
Research Internship 2021-2022 Topic
Security counter-measures in a certified optimizing compiler

Supervisors: Sylvain Boulmé and Marie-Laure Potet at Verimag∗

mailto:Sylvain.Boulme@univ-grenoble-alpes.fr

CompCert1 is a compiler for the C programming language for the assembly languages
of several processor architectures. In contrast to compilers such as Visual C++, GCC, or
LLVM, its compilation phases are proved mathematically correct, and thus the compiled
program always matches the source program: the formal correctness of CompCert states
that if the compiler succeeds to produce an executable, then the observable behaviors of the
executable are also observable on the source program [1, 2]. Other compilers may contain bugs
that in some cases result in incorrect code being generated. The possibility of compilation
bug cannot be tolerated in certain applications with high safety requirements, and then costly
solutions such as disabling all optimizations are used to get assembly code that is close to
the source. In contrast, CompCert, despite not optimizing as well as gcc -O3 or clang -O3,
allows using optimizations safely [3, 4].

Security of embedded systems like smart-cards, secured dongles and IoTs relies on the
robustness of devices against physical fault attacks (such as laser or electromagnetic attacks).
Current certification schemes (e.g., Common Criteria) require protection mechanisms against
multi-fault injection attacks. Typically, these protections often consist in Counter-Measures
(CM): monitors which perform redundant computations in order to detect/prevent some
attacks.

Some of these CMs are “manually” written in the source code by developers. For example,
the process of counting the number of trials for typing some pin-code is duplicated in order to
make successful hardware attacks on this number more complex. However, because such CM
perform redundant computations on execution without attacks, optimizing compilers may
remove them.

A solution of Vu-et-al [5, 6, 7] has been experimented within LLVM compiler. It consists
in introducing observations of the program state that are intrinsic to the correct execution
of security protections, along with means to specify and preserve observations across the
compilation flow. Such observations complement the input/output semantics-preservation
contract of compilers. In practice, they are given as annotations of the source code.

From these works, the internship will study how to use the formal notion of observable
events of CompCert, in order to ensure that CMs are not removed by the compiler (as a
consequence of its formal correctness). Here is a list of related questions:

• For case studies from the state-of-the-art (e.g. [8]) introducing particular CM with
respect to some given security goals, which guarantees are provided by the CM (e.g.

∗http://www-verimag.imag.fr/
1https://compcert.org/

1

mailto:Sylvain.Boulme@univ-grenoble-alpes.fr
http://www-verimag.imag.fr/
https://compcert.org/


under which hypotheses setting to zero a given memory buffer forbids the leak of a
given secret information)? Which observations/annotations are necessary to ensure
their preservation by the compilation chain?

• How can we use the annotations to evaluate the necessity and the efficiency of the CM
with respect to the security goals (for example, by reusing a tool like Lazart [9, 10])?

• Does the formal semantics of CompCert helps to formalize (at least partially) the guar-
antees provided by the CM wrt security goals?

• How this approach, in which the programmer specifies how to ensure the security goals,
compares with other approches, such as [11, 12, 13, 14, 15, 16], where CompCert auto-
matically ensures with some security goals? Is the annotation approach more lighweight
for the compiler design, but more heavyweight for the programmer? It is more general?

This wide topic is also the subject of a future Phd thesis proposed as an extension to the
internship.

References
[1] X. Leroy, “Formal verification of a realistic compiler,” Communications of the ACM,

vol. 52, no. 7, 2009. HAL: inria-00415861.
[2] ——, “A formally verified compiler back-end,” Journal of Automated Reasoning, vol. 43,

no. 4, pp. 363–446, 2009. [Online]. Available: http : / / xavierleroy . org / publi /
compcert-backend.pdf.

[3] R. Bedin França, S. Blazy, D. Favre-Felix, X. Leroy, M. Pantel, and J. Souyris, “For-
mally verified optimizing compilation in ACG-based flight control software,” Anglais,
in Embedded Real Time Software and Systems (ERTS2), AAAF, SEE, Feb. 2012. HAL:
hal-00653367.

[4] D. Kästner, J. Barrho, U. Wünsche, M. Schlickling, B. Schommer, M. Schmidt, C.
Ferdinand, X. Leroy, and S. Blazy, “CompCert: Practical Experience on Integrating and
Qualifying a Formally Verified Optimizing Compiler,” in ERTS2 2018 - 9th European
Congress Embedded Real-Time Software and Systems, 3AF, SEE, SIE, Toulouse, France,
Jan. 2018, pp. 1–9. [Online]. Available: https://hal.inria.fr/hal-01643290.

[5] S. T. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen, “Secure delivery of pro-
gram properties through optimizing compilation,” in CC ’20: 29th International Con-
ference on Compiler Construction, San Diego, CA, USA, February 22-23, 2020, L.-N.
Pouchet and A. Jimborean, Eds., ACM, 2020, pp. 14–26. doi: 10.1145/3377555.
3377897. [Online]. Available: https://doi.org/10.1145/3377555.3377897.

[6] S. T. Vu, A. Cohen, K. Heydemann, A. de Grandmaison, and C. Guillon, “Secure
optimization through opaque observations,” CoRR, vol. abs/2101.06039, 2021. arXiv:
2101.06039. [Online]. Available: https://arxiv.org/abs/2101.06039.

[7] S. T. Vu, A. Cohen, A. D. Grandmaison, C. Guillon, and K. Heydemann, “Reconciling
optimization with secure compilation,” 2021. [Online]. Available: https://research.
google/pubs/pub50686/.

2

inria-00415861
http://xavierleroy.org/publi/compcert-backend.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
hal-00653367
https://hal.inria.fr/hal-01643290
https://doi.org/10.1145/3377555.3377897
https://doi.org/10.1145/3377555.3377897
https://doi.org/10.1145/3377555.3377897
https://arxiv.org/abs/2101.06039
https://arxiv.org/abs/2101.06039
https://research.google/pubs/pub50686/
https://research.google/pubs/pub50686/


[8] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens, “FISSC:
A fault injection and simulation secure collection,” in Computer Safety, Reliability,
and Security - 35th International Conference, SAFECOMP 2016, Trondheim, Norway,
September 21-23, 2016, Proceedings, A. Skavhaug, J. Guiochet, and F. Bitsch, Eds.,
ser. Lecture Notes in Computer Science, vol. 9922, Springer, 2016, pp. 3–11. doi: 10.
1007/978-3-319-45477-1_1. [Online]. Available: https://doi.org/10.1007/978-3-
319-45477-1_1.

[9] M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A symbolic approach for
evaluation the robustness of secured codes against control flow injections,” in Seventh
IEEE International Conference on Software Testing, Verification and Validation, ICST
2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, IEEE Computer Society,
2014, pp. 213–222. doi: 10.1109/ICST.2014.34. [Online]. Available: https://doi.
org/10.1109/ICST.2014.34.

[10] E. Boespflug, C. Ene, L. Mounier, and M.-L. Potet, “Countermeasures optimization in
multiple fault-injection context,” in 17th Workshop on Fault Detection and Tolerance in
Cryptography, FDTC 2020, Milan, Italy, September 13, 2020, IEEE, 2020, pp. 26–34.
doi: 10.1109/FDTC51366.2020.00011. [Online]. Available: https://doi.org/10.
1109/FDTC51366.2020.00011.

[11] F. Besson, T. P. Jensen, and J. Lepiller, “Modular software fault isolation as abstract
interpretation,” in Static Analysis - 25th International Symposium, SAS 2018, Freiburg,
Germany, August 29-31, 2018, Proceedings, A. Podelski, Ed., ser. Lecture Notes in
Computer Science, vol. 11002, Springer, 2018, pp. 166–186. doi: 10.1007/978-3-319-
99725-4_12. [Online]. Available: https://doi.org/10.1007/978-3-319-99725-4_12.

[12] F. Besson, A. Dang, and T. P. Jensen, “Securing compilation against memory probing,”
in Proceedings of the 13th Workshop on Programming Languages and Analysis for Secu-
rity, PLAS@CCS 2018, Toronto, ON, Canada, October 15-19, 2018, M. S. Alvim and
S. Delaune, Eds., ACM, 2018, pp. 29–40. doi: 10.1145/3264820.3264822. [Online].
Available: https://doi.org/10.1145/3264820.3264822.

[13] F. Besson, S. Blazy, A. Dang, T. P. Jensen, and P. Wilke, “Compiling sandboxes:
Formally verified software fault isolation,” in Programming Languages and Systems -
28th European Symposium on Programming, ESOP 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, L. Caires, Ed., ser. Lecture Notes in Computer
Science, vol. 11423, Springer, 2019, pp. 499–524. doi: 10.1007/978-3-030-17184-
1_18. [Online]. Available: https://doi.org/10.1007/978-3-030-17184-1_18.

[14] F. Besson, A. Dang, and T. P. Jensen, “Information-flow preservation in compiler op-
timisations,” in 32nd IEEE Computer Security Foundations Symposium, CSF 2019,
Hoboken, NJ, USA, June 25-28, 2019, IEEE, 2019, pp. 230–242. doi: 10.1109/CSF.
2019.00023. [Online]. Available: https://doi.org/10.1109/CSF.2019.00023.

[15] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, and A. Trieu,
“Formal verification of a constant-time preserving C compiler,” IACR Cryptol. ePrint
Arch., vol. 2019, p. 926, 2019. [Online]. Available: https://eprint.iacr.org/2019/
926.

3

https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.1109/ICST.2014.34
https://doi.org/10.1109/ICST.2014.34
https://doi.org/10.1109/ICST.2014.34
https://doi.org/10.1109/FDTC51366.2020.00011
https://doi.org/10.1109/FDTC51366.2020.00011
https://doi.org/10.1109/FDTC51366.2020.00011
https://doi.org/10.1007/978-3-319-99725-4_12
https://doi.org/10.1007/978-3-319-99725-4_12
https://doi.org/10.1007/978-3-319-99725-4_12
https://doi.org/10.1145/3264820.3264822
https://doi.org/10.1145/3264820.3264822
https://doi.org/10.1007/978-3-030-17184-1_18
https://doi.org/10.1007/978-3-030-17184-1_18
https://doi.org/10.1007/978-3-030-17184-1_18
https://doi.org/10.1109/CSF.2019.00023
https://doi.org/10.1109/CSF.2019.00023
https://doi.org/10.1109/CSF.2019.00023
https://eprint.iacr.org/2019/926
https://eprint.iacr.org/2019/926


[16] S. Blazy, D. Pichardie, and A. Trieu, “Verifying constant-time implementations by
abstract interpretation,” J. Comput. Secur., vol. 27, no. 1, pp. 137–163, 2019. doi:
10.3233/JCS-181136. [Online]. Available: https://doi.org/10.3233/JCS-181136.

4

https://doi.org/10.3233/JCS-181136
https://doi.org/10.3233/JCS-181136

