
The Quest for Correctness -
Beyond Verification

Joseph SifakisJoseph Sifakis
VERIMAG VERIMAG LaboratoryLaboratory

Turing LectureTuring Lecture
EmbeddedEmbedded SystemsSystems WeekWeek 20082008
Atlanta, Atlanta, OctoberOctober 20, 200820, 2008

Correctness by checking vs.
Correctness by construction

Building systems which are correct with respect to given
requirements is the main challenge for all engineering disciplines

Correctness can be achieved:

� Either by checking that a system or a model of a system
meets given requirements

� Or by construction by using results such as algorithms,
protocols, architectures e.g. token ring protocol, time
triggered architecture

A big difference between Computing Systems Engineering and
disciplines based on Physics is the importance of a posteriori
verification for achieving correctness

O
V
E
R
V
I
E
W

3

� Current status

�Work directions

� Conclusion

Approaches for checking correctness

Checking correctness

Physical prototypes
e.g. testing

Ad hoc models
e.g. SystemC simulation

Formal models
(well-defined notion of state and transition)

Verification
� Algorithmic Verification e.g. Model checking

�Deductive Verification

Models
(Virtual SW Prototypes)

Verification: Three essential ingredients

�Requirements
describing the expected behavior, usually as a set of
properties

�Models
describing a transition relation on the system states

�Methods
for checking that the models satisfy the requirements

Requirements specification (1/3)

always(inev (enable(send)))

always(inev (enable(receive)))

Using formulas, in particular
temporal logic, to characterize a
set of execution structures e.g.
traces, execution trees

Good for expressing global
properties such as mutual
exclusion, termination, fairness

Property-based

Using a machine (monitor) to
specify observable behavior

send

receive

State-based

Good for characterizing causal
dependencies e.g. sequences
of actions

Requirements specification (2/3)

About Temporal logic [Pnueli, Lamport, Clarke & Emerson]

This was a breakthrough in understanding and formalizing
requirements for concurrent systems. Writing rigorous
specifications in temporal logic is not trivial.

� There exist subtle differences in the formulation of common
concepts such as liveness and fairness depending on the
underlying time model e.g. always(inevitable(f))

� The declarative and dense style in the expression of property-
based requirements is not always easy to master and
understand. Are specifications

� Sound: there exists a model satisfying it
� Complete: tight characterization of system behavior

Pragmatically, we need a combination of both property-based
and state-based styles, e.g. PSL

Requirements specification (3/3)

Moving towards a “less declarative” style by using notations such
as MSC’s or interface automata

Much to be done for extra-functional requirements characterizing:
� security (e.g. privacy properties),
� reconfigurability (e.g. non interference of features),
� quality of service (e.g. jitter).

req

User Interface Resource

req

grant

yes

Building models (1/3)

Models should be:
� faithful e.g. whatever property we verify for the model holds for

the real system
� generated automatically from system descriptions

v= …
u= ..
x= …
y= …
z=x∨y

MODEL

z

x

y
u

v

HW

For hardware, it is easy to get faithful logical finite state models
represented as systems of boolean equations

semantics

Building models (2/3)

if….
while valid do
if x<0 then z=x

else z=-x;

while …

P
R

O
G

R
A

M

semantics

ab
st

ra
ct

io
n

For software this may be much harder ….

va
lidx<0

z:=x
x>=0
z:=-x

¬valid

S
E

M
A

N
TI

C

M
O

D
E

L

va
lidb

z:=b
¬ b
z:= ¬ b

¬ valid

A
B

S
TR

A
C

T
M

O
D

E
L

Building models (3/3)

TasksTasks
Command
Handlers

EventEvent
HandlersHandlers

APPLICATION
SW

For mixed Software / Hardware systems:
� there are no faithful modeling techniques as we have a poor

understanding of how software and the underlying platform interact
� validation by testing physical prototypes or by simulation of ad hoc

models

AntennaAntenna

TaskTask
SchedulerScheduler

SensorsSensors

EventEvent
SchedulerScheduler

TimersTimers

EXECUTION
PLATFORM

Algorithmic Verification: Using Abstraction (1/2)
SA satisfies fA implies S satisfies f

where SA =(QA,RA) is an abstraction of S=(Q,R)
for formulas f involving only universal quantification over execution paths

∅ ∅

QA

Q

2Q 2Q Aα

γ
� α,γ are monotonic
� Id⊆ γα
� αγ ⊆ Id

αFγ is the best approximation of F in the abstract state space

F αFγ

[Cousot&Cousot 79] Abstract interpretation, a general framework for computing
abstractions based on the use of Galois connections

Algorithmic Verification: Using Abstraction (2/2)

� Initially, focused on finite
state systems (hardware,
control intensive reactive
systems)
Later, it addressed
verification of infinite state
systems by using
abstractions

� Used to check general
properties specified by
temporal logics

� Driven by the concern for
finding adequate abstract
domains for efficient
verification of program
properties, in particular
runtime errors

� Focuses on forward or
backward reachability
analysis for specific abstract
domains

Significant results can still be obtained by combining these two approaches
e.g. by using libraries of abstract domains in model checking algorithms.

Model checking Abstract interpretation

O
V
E
R
V
I
E
W

14

� Current status

�Work directions

� Conclusion

Work directions: ComponentWork directions: Component--based modelingbased modeling

Develop theory and methods for building faithful models for mixed SW/HW
systems as the composition of heterogeneous components

Sources of heterogeneity
� Abstraction levels: hardware, execution platform, application software
� Execution: synchronous and asynchronous components
� Interaction: function call, broadcast, shared memory, message passing etc.

from low level automata-based composition

to a unified composition paradigm encompassing architecture
constraints such as protocols, schedulers, buses.

We need to move

16

Work directions: Compositional verification

☺

☺
☺

☺

☺

Proving properties of a composite component from properties of
� individual components
� its architecture

17

Work directions: Compositional verification

☺

☺
☺

☺

☺

Proving properties of a composite component from properties of
� individual components
� its architecture

Composition operation Properties

from Automata-based Safety, liveness

to Component-based Specific properties e.g.
Deadlock-freedom, mutex

We need to move

Work directions: Compositional verification

Develop compositionality results

� For particular

� architectures (e.g. client-server, star-like, time triggered)

� programming models (e.g. synchronous, data-flow)

� execution models (e.g. event triggered preemptable tasks)

� For specific classes of properties such as deadlock-freedom, mutual
exclusion, timeliness

Compositionality rules and combinations of them lead

� to “verifiability” conditions, that is conditions under which
verification of a particular property becomes much easier.

� to classes of systems which are correct-by-construction

Work directions: Compositionality - example
Checking global deadlock-freedom of a system

built from deadlock-free components,
by separately analyzing the components and the architecture.

C1 C2
p1 p2

q1 q2
C2

p1

C1
p2

Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q1)
p1 p2

q3r3

C1 C2

C3

r1 q2 Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q3) ∧
en(r3) ∧ ¬ en(r1)

Work directions: Compositionality - example

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Eliminate potential deadlocks D by computing compositionally global
invariants I such that

I∧D=false

10m9s

4m46s

25m29s

3m46s

6s

3s

Verification
Time

0??1060063002R/W (3000 readers)

0??1040062002R/W (2000 readers)

0??362601673686UTOPAR
(60 cars, 625 CU)

0 ??24240795297UTOPAR
(40 cars,256 CU)

153250105Temperature
Control (4 rods)

383063Temperature
Control (2 rods)

Number
Remaining
Deadlocks

Number
Potential
Deadlocks

Numb
of Int
Var

Number
of Bool
Variable
s

Number
of Ctrl
States

Number
of
Comp

Example

O
V
E
R
V
I
E
W

21

� Current status

�Work directions

� Conclusion

From a posteriori verification to
constructivity at design time

A posteriori verification is not the only way for guaranteeing
correctness.
� In contrast to Physics, Computer Science deals with a potentially

infinite number of created universes
� Limiting the focus on particular tractable universes of systems

can help overcome current limitations

This vision can contribute to the unification of the discipline, by
bridging the gap between Formal Methods and Verification, and
Algorithms and Complexity.

We should concentrate on compositional modeling and verification for
sub-classes of systems and properties which are operationally
relevant and technically successful

23

Thank YouThank You

