
On the timed automata-based verification of
Ravenscar systems

Iulian Ober1 and Nicolas Halbwachs2

1 Université de Toulouse - IRIT
118 Route de Narbonne, 31062 Toulouse, France

iulian.ober@irit.fr
2 CNRS - VERIMAG

2, av. de Vignate, 38610 Gières, France
Nicolas.Halbwachs@imag.fr

Abstract. The Ravenscar profile for Ada enforces several restrictions
on the usage of general-purpose tasking constructs, thereby facilitating
most analysis tasks and in particular functional and timing verification
using model checking. This paper presents an experiment in translating
the Ravenscar fragment of Ada into the input language of a timed model
checker (IF [7, 8]), discusses the difficulties and proposes solutions for
most constructs supported by the profile. The technique is evaluated in
a small case study issued from a space application, on which we present
verification results and conclusions.

1 Introduction

This paper discusses an experiment in applying model checking techniques to
the verification of functional and non-functional (timing) aspects of Ada systems
complying with the Ravenscar profile [10, 1].

We targeted the IF model checker [7, 8] for several reasons including its
ability to handle complex structured data, dynamic object allocation (necessary
to simulate the procedural control flow of Ada), both timed and non-timed
execution aspects, and last but not least for the automatic abstraction features
of the IF tool which help to cope efficiently with large specifications.

Ravenscar is a standardized set of restrictions for the Ada language and
runtimes, set forward in order to facilitate the verification of concurrent real-
time programs and to make their implementation more reliable and efficient.
The incentive to apply model checking to Ravenscar systems was the fact that
the profile is used as the runtime and semantic baseline by several work tracks
[17, 5, 22] within the IST ASSERT European project1. ASSERT aims at devel-
oping novel systems engineering methods for distributed and embedded real time
systems in the aerospace domain, based on formal model-centric techniques.

1 This work was partially supported by ASSERT, an Integrated Project of the 6th

Framework Programme IST of the EU, see http://www.assert-project.net.



The paper is structured as follows. Section 2 is a brief overview of the Raven-
scar Ada profile. Section 3 presents the IF language and tools. Section 4 is the
main part of the paper, describing the mapping of the main Ada concepts to IF,
and discussing how the Ravenscar profile restrictions may help. Then, in Section
5 we present experimental results on a small case study, before concluding.

2 The Ravenscar Ada profile

The Ada language exhibits a rich set of constructs for programming concur-
rent and time-aware systems. However, as analyzed in [10, 1], the total freedom
granted by the tasking and inter-task communication model of the language
comes at a high cost. Firstly, this freedom exposes the systems to various run-
time problems related to schedulability (like unbounded blocking times or pri-
ority inversion) and concurrency control (like deadlocks). Secondly, it makes it
impossible to apply most currently available analysis techniques to verify the
resulting system: known schedulability analyses [12] like rate monotonic analy-
sis [20] or response time analysis [19] do not work on such general models, and
the application of more general purpose techniques like model checking [13] is
hindered.

Several factors cause the aforementioned problems, among which: tasks may
be created dynamically (either explicitly or implicitly), their activation patterns
are arbitrary (a task may be suspended and activated by arbitrary delay state-
ments, by rendez-vous, etc.), they may communicate in various ways (through
rendez-vous, through shared protected objects, etc.).

The Ravenscar profile makes a number of restrictions on the tasking and syn-
chronisation constructs that may be used, and additionally it imposes a schedul-
ing policy – namely fixed priority preemptive scheduling with priority ceiling
protocol (for a description, see for example [12]) – thus aiming to render the re-
sulting systems analysable and to guarantee by construction certain properties
such as absence of deadlocks and mutual exclusive access to shared resources.
The restrictions, defined in [1] and motivated in [10], are the following:

– The task set is static and flat, i.e. there is no dynamic task creation, and all
tasks are created at package level and depend directly on the environment
task. Tasks are also not permitted to terminate or abort.

– Interrupt handlers are only attached statically to interrupts.
– Task rendez-vous is forbidden, only protected objects can be used for inter-

task communication and synchronization. Moreover, the set of protected
objects is static as they are only allowed to be created at package level. Pro-
tected objects are also subject to further restrictions: they may have at most
one protected entry (along with any number of procedures and functions),
the maximum queue length at the entry is one (otherwise, an exception is
raised), the entry barrier must be a simple Boolean variable, and requeue is
not allowed.

– All delays must be absolute (that is, only delay until statements are legal).



signal queue

(process type)

PID
FPAR
VAR

 (creation data parameters)
(local data, private or public)

(process instance)

(state machine)

(process type)

Fig. 1. Constituents of an IF model.

To achieve analysability of the resulting systems, all tasks must be structured
such that they are either periodic or sporadic (i.e., event driven with a mini-
mum inter-arrival time enforced). This restriction is not formally imposed by
the Ravenscar profile since it can be verified neither statically nor at run-time.
However, [10] contains coding patterns for these two types of tasks.

To end this section, we note that there are currently two runtimes which com-
ply with the Ravenscar profile requirements: the commercial ObjectAda Real-
Time RAVEN from Aonix [4] and the open source Open Ravenscar Real-Time
Kernel ORK [14].

3 The IF model checker

The validation approach proposed in this work is based on the formal model of
communicating extended timed automata, as it is embodied in the IF language
and the execution and validation environment built around this language [7, 8].
This section provides a brief overview of IF, necessary for understanding the rest
of the paper.

The IF language is dedicated to modeling distributed systems that can ma-
nipulate complex data, may involve dynamic process creation and real time con-
straints. The language constructs allow to represent the behavior of a system
at an arbitrary level of abstraction, ranging from very abstract descriptions in-
volving lots of non-determinism and un-interpreted actions, to very concrete
descriptions involving concrete data manipulation, algorithmic structures, etc.
In particular, the richness of the language allows to describe the semantics of
higher level formalisms, like UML [16] or SDL [18], and has been used as a format
for inter-connecting modelling and validation tools.

The main purpose of IF models is validation by formal techniques (simula-
tion, property verification), which explains why some features of the language
presented below, such as default transition atomicity, could be considered “un-
realistic” from an implementation perspective.

Communicating extended timed automata. An IF system is composed of
a set of communicating processes that run in parallel (see figure 1). Processes are



instances of process types, they have an identity (PID), may own data variables
and their behavior is defined by a state machine. The state machine may be
hierarchical (i.e., making use of composite states) and the effect of transitions is
described by usual structured imperative statements.

Data variables are statically typed, and may contain either simple scalars
(boolean, integer, real) or structured data (arrays, records, objects).

Processes inter-communicate by sending asynchronous signals, which are
stored in per-process signal queues until the destination process is ready to han-
dle them. Additionally, processes may communicate via shared variables, which
are public variables exported by some process and that every other process can
read/write. Parallel processes are composed asynchronously (i.e., they progress
independently from each other). The model also allows dynamic creation of
processes, which is an essential feature for modeling object-based systems or
procedural control flow, as will be shown later in this paper.

The link between system execution and time progress may be described in
a precise manner, and thus offers support for modeling real time constraints.
For this, IF uses the constructs of timed automata with urgency [6]: there are
special variables called clocks which measure time progress. All clocks progress
at the same rate during a system run, and they differ only by the moments when
they are started; a dedicated statement, set x:= 0, is used to (re)start a clock
x. Comparisons between a clock and an integer value may be used in transition
guards. A special attribute of each transition, called urgency, specifies if time
may progress when the transition is enabled.

Dynamic priorities. On top of the above model, priority rules allow for spec-
ifying dynamic priorities as partial orders between processes. The theoretical
foundation of this framework is given in [3].

A priority rule has the following form:
p1 < p2 if state_condition(p1,p2)

where state_condition(p1,p2) is a boolean expression with free PID variables
p1 and p2, which can be interpreted in the context of a given system state. The
semantics of the rule is the following: given a system state, for any pair of
processes P1 and P2 which have enabled transitions in that state, if the (closed)
formula state_condition(P1,P2) evaluates to true then the transitions of P1
are not allowed to execute (i.e., P2 has priority over P1).

It is shown in [3] how this kind of rules may be used to model different
scheduling policies, including fixed priority scheduling, Earliest Deadline First
(EDF) and others.

Property specification with observers. Behavioral properties of IF models
may be expressed using observer automata. These are special processes that
monitor the changes in a system’s state (variable values, contents of queues, etc.)
and the events occurring during the execution of transitions (inputs, outputs,
creation and destruction of processes, etc.). To express desired safety properties
of a system, some of the observer states are labeled as error states: if a system
execution leads to such a state then the property represented by the observer
was violated. This allows to express arbitrary safety properties.



Analysis techniques: the IF toolbox. The IF toolbox [7, 8] is the valida-
tion environment built around the formalism presented before. It is composed
of three categories of tools. Behavioral tools are used for simulation, veri-
fication of properties, automatic test generation, state space minimization and
comparison. The tools implement techniques such as partial order reductions and
symbolic simulation of time, and thus present a good level of scalability. Static
analysis tools provide source-level optimizations (data flow analysis such as
dead variable reduction, slicing, etc.) that help reducing further the state space
of the models. Front-ends and exporting tools which provide coupling to
higher level languages (UML, SDL) and to other verification tools.

4 The mapping of Ravenscar Ada to IF

In this section we describe the principles of the mapping of Ada programming
constructs to IF model elements. In IF the only first class language citizen is the
process: it is used for encapsulating data and behavior, it is the only one that
can be referenced (by PID), can be dynamically created and killed. Therefore,
most of the constructs of Ada like packages, tasks, procedures, protected objects
and referenced data will be encoded using processes.

Note that although this encoding significantly increases the number of pro-
cesses employed to “simulate” a Ravenscar system, it does not add to the combi-
natorial complexity of system behavior, as most of the processes are just passively
encapsulating data or waiting for some event (see §4.2). In general, the number
of “active” processes in a given state is equal to the number of active threads in
the corresponding configuration of the Ada system.

4.1 Packages, data and statements

Ada packages are static containers for various types of content: data variables,
tasks, protected objects, procedures, types and other packages. Some of the
content has an actual runtime existence (variables, tasks, objects) while in the
case of procedures, types and nested packages, the encapsulating package acts
only as a static namespace.

In IF, a package is mapped to a process which only contains variables cor-
responding to the Ada data, task or object variables. The static namespace
function of a package cannot be fulfilled directly by an IF process since nesting
is not allowed, therefore we use a naming scheme for mapping qualified Ada
entity names to flat IF process names. This kind of manipulation is common
in all compilers which generate low-level object code from a high level language
with complex scoping rules. Similarly, generic packages and instantiation are also
handled using naming rules and code replication (code size optimization is not
important for verification).

Scalar data is restricted to the types supported by IF: boolean, integer and
real. This limitation is not very strong when the goal is formal verification of
high-integrity systems, since the control flow of such systems is rarely affected



by other types of data. Complex data types are constructed using the IF array
and record constructors, or by encapsulation within dedicated processes (e.g.,
for constructing records with variants). Processes are also used to represent
any entity which is handled by reference, like tasks and protected objects (the
reference is then the PID).

The mapping of computation statements is defined as follows:

– The points of control before and after a statement are represented by IF
states, and the statements are represented by transitions between states.

– Assignments and elementary operations have a direct counterpart in IF.
– Procedure and function calls and evaluation of expressions containing calls

is done according to the simple principles described in §4.2.
– Control flow statements like alternatives and loops are encoded in the struc-

ture of the state / transition graph.

We note that several statements, like those involved in (bounded) rendez-vous,
etc., are forbidden by the Ravenscar profile. Other statements, which are not
forbidden (e.g., delay until), are explained below.

4.2 Procedural control flow and tasks

Procedures, functions and protected object entries (collectively referred to as
subroutines in this section) are represented by processes which are dynamically
created upon call and killed upon return of control. Thus, the runtime call stack
of a task has a direct representation in IF as a linked list of processes. The
processes hold the subroutine local variables and parameters, and realize the
subroutine behavior by their automaton.

IF allows passing data parameters (fpars) at process creation which allows
us to represent very directly the passing of in parameters. Along with these, a
caller also passes as parameter its identity and the identity of the task on behalf
of which the call is made. These references are used for returning the control,
which is represented by the sending of a return_<procedure name> signal from
the callee to the caller, just before the callee kills itself. The signal also carries
the out parameters of the procedure, if any.

Figure 2 shows the mapping of a complete procedure, illustrating the mecha-
nisms of call and return (as well as the implementation of actions by automata,
the access to variables, etc.). For clarity, we have presented the IF process in a
graphical form which is isomophic to the textual form actually used by the tool.

Finally, tasks are mapped to processes which encapsulate local task variables
and realize the task behavior (body) by their automaton.

4.3 Protected objects

Protected objects are the synchronization mechanism used in Ravenscar Ada.
They provide functions (which may only read but not modify object attributes)
that can be executed concurrently, together with procedures and entries that are



procedure Compute

(Value : in out Natural) is

begin

OPCS.Compute (Value);

end Compute;

process GNC Compute(0) /*scheme for qualified names*/
fpar thread pid, caller pid, Value integer

a1

/ fork GNC OPCS Compute(thread, self, Value)

input return GNC OPCS Compute(Value) /
output return GNC Compute(Value) to caller

Fig. 2. Mapping of procedural control flow.

protected body OBCS is

...

function Count_Requests

return Integer is

begin

...

return x;

end Get_Request;

end OBCS;

a1

fpar thread pid, caller pid, monitor pid
process OBCS Count Requests(0)

...

initial

({OBCS}monitor).readers ++;

[not ({OBCS}monitor).writing and
and ({OBCS}monitor).readers = 0]ε

[not ({OBCS}monitor).writing]λ

({OBCS}monitor).readers ++;

/output return OBCS Count Requests(x)
to caller;
({OBCS}monitor).readers −−;

Fig. 3. Mapping of protected objects: functions.

executed in mutual exclusion from each other and from functions. This corre-
sponds to the classical readers-writers problem and Ada runtimes solve it using
lower level mutual exclusion mechanisms. In IF however, the solution is much
facilitated by the fact that the language offers mutually exclusive and atomic
transitions by default, and transitions are provided with guard conditions that
may be readily used for conditional waiting.

A protected object is mapped to a process that encapsulated its data, to-
gether with two additional variables used for implementing the readers-writers
protocol: a boolean writing and an integer readers. Functions, procedures and
entries are, as mentioned before, mapped to processes that are created upon call-
ing and they receive an additional parameter – monitor – pointing to owning
the protected object. The readers-writers protocol implemented in our mapping
is a variant of the classical solution that may be found in many textbooks (see
for ex. [11]):

– Procedures and entries begin by waiting in an initial state until readers=0
and not writing. For entries, this condition is augmented with the barrier.



When this condition is true, it is followed atomically by writing := true.
At the end of procedures/entries, writing is reset to false.

– Functions begin by waiting in an initial state until not writing. When
this condition is true, they atomically increment readers. At the end of the
function, readers is decremented.
To preserve the generality of the solution, we also allow functions to stay
in the initial state if at least one other function is executing in the ob-
ject. Thus, the model includes both the behavior where functions eagerly
begin execution regardless of waiting procedures/entries (possibly leading to
the starvation of the latter), and the behavior where functions lazily wait
giving the possibility to procedures/entries to start (possibly leading to the
starvation of tasks executing the functions).
At the level of IF (see Figure 3), this is achieved by declaring the transition
from initial as having lazy urgency (see [6]). However, a reader function is
not allowed to wait when the protected object is free of any access, i.e. when
readers = 0 and not writing. To enforce this, a second (eager) transition
is added.

The mapping of functions is illustrated in Figure 3 (for space reasons we do
not include an illustration for procedures, described above). Note that the tran-
sition guards are represented inside square brackets, with the urgency specified
as an exponent (λ for lazy, ε for eager). They are followed by a slash and the
actions executed (atomically) by the transition. Also, note that the expression
({A}p).B in IF (used for accessing variables from the monitor process) denotes
the casting of an untyped PID p to the type of process A followed by access to
variable B exported by p.

Since Ravenscar disallows more than one task waiting on an entry, we need
not represent the waiting queues in the IF model. The waiting tasks are simply
those whose calls are in the initial state. Note that one interesting use of IF
may be to verify the satisfaction of the queue length restriction.

4.4 Time and delays

As mentioned before, in Ravenscar tasks may suspend themselves only using
absolute delays. In practice, the coding patterns presented in §5 of [10] show
that the absolute dates are always computed relatively to a “timestamp” (e.g.,
obtained with Ada.Real_Time.Clock). This kind of waiting falls within the ex-
pressive power of timed automata. In Figure 4 we show how the Cyclic task from
[10] is mapped to IF using clocks (see the description of clocks in §3).

4.5 Scheduling policy and timing model

The Ravenscar profile fixes the scheduling policy to FIFO within priorities with
priority ceiling locking. One can suppose that every task and protected object
contains a pragma Priority directive, and that the assigned priority levels ob-
serve the ceiling rule.



task body Cyclic is

Next_Period : Ada.Real_Time.Time;

Period : constant

Ada.Real_Time.Time_Span := ...;

begin

Next_Period :=

Ada.Real_Time.Clock + Period;

loop

delay until Next_Period;

Next_Period := Next_Period

+ Period;

...

end loop;

end Cyclic;

[Next Period = Period]

process Cyclic(0)
var Next Period clock;
var Period integer := ...;

a1

set Next Period := 0;

a2

...

set Next Period := 0;

Fig. 4. Mapping of a cyclic task.

The dynamic priority framework of IF is more expressive than this policy,
and therefore it allows a quite straightforward mapping for it. The mapping
idea is that every process corresponding to a task has a priority attribute,
which is dynamically updated to reflect the ceiling priority when entering/exiting
subroutines of a protected object. Then, the policy is simply modeled by an IF
dynamic priority rule equivalent to this:

x < y if x.priority < y.priority
(The actual IF rule, equivalent to this one, is slightly more complex because
attribute access like x.priority cannot be directly made for non-typed PIDs
like x and y. Such implementation details are out of scope here.)

The only aspect which is not captured by the mapping above is the FIFO
rule for equal priority tasks. In such cases, there will be a non-deterministic
choice between tasks x and y. This induces an overapproximation of the system
behavior (in the sense that the set of behaviors modeled in IF is a superset
of those of the real system), which is a conservative abstraction for any safety
properties verified on the IF model [13].

Timed automata are in principle not expressive enough to model execution
times in preemptive systems (for which a stopwatch concept strictly stronger
than the timed automata clocks is in general necessary). There are particular
cases in which an encoding is possible, like the one in [15] which only works for
systems of tasks with fixed execution time (i.e., best case and worst case exe-
cution times are equal), but they are rarely applicable in real systems. Another
possibility is to use discrete (integer) counters instead of clocks to model execu-
tion times (or, equivalently, to use discrete representations for clocks in analysis),
but this yields complex models and worsens the perspectives for combinatorial
explosion during verification. For Ravenscar systems, the use of such techniques
for schedulability analysis is not justified, since the constraints imposed by the
profile render them analyzable for example by response time analysis (RTA)
techniques rooted in [19].



Consequently, we base the timing of the IF model not on the worst case
execution times of tasks, but on the response times previously computed by
RTA. Concretely, every task has an associated response clock which is not
allowed to grow past a max_response_time issued from RTA, a condition that
is clearly expressible with classical timed automata clocks. This timing model
also yields a conservative overapproximation of the real system’s timing (the
proof of this statement is considered out of scope here).

4.6 Interrupts and the environment

In order to verify properties on the IF model resulting from an Ada system, one
has to close it with a model of the environment, which embodies the hypotheses
that are made about what it is reasonable to expect from it. Typically, the
environment can interact with a system either by triggering interrupts or by
calling sub-programs of the system, and the hypotheses concern the order in
which such events arrive, the inter-arrival times, etc. Currently the environment’s
behavior is modeled directly in IF and we do not pose any restrictions on how
this is done. An interrupt can be modeled as a call to the attached procedure.

We note that the behavioral and temporal non-determinism allowed in IF is
key to a simple and expressive modelling of the environment hypotheses, which
generally contain some degree of uncertainty.

5 Experimental results

5.1 The case study

We validated the mapping defined in §4 on a typical task synchronization exam-
ple issued from a spaceborne application provided by Astrium Space Transporta-
tion within the ASSERT project. Although the functionality of the example is
quite simple, the number of Ada objects involved and the size of the code is
significant owing to the fact that the code is automatically generated from a
high-level architecture description (conforming to the approach described in [5])
and contains different mechanisms for separating functional and architectural
aspects, for implementing “archetypical” architectural elements like cyclic and
sporadic tasks, etc. The code features two tasks, three protected objects and
some 20 procedures, functions and object entries, all spread across 8 packages
(including generic ones).

A simplified view of the architecture of the example is depicted in Figure 5.
(The notation is inspired from AADL [21]. Rounded rectangles stand for pack-
ages, rectangles stand for protected objects, dotted parallelograms stand for
tasks, double line connectors signify access to operations. For simplicity, we have
renamed some of the system entities to more meaningful names.) In short, the
functionality of the example is as follows:

– A task TMTC receives sporadic requests (in reality, telecommands from a
ground system) upon which it attempts to update an attribute of a pro-
tected object (POS). For receiving the requests, TMTC uses a protected object



Put_Request(rd : ReqDesc)

TMTC POS GNC

TMTC_Sync acquire

read : Natural
write(i : Natural)

Cyclic_Op
Compute(p : in out Natural)Get_Request(rd : out ReqDesc)

Fig. 5. Architecture of the example.

(TMTC_Sync) which exhibits a Put_Request procedure and a Get_Request
entry. The sporadic task implements a protection mechanism against re-
quests made more often than a minimum inter-arrival time (MIAT ).

– Another task, GNC (for Guidance-Navigation-Control), periodically reads the
attribute of POS, performs some computation based on its value, and finally
updates it.

– It is required that, when a TMTC request comes, the value written to POS
shall not be overwritten by a value written by the GNC, (so that the next
cyclic read by the GNC reads the value sent by the ground). In the example,
this is achieved by encapsulating the entire GNC read-compute-write cycle in
a protected operation (called acquire) of POS, thus rendering it mutually
exclusive with the writes from TMTC.

The property that one wants to verify on this model corresponds to the
requirement stated informally above. The requirement is however not sufficiently
precise, and one has to express it in terms of strictly defined events like the
reception of a Put_Request by the TMTC_Sync, the effective execution of Write
by POS after acquiring the monitor lock, etc. While doing so, we realized that
the requirement is actually a conjunction of two simpler safety properties:

P1 After the effective execution of POS.write with value p on behalf of the
TMTC task, the next execution of POS.read on behalf of GNC returns p.
By itself this property is not sufficient since it does not exclude unfair execu-
tions in which an effective TMTC write is delayed for several GNC cycles after
the request arrives. Consequently, we added the following property which
expresses the fact that a telecommand is effectively handled at latest at the
end of the current GNC cycle.

P2 The POS.write executed by the TMTC after receiving TMTC_Sync.Put_Request
must start before the next cycle of GNC starts execution.

The two properties can be expressed as IF observers, the automata structures
are shown in Figure 6 (the event observation details are omitted).

In order to verify the model, we had to close it with a model of the environ-
ment. The chosen environment is a time-non-deterministic ground component
which calls TMTC_Sync.Put_Request from time to time (though no more often
than 1 time unit). In order to reduce the verification state space, we discard traces
where a second TC is sent while the previous TC is still pending in TMTC_Sync.



POS.write(p) by task GNC

POS.write(p) by task TMTC

POS.read returns p’

[p=p’]

error

[p 6= p’]

wait write

wait read

(P1)

wait TC

error

trigger sporadic task TMTC

POS.write(p) by task GNC
counter := counter + 1

[counter > 1][counter = 1]

POS.write(p) by
task TMTC
counter := 0

wait write

(P2)

Fig. 6. Desired properties of the example.

5.2 Verification results

Two temporal parameters come into play when verifying the satisfaction of prop-
erties by the model: the minimum inter-arrival time (MIAT ) enforced for TMTC
requests, and the cycle time of the GNC. The values specified initially in the Ada
code were respectively 10ms and 8ms. However, it should be noted that the
MIAT is seen as a protection mechanism of the sporadic TMTC task, and may
not be actually observed by the environment, which may try to send requests
more often.

We have experimented with the following combinations of values (state space
size, verification times and results are summarized in Table 1):

– GNC Cycle=8ms, TMTC MIAT=10ms, actual MIAT observed by the environ-
ment < 10ms (1ms). In this case P1 is verified, but P2 may be violated.
The result is not surprising, since when a second TMTC request comes sooner
than expected, it may be delayed for a certain time, and more than one Read
request from the GNC may overtake it.

– GNC Cycle=8ms, TMTC MIAT=10ms, actual MIAT observed by the environ-
ment=10ms. Both P1 and P2 are verified.

– GNC Cycle=8ms, TMTC MIAT < 8ms (e.g., 6ms), actual MIAT observed by
the environment=1ms. Both P1 and P2 are verified. Note that when the
TMTC MIAT is less than the length of the GNC cycle, P2 is verified regardless
of the frequency with which the environment sends the requests.

Note that P1, which is the essential property of the system (no value written
by the TMTC is ever overwritten by the GNC) is satisfied in all configurations.

6 Conclusions

We have proved the feasibility of formal verification of Ada Ravenscar systems
by translation to a sufficiently powerful formal language based on timed au-
tomata, which is supported by the model-checker IF [7, 8]. Due to particular



Parameters Results State space metrics User time

GNC Cycle=8ms,
TMTC MIAT=10ms, P1:true
actual env. MIAT=1ms P2:false (stopped after 30 error scenarios) < 1s

GNC Cycle=8ms,
TMTC MIAT=10ms, P1:true
actual env. MIAT=10ms P2:true 45332 states / 122953 transitions < 5s

GNC Cycle=8ms,
TMTC MIAT=6ms, P1:true
actual env. MIAT=1s P2:true 336487 states / 902696 transitions < 46s

Table 1. Verification results

features of the IF language, like dynamic process creation, we have been able to
produce a mapping which is structure-preserving, meaning that every construct
of the initial Ada specification can be identified as an entity in the resulting
code (in general an IF process). This potentially allows traceability between the
two representations, with the obvious benefits. Previous applications of model
checking to Ada systems, such as the one presented in [9], do not offer this kind
of structure preservation (and consequently, they also lend themselves less eas-
ily to automation), in general because of the lack of expressivity in the target
language (UPPAAL in [9]).

The translation overhead (in terms of verification state space) also proves to
be moderate in our case: for example, the case study presented in §5 yields a large
set of 34 IF processes, but thanks to the efficient sub-state sharing algorithms
used in IF this does not contribute significantly to the size of the state space,
only the combinatorial complexity generated by the two tasks does.

The first part of this work was concerned with defining the translation
method and with validating it on a prototypical example. In order for these
results to be applicable in practice, an implementation in the form of a compiler
is needed. For that, we could rely on the GNAT-based open-source implementa-
tion of Ravenscar. Resources allowing, these are our plans for the future.

Acknowledgements We wish to thank the ASSERT team from the University of
Padua for providing the Ada code of the example as well as the initial motivation
for this work. We also thank all other partners of the ASSERT project for fruitful
discussions around the topics presented here.

References

[1] ISO/IEC 8652/1995. Ada 2005 Reference Manual. Language and Standard Li-
braries, volume 4348 of LNCS. Springer, 2006.

[2] Nabil Abdennadher and Fabrice Kordon, editors. 12th International Confer-
ence on Reliable Software Technologies - AdaEurope, Proceedings, volume 4498
of LNCS. Springer, 2007.



[3] K. Altisen, G. Gößler, and J. Sifakis. A methodology for the construction of
scheduled systems. In FTRTFT, volume 1926 of LNCS, pages 106–120. Springer,
2000.

[4] Aonix. ObjectAda Real-Time RAVEN.
http://www.aonix.com/objectada raven.html.

[5] Matteo Bordin and Tullio Vardanega. Correctness by construction for high-
integrity real-time systems: A metamodel-driven approach. In [2], pages 114–127.

[6] Sébastien Bornot and Joseph Sifakis. An algebraic framework for urgency. Inf.
Comput., 163(1):172–202, 2000.

[7] Marius Bozga, Susanne Graf, and Laurent Mounier. IF-2.0: A validation envi-
ronment for component-based real-time systems. In CAV, volume 2404 of LNCS,
pages 343–348. Springer, 2002.

[8] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The
IF toolset. International School on Formal Methods for the Design of Computer,
Communication and Software Systems, SFM-RT 2004, Revised Lectures, volume
3185 of LNCS, pages 237–267. Springer, 2004.

[9] A. Burns and A. J. Wellings. How to verify concurrent Ada programs: the appli-
cation of model checking. ACM SIGADA Ada Letters, 19(2):78–83, 1999.

[10] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the use of the Ada
Ravenscar profile in high integrity systems. Ada Lett., XXIV(2):1–74, 2004.

[11] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages
(Third Edition). Addison Wesley, 2001.

[12] Giorgio Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, 2nd ed., volume 23 of Real-Time Systems Series.
Springer, 2005.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[14] Juan Antonio de la Puente, José F. Ruiz, and Juan Zamorano. An open Ravenscar
real-time kernel for GNAT. In Ada-Europe, volume 1845 of LNCS, pages 5–15.
Springer, 2000.

[15] Elena Fersman, Leonid Mokrushin, Paul Pettersson, , and Wang Yi. Schedulability
analysis using two clocks. In 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 2619 of LNCS.
Springer, 2003.

[16] Object Management Group. Unified modeling language. Available at
http://www.omg.org/spec/UML/.

[17] I. Hamid, B. Zalila, E. Najm, and J. Hugues. A generative approach to building
a framework for hard real-time applications. In 31st Annual NASA Goddard
Software Engineering Workshop, Baltimore, USA, March 2007.

[18] ITU-T. Languages for telecommunications applications – Specification and De-
scription Language (SDL). ITU-T Revised Recommendation Z.100, 1999.

[19] M. Joseph and P. Pandya. Finding response times in a real-time system. The
Computer Journal, 29(5):390–395, 1986.

[20] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[21] SAE Aerospace. Architecture Analysis & Design Language (AADL). SAE Tech-
nical Standard, November 2004.

[22] Bechir Zalila, Irfan Hamid, Jérôme Hugues, and Laurent Pautet. Generating
distributed high integrity applications from their architectural description. In [2],
pages 155–167.


	On the timed automata-based verification of Ravenscar systems

