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Abstract

In previous work, we have proposed a framework for black-box conformance testing of real-
time systems based on timed automata specifications and two types of tests: analog-clock or
digital-clock. Our algorithm to generate analog-clock tests is based on an on-the-fly deter-
minization of the specification automaton during the execution of the test, which in turn relies
on reachability computations. The latter can sometimes be costly, thus problematic, since the
tester must quickly react to the actions of the system under test. In this paper, we provide tech-
nigues which allow analog-clock testers to be represented as deterministic timed automata,
thus minimizing the reaction time to a simple state jump. We also provide a method for (stati-
cally) generating a suite of digital-clock tests which covers the specification with respect to a
number of criteria: location, edge or state coverage. This avoids having to generate too many
tests, as can be evidenced on a small example.
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Moez Krichen and Stavros Tripakis

1 Introduction

Testing is a fundamental step in any development process. It consists in applying a set of experiments to
a systemgystem under test SUT), with multiple aims, from checking correct functionality to measuring
performance. In this paper, we are interested in so-calieck-box conformance testingshere the aim is

to check conformance of the SUT to a given specification. The SUT is a “black box” in the sense that we
do not have a model of it, thus, can only rely on its observable input/output behavior.

Our work targetseal-timesystems, that is, systems which operate in an environment with strict timing
constraints. Examples of such systems are many: embedded systems (e.g., automotive, avionic and robotic
controllers, mobile phones), communication protocols, multimedia systems, and so on. When testing real-
time systems, one must pay attention to two important facts. First, it is not sufficient to check whether the
SUT produces the correct outputs; it must also be checked that the timing of the outputs is correct. Second,
the timing of the inputs determines which outputs will be produced as well as the timing of these outputs.

Classical testing frameworks are based on Mealy machines (e.g.] 3e&) or finite labeled tran-
sition systems- LTSs (e.g., see?p, 11, 18, 3, 14]). These frameworks are not well-suited for real-time
systems. In Mealy machines, inputs and outputs are synchronous, which is a reasonable assumption when
modeling synchronous hardware, but not when outputs are produced with variable delays, governed by
complex timing constraints. In testing methods based on LTSs, time is typically abstracted away and time-
outs are modeled by speciahctions P& which can be interpreted as “no output will be observed”. This
is problematic, because timeouts need to be instantiated with concrete values upon testing (e.g., “if nothing
happens for 10 seconds, output FAIL"). However, there is no systematic way to derive the timeout val-
ues (indeed, durations are not expressed in the specification). Thus, one must rely on empirical, ad-hoc
methods.

In previous work P2] we have proposed a testing framework for real-time systems based on speci-
fications modeled asmed automata— TA [1] with inputs, outputs and unobservable actions. We have
presented techniques for generating two types of testalog-clocktests which measure real-time pre-
cisely anddigital-clocktests which can only count the ticks of a digital clock.

Our technique for generating analog-clock tests is based om-he-fly determinizatioof the speci-
fication automaton during the execution of the test. This technique, introduced fiof purposes of fault
detection, is essential in order to avoid two problems. First, the fact that timed automata cannot always be
determinized ][] and it is undecidable to check determinizabili§/]. Second, the problem that analog-
clock tests cannot be represented (statically) as finite trees. This is because the response delays of the SUT
are unknown and in dense-time, which requires a tree of infinite branching.

On-the-fly testing avoids both problems above, by generating the test strategy during the execution of
the test (when the response delays become known). The on-the-fly determinization algorithm is essentially
a reachability computation on the specification automaton. This can be problematic: timed automata reach-
ability can be costly; but the tester must quickly respond to the inputs it receives from the SUT since the
two interact in real-time.

Digital-clock tests, on the other handan be represented statically as finite trees. A special input,
tick, models the reaction of the tester to the ticks of its own clock. This reaction is simply “jumping” to a
successor node in the tree, thus, fast. However, a new problem arises, namely, how many tests to generate
and which ones. A simple approach is to generate all possible tests up to a given depth, defined by the user.
However, this quickly leads to explosion, even for small examples, as showfiin [

In this paper, we show how to improve the testing framework by providing solutions to the two prob-
lems discussed above. First, we provide techniques which allow analog-clock tests to be represented as
deterministic timed automata. This results in minimizing the reaction time of the tester to a simple state
jump. Since timed automata determinization is undecidahlg fve take a pragmatic approach. We sup-
pose that the tester disposes of a single clock and that this clock is reset every time the tester receives an
observable input. Then, we provide techniques to compute the locations, edges, guards and deadlines
of the tester automaton. Naturally, having only one clock implies that the tester will nzirbpletein
general, i.e., it might accept behaviors of the SUT which should be rejected. However, we guarantee that
the tester isound(i.e., when it announces “FAIL", the SUT is indeed non-conforming). We can also show

1 The technique can be extended to more than one clocks, assuming we fix the points where each clock is reset.
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that the tester “does its best” given the information that it has, that is, the tester is in a sense the optimal
one-clock tester (which resets its clock at every transition).
The second contribution of this paper is a method to statically generate a suite of digital-clock tests
which covers the specification with respect to a number of criteria, natoetjon, edge or state coverage
The benefits can be significant. For the example considered’jnduites of less than ten tests suffice to
achieve coverage, whereas exhaustive suites contain several thousands of tests even for small depths.
The rest of this paper is organized as follows. SecHarviews our testing framework, namely, the
specification model, the conformance relation and the types of tests we consider. Squésents our
technique for generating timed automata testers. Sedtipresents our coverage technique. Secfon
discusses our tool and two case studies. Se@jmresents the conclusions and future work plans.

Related work

Most existing real-time testing frameworksy 12, 21, 24, 27, 25, 20] consider only restricted subclasses

of the TA model. For instance, TA witlsolatedand urgentoutputs in p7, 20] or event-recording au-
tomata in P4]. Our framework can fully handle non-deterministic and partially observable specifications.
This is essential for ease of modeling, expressiveness and implementability. Specifications are often built
in a compositionalway, from many components. This greatly simplifies modefingn such cases, in-

ternal component interactions are typically unobservable to the external world, thus, also to the tester.
Abstractions can also result in non-determinism and partial observability. The latter is also essential for
implementability, since it may be hard, in practice, to export all events to the tester. Other differences of
our work with other frameworks include the conformance relation used and the types of tests generated.
For an extensive comparison the reader is referredip [

To our knowledge, there is no work on generating testers represented as timed automata. The closest
in spirit is the work on timed controller synthesis reporteddh [There, it is shown that the problem of
synthesizing a timed automaton controller is decidable iffrds®urcesof the controller are fixed, where
the resources are the number of clocks, their granularity and the maximal constant that can be used in the
guards of the controller. The decidability result relies on a region-graph construction and also uses the
notion of symbolic alphabet, which essentially encodes all possible reset/guard combinations for the given
resources. Our approach fixes the number of clocks, maximal constant and points where the clocks are
reset. Our generation algorithm does not rely on the region graph but on symbolic reachability.

Regarding coverage? [] provides techniques for generating tests covering edges, locations or definition-
use pairs for clock variables of the specification. These techniques rely on the assumption that outputs are
urgent and isolated. Thanks to this assumption, every input sequence results in a unique output sequence.
This means that tests asequencesather than trees. Thus, finding a test can be reduced to a standard
reachability problem for timed automata.

2 The Testing Framework

We briefly present our testing framework. Séé][for more details and examples.

2.1 Timed Automata with Inputs, Outputs and Unobservable Actions

To model the specification, we use timed automalajth deadlinedo capture urgency’f, 7], and input,
output and unobservable actions, to capture inputs, outputs and internal actions of the SUT.

Let R be the set of non-negative reals. Given a finite seaafonsAct, the set(Act U R)* of all
finite real-time sequencesver Act will be denotedRT(Act). € € RT(Act) is the empty sequence. Given
Act’ C Actandp € RT(Act), Pacv (p) denotes therojectionof p to Act’, obtained by “erasing” from all
actions not inAct’. For example, ifAct = {a, b}, Act’ = {a} andp = a1b2a 3, thenPa (p) = a3 a3.
The time spent in a sequenpedenotedime(p) is the sum of all delays ip, for exampletime(e) = 0
andtime(a160.5) = 1.5.

2 Notice that a compositional specification does not require that the SUT be implemented following the same structure. Composi-
tion is merely a way of modeling the specification.
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A timed automaton ovekct is a tuple(Q, qo, X, Act, E) whereQ is a finite set ofocations ¢, € @ is
the initial location;X is a finite set otlocks E is a finite set obdges Each edgeis atuple, ¢’, vy, r, d, a),
whereg, ¢’ € @Q are the source and destination locationss theguard a conjunction of constraints of the
form z#c, wherex € X, cis an integer constant agd € {<, <,=,>,>}; r C X is the set of clocks to
bereset d € {lazy, delayable, eager} is thedeadline anda € Act is the action. We will not alloveager
edges with guards of the form> c.

A TA A defines an infinite labeled transition system (LTS). Its states are pairéq,v) € Q x RX,
whereq € Q is a location and : X — R is a clockvaluation Given states = (¢,v) and clockz, we
write z(s) to denote the value of at s, i.e.,v(z). 0 is the valuation assigningto every clock of4. S,
is the set of all states ang' = (¢o, 0) is the initial state. There are two types of transitions, discrete and
timed. Discrete transitions are of the fomm= (¢,v) % s’ = (¢/,v’), wherea € Act and there is an
edgee = (¢q,4¢', %, r, d,a), such tha satisfies) andv’ is obtained by resetting to zero all clocksrimnd
leaving the others unchanged. We say thistenabled at and writes |= ¢ (or s |= ). Timed transitions

are of the form(q, v) 4 (g,v +t), wheret € R,¢t > 0 and there is no edg@, ¢”, %, r, d,a), such that:
eitherd = delayable and there exish < t; < t5 < t such thab + ¢t; = ¢ andv + to £ ¢; or d = eager
and there exist8 < ¢; < ¢ such that + ¢; | . We use notation such ass, s 7?», ..., to denote that
there exists’ such thats = s, there is no suck’, and so on. This notation naturally extends to timed
sequences. For example,“—”’> s' if there existsy, s such thats = s; R S b ¢, Astates € Sa

is reachableif there existsp € RT(Act) such thatsg % s. The set of reachable states 4fis denoted
Reach(A).

In the rest of the paper, we assume given a set of acthanspartitioned in two disjoint sets: a set
of input actionsAct;, and a set obutput actionsAct,,;. We also assume there is anobservable action
T & Act. LetAct, = ActU {r}.

A timed automaton with inputs and outp@ AIO) is a timed automaton ovekct,. A TAIO is called
observablef none of its edges is labeled by A TAIO A is calledinput-completéf it can accept any input
at any state¥s € Reach(A).Va € Actj,.s 5. Itis calleddeterministidf Vs, s’, s” € Reach(A).Va €

Act,.s > s’ As 5 5" = s’ = s, Itis callednon-blockingf
Vs € Reach(A) .Vt € R.3p € RT(Actou U {7}) . time(p) =t A s 5> . 1)

The non-blocking property states that at any stdtean let time pass forever, even if it does not receive
any input. This is a sanity property which ensures that a TAIO does not “force” its environment to provide
an input by blocking time.

The set ofobservable timed tracesf A is defined to be

Traces(A) = {Pact(p) | p € RT(Act,) A sit 2} (2)
Finally, given a set of states C S4 anda € Act, we define the following operator:
succ(S,a) ={s' € Sa|Is € S.Fp € RT({r}).5s 25 & (3)

succ(S, a) contains all states that can be reached from some staiebin performinga followed by an
unobservable sequenpe

2.2 Specifications, Implementations and Conformance

We assume that the specification of the system to be tested is given as a non-blockingl JAI®e

assume that the SUT, also calletplementationcan be modeled as a non-blocking, input-complete TAIO

Ar. Notice that we do not assume thd is known, simply that it exists. The assumption4d$ and A;

being non-blocking is natural, since in reality time cannot be blocked. The assumptignbefing input-
complete is also reasonable, since a system usually accepts all inputs at any time, possibly ignoring them
or issuing an error message when the input is not valid. Notice that we do not assume, as is often done,
that the specificatiodl g is input-complete. This is becauglg needs to be able to model assumptions on

the environment, i.e., restrictions on the inputs. For instance, a gugrd on an edge labeled with input

a is interpreted asif a is received whiler < 2 thenit must be guaranteed that ...".
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In order to formally define the conformance relation, we introduce a number of operators. In the
definitions that follow,A is a TAIO,o € RT(Act), s is a state ofd andS is a set of states od.

0(A)={s e Sa|3peRT(Act,) . s L s A Pace(p) =0}
elapse(s) = {t > 0| 3p € RT({7}) . time(p) =t A s >}
out(s) = {a € Actoyt | 5 =} U elapse(s)

out(S) = J,cgout(s).

o(A) is the set of all states ofl that can be reached by some timed sequeneghose projection to
observable actions is. elapse(s) is the set of all delays which can elapse frewithout A making any
observable actionout(s) is the set of all observable “events” (outputs or delays) that can occur when the
system is at state

The timed input-output conformance relatiodenotedtioco, requires that after any observable se-
guence specified id g, every possible observable output4f (including delays) is also a possible output
of Ag. Notice that this requirement only refers to outputs, thus, the factAhatccepts generally “more
inputs” thanAg does not pose problems of non-conformance: it simply means that the implementation
is required to be conforming only with respect to the input assumptions given in the specificadian.
is inspired from its “untimed” counterparipco [28]. The key idea is that delays are considered to be
observable events, along with output actions. Formallyconforms toA g, denotedA; tioco Ag, if

Vo € Traces(Ag) . out(o(Ag)) C out(o(Ag)). 4)

Due to the fact that implementations are assumed to be input-complete, it can be easily showeotisat
a transitive relation, that is, il tioco B andB tioco C' thenA tioco C. It can be also shown that checking
tioco is undecidable. This is not a problem for black-box testing: sitigés unknown, we cannot check
conformance directly, anyway.

tioco permits to express most useful types of requirements for real-time systems, such as the require-
ments that an output must be generated neither too late nor too early. It can also capture “observable
deadlocks”, that is, situations where no output is generated for a “long”*irRmally, it can capture
assumptions on the environment. For examples illustrating these featuresopkee P7].

2.3 Analog-clock and Digital-clock Tests

A test (ortest casgis an experiment performed on the implementation by an agentdsite). There are
different types of tests, depending on the capabilities of the tester to observe and react to events. Here,
we consider two types of tests (the terminology is borrowed frogl) ][ Analog-clocktests can measure
precisely the real-time delay between two observed actiDigital-clock tests can only count how many
“ticks” of a finite-granularity clock have occurred between two actions. For simplicity, we assume that the
tester and the implementation are started precisely at the same time. In practice, this can be achieved by
having the tester issuing the start command to the implementation.

It should be noted that we considataptivetests (following the terminology of’[3]), where the action
the tester takes depends on the observation history. Adaptive tests can be geermrapresenting the
strategy of the tester in a game against the implementation. Due to restrictions in the specification model,
which essentially remove non-determinism from the implementation strategy, some existing methods |

] generate non-adaptive testquences

An analog-clock test can be defined as a total funcfiorRT (Act) — Act;,U{L, pass, fail} specifying
the action the tester must take given its current observatiangifAct;, then the tester emits, if L then
the tester waits; if pass, fail} then the tester produces a verdict and stops). For the purpose of this paper,
which is to represent analog-clock testers as timed automata, it makes more sense to define an analog-clock
test directly as a TAIQI'. T has as inputs (resp. outputs) the outputs (resp. inputs) of the specification
Ag. T is observable (i.e., has noactions), deterministic and non-blocking. Locationsioare marked

3 The requirementdutputb must be emittedometimeafter inputa is received cannot be expressed ljoco. However, this
requirement is hardly testable: if we do not have an upper bound on the time that it takes &plemitcan we check conformance
within a finite amount of time?
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tick! tick!
o= S - -------- z=10 9<z <11
. Specification, | Tick automaton. eager delayable
L 7T 777777 i 4 S i 77777 1 3: = O a: = 0
Actin Actout tick! perfectly periodicTick Tick with skew
tick! =10,z :=0
L 9<z<10 eager
Tick with jiter: OQ—0——>0
z=10,z:=0 tick!
eager 0<ax<1

Figure 1: Extending the specification with a tester clock model and possible such models.

are either “input” or “output”. In an input location, the tester waits for an input from the SUT (i.e., some
a € Actoyt). In an output location, the tester emits an output (i.e., sbraeAct;,). Input locations ofl’
are input-complete with respect foct,,,t, that is, for each input locatiom, for anya € Act,,: and any
states = (q,v), s —. T must also satisfy thargentandisolatedoutput condition of 7] with respect
to Act;,. This means that if % for some state anda € Act;, then (a) time cannot elapse aind (b)

there is no otheb € Act;, such thats A, Thus, there is no ambiguity as to which output must be emitted
and when. The states @f will be partitioned intoacceptingandrejecting corresponding to “PASS” and
“FAIL" verdicts, respectively.
A digital-clock test can also be defined as a function: (Act U
{tick})* — Act;, U {_L, pass, fail}, wheretick is a new output action,
not in Act-, modeling the tick of the tester’s clock. In fact, the clock
b? % tick? of the tester can be modeled directly by extending the specification au-
FAIL PASS la' tomaton with aTick automaton, as shown in Figutgwe use notation
' ! for outputs and’ for inputs). TheTick automaton models the digital
b7, CT’/\“S“’ clock of the tester. Differenifick automata can be used, depending on
whether we want to model a clock which is assumed to be perfectly
periodic, or a clock with skew, and so on. At the end, we obtain an
Figure 2: A digital-clock test extended specification model, denotégf, and the objective becomes
represented as a finite tree. {0 generate anntimedtest forAfic. The test is untimed because it only
has access to discrete observable actions, namely, all actions in the set
Act U {tick}. The test has no direct access to time, it merely observes
tick actions. Such a test can be represented as a finite tree, like the one shown iRFigodes in this
tree are marked either “input” or “output”. In an input node, the tester waits for an input or the next tick of
its clock. In an output node, the tester emits an output. Leaves are labeled PASS or FAIL.

a!

PASS FAIL

3 Generating Timed Automata Testers

The problem of generating an analog-clock test represented as a TAIO can be anything from trivial to
undecidable, depending on its precise definition. If we require a test which is only sound, then the problem
is trivial, because a test always announcing PASS is sound. On the other hand, if we require a test which
is also complete, then we face two problems: (a) such a test may not exist because the specification is
non-deterministic whereas the test has to be deterministic, but TA are not determinizable; (b) checking and
producing a deterministic test when it exists can be shown to be an undecidable proijlem [

To avoid these difficulties, we take a pragmatic approach. We suppose that the tester has only one
clock which is reset every time the tester observes an action, that is, at any edge of the tester TAIO. We
then provide techniques to compute the locations and edges of the tester automaton and the guards and
deadlines of the edges.
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It should be noted that the above technique can be easily extended to generate testers with more than
one clock, provided thekeletorof the tester is given. The skeleton is a deterministic finite automaton the
transitions of which are labeled with resets of the clocks of the tester. This information is necessary since,
for a given number of clocks (even for one clock) there exist many possible testers which differ in their
logic of resetting clocks. A special case ise@rent-clockester which has one clock for each observable
action, reset when this action occurs, aswent-clock automatg].

3.1 “One-clock Determinization” of Timed Automata

For pedagogical reasons, we first explain our technique for plain timed automata, which can be seen as
TAIO with an empty set of input actions. For such an automatptine technique amounts to determinizing
A “as best as possible”, given that we can only use one clock. Formally, the deterministic countedpart of
denotedAon, Will accept a superset dfraces(A). Notice thatA may contain unobservable actions and
non-determinism. Viewing! as the specificatiomM ., is amonitorfor A.
Anon IS @ TAIO which has as inputs the outputs of
y A. Anon is Observable, deterministic and input-complete.
2 All its locations are input locationsA,,,, uses a single
clock,y, which is reset to zero every time an action is ob-
y>>5 b1 served.Aon tries to estimate the state dfbased on its
{¢2} -~ current observation (including the value of its own clock
Sp-=----- i i y). Amon has no urgency constraints: all its deadlines are
/ lazy, thus,Amen IS non-blocking.A..., needs no urgency
because it acts as an “acceptor” rather than a “generator”
l<y<5 _of traces_. On the other hand, the stateglgf,_n _(incll_Jd-
(01, 02} ing Iocgtlons and_ va_lues of the clogh are divided into
accepting and rejecting.
Let A = (@, qo, X, Act,E) and supposeg is a new

2 clock, notinX. Let .S be the set of states of extended

with the clocky, thatis,S% = Q x RX“{¥}. For an action

<1 lr------> i a € Act, letE, C E be the set of edges of which are
?{{%} labeled witha. For a given set of extended states. S%

and a value: € R of clocky, we define the set of edges:

Eo(S,u)={e€E,|3se€S.y(s) =unsk=e}. (5

Figure 3: lllustration of the-§ equivalence. E.(S,u) contains all edges labeledwhich are satisfied

by a state inS wherey equalsu. Finally, we define the following equivalence on valugsus € R of the
clocky:
up ~Suy  iff Egl(S,u1) = Eo(S, ug). (6)

The intuition is as follows. Two values af are equivalent if they give the same information on the en-
abledness of an edge labeled wittassumings holds. S captures the current “knowledge” of the monitor.
In particular, it captures the relation between valueg ahd possible states whedecan be in.

Let us illustrate the meaning ef¢ with the example shown in FiguB We assume that

and thatg has two outgoing edges and e, labeleda, with guardsg; = « < 3and¢s, = = > 2,
respectively. Thery-% induces three equivalence classes, namely, 1,1 <y < 5 andy > 5. Indeed,
given the assumption2 <z —y < 1,y < limpliesz < 2. Thus, wheny < 1 we know thatp, does not
hold, thereforeg, is not enabled. Similarly, whep > 5 we know that; is not enabled. Wheh < y < 5,
bothe; ande; may be enabled. It is important to note that all states inS for which1 < y < 5 satisfy
¢1, and similarly forg,. However, given our information ap we cannot be sure. Thus, we need to include
bothe; ande; in the set of possible enabled edges, given the constrainy < 5.

We now explain the construction of the monitor automatqn,,. A location ofA,,,, is associated with
a set of extended states df S C S%. For each actiom, for each equivalence clagsin the (coarsest)
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partition induced by~%, Anon has an edge = (5,5, v, {y}, lazy, a), where the destination locaticst
is computed as follows:

S’ = succ(S N, a) (7)

whereS N+ denotes the set of all states S such thay(s) = ¢. Notice thatS’ can be empty, even when
S'is non-empty. This is becaugemay be unsatisfied if. Also note thaiS’ is the “best” possible estimate,
in the sense that’ is the smallest set possible, given the knowledge the monitor has wheives. This
knowledge is captured by N . Indeed, the monitor knows thzlt cannot be in a state outside It also
knows that clocky satisfies), which further restricts the possible statégsan be in.

Let AY be the automatori extended with clock and recall thak;'” denotes the initial state ofV.
Then, the initial location o, is defined to beSy = {s € Sav | 3p € RT({7}).s8" & s}. So
captures the initial knowledge of the monitor. The latter knows that initialynd all clocks ofA equal
zero. HoweverSy must also include all states thdtcan move to by performing unobservable sequences.

It remains to define the accepting and rejecting statek.@f. GivenS C 5%, letS,, be the projection
of S on clocky, thatis,S,, = {u € R | 3s € S.y(s) = u}. Then, all state$S,S,,) of A, are
accepting, providedd # (. The rest of the states are rejecting. The above algorithm is essentially a
subset constructiofor A, with the addition that clock is used to infer knowledge about states tHatan
possibly be in. The construction relies on repeating two basic steps: (a) computing the partition induced by
equivalences-%, and (b) computing successor locatigfisusing reachability. We show how step (a) can
be implemented below. As for step (b), standard symbolic reachability techniques, coupled with so-called
extrapolation abstractionsan be used to ensure that the number of possible locatiods,&f remains
finite [16, 4, g].

In such abstractions, the maximal constants compared with each
clock play an essential role. These constants are known in the casé¢
of the clocks ofA but must be specified by the user for the monitor J eager

clock y. Indeed, increasing the maximal constant foamounts

to increasing the observational power of the monitor. In fact, there
are cases where there is no optimal monitor: the greater the maximal =1
constant allowed foy is, the more precisd,,,., will be, in the sense
of how “close” the language ofl,.o, is to the language ofl. An Figure 4. A TAIO which can pro-
example is shown in Figuré. The TAIO shown in the figure can ducea! attimes 1, 2, 3, ...

produce a single output at any timek, wherek € {1,2,...}. It

can be seen that for any sutha monitor able to compangto constants up té is “less accurate” than

a monitor able to compargto constants up té + 1. Indeed, the former cannot distinguish betweaén
happening precisely at timeor at time strictly greater thak, while the latter can.

A simple algorithm for computing the coarsest partition induced~lyis the following. Given a
constrainty on clocky, letES¥ = {e € E, | SN (¢ A guard(e)) # 0}, whereguard(e) is the guard of
edgee. ES¥ contains all edges labeledwhose guards may be satisfied by a staté wherey lies in
the intervaly. In other wordsES*¥ is the union ofE, (S, ) over all values: satisfyingy. Now, let K
be the greatest constant appearing in a constraint defthiaga guard of an edge iB,. For eachy in
the set of intervalg[0, 0], (0,1), [1,1],(1,2), ..., [K, K], (K, o0)}, computeES:¥. For this, the condition
S N (¥ A guard(e)) # 0 needs to be checked. This can be done symbolically, using standard techniques
and data structures such as DBMs{7]. OnceE>"¥ is computed for all intervalg, the coarsest partition
is obtained by “merging” (i.e., taking the union of) intervals having the sam&:3&ét For the example
of Figure3, ESW<! = {e;}, ES1SVS5 = [e) ey} andESY>° = {e,}. Notice that the correctness of the
above algorithm relies on the fact that all values in an intefial+ 1) are equivalent, and the same is true
for the interval( K, o0). This is because constraints only have integer constants.

Let us give an example illustrating the construction4y,,. Consider the non-deterministic timed
automaton shown in Figurg All its edges ardazy, except the one from location 2 to location 4, which
is delayable. Its one-clock monitor automaton is shown in FigéteNot all locations and edges of the
monitor are shown, in order not to overload the figure. In particular, the empty location and all edges
leading to it are not shown. For instance, there is an edge labeldth guardy > 5 from the initial
location to the empty location, sineds not accepted if it arrives after 5 time units from start. All states of
the monitor are accepting, except from the empty location and the states of lo§atiof2, = = y < 2)
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1<z<2
delayable

©  ©

Figure 5: A non-deterministic timed automaton.

Figure 6: The one-clock deterministic monitor of the automaton of Figure

wherey > 2 (notice thatS/, is the constraingy < 2). This is because must be received at most 2 time
units aftera, in order to be accepted. Note that there are no such rejecting states at Istatiofl, 1 <

x—y <2)U (2,2 =y < 2). This is because the monitor does not know whether the original automaton
is at location 1 or 2, and there is no urgency at location 1. Indﬁ’%di,s the constraintrue.

3.2 From Monitors to Testers

We now consider the general case of TAIO with both input and output actions. In this case, the monitor
becomes a tester, since it must supply inputs to the SUT. Formally, the tester is an analog-clock test TAIO,
denotedA..s, as defined in Section.3.

The algorithm for constructingl..s: is a generalization of the algorithm for building.,. As with
Amon, €ach location ofd;.s: is a setS C 5. The choice of marking a location as input or output is made
by the algorithm non-deterministically. For locations marked as input, their outgoing edges are computed
as shown in the previous section, using the equivalesfgewhere, in this casey € Actyy. In order to
mark a locationS as output, there must existe Act;, andu € R such that

VseS.y(s)=u=s5%.

This condition guarantees that whenr= « thena is a relevant input, that is, it satisfies the environment as-
sumptions given in the specification.dfis indeed marked as output, then the e@i§e5’, y = u, eager, a)
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is added toA..;, whereS’ is computed as shown in the previous section. Notice that the deadline of the
edge iseager: this is because we want the output to be emitted at a precise point in time, otherwise the
tester is not time-deterministic. To finduasatisfying the condition above, we first compute the constraint
Ps o (y) on clocky:

Ps . (y) =Vq,Vz.(q,z,y) € S = Je € E,. (¢, z) |= guard(e)

whereq andz are variables denoting the location and clockslpfespectively (we slightly abuse notation

and writeVz instead ofvv € RX). Ps ,(y) can be computed symbolically by using quantifier elimination

to eliminate variableg andx. Ps ,(y) is a linear constraint og. Thus, we can check satisfiability in a
constructive way and find the valuewe seek. If we cannot find an integer valugthen we pick a rational
value and multiply at the end of the construction all constants in the automaton with a sufficiently large
constant to make them integer.

The states ofd..; are defined to be either accepting or rejecting, as with,. Rejecting states
correspond to the tester emitting a “FAIL’ verdict. On the other hand, there is no specific point in time
where the tester emits a “PASS”. Indeed, the execution of the test can go on as long as the tester remains
in an accepting state. The user can stop the test when he/she is tired of waiting. Coverage criteria, similar
to the ones discussed in Sectidrcan also be considered, since each locatiorf; essentially covers
a set of states ofl. The difference is that in this case the book-keeping of coverage must be performed
on-the-fly, that is, during execution of the test. Also, since tester outputs are urgent, more than one tests
will generally be necessary to achieve coverage. Studying such coverage methods is part of our ongoing
work.

4 Generating Digital-clock Tests with respect to Coverage Criteria

In [27] we have given an algorithm to generate a digital-clock test using symbolic techniques similar
to the ones presented in the previous section. The algorithm takes as input an extended specification
model At and generates a test tree like the one shown in Figurblodes of the tree correspond to

sets of states oﬁgd‘. Nodes are marked input or output non-deterministically, as when generating timed
automata testers. In order for a nosi¢éo be marked output, there must exist an action Act;, such that

S" = succ(S,a) # 0. In this case, the algorithm chooses such an action and generates afi €dge.

For each input nod#8 and every actioh € Act,,: U{tick}, the algorithm generates an edigeg S inthe
test tree, withS” = succ(S,b). If S” = (), thenS” is marked “FAIL". Otherwise, the algorithm continues
to extend the test from§”’.

The above algorithm is only partially specified. It must be completed by specifying a policy for marking
nodes as input or output, for choosing which of the possible outputs to emit and for choosing when to stop
the test. An easy way is to resolve these choices randomly. This may not be satisfactory when some
completeness guarantees are required or when repetitions must be avoided as much as possible. Another
possibility is to generate axhaustiveest suite up to a depthspecified by the user. This approach suffers
from theexplosionproblem, since the number of tests is generally exponential in

To remedy the above problems, many approaches have been proposed for generating test suites with
respect to a giveroverage criterion Different coverage criteria have been proposed for software, such
as statement coverage, branch coverage, and s@4n [n the TA case existing methods attempt to
cover either finite abstractions of the state space (e.g., the region grgpir p time-abstracting quotient
graph P4]) or structural elements of the specification such as edges or locatighns [

Here, we propose a new technique for covering states, locations or edges of the specifiction.
technique relies on the conceptaliservable grapiof the composed automatottic®, denotedOG. This

tick

graph is generated as follows. The initial node of the graffyis- {s | Ip € RT({r}). 5543 2 s}. For

each generated nodeand each: € Act U {tick}, a successor nod® = succ(S, a) is generated and an
edgeS % S’ is added to the graph. Extrapolation abstractions can be used here as well, to ensure that the
graph remains finite.

4 As mentioned in the introduction, we cannot use the techniquéG@fiecause it relies on the assumption that outputs in the
specification are urgent and isolated.
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Every node oG corresponds to a set of state®f Atic. We say that the nodeoversS. On the other
hand, every static test tree is essentially a sub-grafihGofWe say that such a test covers the union of all
sets of states covered by its nodes. We say that a set of tes¢st{(suitg¢ achievestate coveragd every
reachable state ofs is covered by some test in the suite.

Similarly, a nodeS of OG covers a locatiory of Ag if S contains some state= (¢,v). A test suite
achievedocation coveragdf every reachable location of g is covered by some test in the suite. Whean
is built compositionally, we can distinguish betweagabal andlocal location coverage. In global location
coverage, we require that all reachable global locations be covered. A global location is daectoy,, )
wheren is the number of components aqds the local location of componeitin local location coverage,
we simply require that all reachable individual locations of components be covered. Clearly, a test suite
achieving global location coverage also achieves local location coverage, but the converse is not generally
true. Similarly, a test suite achieving state coverage also achieves both local and global location coverage,
but the converse is not always true.

Every edge of0G can be associated to a set of edgesief In particular, an edgé = S’ will be
associated to all edges which are visited during the reachability algorithm which conffjuiesn S.
Formally, if s € S, s € S’ ands £% ' for an unobservable sequengeall edges in the path from
to s’ are covered by the edge % S’. We say that a test suite achieveige coveragé every reachable
edge ofAg (i.e., an edge enabled at a reachable statéfis covered by some test in the suite. A test
suite achieving edge coverage also achieves local location coverage. However, it may not achieve global
location (or state) coverage.

We now give an algorithm to generate a test suite achieving coverage with respect to a given criterion.
The first step is to build the observation graph4if*. Then, tests are extracted statically fr@, until
coverage is achieved. We first consider location coverage. Tests are extracted as follows.

While there are reachable locations not covered, the algorithm picks such a locatign, ISext, it
picks a nodey of OG associated witly (such a node exists singeis reachable) and finds a path@G
from the initial node tav. Then, it extends this path into a test tree. This can be done by completing the
path with the missing edges, labeled with tester inputs. For instance, if there is an,;edges, in the
path, witha € Acto, U {tick}, then every outgoing edge of labeled with a tester input i.e., every edge

1 b, V', b € Actoy U {tick}, must be adde8l. The leaves of the tree are labeled PASS, except if a leaf

is empty, in which case it is labeled FAIL. This new test is added to the set of tests already generated and
the algorithm repeats choosing a new uncovered location, until all locations are covered. Notice that the
algorithm is essentially an AND/OR search in a finite graph, AND nodes being input nodes and OR nodes
being output nodes.

A state-covering suite can be extracted in a similar way. If some stigtaot covered, we first find a
nodewv of OG coverings. Then we extract a test includingas above. Notice that this test will cover not
only s, but a set of states containirglt will at least cover the region in whichbelongs. This guarantees
that the algorithm terminates with a finite test suite, even though the set of states is infinite. The algorithm
is also similar for edge coverage, with the difference that instead of finding a path reaching a target node
of OG, the algorithm finds a path reaching a target edge (the so-far uncovered edge).

It can be shown that for every reachable statd gtthere exists a nodg of OG covering this state, and
similarly for locations and edges. Thus, covering all nodeG@suffices to achieve coverage for each of
the three criteria above. Sin€G is finite, a finite number of tests suffices to achieve coverage, thus, the
algorithm terminates. The worst-case complexity of the algorithm is polynomial in the ix@.dhdeed,
finding a node (or edge) @G associated with a location (or edge)4f is linear. Finding a path iDG
and extending the path into a test tree is also linear. These steps are performed at most as many times as
there are nodes i0G.

One drawback of the algorithm is that it does not always genenatemal test suites. A test suite is
minimal in the sense that if any test is removed from the suite, then coverage is no longer achieved. In
general the minimal suite is not unique. Moreover, adding a new test to the suite may result in making one
or more previously generated tests redundant. We are currently studying methods of generating minimal

5 Unreachable states afg can be ignored, since they play no role regarding conformance.
6 In general, it is a good idea to continue extending the test tree in this way. This is because, using such a policy, a single test will
cover as many locations as possible.
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Figure 7: A lighting device specification.
test suites.

5 Prototype tool and experiments

We have built a prototype test-generation tool, callédG, on top of the IF environmentl])]. The IF
modeling language allows to specify systems consisting of many processes communicating through mes-
sage passing or shared variables and includes features such as hierarchy, priorities, dynamic creation and
complex data types. Currently,TG allows the user to generate digital tests interactively, randomly or
exhaustively up to a given lengti.TG can also generate analog on-the-fly testers or monitors for a given
time granularity. Generation of timed automata testers and coverage criteria are being implemented.

We have used TG to test the executive subsystem of the Mars rover controller K9, developed at
NASA Ames. A detailed description of this case study can be found]irHere, we illustrate the benefit
of generating test suites with respect to coverage criteria on a small case study.

The case study is a modification of the light switch example presented]inThe (modified) specifi-
cation is shown in Figuré&. It models a lighting device, consisting of two modules: the “Button” module
which handles the user interface through a touch-sensitive pad and the “Lamp” module which lights the
lamp to intensity levels “dim” or “bright”, or turns the light off. The user interface logic is as follows: a
“single” touch means “one level higher”, whereas a “double” touch (two quick consecutive touches) means
“one level lower”. It is assumed that higher and lower is modulo three, thus, a single touch while the light
is bright turns it off.

The device communicates with the external world through inputh and outputsff, dim, bright.
Eventssingle and double are used for internal communication between the two modules threwgh
chronous rendez-vowmnd are unobservable to the external user. The Button module uses the timing pa-
rameteD which specifies the maximum delay between two consecutive touches if they are to be considered
as a double touch. The Lamp module uses the timing parametansiM which specify the minimum and
maximum delay for the lamp to change intensity (e.g., to warm-up a halogen bulb).

In order not to overload the figure, we omit most guards, resets and deadlinesin the Lamp module.
They are placed similarly to the ones shown in the figure (i.e., resets in inputs, guards and deadlines in
outputs). We also omit the names of most locations of the Lamp module. There are three main locations
named “Off, Dim, Bright” and a number of intermediate locations, for instance, “B-O” between “Bright”
and “Off”. The locations of the Button module are numbebed, 2.

In [22] we have reported on usingTG to generate the exhaustive digital-clock test suite for the light
switch specification, with parameter €&t= 1,m = 1, M = 2 and for various depths. We have obtained
68, 180, 591 and 2243 tests, for depth levels 5, 6, 7 and 8, respectively. It can be seen that the number of
tests grows exponentially with the depth and is very large, even for such a small example.
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On the other hand, a very small test suite suffices to cover this specification with respect to any of the
three criteria of Sectiod. Consider, for instance, the two tests shown in Figlira order not to overload
the figure, each node of the tests is labeled only with the set of corresponding global locations; states are
omitted. Also, for output nodes we only draw the outgoing edges which do not lead to FAIL. For example,
node (2,0ff) of the leftmost test has three outgoing edges lalél@dim?, bright? and leading to FAIL.

Also, to save space, we draw the tree as a DAG (directed acyclic graph).

It can be seen from the figure that these two tests cover local locations. It is not difficult to check that
the two tests cover edges as well. In fact, we can see from the figure that the two tests “walk trough” all
observable edges of the specification. So it only remains to check that the unobservable edges are covered
too. This is true since they are all visited between one of the pairs of sucasdsvibe two tests have
(this is why nodes of the tests between successiks are labeled with pairs of global locations and not
single global locations as for the other nodes).

The two tests do not achieve global location (and, consequently, neither state) coverage. For example,
location (1,0-B) is not covered. However, 18 out of 30 global locations are covered. For covering the
rest, it is possible either to generate more tests or to extend one of the two tests above. For instance, we
can append the rightmost test at the end of the leftmost one.Also, in order to cover location (1,0-B), say,
we can consider node (0,0-B) ofthe leftmost test as an output node instead of an input node (issuing the
onlypossible outputouch!) and keep the remaining part of the test unchanged.Doing this, we can obtain a
single test of depth 41 which achieves global location coverage. Alternatively, a suite of 8 tests of lengths
smaller that those of Figur@ suffices to achieve global location coverage. This suite can be generated
by the algorithm of Sectiod. Notice that the depth of the leftmost test of Fig8ris 19. Generating an
exhaustive test suite up to this depth would be infeasible due to explosion.

6 Conclusions and future work

The main contributions of this paper are two techniques for improving on-the-fly analog-clock testing and
static digital-clock test generation. First, we have provided an algorithm to generate analog-clock testers
which are represented as timed automata with one clock. This permits to minimize the reaction time of
on-the-fly testing. Second, we have provided an algorithm to generate digital-clock test suites with respect
to several coverage criteria, namely, state, location and edge coverage. This permits to significantly reduce
the number of generated tests with respect to an approach of exhaustive test generation up to a certain
depth, as evidenced on a small case study.

We are currently implementing oRTG the test generation technique with respect to coverage criteria
of Section4 and studying methods to generate minimal test suites. We are also implementing the timed
automata tester generation technigue of Secdi@md examining notions of coverage in this context as
well.
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