
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Real-time Testing with Timed
Automata Testers and Coverage

Criteria

Moez Krichen and Stavros Tripakis

Report no TR-2004-15

June 15, 2004

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Real-time Testing with Timed Automata Testers and Coverage
Criteria

Moez Krichen and Stavros Tripakis

June 15, 2004

Abstract

In previous work, we have proposed a framework for black-box conformance testing of real-
time systems based on timed automata specifications and two types of tests: analog-clock or
digital-clock. Our algorithm to generate analog-clock tests is based on an on-the-fly deter-
minization of the specification automaton during the execution of the test, which in turn relies
on reachability computations. The latter can sometimes be costly, thus problematic, since the
tester must quickly react to the actions of the system under test. In this paper, we provide tech-
niques which allow analog-clock testers to be represented as deterministic timed automata,
thus minimizing the reaction time to a simple state jump. We also provide a method for (stati-
cally) generating a suite of digital-clock tests which covers the specification with respect to a
number of criteria: location, edge or state coverage. This avoids having to generate too many
tests, as can be evidenced on a small example.

Keywords: real-time systems, timed automata, conformance testing, black-box, partial observability, cov-
erage

Reviewers:

Notes: Work partially supported by CNRS STIC project “CORTOS”.

How to cite this report:

@techreport{ ,
title = { Real-time Testing with Timed Automata Testers and Coverage Criteria},
authors ={ Moez Krichen and Stavros Tripakis},
institution ={ Verimag Technical Report},
number ={TR-2004-15},
year ={ },
note ={ }
}

Moez Krichen and Stavros Tripakis

1 Introduction

Testing is a fundamental step in any development process. It consists in applying a set of experiments to
a system (system under test− SUT), with multiple aims, from checking correct functionality to measuring
performance. In this paper, we are interested in so-calledblack-box conformance testing, where the aim is
to check conformance of the SUT to a given specification. The SUT is a “black box” in the sense that we
do not have a model of it, thus, can only rely on its observable input/output behavior.

Our work targetsreal-timesystems, that is, systems which operate in an environment with strict timing
constraints. Examples of such systems are many: embedded systems (e.g., automotive, avionic and robotic
controllers, mobile phones), communication protocols, multimedia systems, and so on. When testing real-
time systems, one must pay attention to two important facts. First, it is not sufficient to check whether the
SUT produces the correct outputs; it must also be checked that the timing of the outputs is correct. Second,
the timing of the inputs determines which outputs will be produced as well as the timing of these outputs.

Classical testing frameworks are based on Mealy machines (e.g., see [13, 23]) or finite labeled tran-
sition systems− LTSs (e.g., see [29, 11, 18, 3, 14]). These frameworks are not well-suited for real-time
systems. In Mealy machines, inputs and outputs are synchronous, which is a reasonable assumption when
modeling synchronous hardware, but not when outputs are produced with variable delays, governed by
complex timing constraints. In testing methods based on LTSs, time is typically abstracted away and time-
outs are modeled by specialδ actions [28] which can be interpreted as “no output will be observed”. This
is problematic, because timeouts need to be instantiated with concrete values upon testing (e.g., “if nothing
happens for 10 seconds, output FAIL”). However, there is no systematic way to derive the timeout val-
ues (indeed, durations are not expressed in the specification). Thus, one must rely on empirical, ad-hoc
methods.

In previous work [22] we have proposed a testing framework for real-time systems based on speci-
fications modeled astimed automata− TA [1] with inputs, outputs and unobservable actions. We have
presented techniques for generating two types of tests:analog-clocktests which measure real-time pre-
cisely anddigital-clocktests which can only count the ticks of a digital clock.

Our technique for generating analog-clock tests is based on anon-the-fly determinizationof the speci-
fication automaton during the execution of the test. This technique, introduced in [30] for purposes of fault
detection, is essential in order to avoid two problems. First, the fact that timed automata cannot always be
determinized [1] and it is undecidable to check determinizability [31]. Second, the problem that analog-
clock tests cannot be represented (statically) as finite trees. This is because the response delays of the SUT
are unknown and in dense-time, which requires a tree of infinite branching.

On-the-fly testing avoids both problems above, by generating the test strategy during the execution of
the test (when the response delays become known). The on-the-fly determinization algorithm is essentially
a reachability computation on the specification automaton. This can be problematic: timed automata reach-
ability can be costly; but the tester must quickly respond to the inputs it receives from the SUT since the
two interact in real-time.

Digital-clock tests, on the other hand,can be represented statically as finite trees. A special input,
tick, models the reaction of the tester to the ticks of its own clock. This reaction is simply “jumping” to a
successor node in the tree, thus, fast. However, a new problem arises, namely, how many tests to generate
and which ones. A simple approach is to generate all possible tests up to a given depth, defined by the user.
However, this quickly leads to explosion, even for small examples, as shown in [22].

In this paper, we show how to improve the testing framework by providing solutions to the two prob-
lems discussed above. First, we provide techniques which allow analog-clock tests to be represented as
deterministic timed automata. This results in minimizing the reaction time of the tester to a simple state
jump. Since timed automata determinization is undecidable [31], we take a pragmatic approach. We sup-
pose that the tester disposes of a single clock and that this clock is reset every time the tester receives an
observable input.1 Then, we provide techniques to compute the locations, edges, guards and deadlines
of the tester automaton. Naturally, having only one clock implies that the tester will not becompletein
general, i.e., it might accept behaviors of the SUT which should be rejected. However, we guarantee that
the tester issound(i.e., when it announces “FAIL”, the SUT is indeed non-conforming). We can also show

1 The technique can be extended to more than one clocks, assuming we fix the points where each clock is reset.

Verimag Research Report no TR-2004-15 1/15

Moez Krichen and Stavros Tripakis

that the tester “does its best” given the information that it has, that is, the tester is in a sense the optimal
one-clock tester (which resets its clock at every transition).

The second contribution of this paper is a method to statically generate a suite of digital-clock tests
which covers the specification with respect to a number of criteria, namely,location, edge or state coverage.
The benefits can be significant. For the example considered in [22], suites of less than ten tests suffice to
achieve coverage, whereas exhaustive suites contain several thousands of tests even for small depths.

The rest of this paper is organized as follows. Section2 reviews our testing framework, namely, the
specification model, the conformance relation and the types of tests we consider. Section3 presents our
technique for generating timed automata testers. Section4 presents our coverage technique. Section5
discusses our tool and two case studies. Section6 presents the conclusions and future work plans.

Related work

Most existing real-time testing frameworks [15, 12, 21, 24, 27, 25, 20] consider only restricted subclasses
of the TA model. For instance, TA withisolatedandurgentoutputs in [27, 20] or event-recording au-
tomata in [24]. Our framework can fully handle non-deterministic and partially observable specifications.
This is essential for ease of modeling, expressiveness and implementability. Specifications are often built
in a compositionalway, from many components. This greatly simplifies modeling.2 In such cases, in-
ternal component interactions are typically unobservable to the external world, thus, also to the tester.
Abstractions can also result in non-determinism and partial observability. The latter is also essential for
implementability, since it may be hard, in practice, to export all events to the tester. Other differences of
our work with other frameworks include the conformance relation used and the types of tests generated.
For an extensive comparison the reader is referred to [22].

To our knowledge, there is no work on generating testers represented as timed automata. The closest
in spirit is the work on timed controller synthesis reported in [9]. There, it is shown that the problem of
synthesizing a timed automaton controller is decidable iff theresourcesof the controller are fixed, where
the resources are the number of clocks, their granularity and the maximal constant that can be used in the
guards of the controller. The decidability result relies on a region-graph construction and also uses the
notion of symbolic alphabet, which essentially encodes all possible reset/guard combinations for the given
resources. Our approach fixes the number of clocks, maximal constant and points where the clocks are
reset. Our generation algorithm does not rely on the region graph but on symbolic reachability.

Regarding coverage, [20] provides techniques for generating tests covering edges, locations or definition-
use pairs for clock variables of the specification. These techniques rely on the assumption that outputs are
urgent and isolated. Thanks to this assumption, every input sequence results in a unique output sequence.
This means that tests aresequencesrather than trees. Thus, finding a test can be reduced to a standard
reachability problem for timed automata.

2 The Testing Framework

We briefly present our testing framework. See [22] for more details and examples.

2.1 Timed Automata with Inputs, Outputs and Unobservable Actions

To model the specification, we use timed automata [1] with deadlinesto capture urgency [26, 7], and input,
output and unobservable actions, to capture inputs, outputs and internal actions of the SUT.

Let R be the set of non-negative reals. Given a finite set ofactionsAct, the set(Act ∪ R)∗ of all
finite real-time sequencesoverAct will be denotedRT(Act). ε ∈ RT(Act) is the empty sequence. Given
Act′ ⊆ Act andρ ∈ RT(Act),PAct′(ρ) denotes theprojectionof ρ to Act′, obtained by “erasing” fromρ all
actions not inAct′. For example, ifAct = {a, b}, Act′ = {a} andρ = a 1 b 2 a 3, thenPAct′(ρ) = a 3 a 3.
The time spent in a sequenceρ, denotedtime(ρ) is the sum of all delays inρ, for example,time(ε) = 0
andtime(a 1 b 0.5) = 1.5.

2 Notice that a compositional specification does not require that the SUT be implemented following the same structure. Composi-
tion is merely a way of modeling the specification.

2/15 Verimag Research Report no TR-2004-15

Moez Krichen and Stavros Tripakis

A timed automaton overAct is a tuple(Q, q0, X,Act,E) whereQ is a finite set oflocations; q0 ∈ Q is
the initial location;X is a finite set ofclocks; E is a finite set ofedges. Each edge is a tuple(q, q′, ψ, r , d , a),
whereq, q′ ∈ Q are the source and destination locations;ψ is theguard, a conjunction of constraints of the
form x#c, wherex ∈ X, c is an integer constant and# ∈ {<,≤,=,≥, >}; r ⊆ X is the set of clocks to
be reset; d ∈ {lazy, delayable, eager} is thedeadline; anda ∈ Act is the action. We will not alloweager
edges with guards of the formx > c.

A TA A defines an infinite labeled transition system (LTS). Its states are pairss = (q, v) ∈ Q × RX ,
whereq ∈ Q is a location andv : X → R is a clockvaluation. Given states = (q, v) and clockx, we
write x(s) to denote the value ofx at s, i.e.,v(x). ~0 is the valuation assigning0 to every clock ofA. SA
is the set of all states andsA0 = (q0,~0) is the initial state. There are two types of transitions, discrete and
timed. Discrete transitions are of the forms = (q, v) a→ s′ = (q′, v′), wherea ∈ Act and there is an
edgee = (q, q′, ψ, r , d , a), such thatv satisfiesψ andv′ is obtained by resetting to zero all clocks inr and
leaving the others unchanged. We say thate is enabled ats and writes |= e (or s |= ψ). Timed transitions

are of the form(q, v) t→ (q, v + t), wheret ∈ R, t > 0 and there is no edge(q, q′′, ψ, r , d , a), such that:
eitherd = delayable and there exist0 ≤ t1 < t2 ≤ t such thatv + t1 |= ψ andv + t2 6|= ψ; or d = eager

and there exists0 ≤ t1 < t such thatv + t1 |= ψ. We use notation such ass
a→, s 6 a→, ..., to denote that

there existss′ such thats
a→ s′, there is no suchs′, and so on. This notation naturally extends to timed

sequences. For example,s
a1b−→ s′ if there exists1, s2 such thats

a→ s1
1→ s2

b→ s′. A states ∈ SA
is reachableif there existsρ ∈ RT(Act) such thatsA0

ρ→ s. The set of reachable states ofA is denoted
Reach(A).

In the rest of the paper, we assume given a set of actionsAct, partitioned in two disjoint sets: a set
of input actionsActin and a set ofoutput actionsActout. We also assume there is anunobservable action
τ 6∈ Act. Let Actτ = Act ∪ {τ}.

A timed automaton with inputs and outputs(TAIO) is a timed automaton overActτ . A TAIO is called
observableif none of its edges is labeled byτ . A TAIO A is calledinput-completeif it can accept any input
at any state:∀s ∈ Reach(A) .∀a ∈ Actin . s

a→. It is calleddeterministicif ∀s, s′, s′′ ∈ Reach(A) .∀a ∈
Actτ . s

a→ s′ ∧ s a→ s′′ ⇒ s′ = s′′. It is callednon-blockingif

∀s ∈ Reach(A) .∀t ∈ R .∃ρ ∈ RT(Actout ∪ {τ}) . time(ρ) = t ∧ s ρ→ . (1)

The non-blocking property states that at any state,A can let time pass forever, even if it does not receive
any input. This is a sanity property which ensures that a TAIO does not “force” its environment to provide
an input by blocking time.

The set ofobservable timed tracesof A is defined to be

Traces(A) = {PAct(ρ) | ρ ∈ RT(Actτ) ∧ sA0
ρ→}. (2)

Finally, given a set of statesS ⊆ SA anda ∈ Act, we define the following operator:

succ(S, a) = {s′ ∈ SA | ∃s ∈ S . ∃ρ ∈ RT({τ}) . s a·ρ−→ s′} (3)

succ(S, a) contains all states that can be reached from some state inS by performinga followed by an
unobservable sequenceρ.

2.2 Specifications, Implementations and Conformance

We assume that the specification of the system to be tested is given as a non-blocking TAIOAS . We
assume that the SUT, also calledimplementation, can be modeled as a non-blocking, input-complete TAIO
AI . Notice that we do not assume thatAI is known, simply that it exists. The assumption ofAS andAI
being non-blocking is natural, since in reality time cannot be blocked. The assumption ofAI being input-
complete is also reasonable, since a system usually accepts all inputs at any time, possibly ignoring them
or issuing an error message when the input is not valid. Notice that we do not assume, as is often done,
that the specificationAS is input-complete. This is becauseAS needs to be able to model assumptions on
the environment, i.e., restrictions on the inputs. For instance, a guardx ≤ 2 on an edge labeled with input
a is interpreted as “if a is received whilex ≤ 2 thenit must be guaranteed that ...”.

Verimag Research Report no TR-2004-15 3/15

Moez Krichen and Stavros Tripakis

In order to formally define the conformance relation, we introduce a number of operators. In the
definitions that follow,A is a TAIO,σ ∈ RT(Act), s is a state ofA andS is a set of states ofA.

σ(A) = {s ∈ SA | ∃ρ ∈ RT(Actτ) . sA0
ρ→ s ∧ PAct(ρ) = σ}

elapse(s) = {t > 0 | ∃ρ ∈ RT({τ}) . time(ρ) = t ∧ s ρ→}
out(s) = {a ∈ Actout | s

a→} ∪ elapse(s)
out(S) =

⋃
s∈S out(s).

σ(A) is the set of all states ofA that can be reached by some timed sequenceρ whose projection to
observable actions isσ. elapse(s) is the set of all delays which can elapse froms withoutA making any
observable action.out(s) is the set of all observable “events” (outputs or delays) that can occur when the
system is at states.

The timed input-output conformance relation, denotedtioco, requires that after any observable se-
quence specified inAS , every possible observable output ofAI (including delays) is also a possible output
of AS . Notice that this requirement only refers to outputs, thus, the fact thatAI accepts generally “more
inputs” thanAS does not pose problems of non-conformance: it simply means that the implementation
is required to be conforming only with respect to the input assumptions given in the specification.tioco
is inspired from its “untimed” counterpart,ioco [28]. The key idea is that delays are considered to be
observable events, along with output actions. Formally,AI conforms toAS , denotedAI tioco AS , if

∀σ ∈ Traces(AS) . out(σ(AI)) ⊆ out(σ(AS)). (4)

Due to the fact that implementations are assumed to be input-complete, it can be easily shown thattioco is
a transitive relation, that is, ifA tioco B andB tioco C thenA tioco C. It can be also shown that checking
tioco is undecidable. This is not a problem for black-box testing: sinceAI is unknown, we cannot check
conformance directly, anyway.

tioco permits to express most useful types of requirements for real-time systems, such as the require-
ments that an output must be generated neither too late nor too early. It can also capture “observable
deadlocks”, that is, situations where no output is generated for a “long” time.3 Finally, it can capture
assumptions on the environment. For examples illustrating these features oftioco, see [22].

2.3 Analog-clock and Digital-clock Tests

A test (ortest case) is an experiment performed on the implementation by an agent (thetester). There are
different types of tests, depending on the capabilities of the tester to observe and react to events. Here,
we consider two types of tests (the terminology is borrowed from [19]). Analog-clocktests can measure
precisely the real-time delay between two observed actions.Digital-clock tests can only count how many
“ticks” of a finite-granularity clock have occurred between two actions. For simplicity, we assume that the
tester and the implementation are started precisely at the same time. In practice, this can be achieved by
having the tester issuing the start command to the implementation.

It should be noted that we consideradaptivetests (following the terminology of [23]), where the action
the tester takes depends on the observation history. Adaptive tests can be seen astreesrepresenting the
strategy of the tester in a game against the implementation. Due to restrictions in the specification model,
which essentially remove non-determinism from the implementation strategy, some existing methods [27,
20] generate non-adaptive testsequences.

An analog-clock test can be defined as a total functionT : RT(Act) → Actin∪{⊥, pass, fail} specifying
the action the tester must take given its current observation (ifa ∈ Actin then the tester emitsa; if ⊥ then
the tester waits; if{pass, fail} then the tester produces a verdict and stops). For the purpose of this paper,
which is to represent analog-clock testers as timed automata, it makes more sense to define an analog-clock
test directly as a TAIOT . T has as inputs (resp. outputs) the outputs (resp. inputs) of the specification
AS . T is observable (i.e., has noτ actions), deterministic and non-blocking. Locations ofT are marked

3 The requirement “outputb must be emittedsometimeafter inputa is received” cannot be expressed bytioco. However, this
requirement is hardly testable: if we do not have an upper bound on the time that it takes to emitb, how can we check conformance
within a finite amount of time?

4/15 Verimag Research Report no TR-2004-15

Moez Krichen and Stavros Tripakis

?
6

?

Tick automaton.

tick!

Specification

ActoutActin

e-?x := 0
delayable
9 ≤ x ≤ 11

tick!

Tick with skew

e-?x := 0
eager
x = 10

tick!

perfectly periodicTick

ee e-� -�
? eager

x = 10, x := 0

tick!
0 < x ≤ 1

Tick with jitter:
9 ≤ x ≤ 10

tick!

x = 10, x := 0
eager

Figure 1: Extending the specification with a tester clock model and possible such models.

are either “input” or “output”. In an input location, the tester waits for an input from the SUT (i.e., some
a ∈ Actout). In an output location, the tester emits an output (i.e., someb ∈ Actin). Input locations ofT
are input-complete with respect toActout, that is, for each input locationq, for anya ∈ Actout and any
states = (q, v), s a→. T must also satisfy theurgentand isolatedoutput condition of [27] with respect
to Actin. This means that ifs

a→ for some states anda ∈ Actin then (a) time cannot elapse ats and (b)

there is no otherb ∈ Actin such thats
b→. Thus, there is no ambiguity as to which output must be emitted

and when. The states ofT will be partitioned intoacceptingandrejecting, corresponding to “PASS” and
“FAIL” verdicts, respectively.

A digital-clock test can also be defined as a functionD : (Act ∪

?
Z
ZZ~?

�
��=

?
�
�	
@
@R

b?
c?

tick?

a!

a!

b?, c? tick?

PASS FAIL

FAIL PASS

Figure 2: A digital-clock test
represented as a finite tree.

{tick})∗ → Actin ∪ {⊥, pass, fail}, wheretick is a new output action,
not in Actτ , modeling the tick of the tester’s clock. In fact, the clock
of the tester can be modeled directly by extending the specification au-
tomaton with aTick automaton, as shown in Figure1 (we use notation
! for outputs and? for inputs). TheTick automaton models the digital
clock of the tester. DifferentTick automata can be used, depending on
whether we want to model a clock which is assumed to be perfectly
periodic, or a clock with skew, and so on. At the end, we obtain an
extended specification model, denotedAtick

S , and the objective becomes
to generate anuntimedtest forAtick

S . The test is untimed because it only
has access to discrete observable actions, namely, all actions in the set
Act ∪ {tick}. The test has no direct access to time, it merely observes

tick actions. Such a test can be represented as a finite tree, like the one shown in Figure2. Nodes in this
tree are marked either “input” or “output”. In an input node, the tester waits for an input or the next tick of
its clock. In an output node, the tester emits an output. Leaves are labeled PASS or FAIL.

3 Generating Timed Automata Testers

The problem of generating an analog-clock test represented as a TAIO can be anything from trivial to
undecidable, depending on its precise definition. If we require a test which is only sound, then the problem
is trivial, because a test always announcing PASS is sound. On the other hand, if we require a test which
is also complete, then we face two problems: (a) such a test may not exist because the specification is
non-deterministic whereas the test has to be deterministic, but TA are not determinizable; (b) checking and
producing a deterministic test when it exists can be shown to be an undecidable problem [31].

To avoid these difficulties, we take a pragmatic approach. We suppose that the tester has only one
clock which is reset every time the tester observes an action, that is, at any edge of the tester TAIO. We
then provide techniques to compute the locations and edges of the tester automaton and the guards and
deadlines of the edges.

Verimag Research Report no TR-2004-15 5/15

Moez Krichen and Stavros Tripakis

It should be noted that the above technique can be easily extended to generate testers with more than
one clock, provided theskeletonof the tester is given. The skeleton is a deterministic finite automaton the
transitions of which are labeled with resets of the clocks of the tester. This information is necessary since,
for a given number of clocks (even for one clock) there exist many possible testers which differ in their
logic of resetting clocks. A special case is anevent-clocktester which has one clock for each observable
action, reset when this action occurs, as inevent-clock automata[2].

3.1 “One-clock Determinization” of Timed Automata

For pedagogical reasons, we first explain our technique for plain timed automata, which can be seen as
TAIO with an empty set of input actions. For such an automatonA, the technique amounts to determinizing
A “as best as possible”, given that we can only use one clock. Formally, the deterministic counterpart ofA,
denotedAmon, will accept a superset ofTraces(A). Notice thatA may contain unobservable actions and
non-determinism. ViewingA as the specification,Amon is amonitorfor A.

Amon is a TAIO which has as inputs the outputs of

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
��

-

�

2 3

2

5

1

1

x

y
φ2

φ1

S

{φ2}
y > 5

1 ≤ y ≤ 5
{φ1, φ2}

y < 1
{φ1}

Figure 3: Illustration of the∼aS equivalence.

A. Amon is observable, deterministic and input-complete.
All its locations are input locations.Amon uses a single
clock,y, which is reset to zero every time an action is ob-
served.Amon tries to estimate the state ofA based on its
current observation (including the value of its own clock
y). Amon has no urgency constraints: all its deadlines are
lazy, thus,Amon is non-blocking.Amon needs no urgency
because it acts as an “acceptor” rather than a “generator”
of traces. On the other hand, the states ofAmon (includ-
ing locations and values of the clocky) are divided into
accepting and rejecting.

Let A = (Q, q0, X,Act,E) and supposey is a new
clock, not inX. LetSyA be the set of states ofA extended
with the clocky, that is,SyA = Q×RX∪{y}. For an action
a ∈ Act, let Ea ⊆ E be the set of edges ofA which are
labeled witha. For a given set of extended statesS ⊆ SyA
and a valueu ∈ R of clocky, we define the set of edges:

Ea(S, u) = {e ∈ Ea | ∃s ∈ S . y(s) = u ∧ s |= e}. (5)

Ea(S, u) contains all edges labeleda which are satisfied
by a state inS wherey equalsu. Finally, we define the following equivalence on valuesu1, u2 ∈ R of the
clocky:

u1 ∼aS u2 iff Ea(S, u1) = Ea(S, u2). (6)

The intuition is as follows. Two values ofy are equivalent if they give the same information on the en-
abledness of an edge labeled witha, assumingS holds.S captures the current “knowledge” of the monitor.
In particular, it captures the relation between values ofy and possible states whereA can be in.

Let us illustrate the meaning of∼aS with the example shown in Figure3. We assume that

S = (q,−2 ≤ x− y ≤ 1)

and thatq has two outgoing edgese1 and e2 labeleda, with guardsφ1 ≡ x ≤ 3 andφ2 ≡ x ≥ 2,
respectively. Then,∼aS induces three equivalence classes, namely,y < 1, 1 ≤ y ≤ 5 andy > 5. Indeed,
given the assumption−2 ≤ x− y ≤ 1, y < 1 impliesx < 2. Thus, wheny < 1 we know thatφ2 does not
hold, therefore,e2 is not enabled. Similarly, wheny > 5 we know thate1 is not enabled. When1 ≤ y ≤ 5,
bothe1 ande2 may be enabled. It is important to note thatnot all states inS for which 1 ≤ y ≤ 5 satisfy
φ1, and similarly forφ2. However, given our information ony, we cannot be sure. Thus, we need to include
bothe1 ande2 in the set of possible enabled edges, given the constraint1 ≤ y ≤ 5.

We now explain the construction of the monitor automatonAmon. A location ofAmon is associated with
a set of extended states ofA, S ⊆ SyA. For each actiona, for each equivalence classψ in the (coarsest)

6/15 Verimag Research Report no TR-2004-15

Moez Krichen and Stavros Tripakis

partition induced by∼aS , Amon has an edgee = (S, S′, ψ, {y}, lazy, a), where the destination locationS′

is computed as follows:
S′ = succ(S ∩ ψ, a) (7)

whereS∩ψ denotes the set of all statess ∈ S such thaty(s) |= ψ. Notice thatS′ can be empty, even when
S is non-empty. This is becauseψ may be unsatisfied inS. Also note thatS′ is the “best” possible estimate,
in the sense thatS′ is the smallest set possible, given the knowledge the monitor has whena arrives. This
knowledge is captured byS ∩ ψ. Indeed, the monitor knows thatA cannot be in a state outsideS. It also
knows that clocky satisfiesψ, which further restricts the possible statesA can be in.

Let Ay be the automatonA extended with clocky and recall thatsA
y

0 denotes the initial state ofAy.
Then, the initial location ofAmon is defined to beS0 = {s ∈ SAy | ∃ρ ∈ RT({τ}) . sAy

0
ρ→ s}. S0

captures the initial knowledge of the monitor. The latter knows that initiallyy and all clocks ofA equal
zero. However,S0 must also include all states thatA can move to by performing unobservable sequences.

It remains to define the accepting and rejecting states ofAmon. GivenS ⊆ SyA, letS/y be the projection
of S on clocky, that is,S/y = {u ∈ R | ∃s ∈ S . y(s) = u}. Then, all states(S, S/y) of Amon are
accepting, providedS 6= ∅. The rest of the states are rejecting. The above algorithm is essentially a
subset constructionfor A, with the addition that clocky is used to infer knowledge about states thatA can
possibly be in. The construction relies on repeating two basic steps: (a) computing the partition induced by
equivalences∼aS , and (b) computing successor locationsS′ using reachability. We show how step (a) can
be implemented below. As for step (b), standard symbolic reachability techniques, coupled with so-called
extrapolation abstractionscan be used to ensure that the number of possible locations ofAmon remains
finite [16, 4, 8].

In such abstractions, the maximal constants compared with each

e e-? -

x = 1
eager
x := 0

a!

x = 1

Figure 4: A TAIO which can pro-
ducea! at times 1, 2, 3, ...

clock play an essential role. These constants are known in the case
of the clocks ofA but must be specified by the user for the monitor
clock y. Indeed, increasing the maximal constant fory amounts
to increasing the observational power of the monitor. In fact, there
are cases where there is no optimal monitor: the greater the maximal
constant allowed fory is, the more preciseAmon will be, in the sense
of how “close” the language ofAmon is to the language ofA. An
example is shown in Figure4. The TAIO shown in the figure can
produce a single outputa at any timek, wherek ∈ {1, 2, ...}. It
can be seen that for any suchk, a monitor able to comparey to constants up tok is “less accurate” than
a monitor able to comparey to constants up tok + 1. Indeed, the former cannot distinguish betweena!
happening precisely at timek or at time strictly greater thank, while the latter can.

A simple algorithm for computing the coarsest partition induced by∼aS is the following. Given a
constraintψ on clocky, let ES,ψa = {e ∈ Ea | S ∩ (ψ ∧ guard(e)) 6= ∅}, whereguard(e) is the guard of
edgee. ES,ψa contains all edges labeleda whose guards may be satisfied by a state inS wherey lies in
the intervalψ. In other words,ES,ψa is the union ofEa(S, u) over all valuesu satisfyingψ. Now, letK
be the greatest constant appearing in a constraint definingS or a guard of an edge inEa. For eachψ in
the set of intervals{[0, 0], (0, 1), [1, 1], (1, 2), ..., [K,K], (K,∞)}, computeES,ψa . For this, the condition
S ∩ (ψ ∧ guard(e)) 6= ∅ needs to be checked. This can be done symbolically, using standard techniques
and data structures such as DBMs [6, 17]. OnceES,ψa is computed for all intervalsψ, the coarsest partition
is obtained by “merging” (i.e., taking the union of) intervals having the same setES,ψa . For the example
of Figure3, ES,y<1

a = {e1}, ES,1≤y≤5
a = {e1, e2} andES,y>5

a = {e2}. Notice that the correctness of the
above algorithm relies on the fact that all values in an interval(i, i+ 1) are equivalent, and the same is true
for the interval(K,∞). This is because constraints only have integer constants.

Let us give an example illustrating the construction ofAmon. Consider the non-deterministic timed
automaton shown in Figure5. All its edges arelazy, except the one from location 2 to location 4, which
is delayable. Its one-clock monitor automaton is shown in Figure6. Not all locations and edges of the
monitor are shown, in order not to overload the figure. In particular, the empty location and all edges
leading to it are not shown. For instance, there is an edge labeleda with guardy > 5 from the initial
location to the empty location, sincea is not accepted if it arrives after 5 time units from start. All states of
the monitor are accepting, except from the empty location and the states of locationS = (2, x = y ≤ 2)

Verimag Research Report no TR-2004-15 7/15

Moez Krichen and Stavros Tripakis

����
3 ����

4

����
����

����

?

??

J
J
JĴ

�

2

0

1

x := 0

a
x ≤ 2 1 ≤ x ≤ 5

a

c
1 ≤ x ≤ 2

b
x ≤ 3

delayable

Figure 5: A non-deterministic timed automaton.

?y := 0
1 ≤ y ≤ 2
c

?

?

? ??


`````

? ?

(0, x = y)

(1, 0 ≤ x− y < 1)
(2, x = y ≤ 2)

(1, 1 ≤ x− y ≤ 2),

(3, 0 ≤ x− y < 4) (3, 1 ≤ x− y ≤ 4)

y := 0
2 < y ≤ 5
aa

1 ≤ y ≤ 2
y := 0

a
0 ≤ y < 1
y := 0

y ≤ 3

x := 0
y := 0

y := 0

b

y := 0
1 ≤ y ≤ 2
c

y := 0
y ≤ 2
b

(2, x = y ≤ 2)

y > 2: reject

(4, 1 ≤ x− y ≤ 2)

Figure 6: The one-clock deterministic monitor of the automaton of Figure5.

wherey > 2 (notice thatS/y is the constrainty ≤ 2). This is becausec must be received at most 2 time
units aftera, in order to be accepted. Note that there are no such rejecting states at locationS′ = (1, 1 ≤
x − y ≤ 2) ∪ (2, x = y ≤ 2). This is because the monitor does not know whether the original automaton
is at location 1 or 2, and there is no urgency at location 1. Indeed,S′/y is the constrainttrue.

3.2 From Monitors to Testers

We now consider the general case of TAIO with both input and output actions. In this case, the monitor
becomes a tester, since it must supply inputs to the SUT. Formally, the tester is an analog-clock test TAIO,
denotedAtest, as defined in Section2.3.

The algorithm for constructingAtest is a generalization of the algorithm for buildingAmon. As with
Amon, each location ofAtest is a setS ⊆ SyA. The choice of marking a location as input or output is made
by the algorithm non-deterministically. For locations marked as input, their outgoing edges are computed
as shown in the previous section, using the equivalence∼aS , where, in this case,a ∈ Actout. In order to
mark a locationS as output, there must exista ∈ Actin andu ∈ R such that

∀s ∈ S . y(s) = u⇒ s
a→ .

This condition guarantees that wheny = u thena is a relevant input, that is, it satisfies the environment as-
sumptions given in the specification. IfS is indeed marked as output, then the edge(S, S′, y = u, eager, a)

8/15 Verimag Research Report no TR-2004-15



Moez Krichen and Stavros Tripakis

is added toAtest, whereS′ is computed as shown in the previous section. Notice that the deadline of the
edge iseager: this is because we want the output to be emitted at a precise point in time, otherwise the
tester is not time-deterministic. To find au satisfying the condition above, we first compute the constraint
PS,a(y) on clocky:

PS,a(y) ≡ ∀q,∀x . (q, x, y) ∈ S ⇒ ∃e ∈ Ea . (q, x) |= guard(e)

whereq andx are variables denoting the location and clocks ofA, respectively (we slightly abuse notation
and write∀x instead of∀v ∈ RX ). PS,a(y) can be computed symbolically by using quantifier elimination
to eliminate variablesq andx. PS,a(y) is a linear constraint ony. Thus, we can check satisfiability in a
constructive way and find the valueu we seek. If we cannot find an integer valueu, then we pick a rational
value and multiply at the end of the construction all constants in the automaton with a sufficiently large
constant to make them integer.

The states ofAtest are defined to be either accepting or rejecting, as withAmon. Rejecting states
correspond to the tester emitting a “FAIL” verdict. On the other hand, there is no specific point in time
where the tester emits a “PASS”. Indeed, the execution of the test can go on as long as the tester remains
in an accepting state. The user can stop the test when he/she is tired of waiting. Coverage criteria, similar
to the ones discussed in Section4 can also be considered, since each location ofAtest essentially covers
a set of states ofA. The difference is that in this case the book-keeping of coverage must be performed
on-the-fly, that is, during execution of the test. Also, since tester outputs are urgent, more than one tests
will generally be necessary to achieve coverage. Studying such coverage methods is part of our ongoing
work.

4 Generating Digital-clock Tests with respect to Coverage Criteria

In [22] we have given an algorithm to generate a digital-clock test using symbolic techniques similar
to the ones presented in the previous section. The algorithm takes as input an extended specification
modelAtick

S and generates a test tree like the one shown in Figure2. Nodes of the tree correspond to
sets of states ofAtick

S . Nodes are marked input or output non-deterministically, as when generating timed
automata testers. In order for a nodeS to be marked output, there must exist an actiona ∈ Actin such that
S′ = succ(S, a) 6= ∅. In this case, the algorithm chooses such an action and generates an edgeS

a→ S′.

For each input nodeS and every actionb ∈ Actout∪{tick}, the algorithm generates an edgeS
b→ S′′ in the

test tree, withS′′ = succ(S, b). If S′′ = ∅, thenS′′ is marked “FAIL”. Otherwise, the algorithm continues
to extend the test fromS′′.

The above algorithm is only partially specified. It must be completed by specifying a policy for marking
nodes as input or output, for choosing which of the possible outputs to emit and for choosing when to stop
the test. An easy way is to resolve these choices randomly. This may not be satisfactory when some
completeness guarantees are required or when repetitions must be avoided as much as possible. Another
possibility is to generate anexhaustivetest suite up to a depthk specified by the user. This approach suffers
from theexplosionproblem, since the number of tests is generally exponential ink.

To remedy the above problems, many approaches have been proposed for generating test suites with
respect to a givencoverage criterion. Different coverage criteria have been proposed for software, such
as statement coverage, branch coverage, and so on [32]. In the TA case existing methods attempt to
cover either finite abstractions of the state space (e.g., the region graph [27] or a time-abstracting quotient
graph [24]) or structural elements of the specification such as edges or locations [20].

Here, we propose a new technique for covering states, locations or edges of the specification.4 Our
technique relies on the concept ofobservable graphof the composed automatonAtick

S , denotedOG. This

graph is generated as follows. The initial node of the graph isS0 = {s | ∃ρ ∈ RT({τ}) . sA
tick
S

0

ρ→ s}. For
each generated nodeS and eacha ∈ Act ∪ {tick}, a successor nodeS′ = succ(S, a) is generated and an
edgeS

a→ S′ is added to the graph. Extrapolation abstractions can be used here as well, to ensure that the
graph remains finite.

4 As mentioned in the introduction, we cannot use the technique of [20] because it relies on the assumption that outputs in the
specification are urgent and isolated.

Verimag Research Report no TR-2004-15 9/15



Moez Krichen and Stavros Tripakis

Every node ofOG corresponds to a set of statesS of Atick
S . We say that the nodecoversS. On the other

hand, every static test tree is essentially a sub-graph ofOG. We say that such a test covers the union of all
sets of states covered by its nodes. We say that a set of tests (ortest suite) achievesstate coverageif every
reachable state ofAS is covered by some test in the suite.5

Similarly, a nodeS of OG covers a locationq of AS if S contains some states = (q, v). A test suite
achieveslocation coverageif every reachable location ofAS is covered by some test in the suite. WhenAS
is built compositionally, we can distinguish betweenglobalandlocal location coverage. In global location
coverage, we require that all reachable global locations be covered. A global location is a vector(q1, ..., qn)
wheren is the number of components andqi is the local location of componenti. In local location coverage,
we simply require that all reachable individual locations of components be covered. Clearly, a test suite
achieving global location coverage also achieves local location coverage, but the converse is not generally
true. Similarly, a test suite achieving state coverage also achieves both local and global location coverage,
but the converse is not always true.

Every edge ofOG can be associated to a set of edges ofAS . In particular, an edgeS
a→ S′ will be

associated to all edges which are visited during the reachability algorithm which computesS′ from S.
Formally, if s ∈ S, s′ ∈ S′ ands

ρ·a−→ s′ for an unobservable sequenceρ, all edges in the path froms
to s′ are covered by the edgeS

a→ S′. We say that a test suite achievesedge coverageif every reachable
edge ofAS (i.e., an edge enabled at a reachable state ofAS) is covered by some test in the suite. A test
suite achieving edge coverage also achieves local location coverage. However, it may not achieve global
location (or state) coverage.

We now give an algorithm to generate a test suite achieving coverage with respect to a given criterion.
The first step is to build the observation graph ofAtick

S . Then, tests are extracted statically fromOG, until
coverage is achieved. We first consider location coverage. Tests are extracted as follows.

While there are reachable locations not covered, the algorithm picks such a location, sayq. Next, it
picks a nodev of OG associated withq (such a node exists sinceq is reachable) and finds a path inOG
from the initial node tov. Then, it extends this path into a test tree. This can be done by completing the
path with the missing edges, labeled with tester inputs. For instance, if there is an edgev1

a→ v2 in the
path, witha ∈ Actout ∪{tick}, then every outgoing edge ofv1 labeled with a tester inputb, i.e., every edge

v1
b→ v′, b ∈ Actout ∪ {tick}, must be added.6 The leaves of the tree are labeled PASS, except if a leaf

is empty, in which case it is labeled FAIL. This new test is added to the set of tests already generated and
the algorithm repeats choosing a new uncovered location, until all locations are covered. Notice that the
algorithm is essentially an AND/OR search in a finite graph, AND nodes being input nodes and OR nodes
being output nodes.

A state-covering suite can be extracted in a similar way. If some states is not covered, we first find a
nodev of OG coverings. Then we extract a test includingv as above. Notice that this test will cover not
only s, but a set of states containings. It will at least cover the region in whichs belongs. This guarantees
that the algorithm terminates with a finite test suite, even though the set of states is infinite. The algorithm
is also similar for edge coverage, with the difference that instead of finding a path reaching a target node
of OG, the algorithm finds a path reaching a target edge (the so-far uncovered edge).

It can be shown that for every reachable state ofAS there exists a nodeS of OG covering this state, and
similarly for locations and edges. Thus, covering all nodes inOG suffices to achieve coverage for each of
the three criteria above. SinceOG is finite, a finite number of tests suffices to achieve coverage, thus, the
algorithm terminates. The worst-case complexity of the algorithm is polynomial in the size ofOG. Indeed,
finding a node (or edge) ofOG associated with a location (or edge) ofAS is linear. Finding a path inOG
and extending the path into a test tree is also linear. These steps are performed at most as many times as
there are nodes inOG.

One drawback of the algorithm is that it does not always generateminimal test suites. A test suite is
minimal in the sense that if any test is removed from the suite, then coverage is no longer achieved. In
general the minimal suite is not unique. Moreover, adding a new test to the suite may result in making one
or more previously generated tests redundant. We are currently studying methods of generating minimal

5 Unreachable states ofAS can be ignored, since they play no role regarding conformance.
6 In general, it is a good idea to continue extending the test tree in this way. This is because, using such a policy, a single test will

cover as many locations as possible.

10/15 Verimag Research Report no TR-2004-15



Moez Krichen and Stavros Tripakis

e e
e

ee
e
e

e e

e

ee

-

-

- -

-

-

- -?

A
A
AAK 






�




�

?
Q
Q
Q
Q
QQs

?
��

�����HH
HH

HY

6

��
��

��*�
�
�
��


��
��
�1 XXXXXXz@

@
@
@I

B
B
B
B
BM

�
�
�
�	

double

single

dim

off

bright

touch

Button

touch?
x := 0

single!

touch?
x < D

x = D
eager

touch?
x < D

x = D
eager
double!

Lamp

single?

double? dim!

bright!

double?

single?

double?bright!

y := 0

delayable

dim!

m ≤ y ≤ M

off!

off!

single?

0 1

2

Off

DimBright

B-O

Figure 7: A lighting device specification.

test suites.

5 Prototype tool and experiments

We have built a prototype test-generation tool, calledTTG, on top of the IF environment [10]. The IF
modeling language allows to specify systems consisting of many processes communicating through mes-
sage passing or shared variables and includes features such as hierarchy, priorities, dynamic creation and
complex data types. Currently,TTG allows the user to generate digital tests interactively, randomly or
exhaustively up to a given length.TTG can also generate analog on-the-fly testers or monitors for a given
time granularity. Generation of timed automata testers and coverage criteria are being implemented.

We have usedTTG to test the executive subsystem of the Mars rover controller K9, developed at
NASA Ames. A detailed description of this case study can be found in [5]. Here, we illustrate the benefit
of generating test suites with respect to coverage criteria on a small case study.

The case study is a modification of the light switch example presented in [20]. The (modified) specifi-
cation is shown in Figure7. It models a lighting device, consisting of two modules: the “Button” module
which handles the user interface through a touch-sensitive pad and the “Lamp” module which lights the
lamp to intensity levels “dim” or “bright”, or turns the light off. The user interface logic is as follows: a
“single” touch means “one level higher”, whereas a “double” touch (two quick consecutive touches) means
“one level lower”. It is assumed that higher and lower is modulo three, thus, a single touch while the light
is bright turns it off.

The device communicates with the external world through inputtouch and outputsoff, dim, bright.
Eventssingle and double are used for internal communication between the two modules throughsyn-
chronous rendez-vousand are unobservable to the external user. The Button module uses the timing pa-
rameterD which specifies the maximum delay between two consecutive touches if they are to be considered
as a double touch. The Lamp module uses the timing parametersm andM which specify the minimum and
maximum delay for the lamp to change intensity (e.g., to warm-up a halogen bulb).

In order not to overload the figure, we omit most guards, resets and deadlinesin the Lamp module.
They are placed similarly to the ones shown in the figure (i.e., resets in inputs, guards and deadlines in
outputs). We also omit the names of most locations of the Lamp module. There are three main locations
named “Off, Dim, Bright” and a number of intermediate locations, for instance, “B-O” between “Bright”
and “Off”. The locations of the Button module are numbered0, 1, 2.

In [22] we have reported on usingTTG to generate the exhaustive digital-clock test suite for the light
switch specification, with parameter setD = 1,m = 1,M = 2 and for various depths. We have obtained
68, 180, 591 and 2243 tests, for depth levels 5, 6, 7 and 8, respectively. It can be seen that the number of
tests grows exponentially with the depth and is very large, even for such a small example.

Verimag Research Report no TR-2004-15 11/15



Moez Krichen and Stavros Tripakis

On the other hand, a very small test suite suffices to cover this specification with respect to any of the
three criteria of Section4. Consider, for instance, the two tests shown in Figure8. In order not to overload
the figure, each node of the tests is labeled only with the set of corresponding global locations; states are
omitted. Also, for output nodes we only draw the outgoing edges which do not lead to FAIL. For example,
node (2,Off) of the leftmost test has three outgoing edges labeledoff?, dim?, bright? and leading to FAIL.
Also, to save space, we draw the tree as a DAG (directed acyclic graph).

It can be seen from the figure that these two tests cover local locations. It is not difficult to check that
the two tests cover edges as well. In fact, we can see from the figure that the two tests “walk trough” all
observable edges of the specification. So it only remains to check that the unobservable edges are covered
too. This is true since they are all visited between one of the pairs of successiveticks the two tests have
(this is why nodes of the tests between successiveticks are labeled with pairs of global locations and not
single global locations as for the other nodes).

The two tests do not achieve global location (and, consequently, neither state) coverage. For example,
location (1,O-B) is not covered. However, 18 out of 30 global locations are covered. For covering the
rest, it is possible either to generate more tests or to extend one of the two tests above. For instance, we
can append the rightmost test at the end of the leftmost one.Also, in order to cover location (1,O-B), say,
we can consider node (0,O-B) ofthe leftmost test as an output node instead of an input node (issuing the
onlypossible output,touch!) and keep the remaining part of the test unchanged.Doing this, we can obtain a
single test of depth 41 which achieves global location coverage. Alternatively, a suite of 8 tests of lengths
smaller that those of Figure8 suffices to achieve global location coverage. This suite can be generated
by the algorithm of Section4. Notice that the depth of the leftmost test of Figure8 is 19. Generating an
exhaustive test suite up to this depth would be infeasible due to explosion.

6 Conclusions and future work

The main contributions of this paper are two techniques for improving on-the-fly analog-clock testing and
static digital-clock test generation. First, we have provided an algorithm to generate analog-clock testers
which are represented as timed automata with one clock. This permits to minimize the reaction time of
on-the-fly testing. Second, we have provided an algorithm to generate digital-clock test suites with respect
to several coverage criteria, namely, state, location and edge coverage. This permits to significantly reduce
the number of generated tests with respect to an approach of exhaustive test generation up to a certain
depth, as evidenced on a small case study.

We are currently implementing onTTG the test generation technique with respect to coverage criteria
of Section4 and studying methods to generate minimal test suites. We are also implementing the timed
automata tester generation technique of Section3 and examining notions of coverage in this context as
well.

References

[1] R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science, 126:183–235, 1994.
1, 2.1

[2] R. Alur, L. Fix, and T. Henzinger. A determinizable class of timed automata. InCAV’94, volume 818
of LNCS. Springer, 1994.3

[3] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, and L. Heerink.
Formal test automation: A simple experiment. In12th Int. Workshop on Testing of Communicating
Systems. Kluwer, 1999. 1

[4] J. Bengtsson and W. Yi. On clock difference constraints and termination in reachability analysis of
timed automata. InICFEM’03, volume 2885 ofLNCS. Springer, 2003.3.1

12/15 Verimag Research Report no TR-2004-15



Moez Krichen and Stavros Tripakis

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

���)

H
HHj

���)

HHHj

H
HHj

���)

?

?

?

?

?

?

?

?

?

?

?

?

HHHj

���)

���)

HHHj

���)

H
HHj

touch!

touch!

tick?

bright?

touch!

touch!

(2,Off),(0,O-B)

(0,B-D)

(2,Dim)

(2,Dim),(0,D-O)

(2,Bright),(0,B-D)

(2,Bright)

(1,Bright)

(0,O-B)

(0,O-B)

(0,B-D)

(0,D-O)

(0,Off)

(1,Off)

(2,Off)

(0,Bright)

(1,Dim)

(0,D-O)

PASS

(0,Dim)

tick?

bright?

tick?

dim?

off?

dim?

touch!

touch!

off?

tick?

tick?

tick?

tick?

tick?

tick?

dim?

touch!

(0,B-O)

(0,D-B)

(1,Off)

(1,Off),(0,O-D)

(0,O-D)

(0,Dim)

(1,Dim)

(1,Dim),(0,D-B)

(0,D-B)

(0,Bright)

(1,Bright)

(1,Bright),(0,B-O)

(0,B-O)

PASS

(0,O-D)

(0,Off)

tick?

dim?

tick?

bright?

tick?

off?

bright?

touch!

off?

touch!

tick?

tick?

tick?

tick?

tick?

Figure 8: Two digital-clock tests covering most global locations of the specification of Figure7.

Verimag Research Report no TR-2004-15 13/15



Moez Krichen and Stavros Tripakis

[5] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis. Testing conformance of real-time applications
by automatic generation of observers. In4th International Workshop on Runtime Verification (RV’04),
2004. To appear in ENTCS series by Elsevier.5

[6] B. Berthomieu and M. Menasche. An enumerative approach for analyzing time Petri nets.IFIP
Congress Series, 9:41–46, 1983.3.1

[7] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. InCompositionality,
volume 1536 ofLNCS. Springer, 1998.2.1

[8] P. Bouyer. Untameable timed automata! InSTACS’03, volume 2607 ofLNCS. Springer, 2003.3.1

[9] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial observability. In
CAV’03, 2003. 2

[10] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: a validation envi-
ronment for timed asynchronous systems. In E.A. Emerson and A.P. Sistla, editors,Proc. CAV’00,
volume 1855 ofLNCS, pages 543–547. Springer Verlag, 2000.5

[11] E. Brinksma and J. Tretmans. Testing transition systems: An annotated bibliography. InMOVEP
2000, volume 2067 ofLNCS. Springer, 2001.1

[12] R. Cardell-Oliver and T. Glover. A practical and complete algorithm for testing real-time systems. In
FTRTFT’98, volume 1486 ofLNCS, 1998. 1

[13] T.S. Chow. Testing software design modeled by finite-state machines.IEEE Transactions on Software
Engineering, 4(1), 1978. 1

[14] D. Clarke, T. J́eron, V. Rusu, and E. Zinovieva. STG: A symbolic test generation tool. InTACAS’02,
volume 2280 ofLNCS. Springer, 2002.1

[15] D. Clarke and I. Lee. Automatic generation of tests for timing constraints from requirements. In3rd
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’97), 1997. 1

[16] C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstractions. In
Tools and Algorithms for the Construction and Analysis of Systems ’98, Lisbon, Portugal, volume
1384 ofLNCS. Springer-Verlag, 1998.3.1

[17] D.L. Dill. Timing assumptions and verification of finite-state concurrent systems. In J. Sifakis, editor,
Automatic Verification Methods for Finite State Systems, volume 407 ofLecture Notes in Computer
Science, pages 197–212. Springer–Verlag, 1989.3.1

[18] J.C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on-the-fly verification techniques for the
generation of test suites. InCAV’96, LNCS 1102, 1996.1

[19] T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? InICALP’92, LNCS 623,
1992. 2.3

[20] A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-optimal real-time test case gener-
ation using UPPAAL. InFATES’03, Montreal, October 2003.1, 2, 2.3, 4, 4, 5

[21] T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Generating test cases for a timed I/O automa-
ton model. InIFIP Int’l Work. Test. Communicat. Syst.Kluwer, 1999. 1

[22] M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In11th Interna-
tional SPIN Workshop on Model Checking of Software (SPIN’04), volume 2989 ofLNCS. Springer,
2004. 1, 1, 2, 2, 3, 4, 5

[23] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - A survey.Pro-
ceedings of the IEEE, 84:1090–1126, 1996.1, 2.3

14/15 Verimag Research Report no TR-2004-15



Moez Krichen and Stavros Tripakis

[24] B. Nielsen and A. Skou. Automated test generation from timed automata. InTACAS’01. LNCS 2031,
Springer, 2001.1, 4

[25] J. Peleska. Formal methods for test automation - hard real-time testing of controllers for the airbus
aircraft family. InIDPT’02, 2002. 1

[26] J. Sifakis and S. Yovine. Compositional specification of timed systems. In13th Annual Symposium
on Theoretical Aspects of Computer Science, STACS’96, pages 347–359, Grenoble, France, February
1996. Lecture Notes in Computer Science 1046, Spinger-Verlag.2.1

[27] J. Springintveld, F. Vaandrager, and P. D’Argenio. Testing timed automata.Theoretical Computer
Science, 254, 2001.1, 2.3, 2.3, 4

[28] J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten and S. Mauw, edi-
tors,CONCUR’99 –10th Int. Conference on Concurrency Theory, volume 1664 ofLecture Notes in
Computer Science, pages 46–65. Springer-Verlag, 1999.1, 2.2

[29] J. Tretmans. Testing techniques. Lecture notes, University of Twente, The Netherlands, 2002.1

[30] S. Tripakis. Fault diagnosis for timed automata. InFormal Techniques in Real Time and Fault Tolerant
Systems (FTRTFT’02), volume 2469 ofLNCS. Springer, 2002.1

[31] S. Tripakis. Folk theorems on the determinization and minimization of timed automata. InFormal
Modeling and Analysis of Timed Systems (FORMATS’03), volume 2791 ofLNCS. Springer, 2004.1,
3

[32] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy.ACM Computing Surveys,
29(4), 1997. 4

Verimag Research Report no TR-2004-15 15/15


	Introduction
	The Testing Framework
	Timed Automata with Inputs, Outputs and Unobservable Actions
	Specifications, Implementations and Conformance
	Analog-clock and Digital-clock Tests

	Generating Timed Automata Testers
	``One-clock Determinization'' of Timed Automata
	From Monitors to Testers

	Generating Digital-clock Tests with respect to Coverage Criteria
	Prototype tool and experiments
	Conclusions and future work

