Automatically Verified Mechanized Proof of One-Encryption Key Exchange

Bruno Blanchet blanchet@di.ens.fr

INRIA, École Normale Supérieure, CNRS, Paris

January 2012

Introduction Assumptions On Shoup's lemma The proof Conclusion

Motivation

- OEKE (One-Encryption Key Exchange) [Bresson, Chevassut, Pointcheval, CCS'03]:
 - Variant of EKE (Encrypted Key Exchange)
 - A password-based key exchange protocol.
 - A non-trivial protocol.
 - It took some time before getting a computational proof of this protocol.
- Our goal:
 - Mechanize, and automate as far as possible, its proof using the automatic computational protocol verifier CryptoVerif.
 - This is an opportunity for several interesting extensions of CryptoVerif.

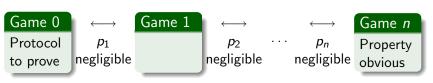
Introduction Assumptions On Shoup's lemma The proof Conclusion

Proofs by sequences of games

Proofs in the computational model are typically proofs by sequences of games [Shoup, Bellare&Rogaway]:

- The first game is the real protocol.
- One goes from one game to the next by syntactic transformations or by applying the definition of security of a cryptographic primitive.
 The difference of probability between consecutive games is negligible.
- The last game is "ideal": the security property is obvious from the form of the game.

(The advantage of the adversary is 0 for this game.)



 Introduction
 Assumptions
 On Shoup's lemma
 The proof
 Conclusion

CryptoVerif background: Indistinguishability

- The game G interacting with an adversary (evaluation context) C is denoted C[G].
- C[G] may execute events, collected in a sequence \mathcal{E} .
- A distinguisher D takes as input \mathcal{E} and returns **true** or **false**.
 - Example: $D_e(\mathcal{E}) =$ true if and only if $e \in \mathcal{E}$. D_e is abbreviated e.
- Pr[C[G] : D] is the probability that C[G] executes \mathcal{E} such that $D(\mathcal{E}) = \mathbf{true}$.

Definition (Indistinguishability)

We write $G \approx_p^V G'$ when, for all evaluation contexts C acceptable for G and G' with public variables V and all distinguishers D,

$$|\Pr[C[G]:D] - \Pr[C[G']:D]| \le p(C,D).$$

Properties of indistinguishability

Lemma

- Reflexivity: $G \approx_0^V G$.
- 2 Symmetry: \approx_p^V is symmetric.
- **1** Transitivity: if $G \approx_p^V G'$ and $G' \approx_{p'}^V G''$, then $G \approx_{p+p'}^V G''$.
- **●** Application of context: if $G \approx_p^V G'$ and C is an evaluation context acceptable for G and G' with public variables V, then $C[G] \approx_{p'}^{V'} C[G']$, where p'(C', D) = p(C'[C[]], D) and $V' \subset V \cup var(C)$.

OEKE

Client U

Server S

shared pw

$$\begin{array}{cccc} x \overset{R}{\leftarrow} [1,q-1] & & & & & & & & & & & & \\ & X \leftarrow g^{x} & \overset{U,X}{\longrightarrow} & y \overset{R}{\leftarrow} [1,q-1] & & & & & & & \\ & Y \leftarrow \mathcal{D}_{pw}(Y^{*}) & \overset{S,Y^{*}}{\longleftarrow} & Y^{*} \leftarrow \mathcal{E}_{pw}(Y) & & & & \\ & K_{U} \leftarrow Y^{x} & & & & & & & \\ & Auth \leftarrow \mathcal{H}_{1}(U||S||X||Y||K_{U}) & & & & & & & \\ & sk_{U} \leftarrow \mathcal{H}_{0}(U||S||X||Y||K_{U}) & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Introduction Assumptions On Shoup's lemma The proof Conclusion

OEKE

- The proof relies on the Computational Diffie-Hellman assumption and on the Ideal Cipher Model.
 - ⇒ Model these assumptions in CryptoVerif.
- The proof uses Shoup's lemma:
 - Insert an event and later prove that the probability of this event is negligible.
 - > Implement this reasoning technique in CryptoVerif.
- The probability of success of an attack must be precisely evaluated as a function of the size of the password space.
 - \Rightarrow Optimize the computation of probabilities in CryptoVerif.

ntroduction Assumptions On Shoup's lemma The proof Conclusion

Computational Diffie-Hellman assumption

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a , g^b , for random $a, b \in \mathbb{Z}_q$.

Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a , g^b , for random $a,b\in\mathbb{Z}_q$.

In CryptoVerif, this can be written

```
!^{i \le N} new a : Z; new b : Z; (OA() := exp(g, a), OB() := exp(g, b),
!^{i' \le N'} OCDH(z : G) := z = exp(g, mult(a, b)))
\approx
!^{i \le N} new a : Z; new b : Z; (OA() := exp(g, a), OB() := exp(g, b),
!^{i' \le N'} OCDH(z : G) := false)
```

troduction Assumptions On Shoup's lemma The proof Conclusion

Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a , g^b , for random $a,b\in\mathbb{Z}_q$.

In CryptoVerif, this can be written

```
!^{i \le N} new a : Z; new b : Z; (OA() := exp(g, a), OB() := exp(g, b),
!^{i' \le N'} OCDH(z : G) := z = exp(g, mult(a, b)))
\approx
!^{i \le N} new a : Z; new b : Z; (OA() := exp(g, a), OB() := exp(g, b),
!^{i' \le N'} OCDH(z : G) := false)
```

Application: semantic security of hashed El Gamal in the random oracle model (A. Chaudhuri).

4 D > 4 A > 4 B > 4 B > B = 900

troduction Assumptions On Shoup's lemma The proof Conclusion

Computational Diffie-Hellman assumption in CryptoVerif

This model is not sufficient for OEKE and other practical protocols.

- It assumes that a and b are chosen under the same replication.
- In practice, one participant chooses *a*, another chooses *b*, so these choices are made under different replications.

Extending the formalization of CDH in CryptoVerif

```
!^{ia \le na} new a : Z; (OA() := exp(g, a), Oa() := a,
     !^{iaCDH \leq naCDH} OCDHa(m : G, i \leq nb) := m = exp(g, mult(b[j], a))),
!^{b \le nb} new b : Z; (OB() := exp(g, b), Ob() := b,
     !^{ibCDH \leq nbCDH} OCDHb(m: G, j \leq na) := m = exp(g, mult(a[j], b)))
\approx
!^{ia \le na} new a : Z; (OA() := exp(g, a), Oa() := a,
     !^{iaCDH \leq naCDH} OCDHa(m:G,i \leq nb) :=
       if Ob[i] or Oa has been called then
          m = exp(g, mult(b[i], a))
       else false).
!^{ib \le nb} new b: Z; (OB() := exp(g, b), Ob() := b,
     !^{ibCDH \leq nbCDH} OCDHb(m: G, j \leq na) := (symmetric of OCDHa))
```

Extending the formalization of CDH in CryptoVerif

```
!^{ia \le Na} new a : Z : (OA() := exp(g, a), Oa() := a,
     !^{iaCDH \leq naCDH} OCDHa(m: G, j \leq Nb) := m = exp(g, mult(b[j], a))),
!^{ib \le Nb} new b: Z; (OB() := exp(g, b), Ob() := b,
     1^{ibCDH \leq nbCDH} OCDHb(m: G, j \leq Na) := m = exp(g, mult(a[j], b))
\approx
!^{ia \leq Na} new a: Z; (OA() := exp(g, a), Oa() := let ka = mark in a,
     !^{iaCDH \leq naCDH} OCDHa(m:G,i \leq Nb) :=
       find u \le nb suchthat defined(kb[u], b[u]) \land b[j] = b[u] then
          m = exp(g, mult(b[i], a))
       else if defined(ka) then m = exp(g, mult(b[j], a)) else false),
e^{ib \le Nb} new b : Z; (OB() := exp(g, b), Ob() := let kb = mark in b,
     !^{ibCDH \leq nbCDH} OCDHb(m : G, j \leq Na) := (symmetric of OCDHa))
```

January 2012

Extending the formalization of CDH in CryptoVerif

```
!^{ia \le Na} new a : Z; (OA() := exp(g, a), Oa()[3] := a,
     !^{iaCDH \leq naCDH} OCDHa(m: G, j \leq Nb)[useful\_change] := m = exp(g, multiplication)
!^{ib \le Nb} new b: Z; (OB() := exp(g, b), Ob()[3] := b,
     !^{ibCDH \leq nbCDH} OCDHb(m: G, j \leq Na) := m = exp(g, mult(a[j], b))
\approx (\#OCDHa + \#OCDHb) \times \max(1,e^2\#Oa) \times \max(1,e^2\#Ob) \times
   pCDH(time + (na + nb + \#OCDHa + \#OCDHb) \times time(exp))
!^{ia \leq Na} new a: Z; (OA() := exp'(g, a), Oa() := let ka = mark in a,
     !^{iaCDH \leq naCDH} OCDHa(m: G, j \leq Nb) :=
        find u \le nb suchthat defined(kb[u], b[u]) \land b[j] = b[u] then
          m = \exp(g, mult(b[i], a))
        else if defined(ka) then m = exp'(g, mult(b[j], a)) else false),
!^{ib \le Nb} new b : Z; (OB() := exp'(g, b), Ob() := let kb = mark in b,
     !^{ibCDH \leq nbCDH} OCDHb(m : G, j \leq Na) := (symmetric of OCDHa)
```

Bruno Blanchet (INRIA, ENS, CNRS)

OEKE in CryptoVerif

January 2012 11 / 35

Other declarations for Diffie-Hellman (1)

```
g : G
                                              generator of G
exp(G,Z):G
                                              exponentiation
mult(Z, Z) : Z commutative
                                              product in \mathbb{Z}_a
                                             (z^a)^b = z^{ab}
exp(exp(z, a), b) = exp(z, mult(a, b))
       (g^a)^b = g^{ab} and (g^b)^a = g^{ba}, equal by commutativity of mult
(exp(g,x) = exp(g,y)) = (x = y)
(exp'(g,x) = exp'(g,y)) = (x = y)
       Injectivity
new x1 : Z; new x2 : Z; new x3 : Z; new x4 : Z;
     mult(x1, x2) = mult(x3, x4) \approx_{1/|Z|} false
```

4 D > 4 A > 4 B > 4 B > B 90 0

(mult(x, y) = mult(x, y')) = (y = y')Collision between products ntroduction Assumptions On Shoup's lemma The proof Conclusion

Other declarations for Diffie-Hellman (2)

$$!^{i \leq N}$$
new $X : G; OX() := X$
 $\approx_0 [manual] !^{i \leq N}$ new $x : Z; OX() := exp(g, x)$

This equivalence is very general, apply it only manually.

$$!^{i \leq N}$$
 new $X : G$; $(OX() := X, !^{i' \leq N'} OXm(m : Z)[useful_change] := exp(X, m) \approx_0$

$$!^{i \leq N} \mathbf{new} \ x : Z; (\mathit{OX}() := \mathit{exp}(g,x), !^{i' \leq N'} \mathit{OXm}(m : Z) := \mathit{exp}(g, \mathit{mult}(x,m))$$

This equivalence is a particular case applied only when X is inside exp, and good for automatic proofs.

$$!^{i \le N}$$
 new $x : Z; OX() := exp(g,x)$
 $\approx_0 !^{i \le N}$ **new** $X : G; OX() := X$

And the same for exp'.

duction Assumptions On Shoup's lemma The proof Conclusion

Extensions for CDH

The implementation of the support for CDH required two extensions of CryptoVerif:

- An array index *j* occurs as argument of a function.
 - extend the language of equivalences used for specifying assumptions on primitives.
- The equality test m = exp(g, mult(b, a)) typically occurs inside the condition of a **find**.
 - This find comes from the transformation of a hash function in the Random Oracle Model.

After transformation, we obtain a find inside the condition of a find.

roduction **Assumptions** On Shoup's lemma The proof Conclusion

The Ideal Cipher Model

- For all keys, encryption and decryption are two inverse random permutations, independent of the key.
 - Some similarity with SPRP ciphers but, for the ideal cipher model, the key need not be random and secret.
- In CryptoVerif, we replace encryption and decryption with lookups in the previous computations of encryption/decryption:
 - If we find a matching previous encryption/decryption, we return the previous result.
 - Otherwise, we return a fresh random number.
 - We eliminate collisions between these random numbers to obtain permutations.
- No extension of CryptoVerif is needed to represent the Ideal Cipher Model.

Shoup's lemma

Goal: bound $Pr[C[G_o] : e_0]$.

```
G_0
\downarrow probability p
G_n
\downarrow \Pr[C[G_{n+1}]: e]
G_{n+1} event e
\downarrow \text{ probability } p'
G_{n'} events e_0 and e never executed
```

$$\Pr[C[G_0] : e_0] \le p + \Pr[C[G_{n+1}] : e] + p'$$

 $\le p + p' + p'$
 $\le p + 2p'$

troduction Assumptions On Shoup's lemma The proof Conclusion

Improved version of Shoup's lemma

Goal: bound $Pr[C[G_0] : e_0]$.

```
G_0
\downarrow probability p
G_n
\downarrow differ only when e is executed
G_{n+1} event e
\downarrow probability p'
G_{n'} events e_0 and e never executed
```

$$\Pr[C[G_0] : e_0] \le p + \Pr[C[G_n] : e_0]$$

 $\le p + \Pr[C[G_{n+1}] : e_0 \lor e]$
 $\le p + p' + \Pr[C[G_{n'}] : e_0 \lor e]$
 $\le p + p'$

Improved Shoup's lemma

Lemma

Let C be a context acceptable for G and G' with public variables V.

- **1** Improved Shoup's lemma: If G' differs from G only when G' executes event e, then Pr[C[G]:D] < Pr[C[G']:D ∨ e].
- $Pr[C[G]: D \vee D'] \leq Pr[C[G]: D] + Pr[C[G]: D'].$

troduction Assumptions On Shoup's lemma The proof Conclusion

Definition of secrecy

Definition (Secrecy)

Let x be a one-dimensional array.

Let R_{\times} be a process that

- chooses a bit b;
- provides test queries that, on input u, return x[u] when b=1 and a random value y[u] when b=0;
- expects a value b' from the adversary and executes event S when b' = b.

Let C be a context acceptable for $G \mid R_x$ without public variables that does not contain S.

$$Adv_G^{\text{secrecy}(x)}(C) = 2 \Pr[C[G \mid R_x] : S] - 1$$

- 4日 > 4日 > 4日 > 4日 > 4日 > 日 の 9

troduction Assumptions On Shoup's lemma The proof Conclusion

Definition of secrecy

Definition (Secrecy)

Let x be a one-dimensional array.

Let R_{\times} be a process that

- chooses a bit b;
- provides test queries that, on input u, return x[u] when b=1 and a random value y[u] when b=0;
- expects a value b' from the adversary and executes event S when b' = b.

Let C be a context acceptable for $G \mid R_x$ without public variables that does not contain S.

$$Adv_G^{\text{secrecy}(x)}(C) = \frac{2}{2} \Pr[C[G \mid R_x] : S] - 1$$

→□▶→□▶→□▶→□▶●●●○

Proof of secrecy

Goal: secrecy of x in G_0

$$G_0 \mid R_{\times}$$

probability p

$$G_n \mid R_x$$

secrecy proved: $Pr[C[G_n \mid R_x] : S] = \frac{1}{2}$

$$\mathsf{Adv}_{G_0}^{\mathsf{secrecy}(x)}(C) = 2 \Pr[C[G_0 \mid R_x] : \mathsf{S}] - 1$$

$$\leq 2(p + \Pr[C[G_n \mid R_x] : \mathsf{S}]) - 1$$

$$\leq 2p$$

Proof of secrecy with Shoup's lemma

```
G_0 \mid R_x goal: secrecy of x in G_0
\uparrow probability p

G_n \mid R_x
\uparrow differ only when e is executed

G_{n+1} \mid R_x event e
\uparrow probability p'

G_{n'} \mid R_x secrecy proved: \Pr[C[G_{n'} \mid R_x] : S] = \frac{1}{2}
\uparrow probability p''
G_{n''} \mid R_x event e never executed
```

$$\begin{aligned} \mathsf{Adv}^{\mathsf{secrecy}(x)}_{G_0}(C) &\leq 2(p + \mathsf{Pr}[C[G_n \mid R_x] : \mathsf{S}]) - 1 \\ &\leq 2(p + \mathsf{Pr}[C[G_{n+1} \mid R_x] : \mathsf{S} \lor e]) - 1 \\ &\leq 2(p + p' + \mathsf{Pr}[C[G_{n'} \mid R_x] : \mathsf{S} \lor e]) - 1 \\ &\leq 2(p + p' + \mathsf{Pr}[C[G_{n'} \mid R_x] : e]) \leq 2(p + p' + p'') \end{aligned}$$

Improved proof of secrecy with Shoup's lemma

```
G_0 \mid R_{\times}
                    goal: secrecy of x in G_0
            f probability p
|G_n|R_x
              differ only when e is executed
G_{n+1} \mid R_{x}
                   event e
              probability p'
                   secrecy proved: Pr[C[G_{n'} \mid R_x] : S] = \frac{1}{2}
G_{n'} \mid R_{\times}
                                        event e is independent of S
              probability p''
G_{n''} \mid R_x
                    event e never executed
```

$$\begin{aligned} \mathsf{Adv}_{G_0}^{\mathsf{secrecy}(x)}(C) &\leq 2(p + p' + \mathsf{Pr}[C[G_{n'} \mid R_x] : \mathsf{S} \lor e]) - 1 \\ &\leq 2(p + p' + \frac{1}{2}\,\mathsf{Pr}[C[G_{n'} \mid R_x] : e]) \leq 2(p + p') + p'' \end{aligned}$$

ntroduction Assumptions On Shoup's lemma The proof Conclusion

Improved proof of secrecy with Shoup's lemma

Lemma

If CryptoVerif proves the secrecy of x in game G, and e_1, \ldots, e_n are events introduced by Shoup's lemma in previous steps of the proof, then

$$\Pr[C[G \mid R_x] : \mathsf{S} \vee e_1 \vee \cdots \vee e_n] \leq \frac{1}{2} + \frac{1}{2}\Pr[C[G \mid R_x] : e_1 \vee \cdots \vee e_n].$$

Events e_1, \ldots, e_n are independent of S.

$$Pr[C[G] : S \lor e_1 \lor \cdots \lor e_n]$$

$$= Pr[C[G] : S] + Pr[C[G] : \neg S \land (e_1 \lor \cdots \lor e_n)]$$

$$= \frac{1}{2} + Pr[C[G] : \neg S] Pr[C[G] : e_1 \lor \cdots \lor e_n]$$

$$= \frac{1}{2} + \frac{1}{2} Pr[C[G] : e_1 \lor \cdots \lor e_n]$$

4 D > 4 A > 4 B > 4 B > B 9 Q C

Impact on OEKE: Notations

- dictionary size N
- N_U client instances under active attack
- N_S server instances under active attack
- N_P sessions under passive attack
- q_h hash queries

Impact on OEKE: semantic security

• Standard computation of probabilities:

$$\mathsf{Adv}^{\mathsf{ake}}_{G_0}(C) \leq rac{4 \mathcal{N}_S + 2 \mathcal{N}_U}{\mathcal{N}} + 8 q_h imes \mathsf{Succ}^{\mathsf{cdh}}_{\mathbb{G}}(t') + \mathsf{collision\ terms}$$

Improved computation of probabilities:

$$\mathsf{Adv}^{\mathsf{ake}}_{G_0}(C) \leq rac{N_S + N_U}{N} + q_h imes \mathsf{Succ}^{\mathsf{cdh}}_G(t') + \mathsf{collision}$$
 terms

• The adversary can test one password per session with the parties.

Impact on OEKE: one-way authentication

• Standard computation of probabilities:

$$\mathsf{Adv}_{G_0}^{\mathsf{c-auth}}(C) \leq \frac{2N_S + N_U}{N} + 3q_h \times \mathsf{Succ}_{\mathbb{G}}^{\mathsf{cdh}}(t') + \mathsf{collision\ terms}$$

Improved computation of probabilities:

$$\mathsf{Adv}_{G_0}^{\mathsf{c-auth}}(C) \leq \frac{\mathsf{N}_S + \mathsf{N}_U}{\mathsf{N}} + q_h \times \mathsf{Succ}_G^{\mathsf{cdh}}(t') + \mathsf{collision\ terms}$$

• The adversary can test one password per session with the parties.

This remark is general: it is not specific to OEKE or to CryptoVerif, and can be used in any proof by sequences of games.

troduction Assumptions On Shoup's lemma **The proof** Conclusion

CryptoVerif input

CryptoVerif takes as input:

- The assumptions on security primitives: CDH, Ideal Cipher Model, Random Oracle Model.
 - These assumptions are formalized in a library of primitives. The user does not have to redefine them.
- The initial game that represents the protocol OEKE:
 - Code for the client
 - Code for the server
 - Code for sessions in which the adversary listens but does not modify messages (passive eavesdroppings)
 - Encryption, decryption, and hash oracles
- The security properties to prove:
 - Secrecy of the keys sk_U and sk_S
 - Authentication of the client to the server
- Manual proof indications (see next slide)

troduction Assumptions On Shoup's lemma **The proof** Conclusion

Manual proof indications

- The proof uses two events corresponding to the two cases in which the adversary can guess the password:
 - The adversary impersonates the server by encrypting a Y of its choice under the right password pw, and sending it to the client.
 - The adversary impersonates the client by sending a correct authenticator Auth that it has built to the server.

First, one uses manual proof indications to manually insert these two events.

- CryptoVerif cannot guess where events should be inserted.
- After that, one runs the automatic proof strategy of CryptoVerif.
- Finally, one uses manual tranformations to eliminate uses of the password.

All manual commands are checked by CryptoVerif, so that an incorrect proof cannot be produced.

The proof

Uses of the password after automatic transformations

- Goal: in the final game, the password is not used at all.
- The encryptions/decryptions under the password pw are transformed into lookups that compare pw to keys used in other encryption/decryption queries.
- After the automatic game transformations, the (random) result of some of these encryptions/decryptions is used only in comparisons with previous encryption/decryption gueries. We remove the corresponding lookups that compare with pw, using
 - manual transformations.

Delaying random choices: Y_U (1)

Client U

$$Y_{U} \leftarrow \mathcal{D}_{pw}(Y_{U}^{*})$$

$$K_{U} \leftarrow Y_{U}^{\times}$$

$$Auth \leftarrow \mathcal{H}_{1}(U||S||X||Y_{U}||K_{U})$$

$$sk_{U} \leftarrow \mathcal{H}_{0}(U||S||X||Y_{U}||K_{U})$$

Decryption oracle

$$\overline{(m,kd)} \mapsto \mathbf{return} \ \mathcal{D}_{kd}(m)$$

Delaying random choices: $Y_U(2)$

Client U

. . .

find
$$\mathcal{D}_{pw}(Y_U^*)$$
 or $\mathcal{E}_{pw}(\cdot) = Y_U^*$ in previous queries **then** ... **else** $Y_U \overset{R}{\leftarrow} G$; Auth $\overset{R}{\leftarrow} H_1$; $sk_U \overset{R}{\leftarrow} H_0$

Decryption oracle

$$(m,kd)\mapsto$$
 find $\mathcal{D}_{kd}(m)$ or $\mathcal{E}_{kd}(\cdot)=m$ in previous queries then ... else $Y_d\stackrel{R}{\leftarrow}G$; return Y_d

 $\Rightarrow Y_U$ used only in comparisons with previous queries.

roduction Assumptions On Shoup's lemma **The proof** Conclusion

Delaying random choices (3)

• move array Y_U : Move the choice of Y_U to the point at which it is used.

In OEKE, this point is the decryption oracle. This oracle can return two randomly chosen values:

- the one that comes from the delayed choice of Y_U , Y'_U ,
- ullet the one that comes from fresh decryption queries, Y_d .
- After simplification, we have a **find** with several branches that execute the same code up to variable names $(Y'_U \text{ vs. } Y_d)$.
- Merge these branches, thus removing the test of the find, which included the comparison with pw.

roduction Assumptions On Shoup's lemma The proof Conclusion

Delaying random choices (4)

- move array Y_U : Move the choice of Y_U to the point at which it is used.
- After simplification, we have a find with several branches that execute the same code up to variable names (Y'_U vs. Y_d).
 Client U

find
$$\mathcal{D}_{pw}(Y_U^*)$$
 or $\mathcal{E}_{pw}(\cdot) = Y_U^*$ in previous queries **then** ... **else** $Auth \stackrel{R}{\leftarrow} H_1$; $sk_U \stackrel{R}{\leftarrow} H_0$

Decryption oracle

```
\begin{array}{c} (m,kd) \mapsto \textbf{find} \ \mathcal{D}_{kd}(m) \ \text{or} \ \mathcal{E}_{kd}(\cdot) = m \ \text{in previous queries then} \ \dots \\ & \textbf{else find} \ j \ \textbf{suchthat} \ m = Y_U^*[j] \land kd = pw \\ & \textbf{then} \ Y_U' \overset{R}{\leftarrow} G; \textbf{return} \ Y_U' \\ & \textbf{else} \ Y_d \overset{R}{\leftarrow} G; \textbf{return} \ Y_d \end{array}
```

• Merge these branches, thus removing the test of the **find**, which included the comparison with *pw*.

troduction Assumptions On Shoup's lemma **The proof** Conclusion

Delaying random choices (5)

- move array Y_U : Move the choice of Y_U to the point at which it is used.
- After simplification, we have a **find** with several branches that execute the same code up to variable names $(Y'_U$ vs. $Y_d)$.
- Merge these branches, thus removing the test of the **find**, which included the comparison with pw. Delicate because the code differs by the variable names $(Y'_U \text{ vs. } Y_d)$ and there exist **find**s on these variables.
 - move binder r1: reorder instructions so that they are in the same order in the branches to merge.
 - 2 merge_arrays Y_d Y_U' : merge the array Y_U' into Y_d .
 - merge_branches: merge the branches of find themselves.

roduction Assumptions On Shoup's lemma **The proof** Conclusion

Delaying random choices

- move array, merge_arrays, and merge_branches are new game transformations.
- Similar technique for two other random values:
 - Y in the eavesdropped sessions,
 - Y in the server.

33 / 35

Final elimination of collisions with the password

After the previous steps:

- We obtain a game in which the only uses of pw are:
 - Comparison between $dec(Y^*, pw)$ and an encryption query c = enc(p, k) of the adversary: $c = Y^* \land k = pw$, in the client.
 - Comparison between $Y = dec(Y^*, pw)$ (obtained from $Y^* = enc(Y, pw)$) and a decryption query p = dec(c, k) of the adversary: $p = Y \land k = pw$, in the server.
- We eliminate collisions between the password *pw* and other keys.
- The difference of probability can be evaluated in two ways:
 - $\bullet (q_E + q_D)/N$
 - The password is compared with keys k from q_E encryption queries and q_D decryption queries.
 - Dictionary size N.
 - $(N_U + N_S)/N$

Final elimination of collisions with the password

After the previous steps:

- We obtain a game in which the only uses of pw are:
 - Comparison between $dec(Y^*, pw)$ and an encryption query c = enc(p, k) of the adversary: $c = Y^* \land k = pw$, in the client.
 - Comparison between $Y = dec(Y^*, pw)$ (obtained from $Y^* = enc(Y, pw)$) and a decryption query p = dec(c, k) of the adversary: $p = Y \land k = pw$, in the server.
- We eliminate collisions between the password pw and other keys.
- The difference of probability can be evaluated in two ways:
 - $(q_E + q_D)/N$
 - $(N_U + N_S)/N$
 - In the client, for each Y^* , there is at most one encryption query with $c=Y^*$ so the password is compared with one key for each session of the client.
 - Similar situation for the server.
 - Nu client instances under active attack
 - N_S server instances under active attack
 - Dictionary size N.

Final elimination of collisions with the password

After the previous steps:

- We obtain a game in which the only uses of pw are:
 - Comparison between $dec(Y^*, pw)$ and an encryption query c = enc(p, k) of the adversary: $c = Y^* \land k = pw$, in the client.
 - Comparison between $Y = dec(Y^*, pw)$ (obtained from $Y^* = enc(Y, pw)$) and a decryption query p = dec(c, k) of the adversary: $p = Y \land k = pw$, in the server.
- We eliminate collisions between the password pw and other keys.
- The difference of probability can be evaluated in two ways:
 - $(q_E + q_D)/N$
 - $\bullet \ (N_U + N_S)/N$

The second bound is the best: the adversary can make many encryption/decryption queries without interacting with the protocol.

- We extended CryptoVerif so that it can find the second bound.
- We give it the information that the encryption/decryption queries are non-interactive, so that it prefers the second bound.

ntroduction Assumptions On Shoup's lemma The proof **Conclusion**

Conclusion

The case study of OEKE is interesting for itself, but it is even more interesting by the extensions it required in CryptoVerif:

- Treatment of the Computational Diffie-Hellman assumption.
- New manual game transformations, in particular for inserting events and merging branches of tests.
- Optimization of the computation of probabilities for Shoup's lemma.
- Other optimizations of the computation of probabilities in CryptoVerif.

These extensions are of general interest.

