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FIRST STEP: SYMBOLIC MODELS AND PROOFS

Consider the protocol:

A : νN, r,
{A,N}rpk(B) →

{B,N}rpk(A) ←
B : νr′,

→ {x, y}−
pk(B)

← {B, y}r
′

pk(x)

security property: N is a shared secret between A and B (when the
protocol is completed).
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A : νN, r,
{A,N}rpk(B) →

{B,N}rpk(A) ←
B : νr′,

→ {x, y}−
pk(B)

← {B, y}r
′

pk(x)

security property: N is a shared secret between A and B (when the
protocol is completed).

True in the symbolic model

False for some malleable encryption schemes
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SECOND STEP: SOUNDNESS RESULTS

Theorem: Assuming H then any symbolically secure protocol is also
computationally secure.

Proof: Hard and (very) long.
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ALTERNATIVE SOLUTIONS

Formal proofs in a computational model

CRYPTOVERIF [Bruno Blanchet]

CERTICRYPT [G. Barthe, S. Zanella et al]
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CRYPTOVERIF [Bruno Blanchet]

CERTICRYPT [G. Barthe, S. Zanella et al]

Drawbacks:

Takes time to develop

Minimal assumptions ? Small modifications, experiments,...

Full automation ?

What if the proof fails ?
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SOUNDNESS RESULTS (CNTD)

Can we trust Soundness theorems ?

Is the list of assumptions exhaustive ?

Why are the soundness proofs so complicated ?
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The symbolic model specifies What is allowed

The computational assumptions specify What is forbidden

Idea: design a symbolic model that specifies What is forbidden
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Anything that is not explicitly forbidden is possible:

A transition is possible as long as the required equalities/deductions are
consistent with the current assumptions

Advantages:

All assumptions are necessarily formally stated

Any model that (also) satisfies the negation of the security assumption
is a potential attack

We may (in principle) use any first-order consistency checker

Arbitrary primitives, modularity,....

Difficulties/questions:

Design (in FO) the appropriate assumptions

What about the computational attacks ?

Is automation so easy ?
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SUMMARY

1. The (symbolic) execution model

2. The main result

3. The computational validity
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THE LOGIC

Atomic formulas:

Terms over an arbitrary signature (encryption, pairs and names in the
examples) including handles

Equalities s = t between terms

Deducibility:
φ, t1, . . . , tn ⊢ t

where t1, . . . , tn are terms and φ is interpreted, in any state, as a
sequence of ground terms.

Possibly, Interpreted predicates...

Formulas:
For the transition system: only Boolean combinations of ground atomic
formulas.

Interpretation:
Any FO structure.
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THE EXECUTION MODEL : AN EXAMPLE

A : νN, r,
{A,N}rpk(B) →

{B,N}−
pk(A)

←
B : νr′,

→ {x, y}−
pk(B)

← {B, y}r
′

pk(x)

Initial state: q0, ∅,⊤

A successor state: q1, {A,N}rpk(B),⊤

A succsucc state: q3, {A,N}rpk(B),

{A,N}rpk(B) ⊢ h ∧ dec(h, sk(A)) =< B,N >
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Secrecy:

∀x. φ, {x}rpk(A) ⊢ x → φ ⊢ x ∨ φ, {x}rpk(A) ⊢ sk(A)

Integrity:

∀y. φ ⊢ y ∧ φ,dec(y, sk(K)) ⊢ N ∧ y 6⊑ φ → φ ⊢ sk(K) ∨ φ ⊢ N
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THE EXECUTION MODEL : AN EXAMPLE

A : νN, r,
{A,N}rpk(B) →

{B,N}−
pk(A)

←
B : νr′,

→ {x, y}−
pk(B)

← {B, y}r
′

pk(x)

Initial state: q0, ∅,⊤

A successor state: q1, {A,N}rpk(B),⊤

A succsucc state: q3, {A,N}rpk(B),

{A,N}rpk(B) ⊢ h ∧ dec(h, sk(A)) =< B,N >

This state is now discarded because the formula is inconsistent with
the axioms

The integrity axiom is necessary (otherwise the formula is consistent
with the axioms).
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2. THE MAIN RESULT
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THE COMPUTATIONAL SOUNDNESS

Theorem: Assume that the axioms are computationally valid. If there is a
computational attack, then there is a symbolic attack.

Note: this is independent of the security primitives, independent of the
properties...
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THE COMPUTATIONAL SOUNDNESS

Theorem: Assume that the axioms are computationally valid. If there is a
computational attack, then there is a symbolic attack.

Note: this is independent of the security primitives, independent of the
properties...

Computational validity of axions, for instance:

Proposition: If the encryption scheme is IND-CCA, then the secrecy and
integrity axioms are computationally valid.
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3. THE COMPUTATIONAL VALIDITY
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THE COMPUTATIONAL INTERPRETATION

A is a PPT machine and τ is a sample (mapping names to bit-strings)

Each function symbol is interpreted as a deterministic polynomial
algorithm.

For any term t, [[t]]τ is the homomorphic extension of τ to terms

A, τ |=c s = t iff [[t]]τ = [[s]]τ .

A, τ |=c t1, . . . , tn ⊢ t iff A([[t1]]τ , . . . , [[tn]]τ ) = [[t]]τ .
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A, τ |=c s = t iff [[t]]τ = [[s]]τ .

A, τ |=c t1, . . . , tn ⊢ t iff A([[t1]]τ , . . . , [[tn]]τ ) = [[t]]τ .

We wish however to reason on families of first-order structures interpreting
the formulas. Otherwise, there is always an A breaking

∀x. φ, {x}rpk(A) ⊢ x → φ ⊢ x ∨ φ, {x}rpk(A) ⊢ sk(A)

For any τ , A returns

[[n1]]τ on input [[n1]]τ , [[n2]]τ , [[{n1}
r
pk(A)]]τ

[[n2]]τ on input [[n1]]τ , [[n2]]τ .

Towards Unconditional Soundness – p. 18/20



06/16/2011
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In what follows: σ is an assigment of PPT machines to the free
variables of the formula.

A,Π, S, σ |=c θ1 ∧ θ2 if A,Π, S, σ |=c θ1 and A,Π, S, σ |=c θ2

A,Π, S, σ |=c θ1 ∨ θ2 if S = S1 ∪ S2 and A,Π, S1, σ |=
c θ1 and

A,Π, S2, σ |=
c θ2

A,Π, S, σ |=c ¬θ if A,Π, S′, σ |= θ implies that S′ is negligible.

A,Π, S, σ |=c φ, t1, . . . , tn ⊢ t if

For every non negl. S′ ⊆ S, there is a non-negl. S′′ ⊆ S′ s.t.
There is a PPT AD such that, ∀τ ∈ S′′,

The computation of Π, A yields a bitstring b s.t.

AD([[φ]]τ , [[t1]]
σ(b)
τ , ..., [[tn]]

σ(b)
τ ) = [[t]]

σ(b)
τ
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What remains to do ?

Automation: simulating the symbolic execution requires a consistency
check.
We conjecture that, for saturated sets of axioms, this consistency
check is in PTIME (ongoing work with Véronique Cortier and
Guillaume Scerri).

Design (and prove the computational validity for classical
cryptographic assumptions) axioms for several primitives. Note: this is
modular.

Try several examples of protocols.
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