we click on the data visualisation button , we obtain a window similar to the content of
Figure10.

5.3 A test session using hard-wearing sensors

In this Section, we enhance the generated environment and try to write a Lucky program that generates
more realistic input vectors for the System Under Test.

Verimag Research Report no TR-2004-5 13/24

Erwan Jahier The Lurette V2 User Guide

Figure 8: Lurette snapshot: a fake environment has been generated.

inputs { Heat: bool }
outputs {

T: real ˜min 0.0 ˜max 50.0;
T1: real ; T2: real ; T3: real }

locals {
eps1: real ˜min -0.1 ˜max 0.1;
eps2: real ˜min -0.1 ˜max 0.1;
eps3: real ˜min -0.1 ˜max 0.1; }

nodes { 0 : stable }
start node { 0 }
transitions {
-- initialisation

0 -> 1 ˜cond T = 7.0
and T1 = T + eps1
and T2 = T + eps2
and T3 = T + eps3;

-- Running loop
1 -> 1 ˜cond T = pre T +

(if Heat then 0.2 else -0.2)
and T1 = T + eps1
and T2 = T + eps2
and T3 = T + eps3 }

Figure 11:sensors.luc : a Lucky pro-
gram simulating hard-wearing sensors.

The Lucky program sensors.luc provided in
Figure11has the same interface asheater control env.luc ,
but in addition, it also have three local variables (eps1 ,
eps2 , andeps3) that are uniformly drawn between−0.1
and0.1. Those local variables are used to disturb the value of
the temperatureT and simulate the noise a sensor may have
(T1 = T + eps1).

Then, we need to simulateT. To do that, we use two tran-
sitions: the first transition (0 -> 1) initialises the tempera-
ture to7. The second transition1 -> 1 , from step 2 until
the end, updatesT as follows: ifHeat on is true, thenT is
incremented of0.2; otherwise, it is decremented of0.2.

This model is quite simple, but it will be refined further
latter.

An Xlurette run using the Lucky program of Figure11
produced the timing diagram of Figure12. There, we can
convince ourselves that everything seems to work correctly;
the temperature increases andHeat on is true untilTMAXis
reached. Then, at step 11,Heat on becomes false and the
temperature decreases untilTMIN is reached, and so on.

14/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

steps

T
T1
T2
T3

Heat_on

Figure 10: The timing diagram of an execution generated with the automatically generated environment.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40 45 50

steps

T
T1
T2
T3

sensors__eps1
sensors__eps2
sensors__eps3

Heat_on

Figure 12: The timing diagram of an execution generated with the hard-wearing sensors.

5.4 Specifying an oracle

Now that sensible values have been generated, it is time to think about how to decide automatically if the
test succeeded. The property that we propose to check is described by the Lustre observer of Figure13
which states that the temperature should never be bigger thanTMAX+1even if all sensors are broken. To
take that oracle into account in Xlurette, we fill the oracle fields in the same manner as for the SUT, using
combo-boxes, as Figure14 illustrates.

If we run again our program, we observe that indeed this oracle is never violated.
Note that if you do not specify any oracle, a fake one, namedalways true.lus that always returns

true is generated. In the same manner as for the generated environment, this oracle can be used as a
template to write less trivial properties.

5.5 A test session using wearing sensors

The Lucky program of Figure15 models more realistic sensors that wears out. The input, output, as well
as theepsi local variables are the same ones as in thesensors.luc Lucky program of Figure11– we
have omitted them in the Figure for the sake of conciseness of the code.

There are two additional local variables:cpt , that is incremented at each cycle, andinv , an invariant
that states how the temperatureT is simulated (basically as before) and how to updatecpt at each cycle.

Verimag Research Report no TR-2004-5 15/24

Erwan Jahier The Lurette V2 User Guide

node not_a_sauna(T, T1, T2, T3 : real ; Heat_on: bool)
returns (ok: bool);
let

ok = true -> pre T < TMAX + 1.0;
tel

Figure 13: The oracle of the test session: make sure that temperature never becomes infernal.

Figure 14: Lurette snapshot: selecting an oracle.

The two transitionss1 -> t1, t1 -> s1 describes exactly the same kind of behaviour as the
transition1 -> 1 in Figure11: T1, T2, andT3 are computed as disturbed version ofT. Transitionst2
-> s2, s2 -> t2 simulates the case where one sensor is broken:T1 keeps its previous value (pre
T1) whatever the temperature is. Transitionst3 -> s3, s3 -> t3 and transitionst4 -> s4, s4
-> t4 respectively simulate cases where respectively two and three sensors are broken.

Let us run through the execution of that automaton into more detail. The initial node is the one labelled
by t0 . The output values for the first cycle are given by the equation that labels the transitiont1 -> s1 ,
which states that outputsT, T1, T2, andT3, are set to7.0 , and the local countercpt is set to0.

The values for the second cycle are computed via one of the two transitions outgoing from nodes1 :
s1 -> t1 , which is labelled by10000 , ands1 -> t2 which is labelled bypre cpt . The meaning
of those weights is the following: use the first transition with a probability of1000010000+pre cpt and the second

one with a probability of pre cpt
10000+pre cpt . At second cycle, sincepre cpt is bound to0, the only possible

transition is the second one, which leads to a correct behaviour of all sensors.
At the third cycle, the situation is roughly the same, except that the transitions1 -> t2 is now

possible, with a probability of 1
10001 . If this transition is taken, we enter in a mode where one sensor is

broken. Note that as time flies, the probability to go to the nodet2 increases; this somehow models that the
probability of failure increases with time.

16/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

locals { cpt : int ;
eps : float ˜min 0.0 ˜max 0.2;
inv : bool ˜alias -- invariant

(cpt = pre cpt + 1) and 0.0 < T and T < 50.0 and
T = pre T + (if Heat then eps else -eps);

new_T1 : bool ˜alias T1 = T + eps1 ;
new_T2 : bool ˜alias T2 = T + eps2 ;
new_T3 : bool ˜alias T3 = T + eps3 }

nodes { t0, t1, t2, t3, t4 : transient; s1, s2, s3, s4 : stable }
start node { t0 }
transitions {
-- initialisation

t0 -> s1 ˜cond T=7.0 and T1=T and T2=T and T3=T and cpt=0;
-- No sensor is broken

t1 -> s1 ˜cond inv and new_T1 and new_T2 and new_T3 ;
s1 -> t1 ˜weight 1000 ;
s1 -> t2 ˜weight pre cpt;

-- One sensor is broken
t2 -> s2 ˜cond inv and new_T1 and new_T2 and T3 = pre T3;
s2 -> t2 ˜weight 1000 ;
s2 -> t3 ˜weight pre cpt;

-- Two sensors are broken
t3 -> s3 ˜cond inv and new_T1 and T2 = pre T2 and T3 = pre T3;
s3 -> t3 ˜weight 1000 ;
s3 -> t4 ˜weight pre cpt;

-- Three sensors are broken
t4 -> s4 ˜cond inv and T1 = pre T1 and T2 = pre T2 and T3 = pre T3;

-- starts again from the beginning
s4 -> t0; }

Figure 15: A Lucky program simulating wearing sensors.

The behaviour is similar at nodess2 ands3 . When all sensors are broken, we go back to the initial
state and continue the test.

If we run the test withwearing sensors.luc often enough – or with a test length that is long
enough –, we can exhibit sequences that violate the oracle. An example of such a sequence is shown in the
timing diagram of Figure16.

Indeed, since the way we modelled sensor breakdowns was by making them keep their previous value,
this means that if ever two sensors broke down with similar values, the voter will not be able to realise that
they are broken, and hence the controller keeps on heating forever.

One possibility to correct that bug would be to check that sensor values do change during a given
number of cycles, and to consider them – at least temporarily – invalid otherwise.

Verimag Research Report no TR-2004-5 17/24

Erwan Jahier The Lurette V2 User Guide

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400 450 500

steps

T
T1
T2
T3

Heat_on

Figure 16: The timing diagram of an execution generated with the wearing sensors exhibiting the test
failure.

References

[Jea02] B. Jeannet. The Polka Convex Polyhedra library Edition 2.0, May 2002.
www.irisa.fr/prive/bjeannet/newpolka.html.B.3

[JR04] Erwan Jahier and Pascal Raymond. The Lucky Language Reference Manual. Technical Report
TR-2004-6, Verimag, 2004. www-verimag.imag.fr/∼synchron/tools.html. 1, 2.1, 2.4.2, 1,
2.5.5, 5

[KN91] E. Koutsofios and S. North. Drawing graphs withdot. TR 910904-59113-08TM, AT&T Bell
Laboratories, 1991.2.5.6

[Ray99] P. Raymond.POC, Jan 1999. www-verimag.imag.fr/∼synchron/tools.html.2

[Rou04] Y. Roux. The LuTin Reference Language Manual, Jan 2004. www-
verimag.imag.fr/∼synchron/tools.html.2.1

[RR02] P. Raymond and Y. Roux. Describing non-deterministic reactive systems by means of regular
expressions. InFirst Workshop on Synchronous Languages, Applications and Programming,
SLAP’02, Grenoble, April 2002.2.1

[RWNH98] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems.
In 19th IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.1, 1

[Som98] F. Somenzi.CUDD: CU Decision Diagram Package Release 2.3.0, 1998. B.3

18/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

Figure 17: Lurette snapshot: the oracle has been violated.

A The fault-tolerant heater controller

const FAILURE = - 999.0; -- temperature given when all sensors are broken
const TMIN = 6.0;
const TMAX = 9.0;
const DELTA = 0.5;

node heater_control(T, T1, T2, T3 : real) returns (Heat: bool);
var

V12, V13, V23 : bool ;
Tguess : real ;

let
V12 = abs(T1-T2) < DELTA; -- Are T1 and T2 valid?
V13 = abs(T1-T3) < DELTA; -- Are T1 and T3 valid?
V23 = abs(T2-T3) < DELTA; -- Are T2 and T3 valid?
Tguess =

if noneoftree(V12, V13, V23) then FAILURE else
if oneoftree(V12, V13, V23) then Median(T1, T2, T3) else
if alloftree(V12, V13, V23) then Median(T1, T2, T3) else
-- 2 among V1, V2, V3 are false, one one is true
if V12 then Average(T1, T2) else
if V13 then Average(T1, T3) else

-- V23 is necessarily true, hence T1 is wrong
Average(T2, T3) ;

Heat = true ->
if Tguess = FAILURE then false else

Verimag Research Report no TR-2004-5 19/24

Erwan Jahier The Lurette V2 User Guide

if Tguess < TMIN then true else
if Tguess > TMAX then false else pre Heat;

tel

node Average(a, b: real) returns (z : real);
let

z = (a+b)/2.0 ;
tel

node Median(a, b, c : real) returns (z : real);
let

z = a + b + c - min2 (a, min2(b,c)) - max2 (a, max2(b,c)) ;
tel

node noneoftree (f1, f2, f3 : bool) returns (r : bool)
let

r = not f1 and not f2 and not f3 ;
tel

node alloftree (f1, f2, f3 : bool) returns (r : bool)
let

r = f1 and f2 and f3 ;
tel

node oneoftree (f1, f2, f3 : bool) returns (r : bool)
let

r = f1 and not f2 and not f3 or
f2 and not f1 and not f3 or
f3 and not f1 and not f2 ;

tel

-- The oracle
node not_a_sauna(T, T1, T2, T3 : real ; Heat: bool) returns (ok: bool);
let

ok = true -> pre T < TMAX + 1.0;
tel

20/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

B Lurette Architecture – Components Description

In this Appendix, we present the different tools, resource files and libraries that are involved in the produc-
tion of the final executable that performs the testing. We also describe how the SUT, the test Oracle, and
the SUT environment are be connected one to each other.

B.1 Interfacing Lurette with the SUT

In order to run the test, as far as the SUT is concerned, Lurette needs to be able to:

1. read/write its input/output (read o andwrite i);

2. perform a try, namely, to have a mean to save and restore the SUT state (try).

3. perform a step (step);

The two languages we support are the academic Lustre (Verimag), and Scade (Esterel-Technologies).
Both compiles into C code, but with distinct interfaces in the way the 4 interfaces functions (read o,
write i , step andtry) are to be performed. Moreover, Lurette should be able to be used to test any
reactive system code, for which compilers would certainly have (similar but) different interfaces. For that
reason, the calls to the SUT interface functions should not be hard-coded: Lurette calls an abstract interface,
that is implemented for each different SUT code compiler (namely, for the time being, the academic Lustre
compiler and the Scade one).

lus2c /
scade2csut.lus /

sut.saofd

gen_stubs_scade

cc

cc

sut.o

sut_stubs.osut_stubs.c

sut.c

gen_stubs_lustre /

Figure 18: Object Code Generation for the SUT.

The implementation of this abstract interface for the Lustre and the Scade compilers is materialised in
Figure18 by thegen stubs lustre andgen stubs scade tools. The generated C code is parsed
in order to retrieve the input and output variable names and types. The generated filesut_stubs.c im-
plements the abstract interface that provides toLURETTEEXEthe interface functionsread o, write i ,
step andtry .

Figure18 also makes explicit the usual Lustre / Scade code compilation process into c (lustre2c /
Scade2c), and the object code generation with a C compiler (cc).

B.2 Interfacing Lurette with the Oracle

In the current scheme, the oracle is written in the same language as the SUT (Lustre or Scade). Therefore,
the interfacing work is exactly the same as for the SUT.

B.3 Interfacing Lurette with the Environment simulator

The main part of the Lurette implementation effort lies in the Lucky programs simulation. At this level
of the description, we only focus on the description of the connection between components; we therefore
suppose that we haveread o, write i , step andtry functions for the environment too.

Verimag Research Report no TR-2004-5 21/24

Erwan Jahier The Lurette V2 User Guide

sut.o, sut_stubs.o

bdd.a

env.luc

Test Parameters

oracle.o, oracle_stubs.o

reads

reads

links

links

links

links

links

LURETTE_EXE

 lucky_lib.a

polyhedron.a

Figure 19: Lurette Components diagram.

An outline of the different components involved in the final executable fileLURETTEEXEis provided
in Figure19. The object code filessut.o andsut stubs.o as well asoracle.o andoracle stubs.o
are linked with the Lucky (env.luc) file interpreter librarylucky lib.a .

Note the lucky lib.a uses two external libraries: a Binary Decision Diagram library [Som98]
(bdd.a) to deals with Boolean variables; and a convex Polyhedron Library (polyhedron.a) to deal
with numeric variables [Jea02].

22/24 Verimag Research Report no TR-2004-5

The Lurette V2 User Guide Erwan Jahier

C The RIF conventions

RIF stands forReactive Input Format. It is the format used by the synchronous Verimag tools for writing
and reading sequences of input and output data vectors. We recall in this section what this format looks
like.

Data. A RIF file is essentially a sequence of data values separated by spaces, newlines, horizontal tabu-
lations, carriage returns, line feed and form feeds. A data value can be either an integer, a floating-point or
a Boolean (t , T, or 1 stands fortrue ; f , F or 0 stands forfalse).

Comments. Single line comments are introduced by the two character# and terminated by a new line.
Multi-line comments are introduced by the two characters@#, and terminated by the two characters#@.

Pragmas. Pragmas are special kinds of comments, that migth (or not) be taken into account by tools that
reads RIF data. One-line pragmas have the form#pragma ident ... , and multi-line pragmas the form
@#pragma ident ... #@. The most common pragmas used by verimag tools are (using BNF notation):

• @#inputs (<var name> : <var type>)+ #@, to declare the list of input variable names and types;

• @#outputs (<var name> : <var type>)+ #@, to declare the list of output variable names and
types;

• @#locals(<var name> : <var type>)+ #@, to declare the list of local variable names and types;

• #outs, to indicate that the following data correspond to output variables;

• #locsto indicate that the following data correspond to local variables;

• #step int , to indicate that a new step is starting, and that the following data correspond to input
variables.

Note that those pragmas are necessary for RIF file viewers such assim2chro andgnuplot-rif to
work properly.

A RIF file example is provided in Figure20; it corresponds to the timing diagram of Figure16.

Verimag Research Report no TR-2004-5 23/24

Erwan Jahier The Lurette V2 User Guide

seed = 97040004
#program "lurette chronogram (wearing-sensors.luc) "
#@inputs
"T":real
"T1":real
"T2":real
"T3":real
@#
#@locals
"wearing-sensors__cpt":int
"wearing-sensors__eps":real
"wearing-sensors__eps1":real
"wearing-sensors__eps2":real
"wearing-sensors__eps3":real
@#
#@outputs
"Heat_on":bool
@#
#step 1
7.00 7.00 7.00 7.00 #outs T
#locs 0 0.08 -0.05 -0.05 0.10
#step 2
7.13 7.20 7.16 7.18 #outs T
#locs 1 0.13 0.07 0.03 0.05
#step 3
7.27 7.37 7.27 7.18 #outs T
#locs 2 0.14 0.10 -0.00 -0.09
#step 4
7.45 7.47 7.38 7.36 #outs T
#locs 3 0.18 0.02 -0.07 -0.09
#step 5
7.59 7.68 7.61 7.56 #outs T
#locs 4 0.14 0.09 0.02 -0.03
#step 6
7.65 7.58 7.64 7.55 #outs T
#locs 5 0.06 -0.06 -0.01 -0.09
#step 7
7.84 7.91 7.94 7.90 #outs T
#locs 6 0.20 0.07 0.10 0.06
#step 8
8.00 8.07 8.00 8.09 #outs T
#locs 7 0.15 0.07 0.00 0.09
#step 9
8.12 8.09 8.17 8.16 #outs T
#locs 8 0.13 -0.03 0.05 0.04
#step 10
8.26 8.29 8.30 8.20 #outs T

Figure 20: A RIF file example.

24/24 Verimag Research Report no TR-2004-5

	Introduction
	Lurette principles
	Describing and simulating the System Under Test (SUT) Environment
	The Test Oracle
	The Lurette testing process
	The XLurette Main window parameters
	The SUT
	The SUT Environment
	The Oracle
	The compiling modes
	The Extra Environment variables window

	The Test Parameters window
	The Test Length
	The Test Thickness
	The step mode
	The random engine seed
	Fairness versus efficiency
	Running Lurette step by step
	Call sim2chro when Lurette resumes
	Put local variable in generated data file
	Precision
	Base RIF file name

	Supported Architectures and languages
	Installation and configuration issues
	A small tutorial illustrating Lurette in action
	A fault-tolerant heater controller in Lustre
	A first test session using a fake environment
	A test session using hard-wearing sensors
	Specifying an oracle
	A test session using wearing sensors

	The fault-tolerant heater controller
	Lurette Architecture -- Components Description
	Interfacing Lurette with the SUT
	Interfacing Lurette with the Oracle
	Interfacing Lurette with the Environment simulator

	The RIF conventions

