
Understanding Memory Interference in
CPU-GPU Embedded Systems

Alessio Masola – alessiomasola@unimore.it
Nicola Capodieci – nicola.capodieci@unimore.it

2

Brief Background Introduction
● Many tasks to perform in critical environments

3

Goal

To understand the interference effect on shared memory resources between CPU and GPU in integrated
chips

● Latency deterioration of GPU kernels that run concurrently with CPU memory intensive applications.

○ Which GPU kernels' performance metrics can predict memory sensitivity?

○ CPU intensive jobs can delay CPU to GPU command submission?

● How can we deal with the interference and find a way to exploit it?

4

Goal

● Understanding Memory Interference in CPU-GPU embedded systems

● Interference to the CPU submitter

5

Reference Hardware Architecture: Jetson Xavier

Find a way to predict the interference introduced by
contention on the level of shared memory (LPDDR4 -
SDRAM) between GPU and CPU?

Shared Memory Level

6

Tested Kernels
NVIDIA profiling tools (NVPROF) allows us to understand and optimize the performance of CUDA, OpenACC or OpenMP applications.

Kernels: ADD COPY SAXPY CONV MVT PF DXTC RAYTRACE

Memory Intensive
(High BD*)

Hybrid
(Medium BD*)

Compute Intensive
(Low BD*)

0
*Bandwidth Demand %

(basing on the maximum available)

1070

7

NVPROF Collected Metrics
 Metrics Name

L2 Throughput (Reads)
L2 Throughput (Writes)

L2 Cache Hit Rate
L2 Cache Utilization

System Memory Read Throughput
Global Memory Load Efficiency
Global Memory Store Efficiency

Instructions Executed
Instructions Issued

Issue Stall Reasons (Instructions Fetch)
Issue Stall Reasons (Execution Dependency)

Issue Stall Reasons (Data Request)
Issue Stall Reasons (Other)

Issue Stall Reasons (Memory Throttle)
Executed IPC

Issued IPC
Multiprocessor Activity

Eligible Warps Per Active Cycle
Achieved Occupancy

Load/Store Function Unit Utilization
Warp level instructions for global loads

System Memory Read Bytes
System Memory Write Bytes

Timing kernels Execution Available architecture’s metrics: nvprof --query-events
Maximum board’s performance: sudo nvpmodel -m 0

Metrics about:

• Memory behaviour
• Compute behaviour
• Kernel completion lantencies

8

Test Scenario

CPU ID Work

0 NVPROF of GPU’s Work

1 .. 7 Thread with Interference
(memset/hesoc-mark)

1 2 3

4 5 6 7

0

The interference was performed with a script that
launches different Meminterf of 50 mb with an high

amount of iterations, in order to saturate the L2 and L3
CPU’s caches to create traffic on the SDRAM that is

shared with the GPU.

Memory Interference reference: https://git.hipert.unimore.it/mem-prof/hesoc-mark

https://git.hipert.unimore.it/mem-prof/hesoc-mark

9

What We Observed

All results are available here:
https://docs.google.com/spreadsheets/d/1gso01RWi6-1Uh5vdTrk5B5Nux2TTowbR/edit?usp=sharing&ouid=1152850384986

44020116&rtpof=true&sd=true

● Lots of data!

● How those metrics change as a function of the magnitude of the memory interference.

● We are interested in correlating such variations to the magnitude of interference in order to understand

which metrics predict memory sensitivity towards a CPU aggressor.

https://docs.google.com/spreadsheets/d/1gso01RWi6-1Uh5vdTrk5B5Nux2TTowbR/edit?usp=sharing&ouid=115285038498644020116&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1gso01RWi6-1Uh5vdTrk5B5Nux2TTowbR/edit?usp=sharing&ouid=115285038498644020116&rtpof=true&sd=true

10

M
V

T K
ernel

GB/s GB/s

%

ms

11

Kernels Execution Latencies
Memory Intensive Compute Intensive

Hybrid ms
Interference threads

12

Correlation Factor
Which metrics most influence a slowdown? -> correlation matrix

Pearson Correlation:

The correlation factor [-1,1]
• 0 : no correlation
• Near 1 : highly and strong linear correlation
• Near -1 : reverse correlation

Execution timing with 7 interferents

Baseline execution timing

13

14

Highly Correlates (factor > 0.5) :
• Global Memory Store Efficiency

• Issue Stall Reasons (Data Requests)
• Issue Stall Reasons (Memory Throttle)

• System Memory Read Bytes
• System Memory Write Bytes

Inverse Correlates (Factor < - 0.5) :
• Instruction Executed

• Instr. Issued
• Instruction Fetch

• Execution Dependency
• Executed IPC & Issued IPC

15

Conclusion and What’s Next…

● Understanding memory interference from CPU to GPU is not trivial

● We shed some light on how the kernel characteristics might be used as predictors to kernel completion

latencies

● We can use those correlation factors to propose a model able to predict memory interference

● Such a model can be used to enrich current real-time task models in order to put the basis for memory

aware scheduling.

Interference to the CPU Submitter

17

What is a Submitter?

Applications

GPU Runtime Libraries and APIs

GPU UMD (User Space Driver/Low level res. man.)

O.S. Kernel GPU KMD

CPU GPU

Cavicchioli, Roberto, et al. "Novel methodologies for predictable CPU-to-GPU command offloading." 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

● Each call to the GPU API is made by the CPU.

● Each call traverses all the software and hardware
depicted in this picture.

● Ideally: we want that the time taken by a CPU call to
reach the GPU HW must be short and predictable.

● In reality: many kernel calls -> so much CPU
overhead, and memory interference might still be
a factor.

18

Why is it Important?

● Kernels are constantly submitted from the CPU to the GPU.

● A single kernel usually does not represent a schedulable task (too fined grained!)

o (see real world example in the next slide)

● Each kernel submission is a CPU task that has to be scheduled and might suffer from interference

19

Neural Network Workloads on
GPU [YoloV3]

Copy Host
to Device:
538 calls

227 Kernel Invocations as
repeated sequence of tens of
different kernels (sgemm,
activation, pool…) Copy device

to host:
2 calls

HIGH CPU SUBMISSION OVERHEAD -> THREAT TO SYSTEM PREDICTABILITY

20

Starting from the ECRTS19 [1] Paper

● Four submission models (baseline, CUDA graphs, CUDA CDP and Vulkan)

● Four different baseline latencies as a function of how many kernels per task are submitted

● How each of these methodologies suffer from memory interference

[1] Cavicchioli, Roberto, et al. "Novel methodologies for predictable CPU-to-GPU command offloading." 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

21

Submission Model:
CUDA Baseline

● Copy and Compute commands (kernels) are constantly streamed to the GPU.
○ CUDA streams –> FIFO QUEUE.

● CPU is constantly busy submitting commands
This takes time and threats predictability:
○ a delayed submission -> delayed GPU-side execution…

22

Submission Model:
Cuda Graphs

• Allows to construct graphs of GPU commands

• Allows copy operations with arbitrary intra- and inter-stream

synchronization

23

Submission Model:
Cuda Dynamic Parallelism (CDP)

• Allows a kernel to launch «nested» kernels
• No OS/Driver intercations between nested calls
• Beneficial performance with recursive algorithms with variable depth recursion

• Introduces Stalls for deep call-stack value
• Involves kernels, not host jobs or copies

24

● Alternative to CUDA

● Recently (2016) released API specifications (Khronos Group) for both graphics and compute on massively
parallel accelerators

● OpenGL successor, but no assumptions w.r.t. GPUs or application domain
● Novel paradigm for CPU->GPU interactions (lower level abstraction, no verification/validation at runtime)
● … specs say Vulkan is predictable...

Submission Model:
Vulkan

25

● Submission latencies
● Execution times
● Driver interactions

○ CUDA baseline
○ CDP
○ CUDA Graphs
○ Vulkan (VK)

Dimensions change

ECRTS19
Experimental Setup

[1] Cavicchioli, Roberto, et al. "Novel methodologies for predictable CPU-to-GPU command offloading." 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

26

Conclusion of the Previous Work
(ECRTS19)

Average submission time, without interferences.

S
ec

on
ds

27

What Happens if…

1 2 3

4 5 6 7

0

28

No Interference (AVG VALUE) 7 thread Interference (AVG VALUE)

Submission Time with Interference
S

ec
on

ds

S
ec

on
ds

29

Colored: with Interference
Grayed: without Interference

A Closer Look on the Effect of Interference

S
ec

on
ds

30

No Interference (MAX VALUE) 7 thread Interference (MAX VALUE)

With the Maximum Measured Value
S

ec
on

ds

S
ec

on
ds

31

Colored: with Interference
Grayed: without Interference

A Closer Look …

S
ec

on
ds

32

Maximum Experienced Latency Degradation

interferences_THs Baseline CDP Cuda Graph Vulkan

1 2.24 (1) 2.27 (1) 1.97 (1) 1.63 (10)

2 1.18 (1) 2.01 (2000) 1.13 (200) 1.15 (2)

3 1.16 (100) 2.50 (2000) 1.20 (200) 1.54 (2000)

4 1.22 (1) 2.46 (2000) 1.21 (200) 1.55 (2000)

5 1.27 (1) 3.06 (1000) 1.29 (1000) 2.46 (2000)

6 1.34 (1) 2.99 (1000) 1.38 (2000) 2.31 (2000)

7 1.97 (1) 5.20 (500) 1.80 (1) 4.77 (1000)

1* 1.16 (1) 4.14 (200) 1.35 (200) 3.19 (1000)

Average Submission Factor (sequence length value)

Maximum Submission Factor (sequence length value)

33

Conclusion and What’s Next…

● CPU to GPU submitters must be scheduled as well!

● Submission methodologies play a huge role in terms of CPU overhead

○ Vulkan still works best…

○ …but significantly suffers from memory interference

These measures will help the system engineers to account for a more accurate
worst-case execution/response time.

Questions?

Thank you!

Alessio Masola

36

Baseline 7 Interferences

37

Baseline 7 Interferences

38

How it works? Submission Model

impact of CPU-to-GPU kernel submissions may be indeed relevant for typical real-time workloads 38

API function calls

API function calls

API function calls

DEVICE

GPU

COMPUTE ENGINE

COPY ENGINE

CMDsHOST

39

Nvprof trace (YOLOv3)

40

Submissions and Models

Comparison between:

Baseline Cuda CDP Cuda Graph VulkanVs Vs Vs

