
1

Program Analysis
Instructor: Martin Vechev

Lecture 8

Rough Lecture Outline
(subject to change depending on how fast we move)

1. Introduction

2. Abstract Interpretation: Background

3. Numerical domains I: Intervals

4. Numerical domains II: Intervals/Octagons

5. Numerical domains III: Octagons/Pentagons

6. Applications of Numerical Domains: HPC/GPU

7. Applications of Numerical Domains: Semantic
Differencing of Programs

8. SMT theories & Symbolic Execution

9. Predicate Abstraction and Concurrency

10. Program Synthesis

11. Race Detection: algorithms and complexity

12. Statistical Synthesis from ``Big Code’’

13. Probabilistic Program Analysis 2

Restrictions on first order logic and the interpretation of formulas

These theories allow us to capture structures which are used by programs
(e.g., arrays, integers, etc) and enable reasoning about them

Validity in first order logic (FOL) is undecidable, while validity in particular
first order theories is (sometimes) decidable.

First order (SMT) theories

• In every first order logical theory, the formulas in that theory are
constructed with a specific set of function, predicate and constant
symbols. This is the signature of the theory, called .

• A first order formula in the theory is then built from the elements of 
together with variables, logical connectives such as ,,, and
quantifiers ,

• Each theory comes with a set of axioms (FOL formulas), called A,
which only contain elements from the signature. The predicates and
functions in  have no meaning – their meaning is provided by the
axioms in A.

First order (SMT) theories

• A formula F in the theory is valid if all interpretations that satisfy the
axioms in A, also satisfy the formula F.

• Some theories are meant to be used with a particular interpretation.
For instance, in the theory of integers, the formulas are interpreted
over the integers.

• A fragment of a theory consists of a subset of the possible formulas
expressible in the theory (e.g., quantifier-free fragment).

• A theory is decidable if for every formula in the theory we can
automatically check whether the formula is valid or not. Similarly for
fragments of a theory.

First order (SMT) theories

 Decidability

It is useful if the fragment is decidable as we often need to decide
whether a formula is valid or if two formulas are equivalent (for instance
when performing fixed point computation).

Decidability is mainly needed to achieve 100% automation.

In principle, even if the theory is not decidable, we may still get lucky and
the underlying theorem prover (e.g. Z3, Yices) which checks validity may
succeed, but is not guaranteed to do so.

SMT theories: Decidability
Theory Description Full Fragment No Quantifiers

TE Equality NO YES

TPA Peano arithmetic NO NO

TN Presburger arithmetic YES YES

TZ Linear Integers YES YES

TR Reals (with *) YES YES

TQ Rationals (without *) YES YES

TRDS Recursive Data Structures NO YES

TRDS
+ Acyclic Recursive Data Structures YES YES

TA Arrays NO YES

TA
= Arrays with extensionality NO YES

(source: The Calculus of Computation, Manna and Bradley)

Theory of Equality
Signature E :
• Any function (uninterpreted), predicate and constant
• The predicate = which is interpreted (meaning defined via axioms)

Axioms AE :

• x. x = x
• x.y. x = y  y = x
• x.y.z x = y  y = z  x = z
• x1..xn, y1..yn. x1 = y1  …  xn = yn  f(x1..xn) = f(y1..yn) functions
• x1..xn, y1..yn. x1 = y1  …  xn = yn  p(x1..xn) = p(y1..yn) predicates

TE is undecidable
QFF TE is decidable

Theory of Equality: Example

 a = b  b = c  g(f(a), b) = g(f(c), a)

Is this valid? If so, prove it

Theory of Peano Arithmetic
Signature PA :
• Constants: 0, 1
• Binary Functions: + , *
• Predicate: =

Axioms APA :
• x.  (x + 1 = 0)
• x. x + 0 = x
• x. x * 0 = 0
• x.y. x + 1 = y + 1  x = y
• x.y. x + (y + 1) = (x + y) + 1
• x.y. x * (y + 1) = x * y + x
• F[0] (x. F[x]  F[x+1])  x. F[x] (induction)

Interpreted over the natural numbers with the predicates and functions having the
usual meaning (e.g., + over natural numbers).

Theory of Peano Arithmetic

 Is the formula 3*x + 2 = 2*y in TPA ?

Theory of Peano Arithmetic

 Is the formula 3*x + 2 = 2*y in TPA ?

 Yes!

 Can be written as:

 (1 + 1 + 1) * x + 1 + 1 = y + y

 Exercise: How would we express inequality > ?

Theory of Peano Arithmetic

 What about this one?

x.y.z x  0  y  0  z  0  xn + yn  zn : n > 2  n  Z

Theory of Peano Arithmetic

 What about this one?

x.y.z x  0  y  0  z  0  xn + yn  zn : n > 2  n  Z

 TPA is undecidable

QFF TPA is also undecidable

Theory of Presburger Arithmetic
Signature N :
• Constants: 0, 1
• Binary Functions: +
• Predicate: =

Axioms AN :
• x.  (x + 1 = 0)
• x. x + 0 = x
• x.y. x + 1 = y + 1  x = y
• x.y. x + (y + 1) = (x + y) + 1
• F[0] (x. F[x]  F[x+1])  x. F[x] (induction)

Interpreted over the natural numbers with the predicates and functions having the
usual meaning (e.g., + over natural numbers).

TN is decidable

NO MULTIPLICATION

Handling the Integers Z?

In principle, it is possible to take a formula involving integers (and not just
natural numbers) and subtraction and re-write it into a TN formula.

However, a cleaner way is to directly focus on a theory which allows us to
handle integers and subtraction.

Theory of Integers
Signature Z :
• Constants: …, -3,-2, 1, 0, 1, 2, 3, …
• Unary functions: …, -3*,-2*, 2*, 3*, …
• Binary Functions: + and -
• Predicate: = and >

Interpreted over the integers with the predicates and functions having the usual
meaning (e.g., + over the integers).

TZ is simply a convenient way to reason about addition over the integers.

TZ is decidable

Theory of Integers

 x,y.z. x > z  y  0  x + y > z

 Is this formula valid?

 How about this one?

 x,y. x > 0  (x = 2y  x = 2y + 1)  x - y > 0

Theory of Integers

Here are some fragments of the theory of integers we looked at:

• Polyhedra

• Octagon

• Pentagon

• Interval

Theory of Arrays
Signature A :
• Functions:

• read(_ , _), written for simplicity as _ [_], e.g., a[i]
• write (_ , _ , _) : e.g., write(a,v,i) denotes the array a’ where a[v] = i and all

other entries are the same as a.
• Predicate: =

Axioms AA :
• Same as AE
• a.i.j. i = j  a[i] = a[j]
• a.v.i.j. i = j  write(a,i,v)[j] = v
• a.v.i.j. i ≠ j  write(a,i,v)[j] = a[j]

Captures common operations on arrays such as reads and updates.
TA is undecidable
QFF TA is decidable

Theory of Arrays

 a[i] = e  write(a,i,e) = a

 Is this formula valid?

Theory of Arrays

 a[i] = e  j. write(a,i,e)[j] = a[j]

 What about this one?

Combining Theories:
The Nelson-Oppen method

In practice, the formulas arising in programs span multiple theories, not a single
theory. For instance, reasoning about arrays of integers spans both theory of
arrays and theory of integers. Note however how the signature of every theory
has the equality predicate =.

Thus, to combine two (quantifier-free) theories T1 and T2 where 1  2 = {=},
that is, only = is shared, the combined theory of T1 and T2 is:

• 1  2
• A1  A2

Further, if T1 and T2 are both decidable (+ some other requirements), then the
combined theory is also decidable.

 Clients of SMT solvers

SMT solvers are widely used in many analyses,
including synthesis (as in the project), verification,
program analysis (discussed in later lectures) and
symbolic execution.

Next, we will discuss one such client analysis:
symbolic execution.

Symbolic Execution: Applications

Symbolic execution is widely used in practice. Tools based
on symbolic execution have found serious errors and
security vulnerabilities in various systems:

• Network servers
• File systems
• Device drivers
• Unix utilities
• Computer vision code
• …

 25

Symbolic Execution: Tools

26

• Stanford’s KLEE:
– http://klee.llvm.org/

• NASA’s Java PathFinder:

– http://javapathfinder.sourceforge.net/

• Microsoft Research’s SAFE

• UC Berkeley’s CUTE

• EPFL’s S2E

– http://dslab.epfl.ch/proj/s2e

http://klee.llvm.org/
http://javapathfinder.sourceforge.net/
http://dslab.epfl.ch/proj/s2e

Symbolic Execution

27

At any point during program execution, symbolic
execution keeps two formulas:

 symbolic store and a path constraint

Therefore, at any point in time the symbolic state is
described as the conjunction of these two formulas.

Symbolic Store

28

• The values of variables at any moment in time are

given by a function s  SymStore = Var  Sym
– Var is the set of variables as before
– Sym is a set of symbolic values
– s is called a symbolic store

• Example: s : x  x0, y  y0

Semantics

29

• Arithmetic expression evaluation simply manipulates the
symbolic values.

• Let s : x  x0, y  y0

• Then, z = x + y will produce the symbolic store:

 x  x0, y  y0, z  x0+y0

That is, we literally keep the symbolic expression x0+y0

Path Constraint

30

• The analysis keeps a path constraint (pct) which records
the history of all branches taken so far. The path
constraint is simply a formula.

• The formula is typically in a decidable logical fragment
without quantifiers

• At the start of the analysis, the path constraint is true

• Evaluation of conditionals affects the path constraint ,

but not the symbolic store.

Path Constraint: Example

31

Let s : x  x0, y  y0
Let pct = x0 > 10

Lets evaluate: if (x > y + 1) {5: … }

At label 5, we will get the symbolic store s . It does not
change. But we will get an updated path constraint:

 pct = x0 > 10  x0 > y0 + 1

Symbolic Execution: Example

32

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

Can you find the inputs that make
the program reach the ERROR?

Lets execute this example
with classic symbolic execution

Symbolic Execution: Example

33

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0

pct : true

The read() functions read a value from
the input and because we don’t know
what those read values are, we set the
values of x and y to fresh symbolic
values called x0 and y0

pct is true because so far we have not
executed any conditionals

Symbolic Execution: Example

34

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : true

Here, we simply executed the function
twice() and added the new symbolic
value for z.

Symbolic Execution: Example

35

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : x0 = 2*y0

This is the result if x = z:

s : x  x0,
 y  y0
 z  2*y0

pct : x0  2*y0

This is the result if x != z:

We forked the analysis into 2 paths: the true
and the false path. So we duplicate the state of
the analysis.

Symbolic Execution: Example

36

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : x0 = 2*y0

This is the result if x = z:

s : x  x0,
 y  y0
 z  2*y0

pct : x0  2*y0

This is the result if x != z:

We can avoid further exploring a path if we
know the constraint pct is unsatisfiable. In this
example, both pct’s are satisfiable so we need
to keep exploring both paths.

Symbolic Execution: Example

37

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : x0 = 2*y0
 
 x0 > y0+10

This is the result if x > y + 10:

Lets explore the path when x == z is true.
Once again we get 2 more paths.

s : x  x0,
 y  y0
 z  2*y0

pct : x0 = 2*y0
 
 x0  y0+10

This is the result if x  y + 10:

Symbolic Execution: Example

38

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : x0 = 2*y0
 
 x0 > y0+10

This is the result if x > y + 10:

So the following path reaches “ERROR”.

We can now ask the SMT solver for a satisfying
assignment to the pct formula.

For instance, x0 = 40, y0 = 20 is a
satisfying assignment. That is, running the
program with those concrete inputs triggers the
error.

Handling Loops: a limitation

39

A serious limitation of symbolic execution is handling unbounded loops.
Symbolic execution runs the program for a finite number of paths. But what
if we do not know the bound on a loop ? The symbolic execution will keep
running forever !

int F(unsigned int k) {
 int sum = 0;
 int i = 0;
 for (; i < k; i++)
 sum += i;
 return sum;
}

40

A common solution in practice is to provide some loop bound. In this
example, we can bound k, to say 2. This is an example of an under-
approximation. Practical symbolic analyzers usually under-approximate as
most programs have unknown loop bounds.

int F(unsigned int k) {
 int sum = 0;
 int i = 0;
 for (; i < 2; i++)
 sum += i;
 return sum;
}

Handling Loops: bound loops

41

Another solution is to provide a loop invariant , but this technique is rarely
used for large programs because it is difficult to provide such invariants
manually and it can also lead to over-approximation. This is where a
combination with static program analysis is useful (static analysis can infer
loop invariants). We will not study this approach in our treatment, but we
note that the approach is used in program verification.

Handling Loops: loop invariants

int F(unsigned int k) {
 int sum = 0;
 int i = 0;
 for (; i < k; i++)
 sum += i;
 return sum;
}

loop invariant

Constraint Solving: challenges

42

Constraint solving is fundamental to symbolic execution as a constraint
solver is continuously invoked during analysis. Often, the main roadblock
to performance of symbolic execution engines is the time spent in
constraint solving. Therefore, it is important that:

1. The SMT solver supports as many decidable logical fragments as

possible. Some tools use more than one SMT solver.

2. The SMT solver can solve large formulas quickly.

3. The symbolic execution engines tries to reduce the burden in calling
the SMT solver by exploring domain specific insights.

Key Optimization: Caching

43

The basic insight here is that often, the analysis will invoke
the SMT solver with similar formulas. Therefore, the
symbolic execution system can keep a map (cache) of
formulas to a satisfying assignment for the formula.

Then, when the engine builds a new formula and would
like to find a satisfying assignment for that formula, it can
first access the cache, before calling the SMT solver.

Suppose the cache contains the mapping:

 Formula: Solution:
 (x + y < 10)  (x > 5)  {x = 6, y = 3}

If we get a weaker formula as a query, say (x + y < 10) , then we can
immediately reuse the solution already found in the cache, without
calling the SMT solver.

If we get a stronger formula as a query, say (x + y < 10)  (x > 5)  (y  0)
, then we can quickly try the solution in the cache and see if it works,
without calling the solver (in this example, it works).

44

Key Optimization: Caching

Despite best efforts, the program may be using
constraints in a fragment which the SMT solver
does not handle well.

For instance, suppose the SMT solver does not
handle non-linear constraints well.

Let us consider a modification of our running
example.

45

When Constraint Solving Fails

Modified Example

46

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

Here, we changed the twice()
function to contain a non-linear
result.

Let us see what happens when we
symbolically execute the program
now…

Modified Example

47

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  y0*y0

pct : x0 = y0*y0

This is the result if x = z:

Now, if we are to invoke the SMT solver with the
pct formula, it would be unable to compute
satisfying assignments, precluding us from
knowing whether the path is feasible or not.

Solution: Concolic Execution

Concolic Execution: combines both symbolic execution
and concrete (normal) execution.

The basic idea is to have the concrete execution drive
the symbolic execution.

Here, the program runs as usual (it needs to be given
some input), but in addition it also maintains the usual
symbolic information.

48

Concolic Execution: Example

49

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0

pct : true

The read() functions read a value from
the input. Suppose we read x = 22 and y = 7.

We will keep both the concrete store and the
symbolic store and path constraint.

 : x  22,
 y  7

Concolic Execution: Example

50

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : true

 : x  22,
 y  7,
 z  14

The concrete execution will now take
the ‘else’ branch of z == x.

Concolic Execution: Example

51

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : x0  2*y0

Hence, we get:

 : x  22,
 y  7,
 z  14

Concolic Execution: Example

52

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

At this point, concolic execution decides that it
would like the explore the “true” branch of
x == z and hence it needs to generate concrete
inputs in order to explore it. Towards such
inputs, it negates the pct constraint, obtaining:

It then calls the SMT solver to find a satisfying
assignment of that constraint. Let us suppose
the SMT solver returns:

 x0  2, y0  1

The concolic execution then runs the program
with this input.

pct : x0 = 2*y0

Concolic Execution: Example

53

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

pct : x0 = 2*y0

With the input x  2, y  1 we reach
this program point with the following
information:

 : x  2,
 y  1,
 z  2

Continuing further we get:

Concolic Execution: Example

54

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

We reach the “else” branch of x > y + 10

 : x  2,
 y  1,
 z  2

pct : x0 = 2*y0
 
 x0  y0+10

Again, concolic execution may want to explore
the ‘true’ branch of x > y + 10.

Concolic Execution: Example

55

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  2*y0

We reach the “else” branch of x > y + 10

 : x  2,
 y  1,
 z  2

pct : x0 = 2*y0
 
 x0  y0+10

Concolic execution now negates the conjunct
x0  y0+10 obtaining:

 x0 = 2*y0  x0 > y0+10

A satisfying assignment is: x0  30, y0  15

Concolic Execution: Example

56

int twice(int v) {
 return 2 * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

If we run the program with the input:

 x0  30, y0  15

we will now reach the ERROR state.

As we can see from this example, by
keeping the symbolic information, the
concrete execution can use that
information in order to obtain new
inputs.

Let us return to the problem of non-linear constraints

57

Non-linear constraints

Non-linear constraints

58

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

Let us again consider our example and see
what concolic execution would do with
non-linear constraints.

Concolic Execution: Example

59

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0

pct : true

The read() functions read a value from
the input. Suppose we read x = 22 and y =7.

 : x  22,
 y  7

Concolic Execution: Example

60

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  y0*y0

pct : true

 : x  22,
 y  7,
 z  49

The concrete execution will now take
the ‘else’ branch of x == z.

Concolic Execution: Example

61

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

s : x  x0,
 y  y0
 z  y0*y0

pct : x0  y0*y0

Hence, we get:

 : x  22,
 y  7,
 z  49

Concolic Execution: Example

62

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

However, here we have a non-linear constraint
x0  y0*y0 . If we would like to explore
the true branch we negate the constraint,
obtaining x0 = y0*y0 but again we have a
non-linear constraint !

In this case, concolic execution simplifies the
constraint by plugging in the concrete values for
y0 in this case, 7, obtaining the simplified
constraint:

 x0 = 49

Hence, it now runs the program with the input

 x  49, y  7

Concolic Execution: Example

63

int twice(int v) {
 return v * v;
}

void test(int x, int y) {
 z = twice(y);
 if (x == z) {
 if (x > y + 10)
 ERROR;
 }
}

int main() {
 x = read();
 y = read();
 test(x,y);
}

Running with the input

 x  49, y  7

will reach the error state.

However, notice that with these inputs, if we try
to simplify non-linear constraints by plugging in
concrete values (as concolic execution does),
then concolic execution we will never reach the
else branch of the if (x > y + 10)
statement.

Symbolic Execution vs.
Abstract Interpretation

Is Symbolic Execution an instance of Abstract
Interpretation?

For instance, is SE an abstract interpreter over
the abstract domain of logical formula, where
we do not perform joins?

64

SE vs. Abstract Interpretation
Question on the A.I. Facebook group: https://www.facebook.com/groups/abstract.interpretation/

https://www.facebook.com/groups/abstract.interpretation/

Summary

• Symbolic Execution is a popular technique for
analyzing large programs
– completely automated, relies on SMT solvers

• To terminate, may need to bound loops

– leads to under-approximation

• To handle non-linear constraints and external
environment, mixes concrete and symbolic
execution (called concolic execution)
– also leads to under-approximation

66

	Program Analysis
	Rough Lecture Outline�(subject to change depending on how fast we move)
	First order (SMT) theories
	First order (SMT) theories
	First order (SMT) theories
	 Decidability
	SMT theories: Decidability
	Theory of Equality
	Theory of Equality: Example
	Theory of Peano Arithmetic
	Theory of Peano Arithmetic
	Theory of Peano Arithmetic
	Theory of Peano Arithmetic
	Theory of Peano Arithmetic
	Theory of Presburger Arithmetic
	Handling the Integers Z?
	Theory of Integers
	Theory of Integers
	Theory of Integers
	Theory of Arrays
	Theory of Arrays
	Theory of Arrays
	Combining Theories: �The Nelson-Oppen method
		 Clients of SMT solvers
	Symbolic Execution: Applications
	Symbolic Execution: Tools
	Symbolic Execution
	Symbolic Store
	Semantics
	Path Constraint
	Path Constraint: Example
	Symbolic Execution: Example
	Symbolic Execution: Example
	Symbolic Execution: Example
	Symbolic Execution: Example
	Symbolic Execution: Example
	Symbolic Execution: Example
	Symbolic Execution: Example
	Handling Loops: a limitation
	Handling Loops: bound loops
	Handling Loops: loop invariants
	Constraint Solving: challenges
	Key Optimization: Caching
	Key Optimization: Caching
	When Constraint Solving Fails
	Modified Example
	Modified Example
	Solution: Concolic Execution
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Non-linear constraints
	Non-linear constraints
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Concolic Execution: Example
	Symbolic Execution vs. �Abstract Interpretation
	SE vs. Abstract Interpretation
	Summary

