

A long and winding road towards predictability...

Eric JENN - IRT Saint-Exupéry

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The context and the problems Determinism by analysis Determinism by design Conclusion

The context

Who are we?

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The context

- Focus on aeronautic, space, automotive
- Covers aspect related to materials, electrical systems, computing system, communication, artificial intelligence
- Projects co-funded by industry
 - Strongly driven by industrial needs
 - Focused on technological transfer (TRL 4-5, sometimes lower...)
- Work carried out by a composite team of engineers (seconded by their companies), academic researchers, post-docs

CAPHCA project

04/06/2021

The problem

What was the question?

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

The problem

Dependability and performance

- Dependability: the extent to which confidence can be placed on the capability of the system to fulfil its intended purpose
- Performance: the efficiency with which a system fulfils its intended purpose

04/06/2021

The problem

Emergence of new computation platforms

- Multiple cores (multi + many)
 - Complex cores
 - ✤ Heterogeneous cores
- SIMD units
- ✤ GPU
- FPGA
- ✤ AI accelerators
- ✤ Interconnect
- SDRAM
- * ...

Master complexity	Compliance with certification constraints						
Use platforms efficiently	Reduce development (incl. V&V)						
(reduce margins)	costs						

A long and winding road...

How to...

- ensure determinism and predictability?
 - Live with variability ?
 - Reduce variability?
- chose effective / reasonable (cost effective) solution?

Predictability by analysis

How to model and analyse a platform?

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Modeling for interference analysis

- Processeurs are (very) complex
 TC277, more than 5000 pages
- Documentation is developer-oriented

Documentation is not always correct / complete

* How to ensure the completeness of the analysis?

Phase 1 - Modeling

Phase 2 - Analysis

Modeling for interference analysis

- Processeurs are (very) complex
 - ✤TC277, more than 5000 pages
- Documentation is developer-oriented
- Documentation is not always correct / complete

* How to ensure the completeness of the analysis?

Identify "components", flows of transactions
Capture elements using AADL

Modeling for interference analysis

- Processeurs are (very) complex
 TC277, more than 5000 pages
- Documentation is developer-oriented
- Documentation is not always correct / complete

* How to ensure the completeness of the analysis?

- Identify "components", flows of transactions
- Capture elements using AADL
- Translate to Prolog

Modeling for interference analysis

- Processeurs are (very) complex
 TC277, more than 5000 pages
- Documentation is developer-oriented
- Documentation is not always correct / complete

* How to ensure the completeness of the analysis?

- Identify "components", flows of transactions
- Capture elements using AADL
- Translate to Prolog
- Query Prolog

?- interference2(Initiator_1, Target_1, Initiator_2, Target_2, Crossings). Initiator_1 = 'Top.a.al', Target_1 = Target_2, Target_2 = 'Top.e.el', Initiator_2 = 'Top.b.b1', Crossings = ['Top.d.f.f2', 'Top.d.f.f1', 'Top.d.d3'];

```
Initiator_1 = 'Top.b.b1',
Target_1 = Target_2, Target_2 = 'Top.e.e1',
Initiator_2 = 'Top.a.a1',
Crossings = ['Top.d.f.f2', 'Top.d.f.f1', 'Top.d.d3'].
```


Modeling for interference analysis

- Processeurs are (very) complex
 TC277, more than 5000 pages
- Documentation is developer-oriented
- Documentation is not always correct / complete

* How to ensure the completeness of the analysis?

- Identify "components", flows of transactions
- Capture elements using AADL
- Translate to Prolog
- Query Prolog

FRENCH INSTITUTES OF TECHNOLOGY

Modeling for interference analysis

- Processeurs are (very) complex
 TC277, more than 5000 pages
- Documentation is developer-oriented
- Documentation is not always correct / complete

* How to ensure the completeness of the analysis?

- Identify "components", flows of transactions
- Capture elements using AADL
- Translate to Prolog
- Query Prolog

How to improve the docs?
(standard format?)Provide micro-benchmarks?Use AI techniques?How to improve accuracy?

Using model checking

- Formal modeling of architecture using LNT and Fiacre
- Two methods
 - Patcheck
 - SynCheck

Using model checking

- Formal modeling of architecture using LNT and Fiacre
- Two methods
 - * Patcheck
 - SynCheck

Without interference

With interference

... REQUEST_ISSUED IR1 REQUEST_SELECTED IR2 REQUEST_SELECTED IR1 ...

Using model checking

- Formal modeling of architecture using LNT and Fiacre
- Two methods
 - Patcheck
 - * SyncCheck

Using model checking

- Formal modeling of architecture using LNT and Fiacre
- Two methods
 - Patcheck
 - * SyncCheck

How to build the model?

How to trust the model?

Identify interferences

Using simulation

- Using the VLAB virtual platform
 - Timing modeling is not extremely accurate (this is not a cycle accurate simulator)
 - Identification of multiple transactions in the same time interval.

ħ

FRENCH INSTITUTES OF TECHNOLOGY

Identify time-sensitive code

- Example: early empirical cachesensitivity analys
- QEMU model
- First, provide cache usage data

Identify timle-sensitive code

- Example: early empirical cachesensitivity analys
- QEMU model
- First, provide cache usage data
- Application
 - Xilinx ZCU102 Board, with a single core cortex-r5
 - Running Polybench collection

Fig. 6: Runtime overhead compared to vanilla QEMU

Average Relative Error: 3.27%

Fig. 5: Total number of misses

Identify timle-sensitive code

- Example: early empirical cachesensitivity analys
- QEMU model
- First, provide cache usage data
- Application
 - Xilinx ZCU102 Board, with a single core cortex-r5
 - Running Polybench collection
- Second, provide user-level data

void consumer0::thread() { 64 65 66 unsigned int array[SIZE][SIZE], copy[SIZE][SIZE] = {0}; 67 68 69 70 while(1) { 71 ReadData(); 72 73 for (unsigned int i = 0 ; i < SIZE ; i++) { 74 75 for (unsigned int j = 0 ; j < SIZE ; j++) { 77 78 copy[i][j] = array[i][j]; 79 88 81 82 83 84 SendResult(); 85 86 87

copy[i][j] = array[i][j];

Lines [76;80] -> 88% hits, 12% misses
Lines [74;82] -> 86% hits, 14% misses
Lines [70;86] -> 50% hits, 50% misses

copy[j][i] = array[j][i];

Lines [76;80] -> <mark>98% hits</mark> , 2% misses
Lines [74;82] -> 100% hits, 0% misses
Lines [70;86] -> 50% hits, 50% misses

PoC limited to caches

Provide user-level data about interferences

On synchronous code

- ✤ On Lustre code
 - Application to INRIA's LOPHT tool (KAIROS)
 - Reduction of DDR page changes

Each call induce - Instructions pipeline break (at core level) - usually a DDR page change - Linear code instructions - DDR page change only when code size oversize a page - Require a timed-triggered OS

On synchronous code

- ✤ On Lustre code
 - Application to INRIA's LOPHT tool (KAIROS)
 - Reduction of DDR page changes
 - Reduction of flash-level interferences using prefetching (on-going work)

On synchronous code

- ✤ On Lustre code
 - Application to INRIA's LOPHT tool (KAIROS)
 - Reduction of DDR page changes
 - Reduction of flash-level interferences using prefetching (on-going work)
- On PsyC code (ASTERIOS)
 - Prevent simultaneous accesses to resources

04/06/2021

Static WCET analysis

Building the model

✤ A tedious activity...

	Instructions vs cycle			0	1	2	3	4	5	6	7	8	9
1	mtcr 0xfc00,d15	FE	DE	<u>EX1</u>	EX2								
2	movh.a a2,0x7000		FE	DE	<u>EX1</u>	EX2							
3	st.w [a2] 0, d8			FE	DE	EX1	<u>EX2</u>						
4	st.w [a2] 16, d8				FE	DE	EX1	<u>EX2</u>					
5	st.w [a2] 32, d8					FE	DE	EX1	<u>EX2</u>				
6	ld.w d8,[a2] 64						FE	DE	EX1	<u>EX2</u>			
7	add d7, d8, d5							FE	DE		<u>EX1</u>	EX2	
8	mov d0,0								FE		DE	<u>EX1</u>	EX2
9	mtcr 0xfc00,d0										FE	DE	<u>EX1</u>

SBO			7000	7016	7032				
SB1				7000	7016	7032			
SB2					7000	7016	7032		
SB3						7000	7016	7032	
Memory Access						r7064	w7000	w7016	w7032

Better documentation?

Documentation for timing analysis?

Static WCET analysis

How to gain confidence on the tool

- ✤ Two levels verification
 - Verifying the ISS
 - ISS generated from NMP files used to decode instructions in OTAWA
 - First step to support a new architecture
 - Compare the "processor state" between TSIM and OTAWA-ISS
 - Register values
 - Memory accesses
 - · Verifying the abstract model
 - Is the value/address analysis correctly implemented?
 - Are "semantic instructions" correctly implemented for TriCore

Reduce cost of analysis

How to trade-off accuracy and cost

- WCET analyzers based on AI are costly to develop
- Can we focus the effort on the most "pertinent" parts of the component (the one with the highest contribution)?

Predictability by construction

How to build a predictable platform?

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Deploy functions to hardware

Deploy to FPGA

- Leverage SoCs embedding FPGAs (Zynq, Dahlia, etc.)
- Exploit parallelism
- By product of performance enhancement
- Example: OpenMP to HW

Deploy functions to hardware

04/06/2021

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Needs a FPGA...

... usually dedicated to other demanding computations...

Deploy functions to hardware

New issues with parallelism

- Parallelism raises "new" issues with respect to determinism
 - Deadlocks
 - ✤ Race conditions...
- Parallelization frameworks generally not designecd for safety critical systems...

Provide a "deterministic" version OpenMP

Prevent / detect nondeterministic effects

Determinism by contruction

Use the PL to implement a timinganalysis friendly processor

- Split the problem (not every processing have the same level of temporal requirements...)
- Deploy time-critical function on deterministic processors
- Example: Berkeley's FlexPRET
- Combination of FlexPRET and synchronous execution model (Lustre/LOPHT and ForeC)

Berkeley's FlexPRET (M. Zimmer's PhD thesis)

Pipeline shared by hard and soft and HW threads

Performances?

"Exotic" architecture...

Conclusion

Things are getting clearer...

But problems are getting more (and more) complicated...

But there is still quite a lot of work to be done (see all the boxes of the presentation)

✤ Guidance is still missing for industrial partners: Which approach shall I use to use for what result and with what confidence on the result?...

References

04/06/2<mark>021</mark>

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

Publications

Interference analysis

- W.-T. Sun, E. Jenn, H. Cassé, and T. Carle, 'Automatic Identification of Timing Interferences on Multi-Core Processor in a Model-Based Approach', presented at the COMPAS 2019, Anglet, 28/6 2019.
- V. A. Nguyen, E. Jenn, W. Serwe, F. Lang, and R. Mateescu, 'Using Model Checking to Identify Timing Interferences on Multicore Processors', in 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France, Available at <u>https://hal.inria.fr/hal-02462085</u>
- A. Ferlin, E. Jenn, and M. Kaufmann, 'Accounting for interferences in the design of Time-Triggered Applications', in 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France, Jan. 2020, Accessed: Apr. 28, 2020.
 [Online]. Available: https://hal.archives-ouvertes.fr/hal-02469116.
- F. Guet, L. Santinelli, J. Morio, G. Phavorin, and E. Jenn, 'Toward Contention Analysis for Parallel Executing Real-Time Tasks', 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018), Barcelona, Spain, Jul. 2018

WCET analysis

- W.-T. Sun, E. Jenn, and H. Cassé, 'Validating static WCET analysis: a method and its application', presented at the 19th International Workshop on Worst-Case Execution Time Analysis, Stuttgart, Germany, Jul. 2019., Available at <u>https://drops.dagstuhl.de/opus/volltexte/2019/10771/</u>.
- W.-T. Sun, E. Jenn, and H. Cassé, 'Build Your Own Static WCET analyser: the Case of the Automotive Processor AURIX TC275', in 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France, Available at https://hal.archives-ouvertes.fr/hal-02507130

Publications

Parallel applications

- V.-A. Nguyen, W. Serwe, R. Mateescu, and E. Jenn, 'Hunting Superfluous Locks with Model Checking', in From Software Engineering to Formal Methods and Tools, and Back, vol. 11865, Springer Verlag, 2019, p. 416-432. Available at https://hal.inria.fr/hal-02314088
- R. Leconte, E. Jenn, G. Bois, and H. Guérard, 'Make Life Easier for Embedded Software Engineers Facing Complex Hardware Architectures' in 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France, Available at <u>https://hal.archives-ouvertes.fr/hal-02474476</u>

Deterministic multicores

- N. Hili, A. Girault, and E. Jenn, 'Worst-Case Reaction Time Optimization on Deterministic Multi-Core Architectures with Synchronous Languages', presented at the 25th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, Hangzhou, China, Aug. 2019.
- A. Girault, N. Hili, E. Jenn, and E. Yip, 'A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores', presented at the Forum Design Language, Southampton, United Kigdom

Simulation

C. Deschamps, M. Burton, E. Jenn, and F. Pétrot, 'Gathering Memory Hierarchy Statistics in QEMU', DVCON 2020, (virtual conference), Oct. 2020

04/06/2021