
© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

A long and winding road
towards predictability…

Eric JENN - IRT Saint-Exupéry

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Agenda.pa
ge
2

❶

❷

❸

❹

The context and the problems

Determinism by analysis

Determinism by design

Conclusion

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The context

Who are we?

CAPHCA project

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The contextpa
ge
4

 Focus on aeronautic, space, automotive

 Covers aspect related to materials, electrical systems,
computing system, communication, artificial intelligence

 Projects co-funded by industry
 Strongly driven by industrial needs

 Focused on technological transfer (TRL 4-5, sometimes
lower…)

 Work carried out by a composite team of engineers
(seconded by their companies), academic researchers,
post-docs

IRT Saint-Exupery in Technogical
Research Institute

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The problem

What was the question?

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The problempa
ge
6

 Dependability: the extent to which confidence can be
 placed on the capability of the system to fulfil its intended
 purpose

 Performance: the efficiency with which a system fulfils
 its intended purpose

Dependability and
performance

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The problempa
ge
7

 Multiple cores (multi + many)
 Complex cores

 Heterogeneous cores

 SIMD units

 GPU

 FPGA

 AI accelerators

 Interconnect

 SDRAM

 …

Emergence of new computation
platforms

Source XILINX

Source RENESAS

Master complexity
Compliance with certification

constraints

Use platforms efficiently
(reduce margins)

Reduce development (incl. V&V)
costs

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

A long and winding road…pa
ge
8

 ensure determinism and predictability?
 Live with variability ?

 Reduce variability?

 chose effective / reasonable (cost effective)
solution?

How to…

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Predictability by analysis

How to model and analyse a platform?

Component
descriptions

Step 1: Manual
extraction

(reading and writing
by human)

Component
modeling &
integration

(AADL)

Step 2: Systematic translation
(human)
 - connections
 - flows of information

Knowledge
-base

(Prolog)

Step 3: Automatic
transformation
 - AADL Inspector

Data-
sheet

STRANGE
(Prolog)Step 4:

Manipulation
of the
knowledge-
base

Step 5:
User-
specified
queries

List of
potential

interferences

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
10

 Processeurs are (very) complex
TC277, more than 5000 pages

 Documentation is developer-oriented

 Documentation is not always correct /
complete

 How to ensure the completeness of
the analysis?

Modeling for interference
analysis

Phase 1 - Modeling Phase 2 - Analysis

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
11

 Processeurs are (very) complex
TC277, more than 5000 pages

 Documentation is developer-oriented

 Documentation is not always correct /
complete

 How to ensure the completeness of
the analysis?

Identify “components”, flows of transactions

Capture elements using AADL

Modeling for interference
analysis Hosting component: Top-level

Interfaces
-Connect to A, C, E
Information flows
-Request received from: A, C
-Request sent/forwarded to: E (from A and C)
-Data sent/received: as results of requests

Hosting component: Top-level
Interfaces
-Connect to A, C, E
Information flows
-Request received from: A, C
-Request sent/forwarded to: E (from A and C)
-Data sent/received: as results of requests

system D
 features

d1: in out event data port; -- to A
d2: in out event data port; -- to C
d3: in out event data port; -- to E

 flows
d_f1: flow path d1 -> d3; -- A to E
d_f2: flow path d2 -> d3; -- C to E

end D;

system implementation D.imp
 subcomponents

f : system F;
 connections

d1_f1: port d1 <-> f.f1;
d2_f1: port d2 <-> f.f1;
d3_f2: port d3 <-> f.f2;

 flows
d_f1 : flow path d1 -> d1_f1 -> f.f_f -> d3_f2 -> d3;
d_f2 : flow path d2 -> d2_f1 -> f.f_f -> d3_f2 -> d3;

end D.imp;

system D
 features

d1: in out event data port; -- to A
d2: in out event data port; -- to C
d3: in out event data port; -- to E

 flows
d_f1: flow path d1 -> d3; -- A to E
d_f2: flow path d2 -> d3; -- C to E

end D;

system implementation D.imp
 subcomponents

f : system F;
 connections

d1_f1: port d1 <-> f.f1;
d2_f1: port d2 <-> f.f1;
d3_f2: port d3 <-> f.f2;

 flows
d_f1 : flow path d1 -> d1_f1 -> f.f_f -> d3_f2 -> d3;
d_f2 : flow path d2 -> d2_f1 -> f.f_f -> d3_f2 -> d3;

end D.imp;

CD AADL

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
13

 Processeurs are (very) complex
TC277, more than 5000 pages

 Documentation is developer-oriented

 Documentation is not always correct /
complete

 How to ensure the completeness of
the analysis?

Identify “components”, flows of transactions

Capture elements using AADL

 Translate to Prolog

Modeling for interference
analysis

system F
 features
 f1: in out event data port;
 f2: in out event data port;
flows
 f_f : flow path f1->f2;
end F;

system F
 features
 f1: in out event data port;
 f2: in out event data port;
flows
 f_f : flow path f1->f2;
end F;

AADL

isComponentType('example','PUBLIC','F','SYSTEM','NIL',26).
isFeature('PORT','example','F','f1','IN OUT','EVENT DATA','NIL','NIL','NIL',28).
isFeature('PORT','example','F','f2','IN OUT','EVENT DATA','NIL','NIL','NIL',29).
isFlowSpec('PATH','example','F','NIL','f_f','f1','f2','NIL',31).
isComponentTypeEnd('example','PUBLIC','F','F',32).

isComponentType('example','PUBLIC','F','SYSTEM','NIL',26).
isFeature('PORT','example','F','f1','IN OUT','EVENT DATA','NIL','NIL','NIL',28).
isFeature('PORT','example','F','f2','IN OUT','EVENT DATA','NIL','NIL','NIL',29).
isFlowSpec('PATH','example','F','NIL','f_f','f1','f2','NIL',31).
isComponentTypeEnd('example','PUBLIC','F','F',32).

transform

Prolog

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
14

 Processeurs are (very) complex
TC277, more than 5000 pages

 Documentation is developer-oriented

 Documentation is not always correct /
complete

 How to ensure the completeness of
the analysis?

Identify “components”, flows of transactions

Capture elements using AADL

 Translate to Prolog

 Query Prolog

Modeling for interference
analysis ?- interference2(Initiator_1, Target_1, Initiator_2, Target_2,

Crossings).
Initiator_1 = 'Top.a.a1',
Target_1 = Target_2, Target_2 = 'Top.e.e1',
Initiator_2 = 'Top.b.b1',
Crossings = ['Top.d.f.f2', 'Top.d.f.f1', 'Top.d.d3'] ;

Initiator_1 = 'Top.b.b1',
Target_1 = Target_2, Target_2 = 'Top.e.e1',
Initiator_2 = 'Top.a.a1',
Crossings = ['Top.d.f.f2', 'Top.d.f.f1', 'Top.d.d3'].

?- interference2(Initiator_1, Target_1, Initiator_2, Target_2,
Crossings).
Initiator_1 = 'Top.a.a1',
Target_1 = Target_2, Target_2 = 'Top.e.e1',
Initiator_2 = 'Top.b.b1',
Crossings = ['Top.d.f.f2', 'Top.d.f.f1', 'Top.d.d3'] ;

Initiator_1 = 'Top.b.b1',
Target_1 = Target_2, Target_2 = 'Top.e.e1',
Initiator_2 = 'Top.a.a1',
Crossings = ['Top.d.f.f2', 'Top.d.f.f1', 'Top.d.d3'].

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
15

 Processeurs are (very) complex
TC277, more than 5000 pages

 Documentation is developer-oriented

 Documentation is not always correct /
complete

 How to ensure the completeness of
the analysis?

Identify “components”, flows of transactions

Capture elements using AADL

 Translate to Prolog

 Query Prolog

Modeling for interference
analysis

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
16

 Processeurs are (very) complex
TC277, more than 5000 pages

 Documentation is developer-oriented

 Documentation is not always correct /
complete

 How to ensure the completeness of
the analysis?

Identify “components”, flows of transactions

Capture elements using AADL

 Translate to Prolog

 Query Prolog

Modeling for interference
analysis

How to improve the docs?
(standard format?)

Provide micro-benchmarks?

Use AI techniques? How to improve accuracy?

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
17

 Formal modeling of architecture
 using LNT and Fiacre

 Two methods
 Patcheck

 SynCheck

Using model checking

process ARBITER[REQUEST_ISSUED, REQUEST_GRANTED,
REQUEST_BEING_SERVED: REQUEST_CHANNEL, raise
BAD_VALUE, NOT_FOUND, QUEUE_FULL: none,
PIPELINE_FULL: none] is
 var register, pipeline: QUEUE in
 register := EMPTY_QUEUE;
 pipeline := EMPTY_QUEUE;
 loop L in
 select (* Enqueue requests*) ...
 [] (*Grant requests and put them to pipeline*) ...
 [] (*Forward granted requests to the*) ...
 [] break L
 end select
 end loop
 end var
end process

process ARBITER[REQUEST_ISSUED, REQUEST_GRANTED,
REQUEST_BEING_SERVED: REQUEST_CHANNEL, raise
BAD_VALUE, NOT_FOUND, QUEUE_FULL: none,
PIPELINE_FULL: none] is
 var register, pipeline: QUEUE in
 register := EMPTY_QUEUE;
 pipeline := EMPTY_QUEUE;
 loop L in
 select (* Enqueue requests*) ...
 [] (*Grant requests and put them to pipeline*) ...
 [] (*Forward granted requests to the*) ...
 [] break L
 end select
 end loop
 end var
end process

property
CHECKING_ARBITER_INTERFERENCE(LNT_
MODEL, RESULT, i, j, k)
is
"a.bcg" = generation of "$LNT_MODEL.lnt";
"a.bcg" |=with evaluator4
< true*. "REQUEST_ISSUED !REQUEST ($i, $j,
$k)". (not "REQUEST_GRANTED !REQUEST
($i, $j, $k)")* . {REQUEST_GRANTED ?R:String
where R<>"REQUEST ($i, $j, $k)"} >true …
or
end property

property
CHECKING_ARBITER_INTERFERENCE(LNT_
MODEL, RESULT, i, j, k)
is
"a.bcg" = generation of "$LNT_MODEL.lnt";
"a.bcg" |=with evaluator4
< true*. "REQUEST_ISSUED !REQUEST ($i, $j,
$k)". (not "REQUEST_GRANTED !REQUEST
($i, $j, $k)")* . {REQUEST_GRANTED ?R:String
where R<>"REQUEST ($i, $j, $k)"} >true …
or
end property

C
o

re
 0

C
o

re
 1

C
o

re
 2

Shared
memory
ressources
manageme
nt

Inter-core
temporal
dependenci
es

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
18

 Formal modeling of architecture
 using LNT and Fiacre

 Two methods
 Patcheck

 SynCheck

Using model checking Without interference

With interference

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
19

 Formal modeling of architecture
 using LNT and Fiacre

 Two methods
 Patcheck

 SyncCheck

Using model checking

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identifying interference sourcespa
ge
20

 Formal modeling of architecture
 using LNT and Fiacre

 Two methods
 Patcheck

 SyncCheck

Using model checking

How to trust the model?

How to build the model?

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Identify interferencespa
ge
21

 Using the VLAB virtual platform
 Timing modeling is not extremely

accurate (this is not a cycle accurate
simulator)

 Identification of multiple transactions
in the same time interval.

Using simulation

Does not really identify
interferences

Not that accurate

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Reduce interferencespa
ge
22

 Example: early empirical cache-
sensitivity analys

 QEMU model

 First, provide cache
usage data

Identify time-sensitive code

QEMU

C code Cache usage annotated codeExecution traces Cache simulation Cache data
analysis

Cache state
data

Get memory
operations

Simulate
cache
memories

CPU simulator

10% hit

Provide cache
usage data

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Reduce interferencespa
ge
23

 Example: early empirical cache-
sensitivity analys

 QEMU model

 First, provide cache
usage data

 Application
 Xilinx ZCU102 Board, with a

single core cortex-r5

 Running Polybench collection

Identify timle-sensitive code

Average
Relative

Error:
3.27%

Average
Overhead:

12%

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Reduce interferencespa
ge
25

 Example: early empirical cache-
sensitivity analys

 QEMU model

 First, provide cache
usage data

 Application
 Xilinx ZCU102 Board, with a

single core cortex-r5

 Running Polybench collection

 Second, provide user-level data

Identify timle-sensitive code

Lines [76;80] -> 98% hits, 2% misses
Lines [74;82] -> 100% hits, 0% misses
Lines [70;86] -> 50% hits, 50% misses

Lines [76;80] -> 88% hits, 12% misses
Lines [74;82] -> 86% hits, 14% misses
Lines [70;86] -> 50% hits, 50% misses

PoC limited to caches

Provide user-level data about
interferences

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Reduce interferencespa
ge
26

 On Lustre code
 Application to INRIA’s LOPHT tool

(KAIROS)

 Reduction of DDR page changes

On synchronous code

0x00000000 Scheduler section
call node N_000 0x00001000 node N_000 section
call node N_038
call node N_980

… 0x000011FF return
… 0x00001200 node N_038 section
…
…
…

0x00001FFF return
0x00002000 node N_980 section

0x000023FF return

Legacy schedule

… instructions ...

… instructions ...

… instructions ...

Each call induce
- Instructions pipeline break (at
core level)
- usually a DDR page change

- Linear code instructions
- DDR page change only when code
size oversize a page
- Require a timed-triggered OS

0x00000000 Scheduler section
call node N_000 0x00001000 node wrapper N_000

node N_000 inlined

0x000011FF branch N_038
0x00000030 Endpoint 0x00001200 node N_038 section

node N_038 inlined

0x00001FFF branch N_980
0x00002000 node N_980 section

node N_980 inlined

0x000023FF branch Endpoint

Continuation schedule

… instructions ...

… instructions ...

… instructions ...

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Reduce interferencespa
ge
27

 On Lustre code
 Application to INRIA’s LOPHT tool

(KAIROS)

 Reduction of DDR page changes

 Reduction of flash-level interferences using
prefetching (on-going work)

On synchronous code

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Reduce interferencespa
ge
28

 On Lustre code
 Application to INRIA’s LOPHT tool

(KAIROS)

 Reduction of DDR page changes

 Reduction of flash-level interferences using
prefetching (on-going work)

 On PsyC code (ASTERIOS)
 Prevent simultaneous accesses to

resources

On synchronous code

B1 B2 B3 B4 B5Profile of
application A

𝐵 ′1 𝐵 ′ 2 𝐵 ′ 3 𝐵 ′ 4 𝐵 ′ 5

𝐵 ′1 𝐵 ′ 2 𝐵 ′ 3 𝐵 ′ 4 𝐵 ′ 5

Initial profile of
application B

Corrected profile
of application B

 ❶ Critical areas

❷

❶

 ❷ Time shifts

❷

❶

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Static WCET analysispa
ge
30

 A tedious activity…

Building the model

~70+ scenarios
~1000+ reset button pressed

~2.5 weeks of testing

Better documentation?

Documentation for timing
analysis?

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Static WCET analysispa
ge
31

 Two levels verification

• Verifying the ISS

• ISS generated from NMP files used to decode
instructions in OTAWA

• First step to support a new architecture

• Compare the “processor state” between TSIM
and OTAWA-ISS

• Register values

• Memory accesses

• Verifying the abstract model

• Is the value/address analysis correctly
implemented?

• Are “semantic instructions” correctly
implemented for TriCore

How to gain confidence on
the tool

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Reduce cost of analysispa
ge
32

 WCET analyzers based on AI are costly to
develop

 Can we focus the effort on the most "pertinent"
parts of the component (the one with the
highest contribution)?

How to trade-off accuracy
and cost

M0

M1

M2

All instructions have the same,
worst-case, latency.

Functional
units
latencies

Multiscalar

Latencies of code
memory areas

M4M5

M3

Global buffer
(flash-level
cache)

M6

M7

Branch
prediction

M8

Store buffer

M9

Caches

On-going work…

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Predictability by construction

How to build a predictable platform?

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Deploy functions to hardwarepa
ge
35

 Leverage SoCs embedding FPGAs
(Zynq, Dahlia, etc.)

 Exploit parallelism

 By product of performance
enhancement

 Example: OpenMP to HW

Deploy to FPGA
Template code
Host code

Communications

Host code

Host.cpp

Template code
Communications
Offloaded code
Communications

Target0.cpp

Compilation

High Level
synthesis

CPU

FPGA

int a = 2;
int b = 12;
#pragma omp target map(from:b)
{

b = a + 2;
}
printf("b = %d\n", b);
// b = 4

int a = 2;
int b = 12;
#pragma omp target map(from:b)
{

b = a + 2;
}
printf("b = %d\n", b);
// b = 4

Sequential C code

Parallel HW
Platform
Parallel SW
architectureSpaceModulesOpenMP annotated C code

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Deploy functions to hardwarepa
ge
36

 Leverage SoCs embedding FPGAs
(Zynq, Dahlia, etc.)

 Exploit parallelism

 By product of performance
enhancement

 Example: OpenMP to HW

Deploy to FPGA

Needs a FPGA…

… usually dedicated to other
demanding computations…

Sequential C code

Parallel HW
Platform
Parallel SW
architecture

OpenMP annotated C code

8 identical
accelerators

Accelerators

Convolution

Host

Host

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Deploy functions to hardwarepa
ge
37

 Parallelism raises "new" issues with respect to
determinism
 Deadlocks

 Race conditions…

 Parallelization frameworks generally not
designecd for safety critical systems…

New issues with parallelism

Prevent / detect non-
deterministic effects

Provide a “deterministic”
version OpenMP

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Determinism by contructionpa
ge
38

 Split the problem (not every processing have
the same level of temporal requirements…)

 Deploy time-critical function on deterministic
processors

 Example: Berkeley’s FlexPRET

 Combination of FlexPRET anb synchronous
execution model (Lustre/LOPHT and ForeC)

Use the PL to implement a timing-
analysis friendly processor

Berkeley’s FlexPRET (M. Zimmer’s PhD thesis)

Pipeline shared by hard and soft and HW threads

HRT thread A

HRT thread A

HRT thread B HRT thread BSRT thread B

SRT thread B

“Exotic” architecture…

Performances?

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Conclusionpa
ge
39

 But problems are getting more (and more)
complicated…

 But there is still quite a lot of work to be done
(see all the of the presentation)

 Guidance is still missing for industrial partners:
Which approach shall I use to use for what result
and with what confidence on the result?…

Things are getting clearer…

boxes

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

References

04/06/2021

pa
ge
40

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Publicationspa
ge
41

 Interference analysis
 W.-T. Sun, E. Jenn, H. Cassé, and T. Carle, ‘Automatic Identification of Timing Interferences on Multi-Core Processor in a Model-

Based Approach’, presented at the COMPAS 2019, Anglet, 28/6 2019.

 V. A. Nguyen, E. Jenn, W. Serwe, F. Lang, and R. Mateescu, ‘Using Model Checking to Identify Timing Interferences on Multicore
Processors’, in 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020) , Toulouse, France, Available
at https://hal.inria.fr/hal-02462085

 A. Ferlin, E. Jenn, and M. Kaufmann, ‘Accounting for interferences in the design of Time-Triggered Applications’, in 10th European
Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France, Jan. 2020, Accessed: Apr. 28, 2020.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-02469116.

 F. Guet, L. Santinelli, J. Morio, G. Phavorin, and E. Jenn, ‘Toward Contention Analysis for Parallel Executing Real-Time Tasks’, 18th
International Workshop on Worst-Case Execution Time Analysis (WCET 2018), Barcelona, Spain, Jul. 2018

 WCET analysis
 W.-T. Sun, E. Jenn, and H. Cassé, ‘Validating static WCET analysis: a method and its application’, presented at the 19th International

Workshop on Worst-Case Execution Time Analysis, Stuttgart, Germany, Jul. 2019., Available at
https://drops.dagstuhl.de/opus/volltexte/2019/10771/.

 W.-T. Sun, E. Jenn, and H. Cassé, ‘Build Your Own Static WCET analyser: the Case of the Automotive Processor AURIX TC275’, in
10th European Congress on Embedded Real Time Software and Systems (ERTS 2020) , Toulouse, France, Available at
https://hal.archives-ouvertes.fr/hal-02507130

https://hal.inria.fr/hal-02462085
https://drops.dagstuhl.de/opus/volltexte/2019/10771/
https://hal.archives-ouvertes.fr/hal-02507130/document

0
4

/0
6

/2
0

2
1

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Publicationspa
ge
42

 Parallel applications
 V.-A. Nguyen, W. Serwe, R. Mateescu, and E. Jenn, ‘Hunting Superfluous Locks with Model Checking’, in From Software

Engineering to Formal Methods and Tools, and Back, vol. 11865, Springer Verlag, 2019, p. 416‑432. Avalable at
https://hal.inria.fr/hal-02314088

 R. Leconte, E. Jenn, G. Bois, and H. Guérard, ‘Make Life Easier for Embedded Software Engineers Facing Complex Hardware
Architectures’ in 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020) , Toulouse, France,
Available at https://hal.archives-ouvertes.fr/hal-02474476

 Deterministic multicores
 N. Hili, A. Girault, and E. Jenn, ‘Worst-Case Reaction Time Optimization on Deterministic Multi-Core Architectures with

Synchronous Languages’, presented at the 25th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, Hangzhou, China, Aug. 2019.

 A. Girault, N. Hili, E. Jenn, and E. Yip, ‘A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-
Cores’, presented at the Forum Design Language, Southampton, United Kigdom

Simulation
 C. Deschamps, M. Burton, E. Jenn, and F. Pétrot, ‘Gathering Memory Hierarchy Statistics in QEMU’, DVCON 2020, (virtual

conference), Oct. 2020

https://hal.inria.fr/hal-02314088
https://hal.archives-ouvertes.fr/hal-02474476

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42

