
Introduction Assumptions On Shoup’s lemma The proof Conclusion

Automatically Verified Mechanized Proof of
One-Encryption Key Exchange

Bruno Blanchet
blanchet@di.ens.fr

INRIA, École Normale Supérieure, CNRS, Paris

January 2012

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 1 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Motivation

OEKE (One-Encryption Key Exchange) [Bresson, Chevassut,
Pointcheval, CCS’03]:

Variant of EKE (Encrypted Key Exchange)
A password-based key exchange protocol.
A non-trivial protocol.
It took some time before getting a computational proof of this protocol.

Our goal:

Mechanize, and automate as far as possible, its proof using the
automatic computational protocol verifier CryptoVerif.
This is an opportunity for several interesting extensions of CryptoVerif.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 2 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Proofs by sequences of games

Proofs in the computational model are typically proofs by sequences of
games [Shoup, Bellare&Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 3 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

CryptoVerif background: Indistinguishability

The game G interacting with an adversary (evaluation context) C is
denoted C [G].

C [G] may execute events, collected in a sequence E .

A distinguisher D takes as input E and returns true or false.

Example: De(E) = true if and only if e ∈ E . De is abbreviated e.

Pr[C [G] : D] is the probability that C [G] executes E such that
D(E) = true.

Definition (Indistinguishability)

We write G ≈V
p G ′ when, for all evaluation contexts C acceptable for G

and G ′ with public variables V and all distinguishers D,

|Pr[C [G] : D]− Pr[C [G ′] : D]| ≤ p(C , D).

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 4 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Properties of indistinguishability

Lemma

1 Reflexivity: G ≈V
0 G .

2 Symmetry: ≈V
p is symmetric.

3 Transitivity: if G ≈V
p G ′ and G ′ ≈V

p′ G ′′, then G ≈V
p+p′ G ′′.

4 Application of context: if G ≈V
p G ′ and C is an evaluation context

acceptable for G and G ′ with public variables V , then
C [G] ≈V ′

p′ C [G ′], where p′(C ′, D) = p(C ′[C []], D) and
V ′ ⊆ V ∪ var(C).

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 5 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

OEKE

Client U Server S

shared pw

x
R← [1, q − 1]

X ← g x U,X−−→ y
R← [1, q − 1]

Y ← g y

Y ← Dpw (Y ∗)
S ,Y ∗←−−− Y ∗ ← Epw (Y)

KU ← Y x

Auth← H1(U||S ||X ||Y ||KU)

skU ← H0(U||S ||X ||Y ||KU)
Auth−−−→ KS ← X y

if Auth = H1(U||S ||X ||Y ||KS) then
skS ← H0(U||S ||X ||Y ||KS)

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 6 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

OEKE

The proof relies on the Computational Diffie-Hellman assumption and
on the Ideal Cipher Model.

⇒ Model these assumptions in CryptoVerif.

The proof uses Shoup’s lemma:

Insert an event and later prove that the probability of this event is
negligible.
⇒ Implement this reasoning technique in CryptoVerif.

The probability of success of an attack must be precisely evaluated as
a function of the size of the password space.

⇒ Optimize the computation of probabilities in CryptoVerif.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 7 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Computational Diffie-Hellman assumption

Consider a multiplicative cyclic group G of order q, with generator g .
A probabilistic polynomial-time adversary has a negligible probability of
computing gab from g , ga, gb, for random a, b ∈ Zq.

In CryptoVerif, this can be written

!i≤N new a : Z ; new b : Z ; (OA() := exp(g , a), OB() := exp(g , b),

!i
′≤N′OCDH(z : G) := z = exp(g , mult(a, b)))

≈
!i≤N new a : Z ; new b : Z ; (OA() := exp(g , a), OB() := exp(g , b),

!i
′≤N′OCDH(z : G) := false)

Application: semantic security of hashed El Gamal in the random oracle
model (A. Chaudhuri).

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 8 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order q, with generator g .
A probabilistic polynomial-time adversary has a negligible probability of
computing gab from g , ga, gb, for random a, b ∈ Zq.

In CryptoVerif, this can be written

!i≤N new a : Z ; new b : Z ; (OA() := exp(g , a), OB() := exp(g , b),

!i
′≤N′OCDH(z : G) := z = exp(g , mult(a, b)))

≈
!i≤N new a : Z ; new b : Z ; (OA() := exp(g , a), OB() := exp(g , b),

!i
′≤N′OCDH(z : G) := false)

Application: semantic security of hashed El Gamal in the random oracle
model (A. Chaudhuri).

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 8 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order q, with generator g .
A probabilistic polynomial-time adversary has a negligible probability of
computing gab from g , ga, gb, for random a, b ∈ Zq.

In CryptoVerif, this can be written

!i≤N new a : Z ; new b : Z ; (OA() := exp(g , a), OB() := exp(g , b),

!i
′≤N′OCDH(z : G) := z = exp(g , mult(a, b)))

≈
!i≤N new a : Z ; new b : Z ; (OA() := exp(g , a), OB() := exp(g , b),

!i
′≤N′OCDH(z : G) := false)

Application: semantic security of hashed El Gamal in the random oracle
model (A. Chaudhuri).

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 8 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Computational Diffie-Hellman assumption in CryptoVerif

This model is not sufficient for OEKE and other practical protocols.

It assumes that a and b are chosen under the same replication.

In practice, one participant chooses a, another chooses b,
so these choices are made under different replications.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 9 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Extending the formalization of CDH in CryptoVerif

!ia≤na new a : Z ; (OA() := exp(g , a), Oa() := a,

!iaCDH≤naCDHOCDHa(m : G , j ≤ nb) := m = exp(g , mult(b[j], a))),

!ib≤nb new b : Z ; (OB() := exp(g , b), Ob() := b,

!ibCDH≤nbCDHOCDHb(m : G , j ≤ na) := m = exp(g , mult(a[j], b)))
≈

!ia≤na new a : Z ; (OA() := exp(g , a), Oa() := a,

!iaCDH≤naCDHOCDHa(m : G , j ≤ nb) :=

if Ob[j] or Oa has been called then

m = exp(g , mult(b[j], a))

else false),

!ib≤nb new b : Z ; (OB() := exp(g , b), Ob() := b,

!ibCDH≤nbCDHOCDHb(m : G , j ≤ na) := (symmetric of OCDHa))

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 10 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Extending the formalization of CDH in CryptoVerif

!ia≤Na new a : Z ; (OA() := exp(g , a), Oa() := a,

!iaCDH≤naCDHOCDHa(m : G , j ≤ Nb) := m = exp(g , mult(b[j], a))),

!ib≤Nb new b : Z ; (OB() := exp(g , b), Ob() := b,

!ibCDH≤nbCDHOCDHb(m : G , j ≤ Na) := m = exp(g , mult(a[j], b)))
≈

!ia≤Na new a : Z ; (OA() := exp(g , a), Oa() := let ka = mark in a,

!iaCDH≤naCDHOCDHa(m : G , j ≤ Nb) :=

find u ≤ nb suchthat defined(kb[u], b[u]) ∧ b[j] = b[u] then

m = exp(g , mult(b[j], a))

else if defined(ka) then m = exp(g , mult(b[j], a)) else false),

!ib≤Nb new b : Z ; (OB() := exp(g , b), Ob() := let kb = mark in b,

!ibCDH≤nbCDHOCDHb(m : G , j ≤ Na) := (symmetric of OCDHa))

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 11 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Extending the formalization of CDH in CryptoVerif

!ia≤Na new a : Z ; (OA() := exp(g , a), Oa()[3] := a,

!iaCDH≤naCDHOCDHa(m : G , j ≤ Nb)[useful change] := m = exp(g , mult(b[j], a))),

!ib≤Nb new b : Z ; (OB() := exp(g , b), Ob()[3] := b,

!ibCDH≤nbCDHOCDHb(m : G , j ≤ Na) := m = exp(g , mult(a[j], b)))
≈ (#OCDHa+#OCDHb)×max(1,e2#Oa)×max(1,e2#Ob)×

pCDH(time+(na+nb+#OCDHa+#OCDHb)×time(exp))

!ia≤Na new a : Z ; (OA() := exp′(g , a), Oa() := let ka = mark in a,

!iaCDH≤naCDHOCDHa(m : G , j ≤ Nb) :=

find u ≤ nb suchthat defined(kb[u], b[u]) ∧ b[j] = b[u] then

m = exp(g , mult(b[j], a))

else if defined(ka) then m = exp′(g , mult(b[j], a)) else false),

!ib≤Nb new b : Z ; (OB() := exp′(g , b), Ob() := let kb = mark in b,

!ibCDH≤nbCDHOCDHb(m : G , j ≤ Na) := (symmetric of OCDHa))
Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 11 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Other declarations for Diffie-Hellman (1)

g : G generator of G
exp(G , Z) : G exponentiation
mult(Z , Z) : Z commutative product in Zq

exp(exp(z , a), b) = exp(z , mult(a, b)) (za)b = zab

(ga)b = gab and (gb)a = gba, equal by commutativity of mult

(exp(g , x) = exp(g , y)) = (x = y)
(exp′(g , x) = exp′(g , y)) = (x = y)

Injectivity

new x1 : Z ; new x2 : Z ; new x3 : Z ; new x4 : Z ;
mult(x1, x2) = mult(x3, x4) ≈1/|Z | false

(mult(x , y) = mult(x , y ′)) = (y = y ′)
Collision between products

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 12 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Other declarations for Diffie-Hellman (2)

!i≤Nnew X : G ; OX () := X

≈0 [manual] !i≤Nnew x : Z ; OX () := exp(g , x)

This equivalence is very general, apply it only manually.

!i≤Nnew X : G ; (OX () := X , !i
′≤N′OXm(m : Z)[useful change] := exp(X , m))

≈0

!i≤Nnew x : Z ; (OX () := exp(g , x), !i
′≤N′OXm(m : Z) := exp(g , mult(x , m)))

This equivalence is a particular case applied only when X is inside exp,
and good for automatic proofs.

!i≤Nnew x : Z ; OX () := exp(g , x)

≈0 !i≤Nnew X : G ; OX () := X

And the same for exp′.
Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 13 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Extensions for CDH

The implementation of the support for CDH required two extensions of
CryptoVerif:

An array index j occurs as argument of a function.

extend the language of equivalences used for specifying assumptions on
primitives.

The equality test m = exp(g , mult(b, a)) typically occurs inside the
condition of a find.

This find comes from the transformation of a hash function in the
Random Oracle Model.

After transformation, we obtain a find inside the condition of a find.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 14 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

The Ideal Cipher Model

For all keys, encryption and decryption are two inverse random
permutations, independent of the key.

Some similarity with SPRP ciphers but, for the ideal cipher model, the
key need not be random and secret.

In CryptoVerif, we replace encryption and decryption with lookups in
the previous computations of encryption/decryption:

If we find a matching previous encryption/decryption, we return the
previous result.
Otherwise, we return a fresh random number.
We eliminate collisions between these random numbers to obtain
permutations.

No extension of CryptoVerif is needed to represent the Ideal Cipher
Model.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 15 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Shoup’s lemma

Goal: bound Pr[C [Go] : e0].

G0

l probability p
Gn

l Pr[C [Gn+1] : e]
Gn+1 event e

l probability p′

Gn′ events e0 and e never executed

Pr[C [G0] : e0] ≤ p + Pr[C [Gn+1] : e] + p′

≤ p + p′ + p′

≤ p + 2p′

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 16 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Improved version of Shoup’s lemma

Goal: bound Pr[C [G0] : e0].

G0

l probability p
Gn

l differ only when e is executed
Gn+1 event e

l probability p′

Gn′ events e0 and e never executed

Pr[C [G0] : e0] ≤ p + Pr[C [Gn] : e0]

≤ p + Pr[C [Gn+1] : e0 ∨ e]

≤ p + p′ + Pr[C [Gn′] : e0 ∨ e]

≤ p + p′

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 17 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Improved Shoup’s lemma

Lemma

Let C be a context acceptable for G and G ′ with public variables V .

1 Improved Shoup’s lemma:
If G ′ differs from G only when G ′ executes event e, then
Pr[C [G] : D] ≤ Pr[C [G ′] : D ∨ e].

2 If G ≈V
p G ′, then Pr[C [G] : D] ≤ p(C , D) + Pr[C [G ′] : D].

3 Pr[C [G] : D ∨ D ′] ≤ Pr[C [G] : D] + Pr[C [G] : D ′].

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 18 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Definition of secrecy

Definition (Secrecy)

Let x be a one-dimensional array.
Let Rx be a process that

chooses a bit b;

provides test queries that, on input u, return x [u] when b = 1 and a
random value y [u] when b = 0;

expects a value b′ from the adversary and executes event S when
b′ = b.

Let C be a context acceptable for G | Rx without public variables that
does not contain S.

Adv
secrecy(x)
G (C) = 2 Pr[C [G | Rx] : S]− 1

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 19 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Definition of secrecy

Definition (Secrecy)

Let x be a one-dimensional array.
Let Rx be a process that

chooses a bit b;

provides test queries that, on input u, return x [u] when b = 1 and a
random value y [u] when b = 0;

expects a value b′ from the adversary and executes event S when
b′ = b.

Let C be a context acceptable for G | Rx without public variables that
does not contain S.

Adv
secrecy(x)
G (C) = 2 Pr[C [G | Rx] : S]− 1

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 19 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Proof of secrecy

Goal: secrecy of x in G0

G0 | Rx

l probability p
Gn | Rx secrecy proved: Pr[C [Gn | Rx] : S] = 1

2

Adv
secrecy(x)
G0

(C) = 2 Pr[C [G0 | Rx] : S]− 1

≤ 2(p + Pr[C [Gn | Rx] : S])− 1

≤ 2p

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 20 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Proof of secrecy with Shoup’s lemma

G0 | Rx goal: secrecy of x in G0

l probability p
Gn | Rx

l differ only when e is executed
Gn+1 | Rx event e

l probability p′

Gn′ | Rx secrecy proved: Pr[C [Gn′ | Rx] : S] = 1
2

l probability p′′

Gn′′ | Rx event e never executed

Adv
secrecy(x)
G0

(C) ≤ 2(p + Pr[C [Gn | Rx] : S])− 1

≤ 2(p + Pr[C [Gn+1 | Rx] : S ∨ e])− 1

≤ 2(p + p′ + Pr[C [Gn′ | Rx] : S ∨ e])− 1

≤ 2(p + p′ + Pr[C [Gn′ | Rx] : e]) ≤ 2(p + p′ + p′′)

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 21 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Improved proof of secrecy with Shoup’s lemma

G0 | Rx goal: secrecy of x in G0

l probability p
Gn | Rx

l differ only when e is executed
Gn+1 | Rx event e

l probability p′

Gn′ | Rx
secrecy proved: Pr[C [Gn′ | Rx] : S] = 1

2
event e is independent of S

l probability p′′

Gn′′ | Rx event e never executed

Adv
secrecy(x)
G0

(C) ≤ 2(p + p′ + Pr[C [Gn′ | Rx] : S ∨ e])− 1

≤ 2(p + p′ +
1

2
Pr[C [Gn′ | Rx] : e]) ≤ 2(p + p′) + p′′

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 22 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Improved proof of secrecy with Shoup’s lemma

Lemma

If CryptoVerif proves the secrecy of x in game G , and e1, . . . , en are events
introduced by Shoup’s lemma in previous steps of the proof, then

Pr[C [G | Rx] : S ∨ e1 ∨ · · · ∨ en] ≤ 1

2
+

1

2
Pr[C [G | Rx] : e1 ∨ · · · ∨ en].

Events e1, . . . , en are independent of S.

Pr[C [G] : S ∨ e1 ∨ · · · ∨ en]

= Pr[C [G] : S] + Pr[C [G] : ¬S ∧ (e1 ∨ · · · ∨ en)]

=
1

2
+ Pr[C [G] : ¬S] Pr[C [G] : e1 ∨ · · · ∨ en]

=
1

2
+

1

2
Pr[C [G] : e1 ∨ · · · ∨ en]

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 23 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Impact on OEKE: Notations

dictionary size N

NU client instances under active attack

NS server instances under active attack

NP sessions under passive attack

qh hash queries

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 24 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Impact on OEKE: semantic security

Standard computation of probabilities:

Advake
G0

(C) ≤ 4NS + 2NU

N
+ 8qh × Succcdh

G (t ′) + collision terms

Improved computation of probabilities:

Advake
G0

(C) ≤ NS + NU

N
+ qh × Succcdh

G (t ′) + collision terms

The adversary can test one password per session with the parties.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 25 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Impact on OEKE: one-way authentication

Standard computation of probabilities:

Advc−auth
G0

(C) ≤ 2NS + NU

N
+ 3qh × Succcdh

G (t ′) + collision terms

Improved computation of probabilities:

Advc−auth
G0

(C) ≤ NS + NU

N
+ qh × Succcdh

G (t ′) + collision terms

The adversary can test one password per session with the parties.

This remark is general: it is not specific to OEKE or to CryptoVerif, and
can be used in any proof by sequences of games.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 26 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

CryptoVerif input

CryptoVerif takes as input:

The assumptions on security primitives: CDH, Ideal Cipher Model,
Random Oracle Model.

These assumptions are formalized in a library of primitives. The user
does not have to redefine them.

The initial game that represents the protocol OEKE:

Code for the client
Code for the server
Code for sessions in which the adversary listens but does not modify
messages (passive eavesdroppings)
Encryption, decryption, and hash oracles

The security properties to prove:

Secrecy of the keys skU and skS

Authentication of the client to the server

Manual proof indications (see next slide)

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 27 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Manual proof indications

1 The proof uses two events corresponding to the two cases in which
the adversary can guess the password:

The adversary impersonates the server by encrypting a Y of its choice
under the right password pw , and sending it to the client.
The adversary impersonates the client by sending a correct
authenticator Auth that it has built to the server.

First, one uses manual proof indications to manually insert these two
events.

CryptoVerif cannot guess where events should be inserted.

2 After that, one runs the automatic proof strategy of CryptoVerif.

3 Finally, one uses manual tranformations to eliminate uses of the
password.

All manual commands are checked by CryptoVerif, so that an incorrect
proof cannot be produced.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 28 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Uses of the password after automatic transformations

Goal: in the final game, the password is not used at all.

The encryptions/decryptions under the password pw are transformed
into lookups that compare pw to keys used in other
encryption/decryption queries.

After the automatic game transformations, the (random) result of
some of these encryptions/decryptions is used only in comparisons
with previous encryption/decryption queries.
We remove the corresponding lookups that compare with pw , using
manual transformations.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 29 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Delaying random choices: YU (1)

Client U

. . .
YU ← Dpw (Y ∗U)
KU ← Y x

U

Auth← H1(U||S ||X ||YU ||KU)
skU ← H0(U||S ||X ||YU ||KU)

Decryption oracle

(m, kd) 7→ return Dkd(m)

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 30 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Delaying random choices: YU (2)

Client U

. . .
find Dpw (Y ∗U) or Epw (·) = Y ∗U in previous queries then . . .

else YU
R← G ; Auth

R← H1; skU
R← H0

Decryption oracle

(m, kd) 7→ find Dkd(m) or Ekd(·) = m in previous queries then . . .

else Yd
R← G ; return Yd

⇒ YU used only in comparisons with previous queries.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 31 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Delaying random choices (3)

move array YU : Move the choice of YU to the point at which it is
used.
In OEKE, this point is the decryption oracle.
This oracle can return two randomly chosen values:

the one that comes from the delayed choice of YU , Y ′U ,
the one that comes from fresh decryption queries, Yd .

After simplification, we have a find with several branches that
execute the same code up to variable names (Y ′U vs. Yd).

Merge these branches, thus removing the test of the find, which
included the comparison with pw .

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 32 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Delaying random choices (4)

move array YU : Move the choice of YU to the point at which it is
used.
After simplification, we have a find with several branches that
execute the same code up to variable names (Y ′U vs. Yd).

Client U

find Dpw (Y ∗U) or Epw (·) = Y ∗U in previous queries then . . .

else Auth
R← H1; skU

R← H0

Decryption oracle

(m, kd) 7→ find Dkd(m) or Ekd(·) = m in previous queries then . . .
else find j suchthat m = Y ∗U [j] ∧ kd = pw

then Y ′U
R← G ; return Y ′U

else Yd
R← G ; return Yd

Merge these branches, thus removing the test of the find, which
included the comparison with pw .

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 32 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Delaying random choices (5)

move array YU : Move the choice of YU to the point at which it is
used.

After simplification, we have a find with several branches that
execute the same code up to variable names (Y ′U vs. Yd).

Merge these branches, thus removing the test of the find, which
included the comparison with pw .
Delicate because the code differs by the variable names (Y ′U vs. Yd)
and there exist finds on these variables.

1 move binder r1: reorder instructions so that they are in the same
order in the branches to merge.

2 merge arrays Yd Y ′U : merge the array Y ′U into Yd .
3 merge branches: merge the branches of find themselves.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 32 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Delaying random choices

move array, merge arrays, and merge branches are new game
transformations.

Similar technique for two other random values:

Y in the eavesdropped sessions,
Y in the server.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 33 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Final elimination of collisions with the password

After the previous steps:

We obtain a game in which the only uses of pw are:

Comparison between dec(Y ∗, pw) and an encryption query
c = enc(p, k) of the adversary: c = Y ∗ ∧ k = pw , in the client.
Comparison between Y = dec(Y ∗, pw) (obtained from
Y ∗ = enc(Y , pw)) and a decryption query p = dec(c , k) of the
adversary: p = Y ∧ k = pw , in the server.

We eliminate collisions between the password pw and other keys.

The difference of probability can be evaluated in two ways:
(qE + qD)/N

The password is compared with keys k from
qE encryption queries and qD decryption queries.
Dictionary size N.

(NU + NS)/N

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 34 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Final elimination of collisions with the password

After the previous steps:
We obtain a game in which the only uses of pw are:

Comparison between dec(Y ∗, pw) and an encryption query
c = enc(p, k) of the adversary: c = Y ∗ ∧ k = pw , in the client.
Comparison between Y = dec(Y ∗, pw) (obtained from
Y ∗ = enc(Y , pw)) and a decryption query p = dec(c , k) of the
adversary: p = Y ∧ k = pw , in the server.

We eliminate collisions between the password pw and other keys.
The difference of probability can be evaluated in two ways:

(qE + qD)/N
(NU + NS)/N

In the client, for each Y ∗, there is at most one encryption query with
c = Y ∗ so the password is compared with one key for each session of
the client.
Similar situation for the server.
NU client instances under active attack
NS server instances under active attack
Dictionary size N.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 34 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Final elimination of collisions with the password

After the previous steps:

We obtain a game in which the only uses of pw are:

Comparison between dec(Y ∗, pw) and an encryption query
c = enc(p, k) of the adversary: c = Y ∗ ∧ k = pw , in the client.
Comparison between Y = dec(Y ∗, pw) (obtained from
Y ∗ = enc(Y , pw)) and a decryption query p = dec(c , k) of the
adversary: p = Y ∧ k = pw , in the server.

We eliminate collisions between the password pw and other keys.

The difference of probability can be evaluated in two ways:

(qE + qD)/N
(NU + NS)/N

The second bound is the best: the adversary can make many
encryption/decryption queries without interacting with the protocol.

We extended CryptoVerif so that it can find the second bound.
We give it the information that the encryption/decryption queries are
non-interactive, so that it prefers the second bound.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 34 / 35

Introduction Assumptions On Shoup’s lemma The proof Conclusion

Conclusion

The case study of OEKE is interesting for itself, but it is even more
interesting by the extensions it required in CryptoVerif:

Treatment of the Computational Diffie-Hellman assumption.

New manual game transformations, in particular for inserting events
and merging branches of tests.

Optimization of the computation of probabilities for Shoup’s lemma.

Other optimizations of the computation of probabilities in
CryptoVerif.

These extensions are of general interest.

Bruno Blanchet (INRIA, ENS, CNRS) OEKE in CryptoVerif January 2012 35 / 35

	Introduction
	Assumptions
	On Shoup's lemma
	The proof
	Conclusion

