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Restrictions on first order logic and the interpretation of formulas 
 
 
These theories allow us to capture structures which are used by programs 
(e.g., arrays, integers, etc) and enable reasoning about them 
 
 
Validity in first order logic (FOL) is undecidable, while validity in particular 
first order theories is (sometimes) decidable. 
 

First order (SMT) theories 



• In every first order logical theory, the formulas in that theory are 
constructed with a specific set of function, predicate and constant 
symbols.  This is the signature of the theory, called . 
 
 

• A first order formula in the theory is then built from the elements of  
together with variables, logical connectives such as ,,, and 
quantifiers , 
 
 

• Each theory comes with a  set of axioms (FOL formulas), called A, 
which only contain elements from the signature. The predicates and 
functions in  have no meaning – their meaning is provided by the 
axioms in A. 

First order (SMT) theories 



• A  formula F in the theory is valid if all interpretations that satisfy the 
axioms in A, also satisfy the formula F.   
 

• Some theories are meant to be used with a particular interpretation. 
For instance, in the theory of integers, the formulas are interpreted 
over the integers. 
 

• A fragment of a theory consists of a subset of the possible formulas 
expressible in the theory (e.g., quantifier-free fragment). 
 

• A theory is decidable if for every formula in the theory we can 
automatically check whether the formula is valid or not. Similarly for 
fragments of a theory. 

First order (SMT) theories 



 Decidability 

It is useful if the fragment is decidable as we often need to decide 
whether a formula is valid or if two formulas are equivalent (for instance 
when performing fixed point computation).  
 
Decidability is mainly needed to achieve 100% automation. 
 
 
In principle, even if the theory is not decidable, we may still get lucky and 
the underlying theorem prover (e.g. Z3,  Yices) which checks validity may 
succeed, but is not guaranteed to do so. 
 
 



SMT theories: Decidability 
Theory Description Full Fragment No Quantifiers 

TE Equality NO YES 

TPA Peano arithmetic NO NO 

TN Presburger arithmetic YES YES 

TZ Linear Integers YES YES 

TR Reals (with *) YES YES 

TQ Rationals (without *) YES YES 

TRDS Recursive Data Structures NO YES 

TRDS
+ Acyclic Recursive Data Structures YES YES 

TA Arrays NO YES 

TA
= Arrays with extensionality NO YES 

(source: The Calculus of Computation, Manna and Bradley) 



Theory of Equality 
Signature E : 
• Any function   (uninterpreted),  predicate and constant 
• The predicate = which is interpreted  (meaning defined via axioms) 

Axioms AE :  
 
• x.   x = x 
• x.y.   x = y  y = x 
• x.y.z  x = y  y = z  x = z 
• x1..xn, y1..yn.    x1 = y1  …  xn = yn    f(x1..xn)  =  f(y1..yn)     functions 
• x1..xn, y1..yn.    x1 = y1  …  xn = yn    p(x1..xn) =  p(y1..yn)    predicates 

TE  is undecidable 
QFF TE is decidable 



Theory of Equality: Example 

    a = b  b = c  g(f(a), b) = g(f(c), a) 

Is this valid?  If so,  prove it 



Theory of Peano Arithmetic 
Signature PA : 
• Constants: 0, 1 
• Binary Functions: + , *  
• Predicate:  =  

Axioms APA :  
• x.  (x + 1 = 0) 
• x.  x + 0 = x 
• x.  x * 0 = 0 
• x.y.   x + 1 = y + 1  x = y 
• x.y.   x + (y + 1) = (x + y ) + 1 
• x.y.   x * (y + 1) = x * y + x 
• F[0]  (x. F[x]  F[x+1])  x. F[x]                                (induction) 

Interpreted over the natural numbers with the predicates and functions having the 
usual meaning (e.g., + over natural numbers). 



Theory of Peano Arithmetic 

   
  Is the formula 3*x + 2 = 2*y in  TPA ? 
 
     



Theory of Peano Arithmetic 

   
  Is the formula 3*x + 2 = 2*y in  TPA ? 
 
    Yes! 
 
  Can be written as: 
   
   (1 + 1 + 1) * x + 1 + 1 = y + y 
 
 
     Exercise: How would we express inequality   >  ? 
 



Theory of Peano Arithmetic 

   
   What about this one? 
 
 
x.y.z   x  0    y  0    z  0  xn + yn  zn   : n > 2  n  Z 
 

 
 
  
 



Theory of Peano Arithmetic 

   
   What about this one? 
 
 
x.y.z   x  0    y  0    z  0  xn + yn  zn   : n > 2  n  Z 
 

 
 
  
 TPA  is undecidable 

QFF TPA is also undecidable 



Theory of Presburger Arithmetic 
Signature N : 
• Constants: 0, 1 
• Binary Functions: +   
• Predicate:  =  

Axioms AN :  
• x.  (x + 1 = 0) 
• x.  x + 0 = x 
• x.y.   x + 1 = y + 1  x = y 
• x.y.   x + (y + 1) = (x + y ) + 1 
• F[0]  (x. F[x]  F[x+1])  x. F[x]                                (induction) 

Interpreted over the natural numbers with the predicates and functions having the 
usual meaning (e.g., + over natural numbers). 

TN  is decidable 

NO MULTIPLICATION 



Handling the Integers Z? 

 
 
In principle, it is possible to take a formula involving integers (and not just 
natural numbers) and subtraction and re-write it into a  TN  formula. 
 
 
However, a cleaner way is to directly focus on a theory which allows us to 
handle integers and subtraction. 



Theory of Integers 
Signature Z : 
• Constants: …, -3,-2, 1, 0, 1, 2, 3, … 
• Unary functions: …, -3*,-2*, 2*, 3*, … 
• Binary Functions: +  and - 
• Predicate:  = and > 

Interpreted over the integers with the predicates and functions having the usual 
meaning (e.g., + over the integers). 
 
TZ  is simply a convenient way to reason about addition over the integers. 
 

TZ  is decidable 



Theory of Integers 

  x,y.z.  x > z  y  0  x + y > z 
 
                Is this formula valid? 
 
 
    How about this one? 
 
 
 x,y.  x > 0  (x = 2y  x = 2y + 1)  x - y > 0 
 



Theory of Integers 

Here are some fragments of the theory of integers we looked at: 
 
• Polyhedra 

 
• Octagon 

 
• Pentagon 

 
• Interval 



Theory of Arrays 
Signature A : 
• Functions:   

• read(_ , _), written for simplicity as  _ [ _ ], e.g., a[i] 
• write (_ , _ , _) : e.g., write(a,v,i) denotes the array a’  where  a[v] = i and all 

other entries are the same as a. 
• Predicate:  =  

Axioms AA :  
• Same as AE   
• a.i.j.   i = j  a[i] = a[j]  
• a.v.i.j.   i = j  write(a,i,v)[j] = v 
• a.v.i.j.   i ≠ j  write(a,i,v)[j] = a[j] 

Captures common operations on arrays such as reads and updates. 
TA  is undecidable 
QFF TA is decidable 



Theory of Arrays 

     a[i] = e  write(a,i,e) = a 
 
                Is this formula valid? 
 
 
   



Theory of Arrays 

   a[i] = e  j. write(a,i,e)[j] = a[j] 
 
                 
   What about this one? 



Combining Theories:  
The Nelson-Oppen method 

 
In practice, the formulas arising in programs span multiple theories, not a single 
theory. For instance, reasoning about arrays of integers spans both theory of 
arrays and theory of integers.  Note however how the signature of every theory 
has the equality predicate =.  
 
Thus, to combine two (quantifier-free) theories  T1 and  T2  where 1      2 = {=}, 
that is, only = is shared, the combined theory of T1  and  T2 is: 
 
•   1      2  
•   A1      A2  
 
Further, if  T1 and  T2  are both decidable (+ some other requirements), then the 
combined theory is also decidable. 



    Clients of SMT solvers 

 
SMT solvers are widely used in many analyses, 
including synthesis (as in the project), verification, 
program analysis (discussed in later lectures) and 
symbolic execution. 
 
Next, we will discuss one such client analysis: 
symbolic execution. 
 
 



Symbolic Execution: Applications 

Symbolic execution is widely used in practice. Tools based 
on symbolic execution have found serious errors and 
security vulnerabilities in various systems: 
 
• Network servers 
• File systems 
• Device drivers 
• Unix utilities 
• Computer vision code 
• … 
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Symbolic Execution: Tools 

26 

• Stanford’s KLEE:  
– http://klee.llvm.org/ 

 
• NASA’s Java PathFinder:  

– http://javapathfinder.sourceforge.net/ 

 
• Microsoft Research’s SAFE 

 
• UC Berkeley’s CUTE 

 
• EPFL’s S2E   

– http://dslab.epfl.ch/proj/s2e 

 
 
 
 
 

http://klee.llvm.org/
http://javapathfinder.sourceforge.net/
http://dslab.epfl.ch/proj/s2e


Symbolic Execution 

27 

At any point during program execution, symbolic 
execution keeps two formulas:  
  
 symbolic store   and a   path constraint 
 
Therefore, at any point in time the symbolic state is 
described as the conjunction of these two formulas. 



Symbolic Store 

28 

 
• The values of variables at any moment in time are 

given by a function s  SymStore = Var    Sym 
– Var is the set of variables as before 
– Sym is a set of symbolic  values 
– s is called a symbolic store 
 

•  Example: s : x  x0, y  y0 



Semantics 

29 

• Arithmetic expression evaluation simply manipulates the 
symbolic values. 

 
• Let  s  :  x  x0, y  y0 

 
• Then,   z = x + y will produce  the  symbolic  store:  

   x  x0, y  y0, z  x0+y0 

 
That is, we literally keep the symbolic expression  x0+y0  

 
 



Path Constraint 

30 

• The analysis keeps a path constraint (pct) which records 
the history of all branches taken so far. The path 
constraint is simply a formula. 
 

• The formula is typically in a decidable logical fragment 
without quantifiers 
 

• At the start of the analysis, the path constraint is true 
 
• Evaluation of conditionals affects the path constraint , 

but not the symbolic store. 



Path Constraint: Example 

31 

Let  s  :  x  x0, y  y0 
Let pct = x0 > 10 
 
Lets evaluate:   if (x > y + 1) {5: … }   
 

At label 5, we will get the symbolic  store s  . It does not 
change. But we will get an updated path constraint: 
 
    pct  = x0 > 10  x0 > y0 + 1 



Symbolic Execution: Example 

32 

int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

Can you find the inputs that make  
the program reach the ERROR? 
 
Lets execute this example  
with classic symbolic execution 



Symbolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 

pct  :  true 

The read()  functions read a value from 
the input and because we don’t know  
what those read values are, we set the  
values  of x and  y to fresh symbolic  
values called x0 and  y0 
 
pct is true because so far we have not  
executed any conditionals 



Symbolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  true 

Here, we simply executed the function 
twice() and added the new symbolic  
value for z. 



Symbolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0 = 2*y0 

This is the result if x = z: 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0  2*y0 

This is the result if x != z: 

We forked the analysis into 2 paths: the true 
and the false path.  So we duplicate the state of 
the analysis. 



Symbolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0 = 2*y0 

This is the result if x = z: 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0  2*y0 

This is the result if x != z: 

We can avoid further exploring a path if we 
know the constraint pct is unsatisfiable. In this 
example, both pct’s are satisfiable so we need 
to keep exploring both paths. 



Symbolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0 = 2*y0 
        
    x0 > y0+10    

This is the result if x >  y + 10: 

Lets explore the path when  x == z  is true. 
Once again we get 2 more paths. 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0 = 2*y0 
        
    x0  y0+10    

This is the result if x   y + 10: 



Symbolic Execution: Example 

38 

int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0 = 2*y0 
        
    x0 > y0+10    

This is the result if x >  y + 10: 

So the following path reaches “ERROR”. 

We can now ask the SMT solver for a satisfying 
assignment to the pct formula. 
 
For instance,  x0 = 40, y0 = 20 is a 
satisfying assignment.  That is,  running the 
program with those concrete inputs triggers the 
error. 



Handling Loops:  a limitation 
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A serious limitation of  symbolic execution is handling unbounded loops.  
Symbolic execution runs the program for a finite number of paths. But what 
if we do not know the bound on a loop ? The symbolic execution will keep 
running forever ! 

int F(unsigned int k) { 
  int sum = 0; 
  int i  = 0; 
  for ( ; i < k; i++) 
     sum += i; 
  return sum; 
} 



40 

A common solution in practice is to provide some loop bound. In this 
example, we can bound k, to say 2. This is an example of an under-
approximation. Practical symbolic analyzers usually under-approximate  as 
most programs have unknown loop bounds. 

int F(unsigned int k) { 
  int sum = 0; 
  int i  = 0; 
  for ( ; i < 2; i++) 
     sum += i; 
  return sum; 
} 

Handling Loops:  bound loops 



41 

Another solution is to provide a loop invariant ,  but this technique is rarely 
used for large programs because it is difficult to provide such invariants 
manually and it can also lead to over-approximation. This is where a 
combination with static program analysis is useful (static analysis can infer 
loop invariants). We will not study this approach in our treatment, but we 
note that the approach is used in program verification. 

Handling Loops:  loop invariants 

int F(unsigned int k) { 
  int sum = 0; 
  int i  = 0; 
  for ( ; i < k; i++) 
     sum += i; 
  return sum; 
} 

loop invariant 



Constraint Solving:  challenges 
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Constraint solving  is fundamental to symbolic execution as a constraint 
solver is continuously invoked during analysis.  Often, the main roadblock 
to performance of symbolic execution engines is the time spent in  
constraint solving. Therefore, it is important that: 
 
1. The SMT solver supports as many decidable logical fragments as 

possible. Some tools use more than one SMT solver. 
 

2. The SMT solver can solve large formulas quickly. 
 

3. The symbolic execution engines tries to reduce the burden in calling 
the SMT solver by exploring  domain specific insights. 



Key Optimization: Caching 

43 

The basic insight here is that often, the analysis will invoke 
the SMT solver with similar formulas. Therefore, the 
symbolic execution system can keep a map (cache) of 
formulas to a satisfying assignment for the formula.  
 
Then, when the engine builds a new formula and would 
like to find a satisfying assignment for that formula, it can 
first access the cache, before calling  the SMT solver. 



Suppose the cache contains the mapping: 
 
                     Formula:                            Solution: 
         (x + y < 10)  (x > 5)              {x = 6, y = 3} 
 
If we get a weaker formula as a query, say  (x + y < 10) , then we can 
immediately reuse the solution already found in the cache, without 
calling the SMT solver.  
 
If we get a stronger formula as a query, say (x + y < 10)  (x > 5)  (y  0) 
, then we can quickly try the solution in the cache and see if it works, 
without calling the solver (in this example, it works). 

44 

Key Optimization: Caching 



Despite best efforts, the program may be using 
constraints in a fragment which the SMT solver 
does not handle well. 
 
For instance, suppose the SMT solver does not 
handle non-linear constraints well. 
 
Let us consider a modification of our running 
example. 

45 

When Constraint Solving Fails 



Modified Example 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

Here, we changed the twice() 
function to contain a non-linear 
result. 

Let us see what happens when we 
symbolically execute the program 
now… 



Modified Example 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  y0*y0 

pct  :  x0 = y0*y0 

This is the result if x = z: 

Now, if we are to invoke the SMT solver with the 
pct formula,  it would be unable to compute 
satisfying assignments, precluding us from 
knowing whether the path is feasible or not. 



Solution: Concolic Execution 

Concolic Execution: combines both symbolic execution 
and concrete (normal) execution. 
 
The basic idea is to have the concrete execution drive 
the symbolic execution. 
 
Here, the program runs as usual (it needs to be given 
some input), but in addition it also maintains the usual 
symbolic information. 
 

48 



Concolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 

pct  :  true 

The read()  functions read a value from 
the input.  Suppose we read x = 22 and y = 7. 
 
We will keep both the concrete store and the 
symbolic store and path constraint. 

  :  x  22,  
   y  7 



Concolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  true 

  :  x  22,  
   y  7, 
   z  14 

The concrete execution will now take 
the ‘else’ branch of z == x. 



Concolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0  2*y0 

Hence, we get: 

  :  x  22,  
   y  7, 
   z  14 



Concolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

At this point, concolic execution decides that it 
would like the explore the “true” branch of  
x == z and hence it needs to generate concrete 
inputs in order to explore it. Towards such 
inputs, it negates the pct constraint, obtaining: 
 
 
 
 
It then calls the SMT solver to find a satisfying 
assignment of that constraint.  Let us suppose 
the SMT solver returns: 
  
 x0  2, y0  1  
 
The concolic execution then runs the program 
with this input. 

pct  :  x0 = 2*y0 



Concolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

pct  :  x0 = 2*y0 

With the input   x  2, y  1 we reach  
this program point with the following 
information: 

  :  x  2,  
   y  1, 
   z  2 

Continuing further we get: 



Concolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

We reach the “else” branch of x > y + 10 

  :  x  2,  
   y  1, 
   z  2 

pct  :  x0 = 2*y0 
        
    x0  y0+10    

Again, concolic execution may want to explore 
the ‘true’ branch of x > y + 10. 



Concolic Execution: Example 
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  2*y0 

We reach the “else” branch of x > y + 10 

  :  x  2,  
   y  1, 
   z  2 

pct  :  x0 = 2*y0 
        
    x0  y0+10    

Concolic execution now negates the conjunct   
x0  y0+10 obtaining:  
 
 x0 = 2*y0    x0 > y0+10    
 
A satisfying assignment is:  x0  30, y0  15  
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int twice(int v) { 
  return 2 * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

If we run the program with the input: 
 
 x0  30, y0  15  
 
we will now reach the ERROR state. 

As we can see from this example, by 
keeping the symbolic information, the 
concrete execution can use that 
information in order to obtain new 
inputs. 



 
 
 
Let us return to the problem of non-linear constraints 
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Non-linear constraints 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

Let us again consider our example and see 
what concolic execution would do with 
non-linear constraints. 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 

pct  :  true 

The read()  functions read a value from 
the input.  Suppose we read x = 22 and y =7. 
 

  :  x  22,  
   y  7 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  y0*y0 

pct  :  true 

  :  x  22,  
   y  7, 
   z  49 

The concrete execution will now take 
the ‘else’ branch of x == z. 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

s  :    x  x0,  
    y  y0 
    z  y0*y0 

pct  :  x0  y0*y0 

Hence, we get: 

  :  x  22,  
   y  7, 
   z  49 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

However, here we have a non-linear constraint 
x0  y0*y0 . If we would like to explore 
the true branch we negate the constraint, 
obtaining x0 = y0*y0 but again we have a 
non-linear constraint ! 
 
In this case, concolic execution simplifies the 
constraint by plugging in the concrete values for 
y0 in this case, 7, obtaining the simplified 
constraint: 
 
      x0 = 49 
 
Hence, it now runs the program with the input  
 
    x  49,   y  7 
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int twice(int v) { 
  return v * v; 
} 
 
void test(int x, int y) { 
  z = twice(y); 
  if (x == z) { 
    if (x > y + 10) 
      ERROR; 
  } 
} 
     
int main() { 
  x = read(); 
  y = read(); 
  test(x,y); 
} 

Running with the input 
 
   x  49,   y  7 
 
will reach the error state. 
 
However, notice that with these inputs, if we try 
to simplify non-linear constraints by plugging in 
concrete values (as concolic execution does), 
then concolic execution we will never reach the 
else  branch of the   if (x > y + 10) 
statement. 
 



Symbolic Execution vs.  
Abstract Interpretation 

 
Is Symbolic Execution an instance of Abstract 
Interpretation? 
 
For instance, is SE an abstract interpreter  over 
the abstract domain of logical formula, where 
we do not perform joins?  
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SE vs. Abstract Interpretation 
Question on the A.I. Facebook group:     https://www.facebook.com/groups/abstract.interpretation/ 

https://www.facebook.com/groups/abstract.interpretation/


Summary 

• Symbolic Execution is a popular technique for 
analyzing large programs 
–  completely automated, relies on SMT solvers 

 
• To terminate, may need to bound loops 

– leads to under-approximation 
 

• To handle non-linear constraints and external 
environment, mixes concrete and symbolic 
execution (called concolic execution) 
– also leads to under-approximation 
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