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Abstract

We present a method based on abstract interpretation for verifying secrecy properties of crypto-
graphic protocols. Our method allows to verify secrecy properties in a general model allowing
an unbounded number of sessions, an unbounded number of principals and an unbounded size of
messages. As abstract domain we use sets of so-called super terms. Super terms are obtained by
allowing an interpreted constructor, which we denote by Sup , where the meaning of a term Sup �����
is the set of terms that contain � as sub-term. For these terms, we solve a generalized form of the
unification problem and introduce a widening operator. We implemented a prototype and were able
to verify well-known protocols such as for instance Needham-Schroeder-Lowe (0.03 sec), Yahalom
(12.67 sec), Otway-Rees (0.01 sec) and Kao-Chow (0.78 sec).
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1 Introduction

At the heart of almost every computer security architecture is a set of cryptographic protocols that use cryptogra-
phy to encrypt and sign data. They are used to exchange confidential data such as pin numbers and passwords, to
authentify users or to guarantee anonymity of principals. It is well known that even under the idealized assump-
tion of perfect cryptography, logical flaws in the protocol design may lead to incorrect behavior with undesired
consequences. Maybe the most prominent example showing that cryptographic protocols are notoriously difficult
to design and test is the Needham-Schroeder protocol for authentication. It has been introduced in 1978 [33].
An attack on this protocol has been found by G. Lowe using the CSP model-checker FDR in 1995 [26]; and this
led to a corrected version of the protocol [27]. Consequently there has been a growing interest in developing and
applying formal methods for validating cryptographic protocols [29, 15]. Most of this work adopts the so-called
Dolev and Yao model of intruders. This model assumes perfect cryptographic primitives and a nondeterministic
intruder that has total control of the communication network and has capacity to forge new messages. It is known
that reachability is undecidable for cryptographic protocols in the general case [20], even when a bound is put
on the size of messages [19]. Because of these negative results, from the point of view of verification, the best
we can hope for is either to identify decidable sub-classes as in [5, 35, 30] or to develop correct but incomplete
verification algorithms as in [32, 24, 22].

In this paper, we present a correct verification algorithm to prove secrecy without putting any assumption
on messages nor on the number of sessions. Proving secrecy means proving that secrets, which are pre-defined
messages, are not revealed to unauthorized agents. The main contribution of our paper is a method for proving
that a secret is not revealed by a set of rules that model how the protocol extends the set of messages known by
the intruder.

Our method is based on the notion of safe messages that guard a secret ; these are messages that contain
secrets encrypted with safe keys. For example, suppose that our secret is the nonce ��� and that the key ���

�
� –

the inverse of � � – is not known by the intruder. We say that � � is a safe key. Then, any message that contains
� � and that is encrypted with � � is a guard for � � , e.g., � � is protected in the message � ���	��
�� � ���� ����
by the safe message ���	��
�� � ���� .

Following this idea, given a set � of safe keys we define the � -guards as the set of message encrypted
with a key in � . However, � -guards can fail at protecting a secret. Indeed, a protocol may reveal some secrets
embedded in safe messages. Here is an example from the Needham-Schroeder protocol (see Example 3.1).
Consider the action of the responder – played by an honest principal � – in a session between an intruder � and
��� The action of � may be seen as a rule ����
�� ������ ����
! #" ���� : On reception of any message matching with
the left-hand-side, � will decrypt and send � to the intruder. So, we conclude that the safe key � � can guard a
secret except in messages of the form ���$
!� ���� where � is a secret.

The idea underlying our verification algorithm is then to characterize the set of � -guards that will keep the
secret unrevealed in all sent messages. The � -guards that do not protect their secret are called safe-breakers. Let
us consider again the Needham-Schroeder protocol and the first transition of principal � described above. Then,
���$
!� ���� is a safe-breakers.

The core of our verification algorithm takes a protocol and computes an over-approximation of the set of
safe-breakers. This set is, in general, infinite. Therefore, we represents it using terms: a term with variables
represents for the infinite set of its ground instances.

A weakness of this symbolic representation is, however, that variables appear only at the leafs, and hence,
they do not allow to describe, for instance, the set of terms that share a common sub-term. To mitigate this
weakness, we introduce super terms, that is, terms with an interpreted constructor, Sup , where a term Sup � ��� is
meant for the set of terms that contain � as sub-term. The use of super terms in our verification method requires
to solve a generalized form of the unification problem. In counterpart, it allows us to define a widening operator
that ensures termination of a large class of protocols.

We developed a prototype in Caml that implements this method. We have been able to verify several protocols
taken from [12] including, for instance, Needham-Schroeder-Lowe (0.03 sec), Yahalom (12.67 sec), Otway-Rees
(0.01 sec), and Kao-Chow (0.78 sec).
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Related work

Decidability Dolev, Even and Karp introduced the class of ping-pong protocols and showed its decidability.
The restriction put on these protocols are, however, too restrictive and none of the protocols of [12] falls in this
class. Recently, Comon, Cortier and Mitchell [14] extended this class allowing pairing and binary encryption
while the use of nonces still cannot be expressed in their model. Reachability is decidable for the bounded number
of sessions [5, 35, 30, 10, 11] or when nonce creation is not allowed and the size of messages is bounded [19].
These assumptions are in practice not always justified.

Security protocols debugging For the general case, model-checking tools have been applied to discover flaws
in cryptographic protocols [28, 31, 13]. The tool described in [13] is a model-checker dedicated to cryptographic
protocols. Most of these methods bound the number of sessions to be considered as well as the size of the
messages.

Deductive methods Methods based on induction and theorem proving have been developed (e.g. [34, 9, 17]).
These methods are general, i.e., can handle unbounded protocols, but are not automatic with exception of [17].
This work can be seen as providing a general proof strategy for verifying security protocols. The strategy is
implemented on the top of PVS and allows to handle many known protocols. The termination of this strategy is,
however, not guaranteed.

Logic programming based methods These methods are based on modeling protocols in Horn Logic, e.g. as
Prolog programs, as in [37, 7, 3] and developing suitable proof strategies. The main difficulty in these methods
is that termination of the analysis is not guaranteed.

Typing and Abstraction-based methods Type systems and type-checking have also been advocated as a
method for verifying security protocols (e.g. [1, 23, 2]). Although, these techniques can handle unbounded
protocols they are as far as we know not yet completely automatic. Closest to our work are partial algorithms
based on abstract interpretation and tree automata that have been presented in [32, 24, 22, 25]. The main dif-
ference is, however, that we do not compute the set of messages that can be known by the intruder but a set of
guards as explained above. Our method can handle unbounded protocols fully automatically with the price that
it may discover false attacks. Interesting enough is that this does not happen on any of the practical protocols we
tried (see Table 8 in Section 7.3). We are actually working on a method that allows to analyze possible attacks.

2 Preliminary

If  ���� then we denote by ��� the set ��� 
	�
�	� 
! � . Let � be a countable set of variables and let �� be a
countable set of function symbols of arity � , for every ����� . Let ����� ���� �� . The set of terms over � and
� , denoted by � ��� 
�� � , is the smallest set containing � and closed under application of the function symbols in
� , i.e., � ��� � 

�	�
� 
�� � � is a term in � ��� 
 � � , if �  �!� ��� 
�� � , for �"�#� 
	�
�	� 
� , and �$�%� � . As usual, function
symbols of arity 0 are called constant symbols. Ground terms are terms with no variables. We denote by � ��� �
the set of ground terms over � .

A tree �'& is a function from a non-empty finite subset of (�) to �+*,� such that 1.) if �'& �.- �/�0� � then
-��213� dom � �'& � , for every 13� �54 

�	�	� 
� %67� � and -/�81:9� dom ���'& � for every 13;  and 2.) if �'& ��- �<�=� then
-�� 139� dom � �'& � for every 1>�3� .

We identify terms with trees by associating to each term � a tree ?@& ����� as follows:

1. if A is a variable, then dom ��?�& �.A � �B� �	C � and ?�& �.A � �.C �D�EA ,

2. if FG���IH is a constant symbol, then dom �.?�& ��F � �B� �	C � and ?�& ��F � �JC �"�KF and
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3. for a term �@��� � � H 
	�
�	� 
 � � �
� � ,dom ��?�& � ��� � � �	C � *

� �
�

�
 � H

�8� dom ��?�& � �  ��� , where � is word concatenation

extended to sets, ?�& ����� �JC �B� � and ?�& � ��� �.� �	- �"�7?�& � �  � �.- � .
Henceforth, we tacitly identify the term � with ?�& � ��� . The elements of dom ����� are called positions in � . We use� to denote the prefix relation on ( ) . We write � ��� � to denote the symbol at position � in � and ��� � to denote the
subterm of � at position � , which corresponds to the tree ��� � ��A �D� � �	���
A � with A$� dom � �
� � � iff ���
A,� dom ����� .
We write � � � � to denote the position obtained from � after removing the prefix � . We write �� ��� (resp. � � ��� )
to denote that � is a sub-term (resp. proper sub-term) of ��� . Moreover, ��� ��������� denotes the term obtained from �
by substituting ��� for ��� � . The set of variables in a term � is defined as usual and is denoted by var � ��� .

3 Models for cryptographic protocols

In this section, we describe how we model cryptographic protocols and give a precise definition of the properties
we want to verify. We begin by describing the messages involved in a protocol model.

3.1 Messages

The set of messages is denoted by � ��� � and contains terms constructed from constant symbols and the function
symbols encr � � �.� ����� � � ��� � and pair � � ��� ����� �.� � � � �.� � . Constant symbols are also called
atomic messages and are defined as follows:

1. Principal names are used to refer to principals in a protocol. The set of all principals is � .

2. Nonces can be thought as randomly generated numbers. As no one can predict their values, they are used
to convince for the freshness of a message. We denote by  the set of nonces.

3. Keys are used to encrypt messages. An atomic key of the form � �"! � 
	�	�
� 
�!$# � , where � is either �&%
' ,
�)(*' or +
,-' and each !  is a principal name. Intuitively, �&%�' , �.(/' and +�,-' stand respectively for public,
private and symmetric keys. The key �0%�' �"! � 
	�
�	�#
�! # � is an inverse of the key �)(*' �1! � 
	�
�	�#
�! # � and vice
versa; a key +�,-' �"! � 
	�
�	� 
�! # � is its self-inverse. If ' is a key then we use ' � � to denote its inverse.

We denote by 23� �"! � 
	�
�	�#
�! # � the set of keys described above and let � � �4� �6587
23� �:9! � denote the set

of all keys.

For the sake of simplicity we left out the signatures and hash functions but we can easily handle them in our
model. Let 2 �;� *< *=� and � �>2 * � encr 
 pair � . As usual, we write �?, � 
�, " � for pair �", � 
�, " � and
��, �A@ instead of encr �",�
�' � . Message terms are the elements of � ��� 
 � � , that is, terms over the atoms 2 , a set
of variables � and the binary function symbols encr and pair. Messages are ground terms in � ��� 
�� � .

Role terms To describe the transitions that can be performed by a principal in a session of a cryptographic
protocol, we introduce role terms. Let �CB be a set of variables that range over nonces with  
! � 
 ��� � as typical
variables and �ED be a set of variables that range over principals with � 
"� � 
�� ��� as typical variables. We assume
that � , � B and �ED are pairwisely disjoint.

Role terms are terms constructed from variables in � * � B * �ED using the binary function symbols encr and
pair and where constants are not allowed. More, precisely role terms are defined by the following tree grammar:

Key �F� � �&%
' ��� � 

�	�	� 
1�)# �CG��.(/' ��� � 

�	�	� 
"�)# �
G6+�,-' ��� � 

�	�	� 
"�)# �

RT �F� �  HG���G Key G AIG
pair � RT � 
 RT " �CG encr � RT 
 Key �

where � 
1� � 
	�
�	� 
"�&# �3�ED and A,�3� .
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tran ��� � ��
6 � � ��� � 
! � � ����� @�� ���	��


� �  � 
� � ����� @�� ����� � ��� ����� @�� � � �
tran ��� " �C�
� �	� � 
!� � ����� @�� ����� � � � ��
! " � ����� @�� � � �

Figure 1: Needham-Schreoder protocol

3.2 Cryptographic Protocols - Syntax

To describe cryptographic protocols, we need to describe the transitions the principals can perform. In our setting,
transitions have the form � � � � , where � and � � are role terms with var � � � ��� var � ��� , � is called the guard of the
transition and ��� its action.

Now, a cryptographic protocol is described by a parameterized session description where the parameters
are the involved principals, the fresh nonces and used keys. A session description is then given by a tuple
��� 
 tran 
 fresh � , where

� � is a vector ��� � 
	�	�
�#
"� # � , & ; � , of distinct principal variables in � D ,

� tran is a function that associates to each principal variable in � a finite sequence of transitions,

� fresh associates to each principal variable � in � a disjoint finite set of nonce variables in � B . By abuse
of notation we sometimes write fresh ��� � to denote ��

� D
� &�� +�� ��� � .

Example 3.1 The Needham-Schroeder protocol for authentication can be described as follows using the usual
informal notation for cryptographic protocols:

! � � � ��! 
�� � �A@ �
� � ! � ��� � 
�� " � @��
! � � � ��� " �A@ �

Intuitively, ! plays the role of the initiator of the session; while � is a responder. In our setting it is described
by the session description given in Figure 1, where � � �	� � 
1�$" � , fresh �	� � ��� �� � � and fresh ��� " �>� �� #" � .
As one can see, our description is much more detailed and elevates many of the ambiguities of the informal
description. �

3.3 The intruder model

In this section, we describe how an intruder can create new messages from already known messages. We use
the most commonly used model, introduced by Dolev and Yao [18], which is given by a formal system � .
The intruder capabilities for intercepting messages and sending (fake) messages are fixed by the operational
semantics. Thus, the derivability of a message , from a set � of messages, denoted by ���=, , is described by
the following axiom and rules:

� If , � � then �!�<, .

� If �!� , � and �!� , " then �"� pair �", � 
�, " � . This rule is called pairing.

� If �!� , and �"� '�� � then �!� encr �?, 
�' � . This is called encryption.

� If �!� pair �", � 
�, " � then �!� , � and �!� , " . This is called projection.

� If �!� encr �?, 
�' � , �!� '/� and ' and '�� are inverses then �!� , . This is called decryption.
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Pairing and encryption rules are called composition rules while projection and decryption are called decomposi-
tion rules. As usual, derivations in the system � can be seen as proof trees.

For a set of messages � , we use the notation � ��� to denote � � , for each , in � and � 9��� to
denote � 9� , for each , in � .

It is worth noticing that the intruder cannot forge any key term from the knowledge of its subterms, e.g,
! 
�� 9� +
,-' �"! 
�� � . No rules are provided to the intruder to do so. Consequently, from the intruder point of
view, the key terms are atomic keys.

Critical and non-critical positions Since there is no way to deduce the key used for encryption from an
encrypted message we consider their positions not critical, ie. it is a safe place for a secret. For instance,
the position of the key ' for the encr constructor – as in the term encr �?, 
�' � – is not critical ; on the other
hand the position of , is critical. The critical position corresponds to the subterm relation in the strand space
model [36, 21].

Formally, given a term � , a position � in � is called non-critical, if there is a position � such that � �"� �D� encr
and �3� �<��� ; otherwise it is called critical. We will also use the notation + ��� , to denote that + appears in ,
at a critical position, i.e., there exists �%� dom �", � such that � is critical and , � � � + .

For a term � , we use the notation � 9� � to denote that no instance of � is derivable from � , that is, for no
substitution �I� � � � �.� � , we have �!��� ����� .

We also use the notation � 9� ��� � to denote that no message derivable from � contains an instance of � at a
critical position, that is, for every message , and ground substitution � , if � � , then � � ��� 9� � , . The relation
9� ��� is naturally extended to sets of terms.

3.3.1 Operational semantics

In the rest of this section, let � � � � 
 tran 
 fresh � be a given session description. We want to describe the behavior
of the protocol described by � without any restriction on the numbers of sessions and principals. To do so, we
need to define instantiated transitions and instantiated sessions. We use natural numbers as session identifiers.

Session instances A session instance is fixed by a pair ����

	 � , where � is its identifier and 	 is a vector of
principals that instantiate the principal variables � � 
	�
�	� 
"� # . Therefore, we introduce the set Inst � � �=� # of
session instances. As we impose that the principal variables in � are distinct, we can use 	 ����� � to refer the 1���
principal name in the vector 	 , i.e., we can identify 	 with a function, 	 � � � � . We refer to a session instance
by its identifier.

We assume that we have for each fresh variable  ��K� &�� +�� ��� � an injective function which associates for
each session instance a fresh nonce value,  �"� �  such that  � �.� � �$9�  #" ��� " � , if  � 9�  #" or � � 9� � " .
That is, any fresh parameter is instantiated with different values in different sessions. Moreover, different fresh
parameters are instantiated with different values in the same or in different sessions. We write �: for the value
of  ��� � where  is a nonce fresh variable and � is the session instance identifier. Intuitively, we use �= as the
nonce corresponding to the fresh variable  in the session instance �.� 
�	 � .

In order to produce an instance of the session description we have to choose a fresh session number and
a substitution that associates a constant name to each principal variable in � . Hence, given �.� 

	 ��� Inst, we
generate a session instance, denoted by ��� � � , by applying the following transformations to all role terms that
appear in � :
� we replace each principal variable � by 	 �	� � ,
� each nonce variable  ,� fresh � � � by � �� � .

We denote by � � the message term obtained from � by applying the transformations above. Then, the �.� 
�	 � -
instance of a transition � � ��� is � � � ��� � . Given �%� � , we denote by tran � �	� � the sequence of �.� 
�	 � -instantiated
transitions obtained from tran ��� � .
Example 3.2 Let �.��� 4 

	 � �1! 
�� ��� be a session instance. Moreover,  � ��4 �<� � � and  #" ��4 � � � " . Then,
the ��4�
�	 � -instance of the Needham-Schroeder protocol contains the transitions given in Figure 2.
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tran H � �"! �E�
6 � � �1! 
�� � � ����� @�� � ��


� � � � 
	� � ����� @�� � � � ��� ����� @�� � �
tran H � � � �C�
� �"! 
!� � ����� @�� � � � � � ��
�� " � ����� @�� � �

Figure 2: The transitions of the ��4�
�	 � -instance.

Configurations and transitions In order to define global configurations that may arise during the protocol
execution, we need to define the state of each session instance.

The state of a session instance �  is given by a pair ��	 
�� � , where � associates for each role of the protocol
�,� � the sequence of its instantiated actions, which are left to be executed. Initially in the session instance �  ,� ��� �D� tran � ��� � .

The configurations set of the protocol defined by � is given by a pair ��� 
� � , where dom ��� �/� � is the
set of identifiers of the sessions created in the configuration, � �.� � describes the state of the session instance � 
and � is a set of messages. The operational semantics is defined as a labelled transition system over the set of
configurations. There are two sets of transitions:

1. transitions that create new sessions:

��9� dom ��� �
��� 
	� � � ����� ���� ��	 
�� � � 
� �

where � is a function that associates for each role of the protocol �%� � the sequence of instantiated actions
� �	� �B� tran � ��� � and 	 is an arbitrary assignment of principals to parameters. That corresponds to creating
a new session instance �.� 
�	 � .

2. transitions that correspond to transition inside sessions:

��� 
	� �	� ����� 
	� � �
��� 
� � � ����� �
�� ��	 
�� � � � 
� � �

where � ��� �B� ��	 
�� � and � is defined below.

The relation � describes session state changes caused by firing principal transitions. We have ��� 
� ���
����� 
	� � � , if there is � � ��� which is the first transition in � �	� � for �+� � and there is a substitution � � � � �.� � such that � � �  . � � � � * � ���  � and ���D��� � ���� � F ������� �	� � � � . Where � F ��� function
returns all but the first element in a sequence.

Example 3.3 Consider again our running example, the Needham-Schroeder protocol, and a session between A
and B, identified by 0, with principal A in the last step of the protocol. Hence, 	 �	� � �@� ! and 	 ��� " �<� � and
the state � ��4 � of the session is ��	 
�� � where � �	� � ��� � � � � 
� � �� � � ��� ���� and � ��� " ����� . Here, we use the
shorter notation � � for �&%�' �1! � .

Moreover, let ��� � 
�� " �  � � � then A can fire its last transition which modifies the session state: ����
� � �
����� 
� � � , where �.� �	� � �B����� ��� " �B��� and � � � �E* � ��� " �  � � .

Clarifying remarks In our model the intruder has the ability to intercept any message sent by a principal and
principals have no guarantee about the origin of a message. Thus, the intruder can intercept messages, use them to
create fake messages and deliver these to the principals. Following Bolignano [8], in our model this is realized by
modeling sending of messages as adding messages to the set � and by modeling receiving of messages as reading
messages deducible from � . Principals use, however, the guards of the transitions to check the genuineness of
received messages. For instance, in the Needham-Schroeder example, the guard � ��� � 
�� � ����� @�� � � � of the transition
of principal � " means that principal � " accepts any and only messages that are pair with � � in the first position
and encrypted by �&%�' �	� " � . Consider now the guard of the second transition of � � , namely � �  � 
� � ����� @�� ��� � . Here,
� � refuses (and the execution blocks) if the message to be read is not an encryption by �0%�' �	� � � of a pair whose
first message is the nonce  � sent in the first transition.
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3.4 Secrecy modeling

A secrecy goal states that a designated message should not be made public. A secret is public when it is deducible
from the set of messages intercepted by the intruder. In our setting, a secret is defined by a role term. For instance,
in the Needham-Schroeder example a secret we want to prove is  " , the nonce sent by � " . More precisely, each
session instance is associated with a secret we want to prove. Here arises the important question concerning
the initial knowledge of the intruder and his ability to profit from the actions of honest participants in parallel
and previous sessions. In other words, when proving that the secret associated to session � running between the
participants ! and � remains unrevealed, we have to take into account that an intruder can profit from a session
between ! and � to break the protocol. Actually, we cannot even rely on the honesty of � ; she can be seen as
an intruder’s accomplice.

As in the previous section, let � � ��� 
 tran 
 fresh � be a given session description.
A secret template is given by a role term + . Given ����

	 � � Inst we denote by � � ��
�	 
 � � the constraint stating

that the intruder cannot initially know messages that contain fresh nonces, private keys or symetric keys of the
principals in 	 .

Moreover, let � � � � denote the condition:

� �.� 
�	 �D� Inst ��� � ��
�	 
 � � �

We are now ready to define our secrecy property formally. A protocol described by � satisfies the secrecy
property defined by the secret template + in the initial set � H of intruder’s messages, denoted by Secret � � 
�+ 
� H �
or 9� D + , if for every ����

	 � � Inst if � ��� H � 
 ��� 
� H � � ) ��� 
	� � and � ��� �"� ��	 
�� � then � 9� + � � The definition of
secrecy can be easily extended to a set � of secret templates by:
Secret ��� 
 � 
� H � iff Secret � � 
�+ 
� H � , for all + � � .

4 Finite abstraction of atomic messages and sessions

In this section we fix an arbitrary cryptographic protocol given by a session description � � ��� 
 tran 
 fresh � and
fix a secret + given by a role term. To prove that + is a secret, we are faced with the following problems:

1. The definition of our verification problem is a reachability problem quantified universally over all ����

	 � �
Inst.

2. There is no bound on the number of sessions that can be created.

3. There is no bound on the size of the messages that occur during execution of the protocol.

In this section, we present an abstraction that copes with the first two problems. The other problem is handled in
the next section. We proceed in two steps. First, we present an abstraction that is parameterized by ��� H 

	 H � � Inst,
then we argue that the abstract system we obtain does not depend on the choice of �.� H 

	 H � . The main idea of the
abstraction is as follows. Clearly, the behavior of a participant does not depend on its identity. This is simply a
consequence of defining protocol sessions in a parameterized manner as we did. It also does not depend on the
identifier associated to the session.

Therefore, we fix an arbitrary session where the participants, say we have two, are ! and � . Then, we identify
with the intruder � all participants other than ! and � . Moreover, we identify all sessions in which neither ! nor
� are involved. Concerning the other sessions, that is, those where ! or � are involved, we identify:

� all sessions where ! plays the role of � � , � plays the role of � " and the session is different from the fixed
session,

� all sessions where � plays the role of � � and ! plays the role of � " ,
� all sessions where ! plays the role of � � and the role of � " is played by a participant different from ! or
� ,
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� all sessions where � plays the role of � � and the role of � " is played by a participant different from ! or
� , etc

� all sessions where ! plays the role of � " and the role of � � is played by a participant different from ! or
� ,

� all sessions where � plays the role of � " and the role of � � is played by a participant different from ! or
� .

Identifying sessions means also identifying the nonces and keys used in these sessions. This leaves us with
a system where we have a finite number of participants, of nonces and of keys but an unbounded number of
sessions. Therefore, we apply an abstraction that removes the control. To summarize, we model a protocol as a
set of transitions that can be taken in any order and any number of times. The number of messages as their size
are left not bounded.

Furthermore, we consider only two principals, one honest principal ! and one dishonest principal, the in-
truder � . That this abstraction is safe and complete is proved in [16].

We now present this idea formally. Let �.� H 

	 H � � Inst be fixed. For a concrete semantic object A , we use the
notation A � �� � � � � to denote its abstraction, and in case �.� H 

	 H � is known from the context we use A � .

We start by defining the abstract domains � � � ��� 
�� � and � � � ��! 
�� � and the abstractions:

� � � � � � if �.� 
�	 �"� �.� H 

	 H �� otherwise

� � � � � ! if ��� 	 H �	�  � 
"�  � �
� otherwise

We extend the abstraction of participants to vectors of participants by taking the abstractions of the components.
The abstraction of the nonce �$ , of a session instance �.� 
�	 � , denoted by � �$ � � , is given by:

� �	� , if  ��!� &��A+�� ��� � and 	 ��� � � � � ,

� � , if � � �
� , and

� � ���
, otherwise.

where � � is a fresh constant.
Thus, as abstract sets of nonce, we have  � � � �B� ��� � � and  � �"! � �"� ��� 
�� ��� G� $�!� &�� +�� �	� � � 

	 ��� � �"�

! � � .

Example 4.1 For Needham-Schroeder, we have the following set of abstract nonces:

 � � ��� � 
�� � 
�� " 
�� � � �  
�� "  � � G
A!� �A! 
�� � � �
We denote  � �  � � � � * �

� �����  � �1! � � .
It remains to define the abstraction of keys. We take the abstract set � � that consists of a distinguished key

� � and the keys in 23� �	�
� � 

�	�
� 
"� �� � with �

� � 

�	�
� 
"� �� � � � and �
�
� 9� � , for all 1/�,� � . The abstraction of a key

' ��� � 
	�
�	�#
1� � � is defined by:

' � ��� � 
�� � 
1� � �"���� � ' ���
� � 
	�
�	�#
1� �� �

if �
�
 9� �$
 � � � 

�	�
� 
! 

� � otherwise

Example 4.2 For Needham-Schroeder, we have the following set of abstract keys:

� � � ����� 
"�&%
' �"! � 
"�)(*' �"! � � �
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We denote 2 � � � � *  � * � � .
The abstraction of a message term � , denoted by � � , is obtained as the homomorphic extension of the abstrac-

tions on participants, nonces and keys. For a set ? of terms, let ? � � � � � G � �3? � .
The set � �.� � � of abstract messages is the set of ground terms over 2 � and the constructors encr and pair as

for � ��� � . Similarly, we can define the set of abstract terms by allowing variables in � .
We are now ready to define the abstraction of a cryptographic protocol that will be given as a pair ��� � 
�� � ,

where �
�

is a set of constraints of the form � � 9� � � , � , with , � � �.� � � and � �#� �.� � � and � is a set of
abstract transitions. We call � � � 
�� � an abstract protocol. The pair ��� � 
�� � defines a transition system whose
initial states are sets � � � � �.� � � that satisfy �

�
and where we have � � ��� � � � , if there is � � ��� in � and

 ��� � � ��� � � such that � � �  ����� and � � � � � � * �  � ��� � � .
The abstraction �

�
of the cryptographic protocol defined by � is defined by:

� �
�

is the abstraction of � � ��
�	 H 
 � H � and

� the set � of abstract transitions �
� � � � �

�
" such that � � � � " is a transition in some session instance � � .

We also call � abstract transitions rules. Let �D� � � � � 
�� � be an abstract protocol and �
�
H � � �.� � � . We say

that � � preserves the secret + � in �
�
H , denoted by �

�
H 9�����H+ � , if for all � � �7� ��� � � , if �

� ��� �H � and �
�
H
� )� � �

then � � 9� + � .
To relate a cryptographic protocol and its abstraction, we need to relate derivation by the intruder on the

concrete and abstract messages. We can prove by structural induction on , the following:

Lemma 4.1 Let � be a set of messages and � � � ��, � G , � � � . Then, � � , implies � � � , � , for any
message , �%� ��� � . �

Proof We prove by induction on the tree derivation

1. 	�
� in one step: Hence, ����	 . By the definition of 	���� � ���������	 � then ������	�� and then
	 � 
�� � .

2. Induction step. 	�
�� in ���! steps. We make a case analysis on the last derivation step:
" Case of pairing, �#�%$&�('*)+�,.- . We have
	�
/� ' and 	�
/� , in � steps, then by induction hypothesis 	��0
/� � ' and 	��1
/� �, and by pair
rule we have 	 � 
2$&� � ' )3� �, - but $&� � ' )3� �, -0�%$&� ' )+� , - � so 	 � 
�$&� ' )+� , - � .

" Case of encryption, �4� �.5 �76 . Similarly to the previous case.
" Case of left projection. We have 	�
2$&�()+�98:- in � steps, then by induction hypothesis
	 � 
;$&�()<� 8 - � but $&�()3� 8 - � �=$&� � )+� 8 � - so 	 � 
;$&� � )+� 8 � - and by left projection rule we have
	 � 
�� � . Similarly for right projection.

" Case of decryption. We have 	�
 � � �76 and 	�
�>@?BAC$@�D- in � steps, then by induction hypothesis
	��E
 � � � �6 and 	��E
F$@�BG ' -+� which is equivalent with 	��H
 � �� � 6 � and 	��H
F$@�I�+-�G ' then by
decryption rule we have 	 � 
�� � .

J

We can also prove the following lemma to relate concrete and abstract term instantiations:

Lemma 4.2 Let � � and � " be two terms and let � � � � �.� � be a ground substitution. Then,  ��� � � �  � � " � implies 
� � � � � � �  � ��� �" � , where 

� �@K � is defined
as  �@K � � . �

Proof

We have LB$ 5 ' -��LB$ 5 , - implies LB$ 5 ' - � ��LB$ 5 , - � and we prove by structural induction on the term
5

that
LB$ 5 - � �FL � $ 5 � - :

1. case
5

atomic - by definition
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2. case
5 ����$ 5 ' ) 5 , - , where ��� �

pair ) encr � :

LB$ 5 - � � LB$���$ 5 ' ) 5 , -+- �
� ��$ LB$ 5 ' -�)3LB$ 5 ,.-+- �
� ��$ LB$ 5 ' - � )+LB$ 5 , - � -
� ��$ L � $ 5 � ' -�)3L � $ 5 �, -+- by induction hypothesis
� L � $���$ 5 � ' ) 5 �, -+-
� L � $���$ 5 ' ) 5 , - � -
� LI��$ 5 �3-

J

Using Lemma 4.1 and Lemma 4.2, we can prove that ��� � 
�� � is indeed an abstraction of � where the ab-
straction of a configuration ��� 
	� � is � � :
Proposition 4.1 Let � � � � 
 tran 
 fresh � be a protocol and �

� � ��� � 
�� � its abstraction. Let ��� � 
	� � � and
��� " 
� " � be concrete configurations Then,

��� � 
� � � � ��� " 
	� " � implies �
�� � � � �" �

Moreover, if � � � � is true then also �
� � � � � . �

Proof Following the protocol transitions we have two cases:

1. transition that create new session $&>+)���- :
We have 	 ' �!	 , and then 	 �'���� 	 �, .

2. inside session transition $ 5 � 5 8 -�� tran:

We have $
	 '.) 	�' - � $
	 , ) 	E,.- where 	H,���	 '���$ 5 8��- and  is a substitution ���� ��� $
� - such that
	 
 5  . We will prove that there is an abstract transition in � such that 	 �'���� 	 �' � � $ 5 8� - � �
By lemma 4.1 we have 	 
 5 �� 	��1
�$ 5 �-+� $��7-
Also, since $ 5 � 5 8:- � tran in the abstract transition � of the protocol we have

5 � � 5 8 � . Then, from $��7-
using the lemma 4.2 we obtain
	 �'���� $@	 �' � � $ 5 8 �-+� � , hence 	 �'���� 	 �,

J

Exploiting Proposition 4.1 and the fact that ��� � 
�� � does not depend on �.� H 
�	 H � , that is, we have the same
constraints and transitions for all �.� 

	 � � Inst, we can prove:

Corollary 4.1 The protocol defined by � satisfies the secrecy property defined by � in � H , if its abstraction
��� � 
�� � preserves �

�
in �

�
H , i.e.,

�
�
H 9� ��� � � � � � � implies Secret � � 
 � 
� H � �

Example 4.3 In our model which yields an
over-approximation of the possible runs of the protocol, we can describe the Needham-Schroeder protocol by the
rules of Figure 3.

In this form, the relation between the message expected to fire a transition and the corresponding answer is
made explicit through variables. Each rule of a session corresponds to a transition of the Needham-Schroeder
protocol as shown in figure 3 in which the roles and nonces are instantiated w.r.t. the principals of the session.
Additionally, a verification tool requires a constraint � � � � on the initial knowledge of the intruder defined by
� 9� � � � � � 
 � " 
.�)(*' �1! � � and a secrecy property defined by the set of messages ��� " 
"�)(*' �1! � � .
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Sessions Transitions
a fixed sess. �"! 
�! � 6 � ��! 
�� � ����� @�� � � 
 ��! 
�� ����� @�� � � � ����
�� " ����� @�� � � 
 ��� � 
	� ����� @�� � � � ��� ����� @�� � �

other sessions �"! 
�! � 6 � ��! 
�� � �� ����� @�� � ��
 ��! 
�� ����� @�� � � � ����
�� � �" ����� @�� � ��
 ��� � �� 
� ����� @�� � � � ��� ����� @�� � �
the sessions �"! 
�� � 6 � ��! 
�� � �� ����� @�� � � 
 ��! 
�� ����� @�� � � � ����
��	� ����� @�� � � 
 ��� � �� 
	� ����� @�� � � � ��� ����� @�� � �
the sessions � �$
�! � 6 � ���$
�� � ����� @�� � � 
 ���$
!� ����� @�� � � � ����
�� � �" ����� @�� � � 
 ��� � 
� ����� @�� � � � ��� ����� @�� � �

Figure 3: The abstract rules of Needham-Schroeder Protocol

5 The verification method

Throughout this section we assume that we are given a protocol ��� ��� 
�� � and a set of secrets defined by a
set � of messages. We present an algorithm that allows to verify that a protocol preserves a set of secrets. If a
principal ! wants to protect a secret + , he has to encrypt every occurrence of + in every message sent with a key
whose inverse is not known by the intruder. The secret + itself need not to be directly encrypted; it is enough that
the secret only appears as part of encrypted messages.

The basic idea of our method is to compute the set of encrypted messages that protect the secrets. As we will
see, encryption with a safe key is not always sufficient to protect a secret in every message. The honest principals
following the protocol can unwittingly help the intruder in decrypting messages.

In order to develop this idea formally we need to introduce a few definitions. In the sequel, we let � �;�
denote a fixed but arbitrary set of keys and we assume ��9� � 9�>� . Keys in � are safe keys, i.e., keys whose
inverses are not known by the intruder and therefore protect , . We call � -guard any encrypted message
��, � @ ��� �.� � where ' is a safe key. We call safe-breaker a pair � ��, � @ 
1� � , where ��, � @ is a � -guard and �
is a critical position4 in ��, � @ . Intuitively, � denotes the position of a secret and a safe-breaker � ��, � @ 
"� � means
that, in the specific case of message ��, �6@ , the intruder can pass through the protection of key ' and obtain the
sub-term at position � .

Definition 5.1 Let , and + be two messages, let � be a set of safe-breakers and let � be a set of safe keys.
We denote by ���1,	�
���� +�� (or �8,�������E+ for readability) the predicate “ + is reachable in , by application of
some safe-breakers in � together with the intruder’s decomposition rules”. We use the predicate postively and
negatively. The positive version of the predicate, ,	�
���  + , can be red as “the secret + is insensitive to � in
a message , ”. For the sake of simplicity, we define the negation of the predicate ,������� + by the following
inference rules:

�8,������  ,
�8,������  + 
8',9� �
� ��, �A@ �
���  +

�8, � �
���  +
� �", � 
�, " �������  +

�8, " �����  +
� �?, � 
�, " ���
���  +

'�� � 
�� � ��, � @ �
� ���
���  + 
 � ��, � @ 
1� � ���
� ��, � @ �����  +

This definition is easily generalized to sets of messages: Let � and � be sets of messages, and � a set of
safe-breakers. We say that the secrets � are insensitive to � in � , denoted by �������  � , if

� , � � 
 � +��
� �A,	�
���  + . Morevoer, a secret of � is reachable in � with the help of safe-breakers � , denoted by � ���
���  � ,
if �*, � � 
��.+ � � ���8,	�
���� + .
Example 5.1 Let , � pair �"! 
 ��! 
 ��� � @ � �A@ � � , and let ' � and ' " be two safe keys, i.e. �A' � 
�' " � � � . Then,
,	� ���  � holds, meaning that � is not deducible from , without safe-breaker. Indeed, the intruder would not
gain anything in splitting the pair, since � is protected in both parts: !������  � and
��! 
 ��� � @ � �A@ � �������� hold.

4Critical and non-critical positions as well as the notation  "! are introduced in Section 3.3.
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Figure 4: Example 7 : Application of safe-breakers

Let % � � � �A! 
 ��� � @ � �A@ � 
 4 � and % " � � ��� � @ � 
 4 � be two safe-breakers. Let � � � % � 
�% "�� . Then, ,������  �
does not hold, meaning that the safe-breakers can be applied to get the secret � . This is illustrated by Figure 5.1.
Indeed, by Definition 5.1, ,������  � is true if and only if we have ! �����  � and ��! 
 ��� �A@ � � @ � �
���  � . The
former one holds, but this is not the case of the latter one: an application of the first safe-breaker provides
��� � @ � � ��! 
 ��� �A@ � � @ � � � � . Then, an application of the second safe-breaker provides � � � ��� � @ � ��� � . Since

� �����  � does not hold (this is the case where ,�� + ), Definition 5.1 entails � � ,������  � � .
The notion of a message insensitive to safe-breakers does not take into account the capabilities of the intruder

to decompose and compose new messages.

Example 5.2 Consider the set of messages � � � + � 
�+ " � . Whatever � we choose, the property
� ������ �1+ � 
�+ " � trivially holds since � + � 
�+ " � does not belong to � . However, the pair �1+ � 
�+ " � can be derived from
� using the pairing rule.

This example shows that we have to give particular care to the treatment of composed secrets as they can be
obtained either by composition or decomposition. To do so, we define the closure under decomposition of a
term. Taking the closure of a set � of secrets ensures that the intruder cannot derive a message in � solely by
composition rules.

Let � be a set of sets of messages and let , be a message. We say that � is closed w.r.t. , , if it consists of
all messages on some path of , . We denote by c �?, � the set of all sets of messages closed w.r.t. , .

Then, a set � of messages is closed against composition, if for any , ��� there exists a set of messages
� � � c �?, � such that � � � � .

Example 5.3 Consider the message ,�� � � �1! 
�� � �6@ 
�� � . The sets closed w.r.t. are the following:
� � � �1! 
�� � � @ 
�� � 
�� � 
� � � �1! 
�� � � @ 
�� � 
 � �"! 
�� � � @ 
�' � 
� � � �1! 
�� � � @ 
�� � 
 � �"! 
�� � � @ 
 �1! 
�� � 
�! � 
� � � �1! 
�� � � @ 
�� � 
 � �"! 
�� � � @ 
 �1! 
�� � 
�� �

The closure computation helps in preventing the intruder from making , by composition: it tells us that it is
sufficient to ensure that one of these sets of messages remains completely unknown to the intruder.

We can prove the following:

Lemma 5.1 Let � and � be two sets of messages such that ��� � � � , and assume � is closed against
composition. Then, no message in � can be derived using only composition rules. In symbols we write � 9� � �
where � � denotes a derivation that use only composition rules.

Our purpose now is to define conditions such that for any set � of messages, if the secrets of � are insensitive
to safe-breakers in the set of messages � , then the secrets are protected in all messages derivable from � . In
other words, we look for a condition that ensures the stability of protection under the derivation rules that define
Dolev and Yao’s intruder.
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Example 5.4 Consider the set of messages � � � ' " 
 � + �A@ � � . The safe-breaker � � �A+ � @ � � @ � 
 4�4 � does not help
getting the secret + since it can not be applied to any message of � � does not contain the message � �A+ � @ � �A@ � .
Therefore, � ��� � �A+ � @ � � @ � 
 4�4 � �  + holds.
However, the term � � + � @ � �A@ � is derivable from � using the encryption rule and then, the safe-breaker can be
used to get the secret + . �

In order to catch this ability of the intruder – to forge a message and to bring principals to play some transitions
that decompose the message – we define a closure on safe-breakers that enriches the set of safe-breakers with
their sub-encrypted-messages.

Let � %�
"� � be a safe-breaker and let ssb �1%�
1� � denote the sub-safe-breakers of �1%�
"� � , that is the set of all proper
sub-terms of % that are safe-breakers for position � . A formal definition of the function ssb is given in Appendix A
but let us give an intuitive example.

Example 5.5 Consider two keys ' � 
�' " � � , the message % � � � ��� � @ � 
�! � � @ � , and assume � at position 4�4�4
in % is the secret. Then, by definitions, % is a � -guard and the pair � %�
 4�4�4 � denotes a safe-breaker for � in % .
Moreover, each encryption with a key in � in % that is above � � % � � � � defines a � -guard of � . The function ssb
computes the position of � in each of these � -guard and returns the set of safe-breakers associated to theses
� -guards. For instance, ssb � %�
 4�4�4 � returns

� � ��� � @ � 
 4 � � ; and both ssb �1%�
 4 � � and ssb �1%�
 4�4 � return � , since
there is no � -guard that is a proper sub-term of % and above % � � � � ! (resp. % � � � � ��� � @ � ).

We are now able to express the conditions that guarantee stability of the predicate � �����  � under the deduc-
tion rules of the intruder. In the rest of the paper, � denotes a set safe-breakers and � denotes a set of secrets.

Definition 5.2 A pair ��� 
 � � is well-formed with respect to a set of safe keys � , if the following conditions are
satisfied:

1. � is closed against composition,

2. � �
� � � ' � � GA'G� � � � � , that is, the inverse of the safe keys are secrets,

3. For any safe-breakers � %�
"� ����� , all its sub-safe-breakers already belong to � . Formally,
� � %�
"� ���

� � � �1% � 
"�&� � � ssb �1%�
"� � � �1% � 
1�)� � � � .

Intuitively, Condition (1) ensures that the intruder will always miss at least one part of a composed secret
preventing him from deducing it by composition. Condition (2) ensures that the intruder will not be able to
decrypt a secret protected by a key of � . The last condition of well-formedness takes into account the ability of
the intruder to use encryption in order to obtain a message that can be broken using a safe-breaker.

The main property of the predicate � �
���  � is that it is stable under the intruder’s deduction rules.

Proposition 5.1 Let � be a set of messages and ��� 
 � � be a pair of safe-breakers and secrets. If ��� 
 � � is well-
formed and � �
���  � holds, then the secrets of � are insensitive to � in any message , derivable from � , that
is, �!� , � ,	�
���  � .

Proof See Appendix B.1.
J

The following corollary is an immediate consequence of Proposition 5.1.

Corollary 5.1 If � �
���  � and �
� 
�� � is well-formed then � 9� � .

Under well-formedness of ��� 
 � � , the predicate � �����  � is stable w.r.t. to the intruder inference system. We
now come to the computation of a well-formed pair ��� 
 � � that ensures in addition the stability of � �����  � w.r.t.
any interleaving of sessions of a given protocol � � ��� 
 � � .

Definition 5.3 (stability of ��� 
 � � w.r.t. to rules) Let &�� � � � � " be a rule in � . The pair ��� 
 � � is stable
w.r.t. the rule & , if for every substitution � , the property � � � � �������  � implies � � � " ���
���  � . A pair �
� 
�� � is stable
w.r.t. a set of rules � if it is stable w.r.t. to each rule in � .
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The stability of the pair ��� 
 � � w.r.t. to a rule � � � � " expresses the fact that the message produced by firing the
transition � � � � " has no effect on the protection of � . Then, using Proposition 5.1, we can prove by induction
the following theorem:

Theorem 5.1 Let � be a set of secrets and � be a set of safe-breakers. If ��� 
 � � is well-formed and stable w.r.t.
all rules in � ; if additionally, � H �����  � holds for every set of messages � H that satisfies � , then 9� D � , i.e., the
secrets in � are preserved in any execution of the protocol � � ��� 
�� � .

Proof See Appendix B.2.
J

Theorem 5.1 gives a sufficient condition to conclude that the secrets in � are preserved in spite of the protocol
� � ��� 
�� � . Given a protocol � � ��� 
�� � and a set � of secrets, we compute a set � of safe-breakers and a set
� � of secrets such that:

� the set of messages initially known by the intruder – defined by the constraint � on � H – satisfies � H �����  �E� ,
� � � � � , and

� �
� 
�� � � is well-formed,

� �
� 
�� � � is stable w.r.t. � .

6 Computing stable secrets and safe-breakers

In this section, we develop an algorithm that computes a stable pair ��� 
 � � � . This is done in two steps. First,
we develop a semantic version of the algorithm in which we do not consider questions related to representing
sets of safe-breakers. Then, we define a symbolic representation for safe-breakers and we develop a symbolic
algorithm.

6.1 A semantic verification algorithm

In Figure 5, we present an algorithm that computes a pair ��� 
 � � which is well-formed, and stable w.r.t. the rules
of the protocol. The algorithm uses a function Closure that when applied to a set of messages yields a closure
of this set. That is, we describe an algorithm that is parameterized by a choice of such a function. Its correction
does not depend in this choice. In fact, we can integrate computing the closure of sets into the algorithm and
we can for a given set try all possible closure sets. This is, however, cumbersome and does not add new insight.
The algorithm takes as input: a set of rules � , a set of secrets � , a set of safe keys � and a set of safe-breakers
� . It is a fixpoint computation of a well-formed stable pair, starting with �
� 
�� � . If it terminates, it returns an
augmented set of secrets �� and an augmented set of safe-breakers �C� .

We now explain intuitively the clue point of the algorithm. Let us take a rule � � � � � in � , a substitution
� � � � � �.� � such that a secret + is insensitive to � in � � � � � , the premise of the instantiated rule. If the secret
+ is not protected in � ��� � � , the conclusion of the instantiated rule, then each � -guard of � ��� � � that protect an
occurrence of the secret + is not efficient in this case and it must be added to the set of safe-breakers. Indeed, the
intruder does not need the inverse of the keys in � to get the secret: it will be unwittingly revealed by a principal
who plays the rule � ��� � � � � � � � � . Think for instance of a protocol with � � ��
�A � ����� @�� � � � � A ����� @���� � as a rule of
principal ! . The principal ! will respond � Secret ����� @�� � � on reception of the message � � �$
 Secret � ����� @�� � � . Thus
unwittingly decrypting the secret for the intruder. So, the � -guard � � �$
 Secret � ����� @�� � � is a particular case where
�&%�' �1! � does not protect the secret and � � � �$
 Secret � ����� @�� � � 
 4 � � must be added to the set the safe-breakers � .
Case 2 in the algorithm considers the case where a secret is vulnerable to safe-breakers in the conclusion, and
the premise does not contain a secret. In this case, the apparently harmless premise is as compromising as the
secret, and so, it must be added to the set of secrets. The following proposition summarizes the properties of the
algorithm.

Proposition 6.1 If the algorithm of Figure 5 applied to ��� 
 � 
�� 
 � � terminates, it returns �� and �� that satisfy
the following conditions:
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input: � , � , � and �
output: �� , � � such that �
�� 
 �E� � is well-formed and stable w.r.t. � .
� � � � � ; � � � � � ;

— add to the secrets the inverse of the keys from �
� �

� � �A' � � G�'�� � � 
 � �0� � � � * � �
�

;
repeat

— compute the closure that adds to � 8 one subpart of each compound secret of � 8
� � � � � � � +
- &�� � �E� � ; � � � � �� ; � � � � � � ;
for each � � � � � � �

for each & � dom � � � � + � � � ��� � ��� � �!��*��
— compute all Dangerous Substitutions of rule ������� ! where a secret is

— not kept in the conclusion	 � � � � �I��� � � �.� � G � ��� � � � ����� � �� ��� � �
� � ��
���+ � �E+ � � � � � � � � � � ��� � ���
� � ��E+�� � ;
— compute the corresponding Dangerous Premises	 �>� � � � � � � � G ��� 	 � � ;

— update the secret and safe-breakers according to the dangerous premises:

— case 1 add safe-breakers to � 8 if �� !���� �  ! ���
for each , � 	 � do

— new safe-breakers are pairs constructed from submessage of � of the form encr �� 8�� � � � �  ��
— and positions of ���! � � � in them

 ��� � � � � �", � � 
�� � � & � �CG���'/� � 
 , � ��� ��, � ��� � � @ 
�& ��� &5� �'� � F � � � +
� �'� �  + � � � � � � ��� ��� � � ��� ��� � 
 � � & � �

— update the set of safe-breakers �
�E� � � ���*  � � � ;

od
— case 2 adds to the secrets all dangerous premises if ��
! � � � ! !"� �
 � ��� � � ��, GA, � 	 � � ; �E� � � � � *  � ���

od
od

until ���� 
 � � �B� �
� � 
 � � �
Figure 5: The semantic version of the verification algorithm
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1. ���� 
 � � � is well-formed,

2. ���� 
 � � � is stable w.r.t. � , and

3. � � �E�
Proof The well-formed property of $�� 8 )�� 8 - derives directly from the operations made in the algorithm. First,
the set of secrets � 8 is each time closed. Second, any time a dangerous premise with respect to a secret � is found
we add to ��8 , all message transducers obtained by its subterms of the form

� � � 6 , with �9��� that dominates
the secret � and the related positions. Hence, that ensures the second condition of the well-formedness.
If the algorithm reaches a fixpoint $�� 8 )�� 8 - then, the until condition of repeat termination will be reached. That
is, all rule in � produce dangerous substitution �
	 which generates ?����� and ?����	 which are already in � 8
respectively � 8 .
Since we start with the set � 8 ��� , and then the algorithm only augments it, the last condition, ����� 8 is
obviously satisfied.

J

Using Proposition 6.1 and Theorem 5.1, we can prove the following corollary.

Corollary 6.1 If the algorithm of Figure 5 terminates with ���� 
 � � � as result, and each set of messages � H that
satisfies � ��� H � also satisfies � H ��� � �� � � , we can conclude 9� D � � , and hence, 9� D � .

6.2 A symbolic representation of safe-breakers

To develop an effective version of our semantic algorithm, we need to represent (potentially infinite) sets of
safe-breakers. To do so, we introduce a symbolic representation of safe-breakers: a breaking-pattern is a pair
� � � � @ 
"� � where � � � @ is a term over variables in � and � is a critical position in � � �6@ . A secret + embedded in a
message , is insensitive to a breaking-pattern � %�
"� � if it is insensitive to any instance of the pattern % , meaning
that the following property holds:

,�� � ��� � % � 
1� � G ��� � � � �.� � � �  +
For instance, the messages � � Secret 
 � � 
�! � � �  and � �"! 
 � � 
 Secret ��� �  are insensitive to the breaking-pattern5

� � �"! 
 �.A 
!� ��� �  
 4 �
4�� , while the secret of message � �"! 
 � Secret 
�� ��� �  is revealed by applying the breaking-
pattern with the substitution � A�� Secret, ��� �3� .

A breaking-pattern is then a symbolic representation of a set of safe-breakers. In fact, the symbolic algorithm
deals with sets of breaking-patterns. So, we go one step further and we introduce super terms to represent sets
of breaking-patterns. Let us now define formally those symbolic representations used in the HERMES tool, our
implementation of the symbolic algorithm.

The super terms are defined by the following BNF:

+ � � � � � G�� G�� G
A=G pair � + � � 
�+ � " � G
encr �1+ � 
�� � G Sup � + ���

where � �  , ���=� , � �-� , and A,�,� . The set of super terms is denoted by � � ��� 
�� � . Notice that every
term in � ��� 
 � � is also a super term in �D� ��� 
 � � . The difference between the two is that super terms make use
of the special � - � function symbol.

Intuitively, as can be seen from the following definition, Sup � ��� represents all terms containing the term � as
a sub-term. For instance, the terms ! , pair �.A 
�! � , encr �"! 
�� � , �	�
� all belong to � � Sup �"! � � � .
Definition 6.1 Given a super term + � , the set of all corresponding terms is denoted by � � + � � � . It is defined as
follows: � �

� 5�� � � � � 5 � if � 5 is a constant or a variable� �
pair $�� 5 ' )�� 5 , - � � � �

pair $ 5 ' ) 5 , - � 5 ' �
� �
� 5 ' � � ) 5 , �

� �
� 5 , � � �� �

encr $�� 5 ' ) �I- � � � �
encr $ 5 ' ) �I- � 5 ' �

� �
� 5 ' � � �� �

Sup $�� 5 - � � � � 5 � � $��9) � -���� a position  in
5

such that
5 � � �

� �
� 5!� � �

5010 is the position of " in #  � � $" ��% � �!&�'
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Definition 6.2 Given a super term + � , and a critical position � , we denote by � � �1+ � 
1� � � � the set of breaking-term
associated to the breaking-super term � + � 
"� � . We overload the function � � � � � for the meaning is clear from its
argument. For breaking-super terms, the function � � � � � is defined as follows:

� �
$�� 5 )  B- � � � � $�� 5 )  B- � if st is a constant or a variable� �
$ pair $�� 5 ' ) � 5 , -�) � - � � �� $ pair $ 5 '*) 5 ,.-�) � - � 5 ' �

� �
� 5 ' � � ) 5 ,H�

� �
� 5 , � � �� �

$ pair $�� 5 '.) � 5 ,�-�) ���  B- � � �� $ pair $ 5 ' ) 5 , -�) ��� � -��I$ 5 ' ) � -��
� �
$�� 5 ' )  B- � � ) 5 , �

� �
� 5 , � � �� �

$ pair $�� 5 ' ) � 5 , -�). �  B- � � �� $ pair $ 5 '*) 5 ,.-�). � � -�� 5 ' �
� �
� 5 ' � � ) $ 5 , ) � -��

� �
$�� 5 , )  B- � � �� �

$ encr $�� 5 )+�D-�) � - � � � � $ encr $ 5 ) �I-�) � - � 5 �
� �
� 5!� � �� �

$ encr $�� 5 )+�D-�) ���  B- � � � � $ encr $ 5 )3�D-�) ��� � - �I$ 5 ) � -��
� �
$�� 5 )� B- � � �� �

$ encr $�� 5 )+�D-�). �  B- � � ���� �
$ Sup $�� 5 -�) � - � � ���� �
$ Sup $�� 5 -�) ���  B- � � � � $ 5 ) ��� 	 - �I$ 5 � � ) 	 -��

� �
$�� 5 )  B- � � �� �

$ Sup $�� 5 -�)� �  B- � � ���
Example 6.1 The super term � Sup � pair �"! 
�A ��� 
 4 � � denotes all breaking-pattern �1%�
"� � that contain
pair �"! 
�A � as a sub-message of % and where � corresponds to the position of A . The computation of the breaking-
patterns corresponding to the super term
� Sup � pair �1! 
 A ��� 
 4 � � goes through the step
� � � pair �"! 
�A � 
	� � � �0� � � pair �"! 
 A � 
	� � � and ends with the set � � � Sup � pair �"! 
�A ��� 
 4 � � � �0� � � � 
�� � � � G
��� ��� pair �1! 
 A � � . This set contains for instance the terms � pair � pair �"! 
�A � 
�� � 
 4 � � ,
� pair � ��
 pair �1! 
�A ��� 
	��� � , � pair �1! 
�A � 

� � ,
� encr � pair � ��
 pair �"! 
�A � � 
�' � 

����� � . �

Using the function � � � � � we can shift from super terms to their equivalent representation of sets of terms. Based
on that remark, we present the algorithm on terms and we explain how it extends to super terms. In the sequel,
when there is no need to distinguish between terms and super terms, we use the generic word “pattern”.

Based on the symbolic representation, the infinite set � of safe-breakers is represented by a finite set of
breaking-patterns � � . More formally, we have the following:

Definition 6.3 A symbolic representation � � is a pair ��� ��
 � � , where

� � � is a finite set of breaking-patterns that represents the safe-breakers �
� � is a finite set of terms that represents the secrets.

7 A symbolic verification algorithm

The symbolic algorithm is obtained from the algorithm of Figure 5 by replacing each operation by a correspond-
ing symbolic one that operates on �
� ��
 � � . For the sake of presentation, first we explain the symbolic algorithm
in the particular case where the breaking-patterns consists of pairs of terms and positions rather than super terms
and positions, i.e., Sup does not occur in any breaking-patterns of � � . We will explain later how it extends to
super terms and what are the difficulties to solve.

7.1 The algorithm on terms

Before presenting the algorithm we need to introduce the following definitions. As usual a substitution is a
mapping � � � � � ��� 
�� � . A ground substitution is a mapping � � � � � �.� � . Let % �#� ��� 
"� � and
% �)� � � ��� 
"�&� � be two breaking-patterns. We say that they unify if the positions � and � � are comparable and there
is a substitution � ��� � � ��� 
 � � such that � � ���D� � ����� � . We write, also, � � � 
1� �B� � � ��� 
"�&� � .
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The symbolic algorithm takes as input a set of rules � , a set of secrets � , a set of key � and an empty set of
breaking-patterns � � � � . It computes a new well-formed pair of breaking-patterns and secrets ��� � 
�� � until it
becomes stable w.r.t. all rules in � . Let us now sketch its main steps:

1. The set � of secrets is augmented with � �
�
, the set of keys of the form ' � � such that ' is an element of

� .

2. For each rule � � � ��� in � , we have to consider all possible occurrences of a secret in the conclusion � � .
So, for each position � in �
� that corresponds to a variable or a secret the algorithm computes:

a. the finite set of dangerous substitution
	 � is as follows. A substitution ��� � � � ��� 
�� � is dangerous

if for every position � � � , for which �.' � � such that ��� � � � � � � � ��� � � ��� � � @ , the safe-breaker

��� � � � � � 
�� �
� � � unifies by � with a breaking-pattern of � � . Then,

	 � � � � � �D� � � ��� 
�� �-G
� is dangerous � . We illustrate below the computation of dangerous substitutions.
The set of dangerous premises is:

	 ��� � � � � � �CG ��� 	 � � .

b. If there exists � such that � � � ��� � � � � � ��� � then for every term � of
	 � we construct a set of new

breaking-patterns that consist in pairs of sub-terms of � that are encrypted term by keys from � and
positions restricted to this sub-terms of � .
Formally,

 � � � ��� � ����� � 
�& � � � �CG � � 	 � 
��.'/� � 
���� � �
� ��� � � � �A@ 
 � � � ��� � � ��� � �
� � 
�& � � � �

Update the breaking-patterns
� � � � � �E*� � � � ���

c. Otherwise, if such a � does not exists then the set of dangerous premises must be added to the set of
secrets. Formally,  � � � � � ��, GA, � 	 � � � Update and at the same time closure the set of secrets
� � � � � +
- &�� ���$*  ��� � � �

3. repeat 2 until  � � � � � and  ��� � � � � � .

Computation of dangerous substitutions

We present the algorithm that computes the dangerous substitutions induced by a rule � � � � � , and a position � .
Let � be the fixed set of keys and � � the set of breaking-patterns.

Let �3� be the set of positions �  above � such that for each �  � �3� there is ' � � such that � � � ��� ��� �
� � � � �
� ����� � �A@ . We define below the function

�
that computes all the unifiers between breaking-patterns of � � and

� � � 
"� � that cancel each protecting position. Formally, the dangerous substitutions are the unifiers � that satisfy:�
� � �65 5 � � � � � ��� ��� 
1�#� � � �"� � �1%  
��  � , where

�1%8� 
"� � �B��� �	�
Initially,

�
is called with the set �3� of protecting positions and a set of substitutions

	 � containing only the
empty substitution:

	 � � � ��� � . Then, it takes in turn each protecting position and if it is possible, it completes
the substitutions of

	 � in order to cancel the current position by a breaking-pattern of � � .
� $ 5 ! ) ��� )��	� ) �
	1-0�
�� �

� �� (� �
	 � if �	� � �� $ 5 ! ) ��� )��	��� �  �� � )���������� � �� � 
��� �
' ) � � ��)��� �  ��� �! ��� � � -�)  "�0�#�	�

where the �
�$� �@ in the fourth argument are the unifiers resulting of the unification of ��� � ��� � ��� ��� 
1� � � � � with some

breaking-patterns of � � .
The same algorithm is used in the case where breaking-patterns are pairs of terms and positions and when

breaking-patterns are pairs of super terms and positions. We only need to adapt the unification algorithm. In the
case of terms, we use the standard most general unifier; and for super terms, we define a unification algorithm
presented in Section 7.2.
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Figure 6: Illustration of computing dangerous substitutions.

Example 7.1 We illustrate the computation of dangerous substitutions on the set of breaking-patterns � � �
� � � � ��
 A � �  � 
 4 � � 
 � � ���1! 
!� � 
� � �  � 
 4 � � � , the set of key � � ��� � 
���� � and a rule � � � � � given in
Figure 6.

We consider the conclusion of the rule. The first step consists in looking for all the critical positions in the
conclusion where a secret or a variable appears. We find A � at position 4 ��� 4 � , ��� at position 4 ���
4�4�4 and � � at
positions 4�4 , 4 ���
4�4 � in the term �
� . Let take the position � ��4 ���
4 � of A0� , we look for the positions above it
that may protect it. We found exactly two protecting positions: � � � � and �$"3� 4 ��� . Then, the function

�
looks for all substitutions that unify some breaking-patterns of � � with the terms at the protecting positions � �
and � " and the restricted respective positions of � . Starting with position � � � � , it unifies � � � � �
� � 
1� � with the
breaking-pattern
� � � ��
 A � �  � 
 4 � � we have 4 � � � and the unifier � �>� � � �I� �$
�A�� � � � �
� � � � . This cancels the top most
protection. Then, the function

�
attempts to complete the substitution � � so that it also cancels the protection at

position � " � 4 ��� . To do so, it tries to unify � � � � � � ��� � � � � ��� �*� 
�� � 
 A)� � �  � 
1� � �" ��� 4 � � with some breaking-
patterns of � � and succeeds with the breaking-pattern � � ���1! 
�� � 
� � �  � 
 4 � � . We have 4 � ��4 � and the unifier
� � � � � �/� � ! 
!�>� �$
�A&� � � � . The two unifiers are then composed and restricted to the domain var � � � � resulting
the substitution � � ��� � * � � � �	��
� # �  �

� � � � � � ! 
� � � � � . Pursuing the computation does not provide other
substitutions and finally

�
returns for the position � of � � the set of dangerous substitutions � � � . We now look

at the premise of the rule to compute the new breaking-patterns induced by � . The variable A � appears in � � at
the position � � 4�4 � and it is protected by the key � � at the position & � � � and by the key � � at the position
&�" � 4 . However, the dangerous substitution � tells that these protections will not work in case � is ! and � is
� . Consequently, we increase the set of breaking-patterns � � by adding these particular cases. In our symbolic
representation, this means to add

1. � � � � �"� � � ���1! 
�� � 
 A)� � �  � � �� � 
 & � � � � �04�4�4 � and

2. � � � � �
� � � � ���"! 
�� � 
 A � � �� � 
�& � �" � �E4�4 �
to the set of breaking-patterns � � . �

7.2 Dealing with super terms

First of all, it is worth to mention that super terms are more expressive than terms, that is, there are sets of
messages that can be described as super terms but not as terms. This is for instance the case for the set of
messages that contain the constant ! as a sub-message. In fact, introducing the interpreted function symbol Sup
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corresponds to adding the sub-term relation to a logic on terms. Moreover, it is not difficult to exhibit examples
of protocols where one needs the expressive power of super terms to represent the safe-breakers.

Unification and matching are the key operations in Step ����F � of the symbolic algorithm. The problem we
need to solve for obtaining our symbolic algorithm is, however, not the unification of super terms. The problem
we need to solve is the following: Given two super terms - and � , we have to determine the set � �.- 
���� of
substitutions � such that there exist terms - � � � � -)� � and � � � � � � � � such that � �.- � � � � � � � � . More precisely, we
want to characterize the set of most general unifiers that unify some terms in � � -.� � and � � � � � . Actually, the problem
we need to solve for our symbolic algorithm is a simpler one where at least one of the super terms - and � is
simply a term, that is, without occurence of Sup in it6. We prefer, however, to present a solution for the general
case. We will do this in a general setting.

Let us consider a finite set � of function symbols such that Sup ��/� and let � be a countable set of variables
(see Section 2 for the notations). The set of super terms induced by � and � , denoted by � � �.� 
 � � is defined
by the following BNF:

�E�F� �KA=G5� ��� � 
	�
�	�#
 � � � G Sup � ���
where A is a variable in � and �!�3� is a function symbol of arity  $;74 . Let � � 

�
denote the function symbols

in � of arity � . As usual, function symbols of arity 4 , i.e. elements of � � H
�
, are called constants. The meaning

� � � � � of a super term � is a set of terms in � ��� 
�� � , it has been defined in Definition 6.1.

Definition 7.1 Given two super terms - and ( , a substitution � � � � �D� ��� 
�� � is called a maximal general
unifier for - and ( , if the following conditions are satisfied:

1. it is a most general unifier for some terms �D� � � -)� � and � � � � � ( � � and

2. for every substitution � � that unifies terms in � � -.� � and � � ( � � , � � is not more general than � , that is, for no
substitution  , we have �3�  � � .

We denote by � �.- 
�( � the set of maximal general unifiers for - and ( . �
In general there will be more than one maximal general unifier for - and ( even modulo renaming. The definition
of � can be extended in the usual way –as for unification– to sets � ��-  
�(  � G�� � �G� � of pairs of super terms.
In the sequel, we prefer to write -  � (  instead of �.-  
�(  � as our algorithm essentially consists in manipulating
some kind of equations.

In this section, we want to develop an algorithm that given � � �
-  � (  G�� �;� � 
! 0� � determines � ��� � .
From now on, we will call such a set � a generalized equational problem, written GEP for short. It turns out that
an extension of the set of transformations that solve the usual unification problem (cf. [6]) will give the solution.

We recall in Figure 7 the usual six rules of [6] for solving unification and we add three rules to deal with the
Sup operator.

We only solve the unification problem in the case of a signature � with at least a constructor of arity greater
than one ; we do not present here the rules for the case of signature with only unary constructors which are useless
in the context of crytography. We attract the reader’s attention to the fact that the Sup-Splitting rule transforms a
GEP � into a set of GEPs. Indeed, it yields a new GEP for each sub-term of � � � � 
	�
�	�#
 � � � . This is not the case for
the usual unification rules.

Example 7.2 Consider the following GEP� � ��� Sup �.A �B�K� � %�
�� � Sup ��F ��� �
� �A� � � %�
 Sup ��� �.A ����� �K� � %�
�� �1% � �

Equation 1 is eliminated by the rule (Sup-Delete-2) of Figure 7. Indeed, it is equivalent to
A ��� � %�
�� � Sup ��F ��� � which puts no constraint on A as long as the term signature contains a contructor with
arity greater than one (e.g., pair). Indeed, whatever the term we obtain for A it is always possible, using binary

6Indeed, we need to unify the conclusion of a rule, which is a term, with a breaking-patterns which can be a super term.
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We consider the case � �� " �
� 
�
9� � with � 
��G�/� � �

� 
 A%�!� 
 - 
�($
 -  
�(  � �D� 
 � 
 �  �3� and Sup ����
Delete � -��E- � * � � �
Orient � -��EA � * � � � A��7- � * � , if - ��!�
Decompose �5� ��- � 

�	�
� 
�- � �"�0� �"( � 
	�
�	� 
�( � � � * � � �
-  � (  G
�"�3� � � * �
Clash � � �.- � 

�	�
� 
�- � �"� � �?( � 
	�	�
� 
�(�� � � * � � �
Eliminate � A��E- � * � � � A��7- � * � � - �5A.� , if A �� var ��- �
Occurs-Check �
A��K- � * � � � , if A!� var �.- � 
�-=9� Sup �.A �"
G-:9�KA
Sup-Delete-1 �
A�� Sup ��A � � * � � �
Sup-Delete-2 � Sup �.- �"� ( � * � � � , if Sup � � � appears in (
Sup-Splitting � Sup �.- �"�0� ��� � 
	�
�	�#
 � � � � * � � �
-�� � � * � , for �E�7� ��� � 

�	�	� 
 � � � ,

if Sup �!� � does not appear in � ��� � 

�	�	� 
�� � �

Figure 7: Usual rules for solving unification extended to deal with superterms

contructors, to adjust the Sup part in � � %�
�� � Sup ��F ��� � in order to obtain a term that contains A . As an example,
� �1%�
 � � pair �.A 
 F ��� contains A and it is an instance of � �1%�
 � � Sup ��F � ��� .

The rule Decompose removes Equation 2 and produces the constraints Sup ��� �.A � ���B� � �1% � and % � % (which
is eliminated by the rule Delete). Then, by rule Sup-Splitting, the former equation yields two GEPs: � � �.A � �
� � % � � and � � ��A �B� % � . Finally, we obtain the solution A�� % . �

Termination of the algorithm can be proved using lexicographic ordering and the ranking function that maps
a GEP � to �?, � 
�, " 
�,�� � , where:

� , � is the number of variables in � that are not solved. As usual, a variable A is solved in � if it occurs
exactly once in � , namely on the left-hand side of some equation A��E- with A �� var �.- � .

� , " is the measure of � defined by � � � �"���
	 � 
 ��� ��G -:G� G ( G � and � � � �"�K4 ,

� , � is the number of equations -/�EA in � with A,�3� and - ��%� .

The application of a rule to a GEP � leads to one or more GEPs with a lower rank than � . Although the Sup-
Splitting rule of Figure 7 increases the number of GEPs, this number is bounded by the number of subterms of the
right-hand side term. The ranking function and the bounded number of deriveable GEPs ensure the termination
of the algorithm.

To prove soundness of the algorithm, we prove for each rule � � � � 
	�	�
�#
� � that we have � ��� �$�
� ���  � � � � �  � .

7.3 On the termination of the symbolic algorithm

In this section, we present a technique that makes a depth-first implementation of the symbolic verification algo-
rithm terminate more often, at a price of a safe approximation of the results. In fact, our prototype implementa-
tion of our verification algorithm, named HERMES, terminates with precise results on all practical examples of
protocols we tried. That is, the results did not show any false attack (see Table 8).

A sequence � �  
1�  � �� H of breaking-patterns is called increasing at a sequence �"�  � �� H of positions, if the
following conditions are satisfied for every �";74 :

1. �  � dom � �  � and �  � � �� � ,
2. �  � �/� � H � � � H � �*�6� H � , where � is fresh variable.

3. � �  � � � 
�� �
�

 �  �"� � � H � � � 
�� � �H � H � .
Let us consider an example to clarify these definitions.
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Protocol Name Result Time (sec)

Yahalom OK 12.67
Needham-Schroeder Public Key Attack 0.04
Needham-Schroeder Public Key (with a key server) Attack 0.90
Needham-Schroeder-Lowe OK 0.03
Otway-Rees OK

�
0.01

Denning Sacco Key Distribution with Public Key Attack 0.02
Wide Mouthed Frog (modified) OK 0.04
Kao-Chow OK 0.78
Neumann-Stubblebine OK

�
0.04

Needham-Schroeder Symmetric Key Attack 0.08
ISO Symmetric Key One-Pass Unilateral Authentication Attack 0.01
ISO Symmetric Key Two-Pass Unilateral Authentication OK 0.01
Andrew Secure RPC Attack 0.03

Figure 8: The results provided by HERMES, our prototype for verifying secrecy properties, running on a Pentium
III 600Mhz PC under Linux 2.2.19.

Example 7.3 Consider the following rule from the session �"! 
�! � of Needham-Schroeder-Lowe protocol pre-
sented in Section 7.4:

& � � �"! 
 � � � �� 
�� � � �  � � ��� �  � �
Consider the sequence � ���� � �$
�A � �  � 
"�  � �� H , where � ��� � � �1! 
 � � � �� 
	� � � and �  ��4 ��� ����� �  . The first three
terms of the sequence are:
$ ����� $�� )��B- � ' � � � $�� )	�B- � ' � ) �  �-
$ ��� ' $�� )��B- � ' � � � $�
�)*$�� � �' )�$�� )��B-+-+- � ' � ) �  7  *- and
$ ��� , $�� )��B- � ' � � � $�
�)*$�� � �' )�$�
 ).$�� � �' )*$�� )�C-+-+-+-+- � ' �
) �   7  7 �- . The whole sequence can be obtained by iteratively computing the breaking-patterns induced by
the rule & starting from the breaking-pattern � � � �$
�A � �  � 
 4 � � . Thus, a naive application of our symbolic
algorithm will not terminate. On the other hand, this sequence is increasing at �"�  � 4>� � ��� �� � �� H . Indeed,
���� � �$
�A � �� � � �/� � H � � ��� �� � and
� � ���  � �$
�A � �� � � � � � 
�� � � �  ��� �D� ��� �$
�A � 

� � , for every � ;04 . We will see now how this fact can be exploited
to make the algorithm to converge. �

The idea of our technique for enforcing termination of the symbolic algorithm is expressed by the following
proposition:

Proposition 7.1 Let ���  
"�  � �� H be increasing at
�"�  � �� H . Then,

� �� H � � � �  
"�  � � � � � �� � � � � �  
"�  � � �*� � � � � Sup ��� � � � � ���6� � � 
�� � �
4 ��� � �� � � � �
for every 1�; 4��

Example 7.4 Consider again our Example 7.3.
Then, if we choose 1I��� , we obtain a set consisting of the two super terms � � � �$
�A � �  � 
 4 � � and � � �"! 
 � � � �� 
 Sup � �$
�A � ��� �  � 
 4 ���
which approximates the whole sequence � ���� � �$
�A � �  � 
"�  � �� H .

1There is a known attack of the untyped version of the protocol. This attack relies on the misuse of a message as an encryption key.
Discovering this type attack automatically requires to deal with non-atomic keys. This is not yet implemented in HERMES.
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���$
�A�� �  � ,
��! 
 � � � �� 
 Sup � ��
 A�� ��� �  � ,
��! 
 � � � 
 Sup � ��
 A�� � � �  � .

Figure 9: The breaking-patterns for the Needham-Schroeder-Lowe protocol

7.4 Needham-Schroeder-Lowe Protocol

The corrected version of the Needham-Schroeder protocol is also called Needham-Schroeder-Lowe as it is G.
Lowe who found the attack and corrected the protocol. The difference with the initial version is in the second
transition of principal � :

! � � � �A! 
�� � �  �
� � ! � ����
�� � 
�� " �� �
! � � � ��� " ����

In practice, we notice that if ��� � 
1� � is a breaking-pattern then the pattern at the position � in � � is a variable.
Therefore, for the sake of readability, further we will write only the pattern � � instead of the breaking-pattern
��� � 
1� � . The position is indicated by the subscript + to the variable that is at the position � in the pattern � � .

We run our verification algorithm with �#� ���	" 
�� �
�

� � , the empty set of breaking-patterns and the set of
keys � � ����� � . The algorithm terminates with the set of secrets unchanged and the set � � of breaking-
patterns given in Figure 9. As the initial constraints are � H 9� � � ��� � 
�� " 
�� �

�
� � , that is, none of the messages

in ��� � 
�� " 
�� �
�

� � is contained at a critical position in a message derivable from � H , it is easy to prove that we
have � H � � ���  � � Hence, we can conclude that the
Needham-Schroeder-Lowe protocol preserves the secret � " . Concerning, the uncorrected version of Exam-
ple 3.1, during computation of new secrets and breaking-patterns, we arrive at a situation where we have to add
��! 
�� � �� �  � as a secret. As this message contains neither a fresh nonce nor a secret, we stop the computation
and follow it back to try constructing an attack. This way, we obtain the attack known as “man in the middle”. �

8 Conclusion

In this paper, we presented a method based on abstract interpretation for verifying secrecy properties of crypto-
graphic protocols in a general model. Our method deals with unbounded number of sessions, unbounded number
of principals, unbounded message depth and unbounded creation of fresh nonces. However, in contrast to the
work in [5, 35, 30], where the session number is bounded, our method is not complete. Indeed, the problem is
in its most general form undecidable even when pairing is not allowed as shown in [4]. The main contribution
of the paper is a verification algorithm that consists of computing an inductive invariant using super as symbolic
representation. Our method can already deal with models in which we distinguish between long term and short
term keys and which contain variables ranging over keys. The idea here is that short term keys can be revealed to
the intruder when a session has terminated. This is not the case for long term keys. This allows a more faithful
modeling of some protocols.

An version of our tool together with the examples of Table 8 is available at the url:
http://www-verimag.imag.fr/ � lbozga/hermes/hermes.php.
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A Definitions

Definition A.1 ( � -guards) Let � be a set of keys. The � -guards are messages of the form ��, � @ for some
, �/� �.� � and '�� � .

� -guards � � ��, � @ GA, �3� �.� � 
:'G� � �
Definition A.2 (least protecting position) Let � be any term and � be a position. The least � -protecting position
of � in � , denoted by lpp � � 
1� � , is the position of the highest � -guard protecting position � of � . Formally,
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Figure 10: Position � is the least � -protecting position in term �

lpp ��� 
"� �"�
,/�  � �A� G6� � � 
 ��� � is a � -guard � �

This definition is illustrated in Fig. 10.

Definition A.3 (sub-safe-breakers) Let � %�
"� � be a safe-breaker. Then, ssb �1%�
1� � denotes the sub-safe-breakers
of � %�
"� � , that is the set of all proper sub-terms of % that are safe-breakers for position � . The sub-safe-breakers
of �1%�
1� � are built from the � -guards of % which are above the position � .

ssb �1%�
1� �"�� � % � ��
1� � �CG �<��� � �H� 
8% � � is a � -guard �
6 � �1%�
1� � �

B Proofs

B.1 Proof of proposition 5.1

Proposition 5.1 Let � be a set of messages and ��� 
 � � be a pair of safe-breakers and secrets. If ��� 
 � � is
well-formed and � �����  � holds, then the secrets of � are insensitive to � in any message , derivable from � ,
that is, �"� , � ,	�
���� � .

Proof Before tackling the proof, we introduce the following definition:

We say that � is a derivation-minimal counter-example, if the following conditions are satisfied:

1. 	 
/� ,

2. � � � �	�  � and

3. there is a derivation for 	 
 � which does not contain any strict sub-derivation 	 
 ��8 of a message
�/8 with � �/8 � �
�  � .

Assume that 	 
�� for an � � � . Then, there exists a derivation-minimal counter-example � such that
� � � �
�  � . The existence of � can be proved as follows. Take a derivation of 	 
/� and let � � be its size. If
� is not a derivation-minimal counter-example then there must exist a sub-derivation 	 
�� 8 with � � 8 � �
�  � .
Clearly, the size � ' of the derivation tree of �98 is strictly smaller than � � . Repeated application of the same
argument must lead to a derivation-minimal counter-example as there are no strictly decreasing chains in � .

We come back to the proof of Proposition 5.1. Let us assume that the pair $���)���- is well-formed, that 	 � �	�  �
holds. Moreover assume that there exists a message � derivable from 	 , which is derivation-minimal counter-
example, meaning that ��@� � �
�  ��� for a secret ��� � . Then, we derive a contradiction by case analysis on the
last derivation step in 	 
�� .

1. If the last step is an application of the rule � �9	 � 	 
/� . This contradicts the assumption 	 � �	�  � ,
since � �	 and � � � �	�  � .
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2. Consider the case of encryption with a key � from � , that is, � � � �8 � 6 and the last step is an
application of the rule 	 
/� 8�� 	%
�� � 	 
 � � 8 �76 . We know that � 8 � �
�  � (1) and � � �
�  � (2) from
the fact that � is a derivation-minimal counter-example. Our hypothesis that should lead to contradiction
becomes � � � 8 �76 � �
�  � . According to Definition 5.1, in the case where ��� � , two rules can lead to the
conclusion � � � 8 �76 � �	�  � .
The first rule corresponds to the case where �� � �8 �76 . Then �98 or � belongs to � since the set of
secrets � is closed against composition. So, �98 or � is a derivation counter-example smaller than � , the
minimal one: contradiction.

The conclusion � � � 8 � 6 � �	�  � can also results from an application of the last rule of Definition 5.1 for a
position  in

� � 8 � 6 :
� � �) � $ � �/8 � 6 - � � � �	�  � )�$ � �/8 �76 )� B-�� �

� � � 8 � 6 � �
� ��
Then, the important facts for the discussion are (3) $ � � 8 � 6 )� B- � � and (4) � $ � � 8 �76 - � � � �	�  � . Again,
we have to consider two cases:
" If ssb $ � �98 �76 )  B-9� � then the only � -guard protecting position  is

� �8 �76 . So, the secret at
position  in

� �98 �76 is protected neither in �8 , nor in � . This contradicts the facts (1) �98 � �
�  � and
(2) � � �	�  � given by the minimality of � .

" In the case ssb $ � � 8 � 6 )� B-��� � , we come to the same contradiction. Let $�� 8 )  8 - be the greatest ele-
ment of ssb $ � � 8 �76 )� B- , meaning that (5) there is no � -guard above � 8 in � � 8 �76 . By definition of ssb
$ � �98 �76 )  B- , we know that ��8 is a proper sub-term of

� �98 �76 ; it is a � -guard and ��8 � � � � � � �98 �76 � � � .

So, (3) � $ � �/8 � 6 - � � � �
�  � entails (6) ����8 � � �
� �
�  � . Additionally, we know that (7) $���8 )� D8 -�� � since

(3) $ � �98 �76 )  B- � � , $���)�� - is well-formed and ��8�� � �98 � 6 . Then, an application the last rule of
Definition 5.1 (for � -guards) to (6) and (7) yields ��� 8 � �
� �� .
We can assume that � 8 is a subterm of � 8 (the same reasoning works for the case � 8
	 � ; we then
obtain a contradiction between � � � �
�  � and (2)). By (5), the maximality of �.8 , there is no � -guard
protecting ��8 in �/8 . Then, we can deduce � �98 � �
�  � from ����8 � �	�  � using rules of Definition 5.1:
this contradicts fact (1) �98 � �
�  � .

3. If the last step is an encryption with a key � which is not in � , that is, � � � � 8 � 6 and 	�
9� 8�� 	�

��� 	 
 � �/8 � 6 . The argumentation is similar to the one used for the previous item. In particular,
the fact (1) holds. Since � is a derivation-minimal counter-example, the judgment � � � �
���� holds and
comes as a conclusion of the first rule or the second rule of Definition 5.1. The case of the first rule is
treated as in the previous item. The case of the second rule, �� ������� ���� 6��� '

���� ����� �����  � , requires � �98 � �	�  � which

contradicts fact (1) �98 � �	�  � .
4. The case of pairing is very similar to the previous case.

5. The case of projection also contradicts the derivation-minimality assumption.

6. If the last step is a decryption with a key � G ' , that is, 	 
 � � �76 � 	 
�� G ' � 	 
 � and we
assumed that � � � �
�  � . We condiser two cases: If ���� � then we obtain � � � � 6 � �	�  � by the second
rule of Definition 5.1. So,

� � � 6 is a derivation counter-example smaller than � : this contradicts the
derivation-minimality of � . On the other hand, it �%��� then � G ' belongs to 	 as a consequence
of the well-formedness of $���)�� - w.r.t. � . So, �BG ' is a derivation counter-example smaller than � :
contradiction.

J

B.2 Proof of theorem 5.1

Theorem 5.1 Let � be a set of secrets and � be a set of safe-breakers. If ��� 
 � � is well-formed and stable w.r.t.
all rules in � ; if additionally � H �
���� � holds for every set of messages � H that satisfies � , then 9� D � , i.e., the
secrets in � are preserved in any execution of the protocol ��� ��� 
�� � .

Proof We proof by induction that for any run 	 �! 
�
� 	�' � � � 	 ! G '  #"� 	 ! , where for each > �  7)�� � �+? , there is

a substitution L � � � � � $
� - such that 	 � G ' 
2LB$ 5 ' - and 	 ��� 	 � G ' � � LB$ 5 , - � , where
5 ' � 5 , � 	 � , we

have 	 ! �
 � .
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Figure 11: The Yahalom protocol

tran ��� � �� � � � � � 
! �
��� " 
�+�,-' �?, 
�A � 
�� � � 
! � 
	� � � � � @�� ��� � ����� 


� � � � � 
 ��� � � � � @�� � �  � � � ���
tran ��� " �� A$" 
!� " � �$" 
 �
A " 
�� " 
� #" � � � @��  � � � � �
tran ��� � �� A � 
 ��� � 
� � 
 � � � � � @��  � � � � � � �
A � 
�+�,-' �  � 
!� � 
�A � � 
� � 
 � � � � � @�� � � � � � � 
��� � 
�+�,-' �  � 
�� � 
 A � � � � � @��  � � � � �

Figure 12: The Yahalom protocol transitions

First, we have 	 � � �
�  � then 	 � �

� .

Second, we proof that if for any run we have 	 � G ' � �
�  � then, we have 	 � � �
�  � , for all rules
	 � 5 ' � 5 ,

in � and for all L such that 	 � G ' 
�LB$ 5 ' - and 	 � �!	 � G ' � � LB$ 5 , - � .

We have 	 � G ' � �	�  � and 	 � G ' 
2LB$ 5 ' - so we are in the hypothesis of the proposition 5.1 then LB$ 5 ' - � �
� �� .
$�� )���- is stable w.r.t. all rules in � then LB$ 5 , - � �	�  � . So we have 	 � � �
�  � J

C Example: The Yahalom Protocol

The aim of the Yahalom protocol (cf. [12] and see Figure 11) is to establish a secret symmetric shared key ' � �
between two participants ! and � using a trusted server � . The protocol assumes that ! and � already share
secure keys ' ��� , respectively ' � � with the server � . The Yahalom protocol can be represented in our setting as
follows: � � ��� � 
"�$" 
"� � � with fresh ��� � � � �� � � , fresh ��� " � � �� #" � and fresh �	� � � � �� � � . The transitions are
described in Figure 12.

The abstraction defined in Section 4 yields the following abstract sets:

� � � ��! 
�� � 

�
� � ��� � 
�+�,-' �"! 
�! � 
�� � � 
�� � � �� � � 


�
� � ��� � 
�� � � �� 
�� � � �� 
�� " 
�� � � �" 
�� � � �" 
��	� � �

For the sake of conciseness we write � � � instead of +�,-' � � � 
�! 
�! � respectively � � � �� � instead of
+
,-' � � � �� 
�! 
�! � . Figure 13 presents only some abstract rules of the protocol. We run our verification algorithm
on the whole set of abstract rules � , the set of secrets � � ��� "�
���� � 
�+
,-' �1! 
�! � � , the empty set of breaking-
patterns, and the set of keys � � �A+�,-' �"! 
�! � 
�� � � � .

The algorithm terminates with the set of secrets unchanged and a set of breaking-patterns � which, for lack
of space, is not presented here. We assuming that none of the secrets appear at a critical position in a message
derivable from the initial knowledge � H of the intruder. Formally,

	 � 
 � � � , �� !�� � � � � �� ! � � �*�9��$�
 )	
H- �� !��
Then, it is easy to prove that the initial knowledge of the intruder, � H , has the property � H �
���  � . This is a

sufficient condition to ensure that the Yahalom protocol preserves the set of secrets � .
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�'& F  ��� � �E�

	!� �.A � 
���� 
�! � 

with A � 
���� � � � A � 
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� � 
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Figure 13: Some examples of abstract rules of the Yahalom protocol
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