
Autonomous-driving frameworks and
predictability: challenges and open problems

Daniel Casini

Assistant Professor, Scuola Superiore Sant’Anna, Pisa, Italy

Invited Talk at Workshop CAPITAL 2022: sCalable And PrecIse Timing AnaLysis for multicore platforms,
Friday, June 3th, 2022. Grenoble

1

This Talk

2

Introduction to Frameworks for Autonomous Driving
and their challenges for time-predictability

Apollo – based on Cyber RT

Autoware – based on ROS 2

Apollo – contributions and open problems

ROS 2 – contributions and open problems

1

2

3
2

Autonomous Driving

Autonomous driving is the next step in the history of human trasportation

Potential future benefits with respect to a human driver:

 More reliable driving

 Easier parking

 No unexperienced driver on the roads

3

The Society of Autonomotive Engineers (SAE) identifies six levels of driving automation:

LEVEL 0: No driving automation

 Vehicles are manually controlled (steering wheel, throttle, brakes, and everything)

LEVEL 1: Driver Assistance

 Cruise Control and Adaptive Cruise Control. The driver is assisted in basic operations such as steering or

accelerating

LEVEL 2: Partial Driving Automation

 Advanced driver assistance systems (ADAS). Examples are Tesla Autopilot and Cadillac Super Cruise

Systems. The vehicle controls steering, deceleration and acceleration. Automatic lane keeping. Some

actions may be not supported by the autonomous car. The driver needs to be ready to take the control

at any time.

First 3 levels: The human driver is still the core of the driving system

A
U
T
O
M
A
T
I
O
N

Levels of Driving Automation

4

Levels of Driving Automation

LEVEL 3: Conditional Automation

 Vehicles have enviromental detection capabilities, and drives autonomously. The driver needs to take

over when necessary.

LEVEL 4: High Automation

 Vehicles controls every aspect of driving. The vehicle can intervene even if there is a system failure. No

expectation for a human intervention, but the human has still the option to drive manually. There are

legal limitations for the areas in which these vehicles can operate in self-driving (geofencing).

LEVEL 5: Full Automation

 The vehicles is autonomous, without any geographic limitation. No steering wheel or driving pedals!

Last 3 levels: Increasing level of driving automation

A
U
T
O
M
A
T
I
O
N

5

How Self-Driving Car Works

Usage of images from cameras to perceive the
world

Integration of data from other sensors for better
understanding the surrounding environment

Computer Vision

Sensor Fusion

Localization Path Planning Control

6

How Self-Driving Car Works

Use data from computer vision and sensors to
understand the position

How to brake, throttle, and steer to
realize the trajectory

Derive a path toward where
we want to go

Computer Vision

Sensor Fusion

Localization Path Planning Control

7

Frameworks for Autonomous Driving

Two main open-source projects: Apollo and Autoware

 Started in 2015 by Shinpei Kato at Nagoya University (Japan).

 2300+ stars on GitHub and 500+ accounts on Slack (10/2018).

 More than 100 companies and runs on more than 30 vehicles in more than 20 different

countries.

 Started in 2017 by Baidu (China).

 The only company to obtain the first batch of road test licenses in China.

 Recently, started the Robotaxi project in China.

8

 The first Autoware project based on ROS 1

 Released as a research and development platform for autonomous driving

 Second version of Autoware, based on ROS 2

 Based on a redesigned architecture with better software engineering practices

9

The Apollo Autonomous Driving Framework

10

The Apollo Stack

Apollo GitHub.

 Four layers

1. Reference Vehicle Platform

2. Reference Hardware Platform

3. Open Software Platform

4. Cloud Service Platform

11

The Apollo Stack

Apollo GitHub.

 Four layers

1. Reference Vehicle Platform

2. Reference Hardware Platform

3. Open Software Platform

4. Cloud Service Platform

12

Software Components

Middleware

CyberRT

Operating System

Linux

Apollo

Perception Prediction Planning

Control

HMI

CanBus Monitor Guardian

handles publish/subscribe communication

Linux equipped with PREEMPT_RT

the core of Apollo

13

Modules

 Localization: to understand precisely where the car is in the world

 Perception: capability of detecting and classifying obstacles

 Prediction: studies and predicts the behavior of all the obstacles

 Planning: to plan a path towards the destination

 Control: actual commands to drive the car (how to turn the steering

wheel, how much to hit the throttle, etc.)

Middleware

CyberRT

Operating System

Linux

Apollo

Perception Prediction Planning

Control

HMI

CanBus Monitor Guardian

 HMI: is a module for viewing the status and controlling the functioning of the vehicle

 CanBus: handles communication through CAN

 Monitor: checks the system’s status and detects possible fault conditions

 Guardian: takes actions based on the monitor’s results

14

Middleware

 This is the operating environment of Apollo

 Up to version 3.0, it was a customized version of ROS

 The changes implemented by Apollo included optimization of

shared-memory communication and the usage of protobuf

instead of ROS message

Middleware

CyberRT

Operating System

Linux

Apollo

Perception Prediction Planning

Control

HMI

CanBus Monitor Guardian

 From version 3.5 on, Apollo is adopting CyberRT

 Communication among modules is performed with a publish/subscribe paradigm

Modules

Topics (or Cyber Channels):
communication channels

15

Topics in Apollo: an Example

Perception

LiDAR data

Radar data

obstacle data

Image data

sensor calibration data

velocity and angular velocity

traffic light data

Inputs (and cyber channels):

components {

class_name : “RadarDetectionComponent"

config {

name : "FrontRadarDetection"

config_file_path : "…/front_radar_component_conf.pb.txt"

readers: [{channel: "/apollo/sensor/radar/front"}]

}}

Cyber channel: communication
channel

16

Threats to Predictability and Challenges

17

Threats to Predictability and Challenges

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz 18

Threats to Predictability and Challenges

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

A very complex autonomous driving application
that needs to satisfy timing constraints

19

Threats to Predictability and Challenges

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

ROS 2 and CyberRT are used to conveniently
implement autonomous driving, thanks to the

pub/sub infrastructure and the large set of pre-
implemented functionalities they provide.

20

Threats to Predictability and Challenges

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

The DDS manages the communication among
callbacks, with a complex multi-thread software
that needs to be properly scheduled by the OS

21

Threats to Predictability and Challenges

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

Application-level, ROS2-level, and DDS-level
threads needs to be properly scheduled by the OS

to meet timing constraints

22

Threats to Predictability and Challenges

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

A hypervisor, if present, can greatly help in
implementing temporal and spatial isolation

between virtual machines (VM), but it needs to
be properly configured

23

Threats to Predictability and Challenges

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

The underlying hardware platform can be very
complex. Usually is equipped with heterogeneous

cores and hardware accelerators and it has complex
memory hierarchies, introducing further challenges

24

What we did to address these threats?

25

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

C

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

A Multi-Domain Architecture for Autonomous
Driving (IEEE ESL, RTCSA 2020)

Response-Time Analysis of ROS 2
(ECRTS 2019, RTSS 2021)

Real-Time Analysis of the QNX Adaptive Partitioning
Scheduler (RTAS 2022)

Many others, not covered in the presentation (timing
predictability in Tensorflow, QoS regulators for

mitigating I/O-related interference, I/O
Virtualization, etc.)

This Talk

Several contributions:

26

Multi-Domain Architecture

1) Alessandro Biondi, Federico Nesti, Giorgiomaria Cicero, Daniel Casini, and Giorgio Buttazzo, "A Safe, Secure, and
Predictable Software Architecture for Deep Learning in Safety-Critical Systems", IEEE Embedded Systems Letters,, vol.
12, no. 3, pp. 78-82, Sept. 2020.

2) Luca Belluardo, Andrea Stevanato, Daniel Casini, Giorgiomaria Cicero, Alessandro Biondi, and Giorgio Buttazzo, "A
multi-domain software architecture for safe and secure autonomous driving", Proc. of the 27th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2021) , August 18-20, 2021.

27

Multi-Domain Designs

 A multi-domain architecture used to switch the

system to a ‘safe controller’ running on Erika that

uses minimal perception features based on

legacy sensors (e.g., radars), extending what

already done by the Apollo Guardian component

 An alarm signal can be sent to the driver to take

back the control, as mandated by SAE's Level 3

specifications (Conditional Driving Automation,

a.k.a., "eyes off")

28

Multi-Domain Architecture for Apollo

Hypervisor

Non-critical domain

RTOS Linux

Advanced functionalities:
• HD Map
• AI-based perception
• Localization
• Planning & prediction

Critical domain

Critical functionalities:
• Control
• CAN
• Guardian

• (Fall-back control)

OBJECTIVE
Making Apollo safer and more secure by designing a multi-domain architecture

HOW?

Separating Apollo’s modules between a non-critical and
a critical domain, running different OSes1

Using a hypervisor to separate them2

Restoring the pub/sub CyberRT-based communication3

Luca Belluardo, Andrea Stevanato, Daniel Casini, Giorgiomaria Cicero, Alessandro Biondi, and Giorgio Buttazzo, "A multi-domain software architecture for safe and secure
autonomous driving", Proc. of the 27th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2021) , August 18-20, 2021. 29

Target multi-domain design

 The multi-domain design provides all critical functionalities of Apollo in a separate domain running

Erika3.

 Advanced Apollo functionalities (e.g., those requiring drivers of software stacks that not available in

a RTOS) on a Linux domain and the CyberRT-based communication (based on the pub/sub

paradigm) with those moved to the Erika3 domain must be restored.

 The components moved to the Erika3 domain are

replaced by “bridging” components in the Linux

domain, i.e., they act as a bridge to control inter-

domain communication

 A fall-back controller (not present in Apollo) may be

realized in the future to perform minimal safe control

without the advanced Apollo functionalities

Non-critical domain

Hypervisor

RTOS Linux

Advanced functionalities:
• HD Map
• AI-based perception
• Localization
• Planning & prediction

Critical domain

Critical functionalities:
• Control
• CAN
• Monitor\Guardian
• (Fall-back control)

30

Prototype Implementation

31

HW-in-the-loop Simulation

 HW-in-the-loop simulation environment to work with Apollo

LGSVL Simulator
(https://www.lgsvlsimulator.com/)
on a powerful desktop computer

X86 machine with Linux to run Apollo

Gigabit
Ethernet

4 GHz Quad-core CPU, 32GB of RAM,
Nvidia GTX 2080 16GB, Win 10 64-bit

Simulator
Apollo

32

https://www.lgsvlsimulator.com/

Candidates to run in Erika

Handled by the LGSVL simulator
in the HW-in-the-loop simulation

 In our implementation, we moved the control component from Linux to Erika

How to split components among VMs?

Not used in simulation

33

Why the Control Component?

 It is a highly safety-critical component;

 It does not require complex software stacks or device drivers that are not available on

Erika (e.g., for interacting with NVIDIA GPUs, as the perception component does)

Planning
component (PC)

Localization
component (LC)

CANBus
component

(CBC)

Apollo
environment

Control
component

(CC)

Topic C reader
of CC

Topic C writer of LC
(LocalizationEstimate)

Topic G reader
of CBC

Topic G writer of CC
(ControlCommand)

Topic A writer of PC
(Trajectory)

Topic A reader
of CC

Topic E reader
of CC

Topic E writer of CBC
(Chassis)

 The Control Component is

characterized by the following

communication relationships

(showed in the picture and

extracted during our in-depth

analysis of the Apollo code).

34

The Control Component in Erika

 Apollo officially supports Intel x86 platforms only.

 Realized a multi-domain design on Intel x86 using KVM and Erika3 for x86.

Planning
component (PC)

Localization
component (LC)

CANBus
component (CBC)

Topic E reader
of CC

Topic A writer of PC
(Trajectory)

Topic C reader
of CC

Topic A reader
of CC

Topic C writer of LC
(LocalizationEstimate)

Topic E writer of CBC
(Chassis)

X86 platform

Topic G reader
of CBC

Topic G writer of CC
(ControlCommand)

External control
component

Callback function
of topic E reader

Callback function
of topic C reader

Callback function
of topic A reader

Thread to receive
ControlCommand

Apollo environment (Linux)

KVM

Erika RTOS

Shared
Memory

35

Control Component Dependencies

 The following libraries have been ported to Erika:

1. qpOASES: it is an open-source C++ implementation of the Online Active Set Strategy using

the quadratic programming. It is used by the controller to compute the control commands; (see

https://github.com/coin-or/qpOASES)

2. gflags: it is a library to manage command-line flags in applications with multiple files. (see

https://gflags.github.io/gflags/#intro)

3. protobuf: the library to standardize the exchange messages between components. (see

https://developers.google.com/protocol-buffers)

4. A POSIX-FatFS wrapper to avoid modifying the Apollo code for accessing the file system.

36

https://developers.google.com/protocol-buffers

Evaluation

Planning
component (PC)

Thread to receive
ControlCommand

Callback function
of topic A reader

IVSHMEM
External control

component

KVM

Erika RTOS

Latency of the planning messages

Standard version Multi-domain version

Similar latencies have
been observed

37

Other works with Apollo at the RETIS lab

38

Porting Apollo on an Embedded Platform

Rear view. Apollo GitHub.

X86 machine with
Linux to run Apollo

4 GHz Quad-core CPU,
32GB of RAM,

Nvidia GTX 2080 16GB,
Win 10 64-bit

 How to replace it with one (or more)

embedded platforms?

 Target: Xilinx Ultrascale+ FPGA-based SoC, high predictability, low power consumption

Very challenging problem due to huge slow
down due to slower cores

39

Optimized Acceleration of DNNs

 Optimized acceleration of the Apollo Deep Neural Networks for deployment on embedded platforms

 Quantization & network pruning

 Current target: Xilinx Ultrascale+ FPGA-based SoC, high predictability, low power consumption

Apollo Deep Neural Networks

Denseline lane detector

DarkSCNN

Traffic Light Detection

Traffic Light Recognition

Yolo - Object Detection

Lidar (Velodyne 16)

40

Inter-domain communication

Low-criticality domain High-criticality domain

CLARE-Hypervisor

ROS 2 micro-ROS

Guidance

Algorithm

CLARE Middleware

Hardware Accelerators
(FPGA, GPGPU, DPSs,…)

HW Accelerator
Sensors

HW Accelerator

Fall-back

Node

Actuators

Sensing
Human

Interface
Connectivity Actuation

Emergency

Interface

Real-time Linux

Sensors

RTOS

Everything on a single platform

Health

monitoring

 Transparent, shared-memory communication between ROS 2, running in a Linux-based VM and
micro-ROS, running on FreeRTOS

 Based on the CLARE hypervisor, developed by Accelerat, a spin-off company of the Scuola Superiore Sant’Anna

41

Apollo – Open Problems

 Analysis of processing chains under CyberRT

 Fail-safe controller and safe perception module

 Multi-domain architecture with a type-1 hypervisor on an embedded platform

 And many more, e.g., on the AI and hardware acceleration side

42

Response-Time Analysis of Processing Chains in ROS 2

1) Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B. Brandenburg, "Response-Time Analysis of ROS 2 Processing
Chains under Reservation-Based Scheduling", In Proceedings of the 31th Euromicro Conference on Real-Time
Systems (ECRTS 2019), Stuttgart, Germany, July 9-12, 2019.

2) Tobias Blaß, Daniel Casini, Sergey Bozhko, and Björn B. Brandenburg, “A ROS 2 Response-Time Analysis Exploiting
Starvation Freedom and Execution-Time Variance”, In Proceedings of the 42nd IEEE Real-Time Systems Symposium
(RTSS 2021), Dortmund, Germany, December 7-10, 2021.

43

Why the scheduling in ROS is complex?

Two levels of scheduling:

 ROS processes are scheduled by the Linux operating system

 Callbacks (e.g., C++ functions) are in turn scheduled by the
ROS executor implemented by ROS

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

C

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling
topic

Cyber-RT

Hypervisor

1
GHz 100

MHz

FPGA
Fabric

GPU

Multicore Heterogeneous Platform

1
GHz

1
GHz

1
GHz

100
MHz

Even more complex when thinking to the complete
software stack

44

Why the scheduling in ROS is complex?

C

Hardware platform

Core 0 Core 1 Core 2 Core 3

Callbacks

OS Scheduler (Linux)

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System level performance analysis - the SymTA/S approach,” IEEE Proceedings - Computers and Digital Techniques, March 2005.

Two levels of scheduling:

 ROS processes are scheduled by the Linux operating system

 Callbacks (e.g., C++ functions) are in turn scheduled by the
ROS executor implemented by ROS

Linux-level scheduling using
reservations (e.g., SCHED_DEADLINE)

ROS-level analysis accounting
for the ROS’s quirks

Based on CPA [1]
(Compositional Performance Analysis)

45

Modeling

Callback

Callback

Callback

timer

triggers

Callback

 ROS Systems are distributed networks of callbacks

* Slides adapted from the original presentation by Tobias Blass
46

Modeling

Callback

Callback

Callback

timer

triggers

Callback

Thread 1

Thread 2

ROS-Level
Scheduling

Linux-Level
Scheduling

 Callbacks are assigned to executor threads

47

Modeling

Callback

Callback

Callback

timer

triggers

Callback

ROS-Level
Scheduling

The ROS documentation does not specify the
execution order of callbacks

48

A Real-Time Model for ROS 2

Timer callback

• WCET bound 𝑒𝑖

• Priority 𝜋𝑖

• Event arrival curve 𝜂𝑖
𝑎

Subscription callback

• WCET bound 𝑒𝑖

• Priority 𝜋𝑖

Communication Delay 𝛿𝑖,𝑗
Processing chains of

interest

Event source external to ROS

• Event arrival curve 𝜂𝑖
𝑎

49

The operating system’s view

Controls callback
order

Controls executor
scheduling

OS Process

Node

Node

IPC

Layer

Topics

Services

OS Process

Node

Timers

Executor

Thread
Executor

Thread

Linux Scheduler

IPC

Layer Timers

Executor

Thread

Groups of callbacks

50

The operating system’s view

ROS-specific,
undocumented

well understood

(SCHED_DEADLINE)

OS Process

Node

Node

IPC

Layer

Topics

Services

OS Process

Node

Timers

Executor

Thread
Executor

Thread

Linux Scheduler

IPC

Layer Timers

Executor

Thread

51

The Executor’s Algorithm

timer ready?

topic in readySet?

service in readySet?

service reply in readySet?

Execute highest-priority callback

Remove callback from readySet

yes

no

yes

yes

yes

no

no

no

readySet := ready sources

in IPC Layer

52

The Executor’s Algorithm

 It significantly differs from usual schedulers

 ROS maintains a set (i.e., at most one instance
per time) of ready callbacks

 When the set is empty (polling point), it queries
the IPC layer for new activations

 Except timers, up to ROS 2 “Dashing”

 It creates two levels of priority:

 The first level of priority is given by the callback type (timer, subscription, service, service reply,
in this order)

 The second level of priority is given by the callback registration order in the ROS program

This can create priority inversion effects

53

Compositional Performance Analysis

Per-Task Analysis
Computes per-task response

times given event arrival curves

Arrival-Curve Propagation

Computes event arrival curves given

per-task response times

Fixed-point search

CPU CPU

task

task

task

task

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System level performance analysis - the SymTA/S approach,” IEEE Proceedings - Computers and Digital Techniques, March 2005.
54

The CPA approach fits ROS well

task

task

task

task

CPU CPU

callback

callback

callback

callback

Executor reservation Executor reservation

55

The CPA approach fits ROS well

Per-Callback Analysis Fixed-point search

Executor Executor

callback

callback

callback

callback

ROS-specific improvements

in the RTSS 2021 paper

Needs to account

for ROS’s quirks

Arrival-Curve Propagation

56

Response-Time Analysis – ECRTS 2019

Response-Time Analysis that accounts for the ROS’s peculiarities

Dedicated analyses for timers and polling-point-based callbacks

Optimization for intra-executor chains

57

Response-Time Analysis – RTSS 2021

2. Exploit starvation-freedom in the callback scheduler

1. Address large execution-time variance over time

3. Improve activation-curve propagation within executors

We improve upon existing response-time analyses with three techniques.

AMCL /tf callback in the navigation 2 package

Processing Window
ready callback in

readySet?

1. Execute highest-priority callback

2. Remove callback from readySet

yesAt most one instance of each callback can run in a processing window

𝜂1(Δ + R1 + R2)𝜂1(Δ + R1)Activation curve
𝜂1(Δ)

c1 c2 c3

58

Evaluation

 Turtlebot 3 “Burger” controlled by a Raspberry Pi 4B

 Running various ROS packages

 Navigation 2 packages

 Turtlebot 3 drivers

 Callback graph extracted from measurements

 See Blass et al., “Automatic Latency Management for ROS 2:

Benefits, Challenges, and Open Problems”, RTAS 2021

59

Evaluation

60

Evaluation

High-variance callback ⇒ Large gains from execution-
time curves

61

Evaluation

Shares executor with bursty callback
⇒ Large gains from exploiting starvation-freeness

62

Evaluation

Gains over baseline thanks to improved
arrival curve propagation

63

ROS 2 – Open Problems

 Real-Time Analysis of the multi-threaded executor of ROS 2

 Real-Time Analysis of the (many) custom executors that have been developed over the last years (see

https://www.apex.ai/roscon-21)

 Scheduling of ROS 2 and DDS threads in a coordinate fashion (e.g., using QNX APS)

 Development of new special-purpose and real-time friendly executors

 And many more…

64

The opportunity of using QNX

 Preferred base operating system by many
automotive OEMs

 ISO-26262 certified at the highest level of
assurance (ASIL-D)

 POSIX Compliant, commercial, proven: AUTOSAR
Adaptive needs POSIX

 Commercial OS supporting CPU reservations!

Interestingly, the QNX reservation-based scheduler
supports multiple threads in the same reservation, thus

offering opportunities for the
coordinate scheduling of ROS and DDS threads

However, it is first necessary to understand the behavior
of the QNX reservation-based scheduling algorithm

65

QNX Adaptive Partitioning Scheduler

Dakshina Dasari, Matthias Becker, Daniel Casini, and Tobias Blaß, "End-to-End Analysis of Event Chains under the QNX
Adaptive Partitioning Scheduler", In Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2022), Milan, Italy, May 4-6, 2022. 66

How does APS work?

 To describe the behavior of APS partitions, we presented a set of rules

 They have been derived by relying both on the QNX documentation, and
by performing proper validation experiments to corroborate our findings
with empirical evidence (more about this later in the presentation)

 Validation results have been checked by collecting scheduling traces

 We considered two cases:

 Budget reclaiming is disabled, which can be configured with the SCHED_APS_SCHEDPOL_LIMIT_CPU_USAGE

 Budget reclaiming is enabled and idle time is distributed in priority order, which is the default option in QNX
(SCHED_APS_SCHEDPOL_DEFAULT)

 Several rules have been derived, to define how budget is initialized, decremented, incremented, etc.

67

Analyzing APS

 To analyze APS, we provided three contributions

A supply bound function which lower-bounds the minimum
service provided by a partition in any time interval of length ∆

A response-time analysis for the threads running in each partition

A condition to guarantee that each partition can correctly deliver
the supply to pending tasks, i.e., to guarantee that the core is not
overloaded

More details in the paper

1

2

3

68

Experiments

 Setup on the real platform

 QNX Software Development Platform 7.1

 Raspberry Pi 4b (4 cores, 4GB RAM)

 Recording Traces

 QNX Tracelogger to record scheduling events

 Custom logger to record APS trace

 Granularity 1ms

 Assigned to dedicated core

 Custom tool to evaluate the recorded traces

 Analysis implemented on top of PyCPA

CPU0 CPU1 CPU2 CPU3

APS
logger

Experiment Threads

experiment workloadlogging

Sched
Trace

APS
Trace

o
ff

lin
e

p
o

st
-p

ro
ce

ss
in

g

69

QNX– Open Problems

 Many, as usual, but let’s discuss a particular one:

INPUT:
Default System Model
Params, End-to-end

deadline

Timing
Constraints
Satisfied?

Derive new parameters
(budgets, periods, thread to partition

assignment, etc)

Other constraints
(e.g., thread task must
be allocated on core 2)

Feasible
solution?

NO

YES

NO

YES

OUTPUT:
Feasible System Model Parameters

QNX APS Configuration Algorithm

The design of tools for the design-space exploration of the system

parameters using this analysis.

70

Conclusions

71

Conclusions

 Autonomous driving is incredibly complex – much
work still need to be done

 This is due to unpredictability issues occurring at
multiple levels – from the application to the
hardware

 Redesigning such systems to be time-predictable
would be the best, but it is not an easily viable
option because they are already widely used and
provides a large amount of pre-implemented
functionalities

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Topics

Higher-level framework and Application

Sensor acq.
Publisher

Set rate
Subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz
100
MHz

FPGA FabricGPU

Multicore Heterogeneous Platform

1 GHz

1 GHz

1 GHz

100
MHz

We should try our best to improve their
time-predictability by acting at different levels

72

Are you interested in these topics?

73

 Join the RAGE 2022 workshop at DAC 2022! (see https://rage2022.github.io/)

 Advanced rate registration ends June 10th

 Organized by me, Dakshina Dasari (Bosch), and Matthias Becker (KTH)

Thank you!
Daniel Casini

daniel.casini@santannapisa.it

74

