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CompCert1 is a compiler for the C programming language for the assembly languages
of several processor architectures. In contrast to compilers such as Visual C++, GCC, or
LLVM, its compilation phases are proved mathematically correct, and thus the compiled
program always matches the source program: the formal correctness of CompCert states
that if the compiler succeeds to produce an executable, then the observable behaviors of the
executable are also observable on the source program [1, 2]. Other compilers may contain bugs
that in some cases result in incorrect code being generated. The possibility of compilation
bug cannot be tolerated in certain applications with high safety requirements, and then costly
solutions such as disabling all optimizations are used to get assembly code that is close to
the source. In contrast, CompCert, despite not optimizing as well as gcc -O3 or clang -O3,
allows using optimizations safely [3, 4].

Security of embedded systems like smart-cards, secured dongles and IoTs relies on the
robustness of devices against physical fault attacks (such as laser or electromagnetic attacks).
Current certification schemes (e.g., Common Criteria) require protection mechanisms against
multi-fault injection attacks. Typically, these protections often consist in Counter-Measures
(CM): monitors which perform redundant computations in order to detect/prevent some
attacks.

Some of these CMs are “manually” written in the source code by developers. For example,
the process of counting the number of trials for typing some pin-code is duplicated in order to
make successful hardware attacks on this number more complex. However, because such CM
perform redundant computations on execution without attacks, optimizing compilers may
remove them.

A solution of Vu-et-al [5, 6, 7] has been experimented within LLVM compiler. It consists
in introducing observations of the program state that are intrinsic to the correct execution
of security protections, along with means to specify and preserve observations across the
compilation flow. Such observations complement the input/output semantics-preservation
contract of compilers. In practice, they are given as annotations of the source code.

From these works, the internship will study how to use the formal notion of observable
events of CompCert, in order to ensure that CMs are not removed by the compiler (as a
consequence of its formal correctness). Here is a list of related questions:

• For case studies from the state-of-the-art (e.g. [8]) introducing particular CM with
respect to some given security goals, which guarantees are provided by the CM (e.g.
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under which hypotheses setting to zero a given memory buffer forbids the leak of a
given secret information)? Which observations/annotations are necessary to ensure
their preservation by the compilation chain?

• How can we use the annotations to evaluate the necessity and the efficiency of the CM
with respect to the security goals (for example, by reusing a tool like Lazart [9, 10])?

• Does the formal semantics of CompCert helps to formalize (at least partially) the guar-
antees provided by the CM wrt security goals?

• How this approach, in which the programmer specifies how to ensure the security goals,
compares with other approches, such as [11, 12, 13, 14, 15, 16], where CompCert auto-
matically ensures with some security goals? Is the annotation approach more lighweight
for the compiler design, but more heavyweight for the programmer? It is more general?

This wide topic is also the subject of a future Phd thesis proposed as an extension to the
internship.
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