Global Scheduling on Heterogenous MPSoCs

Emmanuel Grolleau
grolleau@ensma.fr
Based on a work done with:
Antoine Bertout, Joël Goossens, Xavier Poczekajlo, Roy Jamil
Classification of mp platforms

- Identical
- Uniform
- Consistent
- Unrelated
Important results

- Seminal paper in operations research scheduling Lawler & Labetoulle 1978
- Seminal paper in r-t scheduling of S. Baruah 2004

 Input: (strictly) periodic independent synchronous implicit deadline tasks, defined by $u_i = C_i/T_i$, C_i defined on a fictional reference core, and for each core Π_j, a rate r_{ij}

- Linear Program: what fraction of core to what task?
- Theorem: the system is feasible if and only if the LP has a solution
Linear Programming problem

Workload assignment

<table>
<thead>
<tr>
<th>Task</th>
<th>Workload</th>
<th>(\Pi_1)</th>
<th>(\Pi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1)</td>
<td>(x_{11} \times 1)</td>
<td>(x_{12} \times 2)</td>
<td></td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>(0.5 \times x_{21})</td>
<td>(x_{22} \times 1)</td>
<td></td>
</tr>
<tr>
<td>(\tau_3)</td>
<td>(2 \times x_{32})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[x_{21} \times 0.5 \leq 1 \]

\[\forall \text{core } j, \sum_{\forall \text{task } i} x_{ij} \leq 1 \]

\[\forall \text{task } i, \sum_{\forall \text{core } j} x_{ij} r_{ij} = u_i \]

\[\forall \text{task } i, \sum_{\forall \text{core } j} x_{ij} \leq 1 \]
From workload assignment to feasible schedule

This is a Doubly Stochastic (DS) matrix!
- A DS matrix
 - Square, non-negative values, sum of each row and column is 1
- A DS matrix can be expressed as a convex combination of permutation matrices

<table>
<thead>
<tr>
<th>0.3</th>
<th>0.4</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.3</th>
<th>0.4</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Note that $1/0.9$ is DS
Convex combination of permutation matrices

\[
\begin{bmatrix}
0.3 & 0.4 & 0.3 \\
0.5 & 0.5 & 0 \\
0.2 & 0.1 & 0.7 \\
\end{bmatrix}
= 0.1 \times
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
+ 0.2 \times
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{bmatrix}
+ 0.3 \times
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
= 0.3 \times
\begin{bmatrix}
0.3 & 0.4 & 0.2 \\
0.4 & 0.5 & 0 \\
0.2 & 0 & 0.7 \\
\end{bmatrix}
+ 0.4 \times
\begin{bmatrix}
0.3 & 0.4 & 0 \\
0.4 & 0.3 & 0 \\
0 & 0 & 0.7 \\
\end{bmatrix}
+ 0.4 \times
\begin{bmatrix}
0 & 0.4 & 0 \\
0.4 & 0 & 0 \\
0 & 0 & 0.4 \\
\end{bmatrix}
\]
As a real-time scheduling guy, I can interpret it as a schedule...

Each permutation matrix generates a scheduling point
- Preemption and/or migration
From template schedule to schedule

- A template schedule can be repeated on each time unit
- Or stretched between each deadline
- Mirrored every other time
Discussion about the template schedule

- Can always be obtained from a DS matrix (BvN decomposition theorem)
- Obtaining a valid workload assignment matrix is a necessary and sufficient schedulability condition
 - Under the hypothesis of no preemption cost, no migration cost
- The produced off-line schedule supposes an « almost fluid » scheduler, able to preempt/migrate tasks several times per time unit
- Number of permutation matrices = number of scheduling points per template schedule
Minimizing the number of permutation matrices is NP-hard in the strong sense (from 3-Partition in [Dufossé 2015])

Heuristic to reduce migrations/preemptions

- In the previous example, Birkhoff method (minimum non-null value)
- Maximize locally the duration of each assignment?

✓ Solving a Linear Bottleneck Assignment Problem at each step
✓ Polynomial time using Hungarian method
S. Baruah’s strategy

<table>
<thead>
<tr>
<th>Workload assignment</th>
<th>Π_1</th>
<th>Π_2</th>
<th>Latency_1</th>
<th>Latency_2</th>
<th>Latency_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>x_{11}</td>
<td>x_{12}</td>
<td>$l_1 = 1 - (x_{11} + x_{12})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_2</td>
<td>x_{21}</td>
<td>x_{22}</td>
<td></td>
<td>$l_2 = 1 - (x_{21} + x_{22})$</td>
<td></td>
</tr>
<tr>
<td>τ_3</td>
<td>x_{32}</td>
<td>x_{11}</td>
<td></td>
<td></td>
<td>$l_3 = 1 - (x_{31} + x_{32})$</td>
</tr>
<tr>
<td>Idle$_1$</td>
<td>i_1</td>
<td>x_{11}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle$_2$</td>
<td>x_{12}</td>
<td>x_{21}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\Sigma = 1$ for all idle states.

Latency equations:

- $l_1 = 1 - (x_{11} + x_{12})$
- $l_2 = 1 - (x_{21} + x_{22})$
- $l_3 = 1 - (x_{31} + x_{32})$
An "as conservative" template schedule as possible

- Square node = urgent task or full processor, assign absolutely
- Circle node = non urgent, non full, assign if necessary

![Diagram](image)

Arbitrary marriage
Reverse construction of template schedule

<table>
<thead>
<tr>
<th>Workload assignment</th>
<th>Π_1</th>
<th>Π_2</th>
<th>Latency_1</th>
<th>Latency_2</th>
<th>Latency_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>x_{11}</td>
<td>x_{12}</td>
<td>l_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_2</td>
<td>x_{21}</td>
<td>x_{22}</td>
<td></td>
<td>l_2</td>
<td></td>
</tr>
<tr>
<td>τ_3</td>
<td>x_{32}</td>
<td></td>
<td></td>
<td></td>
<td>l_3</td>
</tr>
<tr>
<td>Idle$_1$</td>
<td></td>
<td></td>
<td>i_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle$_2$</td>
<td></td>
<td></td>
<td></td>
<td>x_{11}</td>
<td>x_{21}</td>
</tr>
</tbody>
</table>

Smallest non null value

To do
Reverse construction of template schedule / contd

- Π_1 is now full, like Π_2, and they will remain full until the beginning of the template schedule.
- τ_1 is now urgent, and will remain urgent until the beginning.
Marriage problem

- Find a marriage such that each square node is married
- Circle nodes are "spare nodes"

- Could we invent a new "marriage in the nobility" problem?
Baruah’s method

\[
\begin{align*}
\tau_1 & \quad \Pi_1 \\
\tau_2 & \quad \Pi_2 \\
\tau_3 & \quad \Pi_1 \\
\tau_2 & \quad \Pi_2 \\
\tau_3 & \quad \Pi_2
\end{align*}
\]

\[
\begin{align*}
\tau_1 & \quad \Pi_1 \\
\tau_2 & \quad \Pi_2 \\
\tau_3 & \quad \Pi_2
\end{align*}
\]

\[
\begin{align*}
\tau_1 & \quad \Pi_1 \\
\tau_2 & \quad \Pi_2 \\
\tau_3 & \quad \Pi_2
\end{align*}
\]

\[
\begin{align*}
\tau_1 & \quad \Pi_1 \\
\tau_2 & \quad \Pi_2 \\
\tau_3 & \quad \Pi_2
\end{align*}
\]

\[
\begin{align*}
\tau_1 & \quad \Pi_1 \\
\tau_2 & \quad \Pi_2 \\
\tau_3 & \quad \Pi_2
\end{align*}
\]
Cleaning method

- Only important nodes can be the endpoints of two edges.
- An non cyclic even length path has a non important node as one of its extermetiies.
- A cycle can only have an even length path.

- Number any path starting from an important node.
- Cut the edges with an even number.

Diagram:

- Nodes A, B, C, D, E, F.
- Edges connecting nodes with numbers 1 to 5.
- Nodes A and B are connected with an edge.
- Nodes A and D are connected with a red cross.
- Nodes D and C are connected with a red cross.
Workload assignment

<table>
<thead>
<tr>
<th>Workload assignment</th>
<th>Π_1</th>
<th>Π_2</th>
<th>Latency$_1$</th>
<th>Latency$_2$</th>
<th>Latency$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>x_{11}</td>
<td>x_{12}</td>
<td>l_1</td>
<td>l_2</td>
<td>l_3</td>
</tr>
<tr>
<td>τ_2</td>
<td>x_{21}</td>
<td>x_{22}</td>
<td>x_{32}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_3</td>
<td>i_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle$_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- τ_1 to Π_1
- τ_3 to Π_2
- τ_2 to Π_1

Latency

- l_1, l_2, l_3
- x_{11}, x_{21}, x_{22}, x_{32}
- i_1

To do

- Π_1
- Π_2

CAPITAL Workshop, 06/04/21
Tasks + rates on cores

Workload assignment

Template schedule

Tasks + rates on cores

- u_1
- u_2
- u_3

Rates on cores:

- r_{i1}
- r_{i2}

Workload assignment:

<table>
<thead>
<tr>
<th>τ_1</th>
<th>Π_1</th>
<th>Π_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_{11}</td>
<td>x_{12}</td>
</tr>
<tr>
<td>τ_2</td>
<td>x_{21}</td>
<td>x_{22}</td>
</tr>
<tr>
<td>τ_3</td>
<td>x_{31}</td>
<td>x_{32}</td>
</tr>
</tbody>
</table>

Template schedule:

BvN
Remarks on the LP

- The objective function can be any
 \[\text{LP Load Obj: min } \sum_j \sum_i x_{ij} \]

- Room left for e.g. energy or heat dissipation optimization

- Constraints can be added

 - \[\forall \text{task } i, \forall \text{core } j, b_{ij} \in \{0,1\} \]
 - \[b_{ij} \text{ is } 1 \text{iff } \tau_i \text{ uses } \Pi_j, 0 \text{ else} \]
 - \[\text{ILP Mig Obj: min } \sum_j \sum_i b_{ij} \]
LP Feas vs. LP Load

<table>
<thead>
<tr>
<th>C_i</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ₁</td>
<td>5</td>
</tr>
<tr>
<td>τ₂</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rates</th>
<th>π₁</th>
<th>π₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ₁</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>τ₂</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

LP Feas

\[
\begin{bmatrix}
\frac{5}{11} & \frac{5}{11} \\
\frac{5}{11} & \frac{5}{11}
\end{bmatrix}
\]

LP Load

\[
\begin{bmatrix}
0,5 & 0,5 \\
0 & 0
\end{bmatrix}
\]
BvN, LBAP or Conservative decomposition?

- Metrics: number of migrations & preemptions
- And (experimentally) the winner is...

- The conservative decomposition

- Traveler salesman problem
Heterogeneous MPSoCs: a growing trend

- **TI Sitara AM57x**
 - Embedded computing, robotics, avionics, medical imaging, etc.

- **Samsung Exynos 9 9820**
 - Smartphone

- **NXP i.MX 8 QuadMax**
 - Automotive, etc.
Clustered platform

Rather than having a heterogeneous platform

Consider a set of clusters of identical cores
A system is feasible iff LP has a solution \(\Rightarrow \) always possible to build a DS matrix

- Less variables (rate \(r_{ij} \) per cluster)
 - ILP for inter-cluster migrations minimization smaller

- Inter-cluster \(\neq \) Intra-cluster migration
 - Experimentally 10 to 70\(\mu \)s vs. 1 to 2 \(\mu \)s on i.mx8 and STM32MP1
Comparison flat vs. clustered

Average number of clustered workload assignments on 2 clusters

Average number of clustered workload assignments on 5 clusters

Legend:
- LP-Feas
- LP-Load
- LP-CFeas
- LP-CLoad
- ILP-Cmig
- Hetero-split
Performance gain

Average execution time (in seconds)

<table>
<thead>
<tr>
<th></th>
<th>2 clusters</th>
<th>5 clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP-Feas</td>
<td>0.013</td>
<td>0.464</td>
</tr>
<tr>
<td>LP-Load</td>
<td>0.012</td>
<td>0.562</td>
</tr>
<tr>
<td>LP-CFeas</td>
<td>0.002</td>
<td>0.027</td>
</tr>
<tr>
<td>LP-CLoad</td>
<td>0.002</td>
<td>0.029</td>
</tr>
<tr>
<td>Hetero-split</td>
<td>0.007</td>
<td>N/A</td>
</tr>
<tr>
<td>ILP-Mig</td>
<td>0.061</td>
<td>N/A</td>
</tr>
<tr>
<td>ILP-CMig</td>
<td>0.023</td>
<td>0.156</td>
</tr>
</tbody>
</table>
How (un)realistic is the model?

- Zero cost for preemption & migration => already NP-hard for uniprocessor
- « If any portion of a thread is executed for 5% of the time on a core of rate 2, it executes for 10% »
 - What if the first half of a thread uses intensively integers, and the second half uses intensively floats?

- Limited to implicit deadlines, strictly periodic tasks
 - Sporadic tasks with explicit deadlines?
- Offline schedule hard to implement
 - Dynamic schedule à la U-EDF?
Conclusion

- Are used and will be more in the future
- Energy saving possibilities
 - DVFS, DPM
- Global scheduling
 - Can use up to 100% of the platform
 - Can be seen as saving more energy in the future
- Lots to do...

CAPITAL Workshop, 06/04/21