

Global Scheduling on Heterogenous MPSoCs

Emmanuel Grolleau grolleau@ensma.fr Based on a work done with : Antoine Bertout, Joël Goossens, Xavier Poczekajlo, Roy Jamil

Seminal paper in operations research scheduling Lawler & Labetoulle 1978

Seminal paper in r-t scheduling of S. Baruah 2004

➢ Input: (strictly) periodic independent synchronous implicit deadline tasks, defined by u_i=C_i/T_i, C_i defined on a fictional reference core, and for each core Π_i, a rate r_{ii}

rates	Π_1	Π_2				
τ ₁	r ₁₁ =1	r ₁₂ =2				
τ2	r ₂₁ =0.5	r ₂₂ =1				
τ	r ₃₁ =0	r ₃₂ =2				

Linear Program: what fraction of core to what task?
 Theorem: the system is feasible if and only if the LP has a solution

Linear Programming problem

This is a Doubly Stochastic (DS) matrix!

DA DS matrix

- Square, non negative values, sum of each row and column is 1
- A DS matrix can be expressed as a convex combination of permutation matrices

Convex combination of permutation matrices

ò

Convex combination of permutation matrices 0.3 0.4 0.3 0 **0.3** 0 • 0.2 0 + 0.4 0.1 0.5 0.5 0.2 0.1 0.7

As a real-time scheduling guy, I can interpret it as a schedule...

□Each permutation matrix generates a scheduling point > Preemption and/or migration

From template schedule to schedule

A template schedule can be repeated on each time unit

Mirrored every other time

- Can always be obtained from a DS matrix (BvN decomposition theorem)
- Obtaining a valid workload assignment matrix is a necessary and sufficient schedulability condition
 - >Under the hypothesis of no preemption cost, no migration cost
- The produced off-line schedule supposes an « almost fluid » scheduler, able to preempt/migrate tasks several times per time unit
- Number of permutation matrices = number of scheduling points per template schedule

- Minimizing the number of permutation matrices is NP-hard in the strong sense (from 3-Partition in [Dufossé 2015])
- Heuristic to reduce migrations/preemptions
 - In the previous example, Birkhoff method (minimum non null value)
 Maximize locally the duration of each assignment?

0.3	0.4	0.3		0	1	0		1	0	0		0	0	1		0	0	1
0.5	0.5	0	0.4	1	0	0	••• 0.3	0	1	0	••0.2	0	1	0	••0.1	1	0	0
0.2	0.1	0.7		0	0	1		0	0	1		1	0	0		0	1	0

✓ Solving a Linear Bottleneck Assignment Problem at each step

✓ Polynomial time using Hungarian method

S. Baruah's strategy

è

Square node = urgent task or full processor, assign absolutely
 Circle node = non urgent, non full, assign if necessary

Reverse construction of template schedule

 \mathcal{D}

*de*Poitiers

Reverse construction of template schedule/contd

 $\Box \Pi_1$ is now full, like Π_2 , and they will remain full until the... beginning of the template schedule

 $\Box \tau_1$ is now urgent, and will remain urgent until the beginning

Marriage problem

Find a marriage such that each square node is marriedCircle nodes are "spare nodes"

Could we invent a new "marriage in the nobility" problem?

Baruah's method

2

è

Ŕ

Cleaning method

Only important nodes can be the endpoints of two edges
 An non cyclic even length path has a non important node as one of its extermetiies

A cycle can only have an even length path

Template schedule construction

 \mathcal{D}

*de*Poitiers

Summary

5

Ŕ

io

è

Remarks on the LP

The objective function can be any

LP Load Obj: min $\sum_j \sum_i \mathbf{x}_{ij}$

Room left for e.g. energy or heat dissipation optimization
 Constraints can be added

ILP Mig Obj: min $\sum_j \sum_i b_{ij}$

LP Feas vs. LP Load

versité

*de*Poitiers

Metrics: number of migrations & preemptionsAnd (experimentally) the winner is...

The conservative decomposition

Traveler salesman problem

Heterogeneous MPSoCs : a growing trend

TI Sitara AM57x

> Embedded computing, robotics, avionics, medical imaging, etc.

❑NXP i.MX 8 QuadMax
≻Automotive, etc.

Clustered platform

QRather than having a heterogeneous platform

Consider a set of clusters of identical cores

Heterogeneous MPSoCs

A system is feasible iff LP has a solution => always possible to build a DS matrix

Less variables (rate *r*_{ii} per cluster)

> ILP for inter-cluster migrations minimization smaller

□ Inter-cluster ≠ Intra-cluster migration

 \geq Experimentally 10 to 70µs vs. 1 to 2 µs on i.mx8 and STM32MP1

Comparison flat vs. clustered

Performance gain

Average execution time (in seconds)

	2 clusters	5 clusters
LP-Feas	0.013	0.464
LP-Load	0.012	0.562
LP-CFeas	0.002	0.027
LP-CLoad	0.002	0.029
Hetero-split	0.007	N/A
ILP-Mig	0.061	N/A
ILP-CMig	0.023	0.156

- Zero cost for preemption & migration => already NP-hard for uniprocessor
- If any portion of a thread is executed for 5% of the time on a core of rate 2, it executes for 10% »
 - What if the first half of a thread uses intensively integers, and the second half uses intensively floats?

Limited to implicit deadlines, strictly periodic tasks
 Sporadic tasks with explicit deadlines?
 Offline schedule hard to implement
 Dynamic schedule à la U-EDF?

Conclusion

Are used and will be more in the future

- **Energy saving possibilities**
 - ≻DVFS, DPM
- Global scheduling
 - ➤Can use up to 100% of the platform
 - >Can be seen as saving more energy in the future

Lots to do...

