
An Abstraction Relation

for Energy Consumption Properties

Master student: Laurie Lugrin∗

Supervisors: Florence Maraninchi∗ and Laurent Mounier∗

∗ Verimag, 2, avenue de Vignate, 38610 GIÈRES – France

Email: 〈firstname〉.〈lastname〉 @imag.fr

Abstract—This paper deals with the validation of energy con-
sumption properties for embedded systems. We are particularly
interested in formal validation based on models for the validation
of worst-case energy consumption. We restrict ourself to non-
functional properties, that is, the system behaviour does not
depend on the amount of energy consumed or left. In most cases
models are too big to run verification, so we consider model
abstractions.

We use power state automata to model systems and an abstrac-
tion relation which is suitable to the worst-case consumption. We
propose an automatic procedure to check whether a model is an
abstraction of a given detailed model.

I. INTRODUCTION

Energy saving is becoming a major social concern this

last few years and affects computer systems design. It is

particularly important in embedded systems because they have

a limited stock of energy. Energy saving increases the battery

life, or the system lifespan in case the battery cannot be

recharged.

The problem we are dealing with is that there is no well-

established design methods to guarantee properties on energy

consumption, so we turn towards ad-hoc methods. In this paper

we choose to consider a formal approach in order to verify

properties on energy, like worst-case lifespan of a system.

We use power state automata to model the system, a widely

used formalism to express resource consumption. It consists of

standard input/output automata (transductors) with state labels

expressing the instantaneous energy consumption. We only

consider systems whose behaviour does not depend on the

amount of energy left or consumed. In this case, properties

on energy are said to be non-functional. Our models fit our

expressiveness need.

Several validation methods can be used to check properties

on energy. In most cases we need to abstract the system first

to allow verification within a reasonably short time.

An abstraction relation must suit the type of property we

want to prove. Device providers are interested in guaranteeing

a worst-case battery life, thus many relevant properties deal

with worst-case energy consumption. Consequently an abstract

model must over-approximate the consumption of the detailed

one.

Moreover, as abstract models are usually built by hand, we

need an automatic procedure to decide whether a model is an

abstraction of another one.

At last, systems are often designed component-wise because

they are too big to be designed as a single flat automaton.

The abstraction relation must be modular to cope with this

fact. It guarantees that the composition of abstract models of

components is an abstraction of the complete detailed model.

We use an abstract relation which observes these criteria

and which was first proposed by Ludovic SAMPER in [1]. He

proved this relation to be a congruence w.r.t. the synchronous

composition. To make this abstraction relation useful, the only

thing left is to find an automatic decision procedure1 for the

abstraction relation.

A solution could consist in adapting general methods like

abstract interpretation [2]. It would probably lead to a non

exact procedure. We favour an ad-hoc procedure, based on

graphs, which is exact and efficient.

The paper is structured as follows. First we present related

works in Section II. Then we give formal definitions in Section

III and propose a decision procedure for the abstraction rela-

tion in Section IV. Section V deals with some implementation

details and Section VI concludes.

II. RELATED WORKS

Our work pursues an earlier study of Ludovic SAMPER [1].

His topic was the computation of the worst-case lifespan

of wireless sensor networks. He modelled components with

power state automata and defined an abstraction relation which

takes into account the environment, described by a language

called context, in which components are used. He proved this

relation to be a congruence w.r.t. the synchronous composition,

which means that abstract models of components can be

composed and form an abstract model of the global detailed

model. A point is missing to make this work usable in practice:

abstract models should be validated, either by construction or

by an independent decision procedure. We complete his work

with such automatic decision procedure.

The authors of [3] also use discrete models and abstrac-

tions to analyse costs. They focus on long-run cost. This

work is hard to adapt to energy consumption of embedded

systems because their battery can die long before the long-

run consumption becomes a possible abstraction of the real

consumption. Moreover, [3] only give a sufficient condition

1Notice that there are two validations in the verification process: first,
abstract models are validated; and second the full model is validated against
a property. We only deal with the abstract model validation.



for this approximation to be correct, whereas we have an exact

answer.

Another energy representation of components could be

Linearly Priced Timed Automata (LPTA) [4]. Originally these

hybrid models were designed for scheduling purposes. There

are minimum-cost algorithms for these models, but they are

expensive in time and cannot be easily adapted to maximum-

cost problems, which is our main interest to find a worst-case

consumption.

III. FORMAL DEFINITIONS

In this section, we define models we use, composition

operators on them and the abstraction relation.

Two kinds of models are involved in the abstraction relation:

component model and context model. A standard input/output

automaton and a recogniser could be used to represent a

component and a context, respectively. However, for simplicity

sake, we use an automaton which is a mix between these two

models. This makes the composition easier.

We call input a boolean formula over input signals. A trace

is a finite sequence of inputs.

Definition ((deterministic) Mealy automaton). A Mealy au-

tomaton is tuple 〈S, s0, I, O, T, Sf 〉 where

• S is a finite set of states

• s0 ∈ S is the initial state

• I is a set of input signals

• O is a set of output signals

• T ⊆ Q × B(I) × B(O) × Q is a set of transitions. A

transition (s, i, o, s′) is written s
i/o
−−→ s′

• Sf ⊆ S is a set of accept states.

such that for all state s ∈ S and for all inputs i ∈ B(I)

there is at most one transition s
i/o
−−→ s′ for some o ∈ B(O)

and s′ ∈ S.

When representing a component, a Mealy automaton must

be satisfy S = Sf because all input traces are a priori possible.

It must also be complete, i.e. for all states s and all inputs i

there is a transition from s whose guard is i. When modelling

a context, its set of output signals is empty.

Accepted trace and language are defined as for standard

input/output automata.

Definition (Cost automaton). A cost automaton is a Mealy

automaton 〈S, s0, I, O, T, Sf 〉 such that S = Sf , together with

a cost function C : S → R which labels each state with a cost.

Cost automata are used to model components. The cost

represents the instantaneous energy consumption.

Notice that energy does not appear on guards of cost

automata. It is consistent with our hypothesis of non-functional

properties: the system does not change its behaviour according

to the energy.

Definition (synchronous product for Mealy autom-

ata). Let A = (SA, sA
0 , IA, OA, TA, SA

f ) and B =

(SB , sB
0 , IB , OB , TB , SB

f ) be two Mealy automata.

The synchronous product of A and B, noted A × B is the

Mealy automaton

(SA × SB , (sA
0 , sB

0 ), IA ∪ IB, OA ∩ OB , T, SA
f × SB

f )

where T is defined as follows:

(qA
1 , qB

1 )
(iA

∧iB)/(oA
∧oB)

−−−−−−−−−−−→ (qA
2 , qB

2 ) ∈ T ⇔

(qA
1

iA/oA

−−−−→ qA
2 ) ∈ TA ∧ qB

1

iB/oB

−−−−→ qB
2 ∈ TB

We define some functions to observe automata executions.

Definition (States, Out, Cost). Let A be a Mealy automaton

and 〈A,C〉 a cost automaton. Let t be a finite trace defined

on the automaton input signals.

States(A, t) is the sequence of states passed through during

the execution of A on t. Out(A, t) is the sequence of outputs

emitted during the execution of A on t.

Let States(A, t) = [s0, s1, . . . , sn]. Then

Cost(〈A,C〉, t) =
∑n

j=0 C(sj).

The synchronous composition for cost automata is the

standard synchronous composition of the Mealy automata

and an operation of the cost functions. This operation is a

parameter and can be chosen depending on the use case.

Definition (synchronous product for cost automata). Let

MA = 〈A,CA〉 and MB = 〈B,CB〉 be two cost automata,

and op : R × R → R be a commutative and associative

operator on real numbers.

The synchronous product of MA and MB parameterised

by op, written MA ×op MB , is the cost automaton MD =
〈D,CD〉 where D = (S, s0, I, O, T, Sf ) is defined as follows

:

• D = A × B

• ∀(a, b) ∈ S CD(a, b) = CA(a) op CB(b)

In the sequel cost automata will be viewed as weighted

directed graphs.

Definition (weighted directed graph). A weighted directed

graph is a tuple 〈V,E,w〉 where

• V is a set of vertices

• E ⊂ V × V is a set of edges

• w : E → R is a weight function.

Definition (weighted directed graph induced by a cost

automaton). Let M = 〈(Q,Q0, I, O, T,Qf ), C〉 be a cost

automaton. M induces a weighted directed graph, written

Graph(M) = (V,E) and defined as follows:

• V = S ∪ {vinit} ∪ {vfinal}
where {vinit, vfinal} ∩ S = ∅

• (v1, v2) ∈ E iff

∃i ∈ B(I) · ∃o ∈ B(O) · v1
i/o
−−→ v2 ∈ T

• (vinit, s0) ∈ E

• (v, vfinal) ∈ E for all v ∈ Qf



The weight function w is defined as follows:

∀(v1, v2) ∈ E, v2 6= vfinal w((v1, v2)) = C(v2)

and

∀(v1, vfinal) ∈ E w((v1, vfinal)) = 0

Notice that costs are on states in automata whereas they are

on the incoming edges in graphs. Notice also that graphs have

two particular vertices, the initial and the final ones. It will be

useful to run classical graph algorithms.

We now give the definition of the abstraction relation, first

introduced by Ludovic SAMPER in [1]. As usual abstraction

relations, it sets that both models have the same outputs if

they receive the same inputs, and that the abstract model over-

approximates the detailed one, which means in our energy

context that the abstract model consumes more than the

detailed one.

An originality in Ludovic SAMPER’s work was to parame-

terise the abstraction relation with a set of possible traces, for

which the abstraction relation must hold. The other traces are

considered as unrealistic and nothing is required for them. This

avoids a relevant abstract model to be refused only because the

abstraction does not hold for some unrealistic traces. The set

of realistic traces is called context. We choose to describe it

using a regular language. It is modelled by a Mealy automaton

with an empty set of output signals.

Definition (Context-Based Abstraction Relation). Let MA =
〈A,CA〉 and MB = 〈B,CB〉 be two cost automata, and K

a Mealy automaton. We say that MB is an abstraction model

of MA under the context K, written A �K B, iff:

∀t ∈ L(K),







Out(A, t) = Out(B, t)
and

Cost(A, t, CA) ≤ Cost(B, t, CB)

IV. DECISION PROCEDURE

We propose a procedure that decides, given two component

models and a context model, whether one model is an abstrac-

tion of the other one under the context. We explain the idea of

the procedure, before giving elements of the proof. Then we

study the complexity of the procedure and finally explain how

this procedure can be extended to produce a counter-example.

A running example is given in Fig 1.

A. Informal description

We want to compare two component models described by

power state automata. Let’s call the detailed model A and the

supposed abstract model B. The context is noted K.

The question is whether A is an abstraction of B under

the context K, written A �K B. We have to check the

two following properties. The output property states that both

component models should have the same outputs if they

receive the same input trace and this trace is an accepted trace

of K. The energy property states that the abstract model B

(a) detailed model A

(b) abstract model, B

(c) context model, K

Figure 1. Data example

should have a greater consumption than the detailed model A

for all accepted traces of K.

First, we want to compare A and B with respect to their

outputs and energy consumption, when running with the same

inputs. So the first step is to compose (by synchronous

product) them so as to get an automaton which represents

both automata in parallel.

Second, we want to test outputs and energy consumption

only for traces given in the context. To filter relevant paths,

we compose the context with the previous product. Let’s call

the result P . The product for our running example is given in

Fig 2(a).

Now, we have a unique condensed structure P with all

the information we need. We have to test the two following

properties: for each accepted trace of P , all transitions along

the path which validates that trace are labelled with the same



(a) product automaton P (b) graph G induced by the product

Figure 2. Structures built to validate A �K B (given in Fig. 1)

outputs for A and B; for each accepted trace of P , the sum

of all costs collected along the path by B is greater or equal

to the sum for A.

Clearly, we cannot consider each path individually because

the number of paths may be infinite. We have to be crafty and

find an equivalent global property on the automaton, for both

properties.

For the property on outputs, we have to consider all transi-

tions which can be taken while validating a trace, and only

these ones. They are exactly the transitions which can be

reached from an initial state and lead to an accept state. So, we

can clean the automaton P , so as to remove all useless states

and transitions, and then check each transition, one after the

other. In the running example, the product of Fig 1 is already

clean.

For the property on energy consumption, we consider only

the difference of instantaneous consumptions between B and

A. Now we want to check that for all accepted traces of P ,

the sum of the differences collected along the path is positive

or null, that is B over-approximates the energy consumption

of A. In other traces, we want to check that no path between

an initial state and an accept state is strictly negative. We can

simply run a lightest-path algorithm on the automaton, viewed

as a weighted graph, and check that the lightest path has a

positive weight. The graph for our running example is given

by Fig 2(b).

B. Proof sketch

The proof is organised in successive formula equivalent to

the definition of A �K B. The last formula is an effective

decision procedure because it is computable.

The data are two cost automata MA = 〈A,CA〉 and

MB = 〈B,CB〉, and a Mealy automaton K called context

which recognises a non-empty language. An example of data

is given in Fig 1.

The definition of A �K B can be written as follows:

∀t ∈ K
Let

(aj)
j=n
j=0 = States(A, t)

(bj)
j=n
j=0 = States(B, t)

(oA
j )j=n−1

j=0 = Out(A, t)

(oB
j )j=n−1

j=0 = Out(B, t)
In

∀j ∈ J0, n − 1K : oA
j = oB

j

and
∑n

j=0 CA(aj) ≤
∑n

j=0 CB(bj)

1) Product: Suppose that the detailed model A and the

presumed abstract one B, as well as the context K, are

complete. This means that for any state s and any input i

there is a transition s
i/o
−−→ s′ for some o and s′. If this is

not the case, it is easy to make them reactive by adding sink

states.

Intuitively, this implies that during the parallel execution,

no automaton blocks the execution of another one. More

formally, the following properties hold for the product P =
A × B × K. First, as A and B have only accept states, the

product P recognises the same language as K. Second, for

all executions the output produced by the product P is the

disjoint union of the outputs produced by A and B for the

same trace. The product P for the running example is given

in Fig 2(a).

We want to compare outputs of A and B on transitions of

P but the product operator gathers outputs in a set. We can

get round this problem by adding primes to B output signals

before building the product, so as to keep all output signals

side by side on the transitions. We introduce an equivalence

function equiv which maps A outputs on B outputs to compare

them.

The definition of A �K B can be written equivalently this

way:

Let

P = A × B × K
In

∀t ∈ P
Let

(ajbjkj)
j=n
j=0 = States(P, t)

(oA
j oB

j )j=n−1
j=0 = Out(P, t)

In
∀j ∈ J0, n − 1K : equiv(oA

j , oB
j )

and
∑n

j=0 CA(aj) ≤
∑n

j=0 CB(bj)

2) Cleaning: The second step is the cleaning of the product:

we remove states (and transitions) of the product P that cannot

be reached, and those which cannot lead to a final state. Let’s

call P̃ the result.

The execution of an accepted trace on P only passes through

states and transitions which are kept in P̃ . Traces which



are rejected by P are also rejected by P̃ . So the cleaning

operation does not alter executions on the product. In our

running example, P̃ = P . It is the case whenever A, B and

K are clean.

Then we can use P̃ instead of P :

Let

P̃ = cleaning(A × B × K)
In

∀t ∈ P̃
Let

(ajbjkj)
j=n
j=0 = States(P̃ , t)

(oA
j oB

j )j=n−1
j=0 = Out(P̃ , t)

In
∀j ∈ J0, n − 1K : equiv(oA

j , oB
j )

and
∑n

j=0 CA(aj) ≤
∑n

j=0 CB(bj)

3) Outputs: Let’s focus on the output part of the property:

Let

P̃ = cleaning(A × B × K)
In

∀t ∈ P̃
Let

(oA
j oB

j )j=n−1
j=0 = Out(P̃ , t)

In

∀j ∈ J0, n − 1K : equiv(oA
j , oB

j )

We do not need to consider every accepted trace, we can

simply consider every transition of the model P . Indeed, each

transition of P̃ is on a path between the initial state and

an accept state, so for each transition, there is at least one

accepted trace passing through it, and then each transition must

be such that its output signals are the same for A and B.

For the output part, we have to check:

Let

P̃ = cleaning(A × B × K)
In

∀
i/oAoB

−−−−−→∈ T P̃ // P̃ ’s transitions

oA = oB

4) Consumption: Now, let’s focus on the consumption part

of the property:

Let

P̃ = cleaning(A × B × K)
In

∀t ∈ P̃
Let

(ajbjkj)
j=n
j=0 = States(P̃ , t)

In
∑n

j=0 CA(aj) ≤
∑n

j=0 CB(bj)

The last line can be written this way:
∑n

j=0(C
B(bj) −

CA(aj)) ≥ 0.

Then we define a cost automaton M P̃ = 〈P̃ , CP̃ 〉 where

the cost function CP̃ associated with the product P̃ is defined

as follows:

∀a ∈ QA, ∀b ∈ QB , ∀k ∈ QK ,

CP̃ (abk) = CB(b) − CA(a)

Now, we want to determine whether there is a trace which

has a negative cost when executed on P̃ . We want to explore

all paths between the initial state and an accept state, focussing

on the consumption. Note that we are using the non-functional

hypothesis: if there were guards on transitions, some paths

should not be explored.

For sake of simplicity, we construct the graph G induced

by the cost automaton M P̃ as defined in the previous section.

The graph for our running example is given in Fig 2(b).

Notice that a path has the same cost (or weight) on the cost

automata and on the induced graph. So we want to determine

whether there is a path on G which has a negative weight.

It is sufficient to find the weight of the lightest path. If it is

positive, then all the other paths have a positive weight, then

the consumption property is true. If it is strictly negative, then

we have a negative path and consumption property is false. If

there is no lightest path (this may happen when the graph has

negative loops), there are paths of arbitrary light weight, then

some of them are negative, then the consumption property is

false.

Thus, for the consumption part, we have to check:

Let
G = Graph(cleaning(A × B × K))
wmin = weight-of-the-lightest-path(G)

In

wmin is well defined and wmin ≥ 0

The work is not finished, because we did not detailed the

procedure that finds the weight of the lightest path. There

are many lightest-path algorithms but their behaviour is not

defined when the graph has negative loops.

If there is a negative loop, it is necessarily reachable from

the initial state and it can lead to the final state because the

cost automaton was cleaned. Then, if some negative loop is

detected, there is a negative path and the consumption property

is false.

Finally, for the consumption part, we have to check:
Let

G = Graph(cleaning(A × B × K))
〈has-neg-loop, wmin〉 = lightest-path(G)

In

not has-neg-loop and wmin ≥ 0

5) Discussion: This is in fact a decision procedure because

both formula on outputs and energy are computable. Indeed,

all the functions we use are computable: product and graph

construction, cleaning and lightest-path finding. Moreover,

visiting all the transitions of P̃ is feasible because the model

is finite.

C. Complexity

We first focus on the product. In the worst case the states of

a product are the Cartesian product of the states of its factors.

However, in our case, we expect both component models to

be close to each other because they represent the behaviour of

the same component. Then the product of component models

has about the same size as the detailed model. Moreover, we

expect the model describing the context to be small (typically

about 10 states) because it is a simple recogniser written by



hand. Based on these two hypotheses we assume that the

product of the three automata has almost the same size than

the detailed model. Let compute the complexity relatively to

its size.

The construction of the product has a linear cost, and so

has the cleaning operation because it consists in visiting all

states and transitions.

The procedure dedicated to the output property examines

every transition, its cost is also linear.

The one dedicated to the consumption property first con-

structs a graph. Since the graph has almost the same structure

as the product, its construction has a linear cost. Then a

lightest-path algorithm is used on the graph. There are many

such algorithms. To the best of our knowledge, the most

efficient one that we can use in the presence of negative

loops is the Ford-Bellman [5], [6] one. Its complexity is

O(n×m) where n is the number of states and m the number

of transitions. In the worst case there is a transition between

any two states and m = n2, but in our case, the number

of transitions from a given state is bounded by the number

of distinct inputs that can be received. This number is small

compared to the number of states, then m = O(n) and the

complexity of the lightest-path algorithm is O(n2).
To summarise, the complexity of our decision procedure is

the complexity of the Ford-Bellman algorithm, that is O(n2).

D. Counter-example generation

As abstract models are built by hand, it would be useful to

get a counter-example of the abstraction relation in case it is

false.

A counter-example consists of a trace in the context for

which either the output property or the consumption property

does not hold.

In case the abstraction is false because of outputs, the

procedure detects a transition with two different outputs. A

counter-example is a trace passing through this transition. It

can be exhibited by finding a path from the initial state to this

transition and another one from it to an accept state. Paths

necessarily exist because the transition belongs to the cleaned

product. These two searches are less expensive than the

lightest-path algorithm and so do not change the complexity

of the procedure.

In case all outputs are the same but energy is not over-

approximated for some trace, we distinguish two cases.

If the graph has no negative loop, the Ford-Bellman algo-

rithm exhibits a lightest path, and it is our counter-example.

Otherwise we would like to find one of the negative loops.

All the lightest-path algorithms we found do not do that. That

is why we slightly alter the Ford-Bellman algorithm to make

it exhibit a simple negative loop. The change is simple. The

standard Ford-Bellman algorithm iteratively looks for paths of

size 1, 2, . . . n − 1 if n is the number of vertices, because in

case there are no negative loop, there is a lightest path of size

less or equal to n − 1 between any two different vertices. To

deal with negative loops, we have to look for paths of size n,

because a negative loop could go through all n vertices once.

In the nth loop iteration, we remember the transition which

was last used to find a lightest path. This transition is part of

a negative cycle and the procedure usually used to find paths

in the standard Ford-Bellman algorithm can be used here to

find a negative loop, as we proved in [7]. Our extension does

not alter the complexity of the standard algorithm.

Once we have a negative loop, we find two paths as

previously, from the initial state to one state of the loop, and

from it to a final state.

Finally, we can exhibit a counter-example without increas-

ing the complexity.

V. IMPLEMENTATION

We implemented the decision procedure for the abstraction

we proposed in Python [8].

We used the ARGOS language [9] to describe automata and

the ARGOS compiler [10] to compute the synchronous product

of these automata.

Another point is the choice of a lightest-path algorithm. We

need an algorithm which finds the lightest path between two

given vertices and allows for negative weights on edges and

negative cycles. We choose Ford-Bellman algorithm because

it has the smaller complexity. Moreover we managed to alter

it so as to exhibit a negative loop in case there are some, as

described in Section IV-D.

We tested our program with small examples and it worked in

less than one second. We have no doubt that it will be quick for

industrial problems, because our algorithm is efficient and the

models we have to deal with are quite small. As an example,

hardware component models (e.g. radio) have about 10 states.

VI. CONCLUSION

We have presented an automatic decision procedure for the

abstraction relation which uses graph algorithms to check the

over-consumption of the abstracted model against the detailed

one. In case the abstraction is false, we provide a procedure

to find a counter-example. It can be used to guarantee that

an abstract model, smaller than the detailed one, satisfies the

property of over-consumption. Then the validation algorithm

can use the new model instead of the detailed one. It helps

avoiding blow-up. The procedure is efficient so this gain is

not balanced by an expensive pre-process.

Since Ludovic SAMPER proved the congruence of this

abstraction relation [1], it is possible to use our procedure

on component models. It is useful because it is much easier

to find an abstract model of a small component than one of a

full complex system.

This work can be applied to embedded systems, where

energy consumption is a major issue. Besides, it will be used

to study the worst-case lifespan of wireless sensor networks,

as part of ARESA [11] project.

As a further work we plan to deal with functional properties

in order to study systems whose behaviour changes according

to the quantity of available energy. More complex models to

represent components is a must. We plan to use automata with

some kinds of guards allowed on the edges. The challenge is



to find a tradeoff between the expressiveness of the models and

the efficiency of methods we will apply on them. Concerning

the decision procedure for the abstraction, we will first explore

methods based on abstract interpretation [2]. They are too

heavy for the data we use in this paper but suit the extensions

we consider. Notice that since the composition of component

models with the context model seems unavoidable, the context

model can be enriched as much as the component model

without making the final working structure more complex.

REFERENCES

[1] L. Samper, “Modélisations et analyses de réseaux de capteurs,” Ph.D.
dissertation, INPG, 2008.

[2] P. Cousot and R. Cousot, “Static determination of dynamic properties of
programs,” in Proceedings of the Second International Symposium on

Programming. Dunod, Paris, France, 1976, pp. 106–130.

[3] D. Cachera, T. Jensen, A. Jobin, and P. Sotin, “Long-run cost analysis
by approximation of linear operators over dioids,” Lecture Notes in

Computer Science, vol. 5140, pp. 122–138, 2008.
[4] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,

and F. Vaandrager, “Minimum-Cost Reachability for Priced Timed
Automata,” in Proceedings of the 4th International Workshop on Hybrid

Systems: Computation and Control. Springer-Verlag London, UK, 2001,
pp. 147–161.

[5] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[6] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks. Princeton
University Press, 1962.

[7] L. Lugrin, “Using Abstraction for the Validation of Non-Functional
Properties,” Master’s thesis, UJF, 2009.

[8] “Python,” http://www.python.org/.
[9] F. Maraninchi and Y. Rémond, “Argos: an automaton-based synchronous

language,” Computer Languages, vol. 27, no. 1/3, pp. 61–92, 2001.
[10] D. Stauch, “Compilateur Argos,” http://www-verimag.imag.fr/∼altisen/

DSTAUCH/ArgosCompiler/.
[11] “ARESA,” http://aresa-project.insa-lyon.fr/.


