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Correctness by checking vs. 
Correctness by construction

Building systems which are correct with respect to given 
requirements is the main challenge for all engineering disciplines 

Correctness can be achieved:

� Either by checking that a system or a model of a system 
meets given requirements

� Or by construction by using  results such as algorithms, 
protocols, architectures e.g. token ring protocol, time 
triggered architecture

A big difference between Computing Systems Engineering and 
disciplines based on Physics is the importance of a posteriori
verification for achieving correctness
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Approaches for checking correctness

Checking correctness

Physical prototypes
e.g. testing

Ad hoc models 
e.g. SystemC simulation

Formal models 
(well-defined notion of state and transition)

Verification 
� Algorithmic Verification e.g. Model checking

�Deductive Verification

Models 
(Virtual SW Prototypes)



Verification: Three essential ingredients

�Requirements
describing the expected behavior, usually as a set of 
properties

�Models
describing a transition relation on the system states

�Methods
for checking that the models satisfy the requirements



Requirements specification (1/3)

always( inev ( enable( send ) ) )

always( inev ( enable( receive) ) )

Using formulas, in particular 
temporal logic, to characterize a 
set of execution structures e.g. 
traces, execution trees

Good for expressing global 
properties such as mutual 
exclusion, termination, fairness

Property-based

Using a machine (monitor) to 
specify observable behavior

send

receive

State-based

Good for characterizing causal 
dependencies e.g. sequences 
of actions



Requirements specification (2/3)

About Temporal logic [Pnueli, Lamport, Clarke & Emerson]

This was a breakthrough in understanding and formalizing 
requirements for concurrent systems. Writing rigorous 
specifications in temporal logic is not trivial. 

� There exist subtle differences in the formulation of common 
concepts such as liveness and fairness depending on the 
underlying time model   e.g. always( inevitable( f ) ) 

� The declarative and dense style in the expression of property-
based requirements  is not always easy to master and 
understand. Are specifications 

� Sound: there exists a model satisfying it 
� Complete: tight characterization of system behavior

Pragmatically, we need a combination of both property-based 
and state-based styles, e.g. PSL



Requirements specification (3/3)

Moving towards a “less declarative” style by using notations such 
as MSC’s or interface automata 

Much to be done for extra-functional requirements characterizing: 
� security (e.g. privacy properties), 
� reconfigurability (e.g. non interference of features), 
� quality of service (e.g. jitter).

req

User Interface Resource

req

grant

yes



Building models    (1/3)

Models should be: 
� faithful e.g. whatever property we verify for the model holds for 

the real system
� generated automatically from system descriptions 

v= …
u= ..
x= …
y= …
z=x∨y

MODEL

z

x

y
u

v

HW

For hardware, it is easy to get faithful logical finite state models 
represented as systems of boolean equations

semantics



Building models    (2/3)

if….
while  valid do
if x<0 then z=x

else z=-x;

while …
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For software this may be much harder …. 
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Building models    (3/3)

TasksTasks
Command
Handlers

EventEvent
HandlersHandlers

APPLICATION
SW

For mixed Software / Hardware systems: 
� there are no faithful modeling techniques as we have a poor 

understanding of how software and the underlying platform interact 
� validation by testing physical prototypes or by simulation of ad hoc 

models

AntennaAntenna

TaskTask
SchedulerScheduler

SensorsSensors

EventEvent
SchedulerScheduler

TimersTimers

EXECUTION
PLATFORM



Algorithmic Verification: Using Abstraction   (1/2)
SA satisfies  fA implies S satisfies f 

where  SA =(QA,RA) is an abstraction of S=(Q,R) 
for formulas f involving only universal quantification over execution paths

∅ ∅

QA

Q

2Q 2Q Aα

γ
� α,γ are monotonic 
� Id⊆ γα
� αγ ⊆ Id

αFγ is the best approximation of F in the abstract state space

F αFγ

[Cousot&Cousot 79] Abstract interpretation, a general framework for computing 
abstractions based on the use of Galois connections



Algorithmic Verification: Using Abstraction   (2/2)

� Initially, focused on finite 
state systems (hardware, 
control intensive reactive 
systems) 
Later, it addressed 
verification of infinite state 
systems by using 
abstractions

� Used to check general 
properties specified by 
temporal logics

� Driven by the concern for 
finding adequate abstract 
domains for efficient 
verification of program 
properties, in particular 
runtime errors

� Focuses on forward or 
backward reachability
analysis for specific abstract 
domains

Significant results can still be obtained by combining these two approaches 
e.g. by using libraries of abstract domains in model checking algorithms.

Model checking Abstract interpretation
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Work directions: ComponentWork directions: Component--based modelingbased modeling

Develop theory and methods for building faithful models for mixed SW/HW 
systems as the composition of heterogeneous components

Sources of heterogeneity
� Abstraction levels: hardware,  execution platform, application software
� Execution: synchronous and asynchronous components
� Interaction: function call, broadcast, shared memory, message passing etc.

from low level automata-based composition

to a unified composition paradigm encompassing architecture 
constraints such as protocols, schedulers, buses.

We need to move
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Work directions: Compositional verification

☺

☺
☺

☺

☺

Proving properties of a composite component from properties of  
� individual components 
� its architecture
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Work directions: Compositional verification

☺

☺
☺

☺

☺

Proving properties of a composite component from properties of  
� individual components 
� its architecture

Composition operation Properties

from Automata-based Safety, liveness

to Component-based Specific properties e.g.
Deadlock-freedom, mutex

We need to move



Work directions: Compositional verification

Develop compositionality results

� For particular 

� architectures (e.g. client-server, star-like, time triggered)

� programming models (e.g. synchronous,  data-flow)

� execution models (e.g. event triggered preemptable tasks) 

� For specific classes of properties such as deadlock-freedom, mutual 
exclusion, timeliness 

Compositionality rules and combinations of them lead

� to “verifiability” conditions, that is conditions under which 
verification of a particular property becomes much easier. 

� to classes of systems which are correct-by-construction



Work directions: Compositionality - example
Checking global deadlock-freedom of a system 

built from deadlock-free components, 
by separately analyzing the components and the architecture.

C1 C2
p1 p2

q1 q2
C2

p1

C1
p2

Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q1)
p1 p2

q3r3

C1 C2

C3

r1 q2 Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q3) ∧
en(r3) ∧ ¬ en(r1) 



Work directions: Compositionality - example

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Eliminate potential deadlocks D by  computing compositionally global 
invariants I such that 

I∧D=false 
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From a posteriori verification to 
constructivity at design time

A posteriori verification is not the only way for guaranteeing 
correctness.
� In contrast to Physics, Computer Science deals with a potentially 

infinite number of created universes
� Limiting the focus on particular tractable universes of systems 

can help overcome current limitations

This vision can contribute to the unification of the discipline, by 
bridging the gap between Formal Methods and Verification, and 
Algorithms and Complexity.

We should concentrate on compositional modeling and verification for 
sub-classes of systems and properties which are operationally 
relevant and technically successful
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Thank YouThank You


