Context

Aniah is a Start-up that offers tools for analyzing integrated circuits at an industrial scale\(^1\). Aniah has introduced algorithms that significantly pushes the boundaries of the size of analyzable circuits, from a few hundred thousand elements to several trillion. Aniah is working in collaboration with the Laboratoire de l’Informatique du Parallélisme (LIP) and the Verimag laboratory bringing expertise on state-of-the-art formal methods. We already co-supervised one post-doc and have an ongoing CIFRE\(^2\) Ph.D on the topic. We already have novel results on the use of a generic solver for logical formula (Z3, a Satisfiability Modulo Theory solver) to electric verification. While the use of Z3 for formal verification is well-known, this is to the best of our knowledge the first application to electrical verification at transistor level. Our approach is published [6, 10], implemented in the commercial tool, and a patent is pending on more elaborated techniques.

Model-checking [13] consists in exploring all the reachable states of a system, typically to check the unreachability of a set of error states. It is a well-established set of techniques, and has successfully been applied both to software [1, 8, 7] and hardware [2, 4]. It is usually applied to check properties on the behavior of a system. For example, hardware model-checking usually considers boolean values (0 and 1, possibly extended with X and Z to model short-circuits and disconnected signals), but abstracts away the physical details (typically, voltage values are not modeled). Model-checking can be either enumerative (reachable states are explored one by one), or symbolic. Symbolic model-checking consists in representing a possibly very large set of states using a symbolic formula, that can be exponentially more efficient in terms of memory footprint and execution time. Common tools for symbolic model-checking are Binary Decision Diagrams (BDD) [5] and SAT-solvers [3] that allow manipulating boolean logical formulas. Satisfiability Modulo Theory (SMT) solvers extend SAT-solvers with non-boolean variables (e.g. rational numbers, integers, or other data structures).

Aniah proposed a graph-based algorithm to detect electrical errors in a hierarchical design circuit. In this regard, the algorithm first assigns a finite set of values to the input variables of the circuit. Then, by analyzing the behavior of each net within the circuit, the algorithm detects electrical errors. One of the main issues in this analysis is the complexity, both in space and time, that is exponential with respect to the size of input variables. While the existing algorithm is usually fast enough in practice thanks to the good properties of the circuit topology, we are working on using symbolic model checking tools (BDD, SAT- and SMT-solvers).

\(^{1}\)https://www.aniah.fr/

\(^{2}\)Conventions Industrielles de Formation par la REcherche, a joint Ph.D between a private company and public laboratories
to speed up verification even more, as has been done in previous works [12, 11]. We currently have a prototype tool [6, 10] that compiles a circuit description into a logical formula comprising both numerical variables (representing voltage values) and booleans, that we solve using the Z3 [9] SMT solver.

However, while this approach can be used to analyze circuits with up-to thousands of transistors, it is not able to scale up to billions — the size of industrial circuits that Aniah can analyze. We hence consider improving our prototype with modular analysis, making it possible to analyze circuits in a hierarchical manner, from (simple) sub circuits up to the top of the hierarchy — in an efficient way. While modular analysis is a well-known concept to allow scaling formal verification, we are not aware of any previous work on modular analysis of circuits at transistor level.

Objectives of the Ph.D

The objective of the thesis is to implement several heuristics that can be used for modular analysis of circuits — i.e. abstracting analysis results on sub-circuits to reason about the whole hierarchy. It is then expected that the candidate will:

- develop a theoretical basis to reason about sub-circuit in the existing SMT-based semantics
- implement the derived abstraction of sub-circuit in the OCaml prototype of the project, to enable modular analysis
- benchmark the performances of the approach
- propose various optimization to improve the abstraction

Moreover, as part of a CIFRE Ph.D, the candidate is expected to work closely with Aniah’s engineers, to understand their needs and make the link with the academic side.

Context of the Collaboration and Physical Location

The Ph.D is proposed as part of the collaboration between LIP laboratory (Lyon), Verimag laboratory (Grenoble), and Aniah company (Grenoble). A CIFRE Ph.D (Oussama Oulkaid) student is already working on a related subject, along with one of the supervisor (Bruno Ferres), who developed the original prototype during his post-doc [6, 10]. The student recruited for this Ph.D will interact closely with them.

The thesis’ goal is to use theoretical tools for a very practical concern, that is to provide a scalable static analysis for very large circuits. Depending on the student’s motivation, the Ph.D can focus more on theory or implementation.

The Ph.D is proposed by LIP, Verimag and Aniah, as part of a CIFRE (industrial) collaboration. The physical location of the thesis is to be discussed with applicants. The student will visit other sites and meetings with all co-supervisors will be organised frequently.

- Laboratoire de l’Informatique du Parallélisme (LIP) – École Normale Supérieure de Lyon.
- Laboratoire Verimag, Grenoble.
- Aniah, Grenoble.
Required profile

The candidate should be familiar with algorithm design, understand the basics of Boole’s algebra and logic as well as SAT/SMT solving. Good programming skills are required for the experimental validation of the approach. Since the software prototype is implemented in OCaml, prior knowledge of OCaml is appreciated, but the student can learn OCaml’s basics during the thesis. While the application domain is electronics, no knowledge of electronics is required.

How to apply

Send an email to matthieu.moy@univ-lyon1.fr and bruno.ferres@univ-grenoble-alpes.fr with your CV, a short text describing your motivation, and any document that can support your application.

Advisors

- Matthieu Moy (https://matthieu-moy.fr/) will be the Ph.D supervisor (50% of the academic supervision).
 He is associate professor HDR at UCBL / LIP laboratory, Lyon. He has a long experience in program verification by model-checking abstract interpretation, applied to either general programs or models of Systems-on-a-Chip. A large part of his research deals with close-to-hardware computer science. He leads the CASH (http://www.ens-lyon.fr/LIP/CASH/) research team.

- Bruno Ferres (https://ferres.me/) will co-supervise the Ph.D (50% of the academic supervision).
 He is associate professor at UGA / Verimag laboratory, Grenoble. He has been involved in the collaboration with Aniah since the beginning of the project, and is an expert of the prototype that has been developed for ERC analysis. His research includes digital hardware design and verification as well as secure compilation of programs.

The Ph.D is proposed in partnership with Aniah, our industrial contact is Mehdi Khosravian Ghadikolaei (https://www.linkedin.com/in/mehdikhosravian/). He defended his Ph.D in algorithmic graph theory in 2019, and joined Aniah as Algorithm Engineer and Hierarchical Graph Analyst in 2020. He is currently working on a prototype of algorithm for a future version of Aniah’s tool. The Ph.D candidate will have access to some confidential data from Aniah (test cases or source code of the tool) if relevant.

Matthieu Moy and Bruno Ferres are from different laboratories (LIP and Verimag), but already co-supervised a Ph.D together, along with Mehdi Khosravian Ghadikolaei [6, 10].

References

