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Motivation

Conditional Actions

An authority, or a server, may accept to process a request
under some conditions only:
Certification of public key: if the associated secret key is known
Transmission of private information:

if the receiver owns a credential
Blind signature on a message:

if the user knows the message (for the security proof)
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Motivation

Certification of Public Keys: ZKPoK

In the registered key setting, a user can ask for the certification of a
public key pk, but if he knows the associated secret key sk only:

With an Interactive Zero-Knowledge Proof of Knowledge
the user U sends his public key pk;
U and the authority A run a ZK proof of knowledge of sk
if convinced, A generates and sends the certificate Cert for pk

For extracting sk (required in some security proofs),
the reduction has to make a rewind
(that is not always allowed: e.g., in the UC Framework)
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Motivation

Certification of Public Keys: ZK and NIZK Proofs

In the registered key setting, a user can ask for the certification of a
public key pk, but if he knows the associated secret key sk only:

With an Interactive Zero-Knowledge Proof of Membership
the user U sends his public key pk, and an encryption C of sk;
U and the authority A run a ZK proof

that C contains the secret key sk associated to pk
if convinced, A generates and sends the certificate Cert for pk

With a Non-Interactive Zero-Knowledge Proof of Membership
the user U sends his public key pk, and an encryption C of sk

together with a NIZK proof
that C contains the secret key sk associated to pk

if convinced, A generates and sends the certificate Cert for pk
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Motivation

Certification of Public Keys: SPHF
[Abdalla, Chevalier, Pointcheval, 2009]

In the registered key setting, a user can ask for the certification of a
public key pk, but if he knows the associated secret key sk only:

With a Smooth Projective Hash Function
The user U and the authority A use a smooth projective hash system
for L: pk and C = E

pk′
(sk; r) are associated to the same sk

the user U sends his public key pk, and an encryption C of sk;
A generates the certificate Cert for pk, and sends it,

masked by Hash = Hash(hk; (pk,C));
U computes Hash = ProjHash(hp; (pk,C), r)), and gets Cert.

Implicit proof of knowledge of sk
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Smooth Projective Hash Functions

Smooth Projective Hash Functions [Cramer, Shoup, 2002]

Definition [Cramer, Shoup, 2002] [Gennaro, Lindell, 2003]

Let {H} be a family of functions:
X , domain of these functions
L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using
either a secret hashing key hk: H(x) = HashL(hk; x);
or a public projected key hp: H(x) = ProjHashL(hp; x ,w)

While the former works for all points in the domain X ,
the latter works for x ∈ L only, and requires a witness w to this fact.

Public mapping hk 7→ hp = ProjKGL(hk, x)
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Smooth Projective Hash Functions

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X :

Hard-Partitioned Subset
L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X \ L
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Applications

Examples

DH Language [Cramer, Shoup, 2002]

Lg,h = {(u, v)} such that (g,h,u, v) is DH tuple:
there exists r such that u = gr and v = hr

→ Public-key Encryption with IND-CCA Security

Algorithms

HashKG() = hk = (γ1, γ3)
$← Zq × Zq

ProjKG(hk) = hp = gγ1hγ3

Hash(hk, (u, v)) = uγ1vγ3 = hpr = ProjHash(hp, (u, v); r)
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Applications

Examples (Con’d)

Commitment/Encryption [Gennaro, Lindell, 2003]

Lpk,m = {c} such that c is an encryption of m under pk:
there exists r such that c = E

pk
(m; r)

→ Password-Authenticated Key Exchange in the Standard Model

Labeled Encryption [Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]

Lpk,(`,m) = {c} such that c is an encryption of m under pk, with label `

→ PAKE in the UC Framework (passive corruptions)

Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009]

Lpk,m = {c} such that c is a equivocable/extractable commitment of m

→ PAKE in the UC Framework secure against Active Corruptions
École Normale Supérieure David Pointcheval 10/34

Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption

Computational Assumptions

Assumptions: CDH and DLin

G a cyclic group of prime order p (with or without bilinear map).

Definition (The Computational Diffie-Hellman problem (CDH))
For any generator g $←G, and any scalars a,b $←Z∗p,

given (g,ga,gb), compute gab.

Decisional variant easy if a bilinear map is available.

Definition (Decision Linear Problem (DLin))
For any generator g $←G, and any scalars a,b, x , y , c $←Z∗p,

given (g,gx ,gy ,gxa,gyb,gc), decide whether c = a + b or not.

Equivalently, given a reference triple (u = gx , v = gy ,g)
and a new triple (U = ua = gxa,V = vb = gyb,T = gc),

decide whether T = ga+b or not (that is c = a + b).
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Signature & Encryption

General Tools: Signature

Definition (Signature Scheme)
S = (Setup,SKeyGen,Sign,Verif):

Setup(1k ) → global parameters param;
SKeyGen(param) → pair of keys (sk, vk);
Sign(sk,m; s) → signature σ, using the random coins s;
Verif(vk,m, σ) → validity of σ

Definition (Security: EF-CMA)
An adversary should not be able to generate
a new valid message-signature pair (Existential Forgery)
even when having access to any signature of its choice

(Chosen-Message Attack).
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Signature & Encryption

Signature: Waters

G = 〈g〉 = 〈h〉 group of order p, and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a k -bit message M = (Mi), we define F(M) = u0
∏k

i=1 uMi
i .

Keys: vk = Y = gx , sk = X = hx , for x $←Zp;
Sign(sk = X ,M; s), for M ∈ {0,1}k and s $←Zp
→ σ =

(
σ1 = X · F(M)s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether

e(g, σ1) · e(F(M), σ2) = e(Y ,h).

Security
Waters signature reaches EF-CMA under the CDH assumption
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Signature & Encryption

General Tools: Encryption

Definition (Encryption Scheme)
E = (Setup,EKeyGen,Encrypt,Decrypt):

Setup(1k ) → global parameters param;
EKeyGen(param) → pair of keys (pk,dk);
Encrypt(pk,m; r) → ciphertext c, using the random coins r ;
Decrypt(dk, c) → plaintext, or ⊥ if the ciphertext is invalid.

Definition (Security: IND-CPA)
An adversary should not be able to distinguish
the encrytion of m0 from the encryption of m1 (Indistinguishability)
whereas it can encrypt any message of its choice

(Chosen-Plaintext Attack).
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Signature & Encryption

Encryption: Linear

G = 〈g〉 group of order p

Linear Encryption [Boneh, Boyen, Shacham, 2004]

Keys: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Security
Linear encryption reaches IND-CPA under the DLin assumption
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Groth-Sahai Methodology

Groth-Sahai Proofs [Groth, Sahai, 2008]

For any pairing product equation of the form:
∏

e(Ai ,Xi)
αi
∏

e(Xi ,Xj)
γi,j = t ,

where the Ai ∈ G, and t ∈ GT are constant group elements,
αi ∈ Zp, and γi,j ∈ Zp are constant scalars, and Xi are unknowns

either group elements in G,
or of the form gxi ,

one can make a proof of knowledge of values for the Xi ’s or xi ’s
so that the equation is satisfied:

one first commits these secret values using random coins,
and then provides proofs, that are group elements, using the
above random coins,
→ Under the DLin assumption: Efficient NIZK
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Introduction

Electronic Cash

Electronic Coins [Chaum, 1981]

Expected properties:
coins are signed by the bank, for unforgeability
coins must be distinct to detect/avoid double-spending
the bank should not know to whom it gave a coin, for anonymity

Electronic Cash
The process is the following one:

Withdrawal: the user gets a signed coin c from the bank
Spending: the user spends a coin c in a shop
Deposit: the shop gives back the money to the bank

The coin is blindly signed by the bank
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Introduction

Blind RSA [Chaum, 1981]

The easiest way for blind signatures, is to blind the message:
To get an RSA signature on m under public key (n,e),

The user computes a blind version of the hash value:
M = H(m) and M ′ = M · re mod n

The signer signs M ′ into σ′ = M ′d mod n
The user unblinds the signature: σ = σ′/r mod n

Indeed,

σ = σ′/r = M ′d/r = (M · re)d/r = Md · r/r = Md mod n

→ Proven under the One-More RSA
[Bellare, Namprempre, Pointcheval, Semanko, 2001]
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Randomizable Commutative Signature/Encryption

Blind Signatures

Randomizable Commutative Signature/Encryption
[Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

The user ”blinds” M into C, under random coins r
The signer signs C into σ(C), under random coins s
The user ”unblinds” the signature σ(M), granted the coins r

Weakness
The signer can recognize his signature: the random coins s in σ(M)
→ Randomizable Signature

Security
Encryption hides M (blinding of the message)
Re-randomization hides σ(M) (blinding of the signature)
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Randomizable Commutative Signature/Encryption

Randomizable Commutative Signature/Encryption
[Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]
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Randomizable Commutative Signature/Encryption

Blind Signatures

Such a primitive can be used for a Waters Blind Signature,
by encrypting F(M):

Unforgeability: one-more forgery would imply a forgery
against the signature scheme (CDH assumption)

Blindness: a distinguisher would break indistinguishability
of the encryption scheme (DLin assumption)

Efficiency
One obtains a plain Waters Signature

Limitation
A proof of knowledge of M in C = Epk(F(M)) has to be sent

for the security proof: Groth-Sahai NIZK!
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Randomizable Commutative Signature/Encryption

Blind Signature [Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

In order to get the `-bit message M = {Mi} blindly signed:

With Groth-Sahai NIZKP
the user U encrypts M into C1, and F(M) into C2;
U produces a Groth-Sahai NIZK that

C1 and C2 contain the same M (bit-by-bit proof)
if convinced, A generates a signature on C2

granted the commutativity, U decrypts it
into a Waters signature of M,
and eventually re-randomizes the signature

9`+ 24 group elements have to be sent:
→ It was the most efficient blind signature up to 2011

Why NIZK, since there are already two flows?
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Randomizable Commutative Signature/Encryption

Blind Signature [Blazy, Pointcheval, Vergnaud, 2012]

In order to get the `-bit message M = {Mi} blindly signed:

With SPHF
The user U and the authority A use a smooth projective hash system
for L: C1 = E

pk1
(M; r) and C2 = E

pk2
(F(M); s) contain the same M

U sends encryptions of M, into C1, and F(M), into C2;
A generates

a signature σ on C2,
masks it using Hash = Hash(hk; (C1,C2))

U computes Hash = ProjHash(hp; (C1,C2), (r , s)), and gets σ.
Granted the commutativity, U decrypts it into a Waters signature
of M, and eventually re-randomizes it

Such a protocol requires 8`+ 12 group elements in total only!
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Definitions

Oblivious Transfers

Oblivious Transfer [Rabin, 1981]

A sender S wants to send a message M to U such that
U gets M with probability 1/2, or nothing
S does not learn whereas U gets the message M or not

1-2 Oblivious Transfer [Even, Goldreich, Lempel, 1985]

A sender S owns two messages m0 and m1, and U owns a bit b
U gets mb but nothing on the other message
S does not learn anything about b
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Definitions

Oblivious Signature-Based Encryption [Li, Du, Boneh, 2003]

A sender S wants to send a message M to U such that
U gets M if and only if it owns a signature σ

on a message m valid under vk
S does not learn whereas U gets the message M or not

Correctness: if U owns a valid signature, he learns M

Security Notions
Oblivious: S does not know whether U owns a valid signature

(and thus gets the message);
Semantic Security: U does not learn any information about M

if he does not own a valid signature.
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Examples

RSA-Based OSBE [Li, Du, Boneh, 2003]

The authority generates a FDH-RSA system (vk = (n,e), sk = d),
and signs m into σ for U: σ = hd mod n, where h = H(m).

S wants to send a message M to U, if U owns a valid signature:
U chooses a random scalar x , and sends u = (σhx) mod n;
S chooses a random scalar y , and computes r = ueyh−y mod n.
It sends v = hey mod n, and a encryption of the message M
under the symmetric key k = H ′(r);
U computes r ′ = vx mod n, and k ′ = H ′(r ′).

Correctness:
r = ueyh−y = σeyhxeyh−y = hdeyhxeyh−y = hexy = vx = r ′ mod n.
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Examples

RSA-Based OSBE: Security

Oblivious: u = (σhx) mod n is uniformly distributed in Z∗n
(for an appropriate range of x);

Semantic Security: upon reception of u,
S sends v = h1+ez mod n for a random z.

Then v = he(d+z): formally, v = hye for y = d + z.
If U is able to compute r = ueyh−y (extracted from H’-calls):
r = u1+ezh−dh−z , and thus

σ = hd = u1+ez/(rhz) mod n.

→ the knowledge of a valid signature is required to decrypt

But security in the Random Oracle Model
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Examples

One-Round OSBE from IBE [Li, Du, Boneh, 2003]

The authority owns the master key of an IBE scheme,
and provides the decryption key (signature) associated to m to U.

S wants to send a message M to U, if U owns a valid signature.
S encrypts M under the identity m.

Security properties:
Correct: trivial
Oblivious: no message sent!
Semantic Security: IND-CPA of the IBE

But the authority can decrypt everything!
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Our Scheme

A Stronger Security Model

S wants to send a message M to U, if U owns/uses a valid signature.

Security Notions
Escrow-free (Oblivious w.r.t. the authority):

the authority does not know whether U uses a valid signature
(and thus gets the message);

Semantic Security: U cannot distinguish
multiple interactions with S sending M0
from multiple interactions with S sending M1
if he does not own/use a valid signature;

Semantic Security w.r.t. the Authority: after the interaction,
the authority does not learn any information about M.
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Our Scheme

A New OSBE

S wants to send a message M to U, if U owns a valid signature σ
on m under vk:

With a Smooth Projective Hash Function
The user U and the sender S use a smooth projective hash system
for L: C = E

pk
(σ; r) contains a valid signature σ of m under vk

the user U sends an encryption C of σ;
A generates a hk and the associated hp,

computes Hash = Hash(hk;C),
and sends hp together with c = M ⊕ Hash;

U computes Hash = ProjHash(hp;C, r), and gets M.
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Our Scheme

Security Properties

Oblivious/Escrow-free: IND-CPA of the encryption scheme
(Hard-partitioned Subset of the SPHF);

Semantic Security: Smoothness of the SPHF
Semantic Security w.r.t. the Authority:

Pseudo-randomness of the SPHF

Semantic Security w.r.t. the Authority requires one interaction
→ round-optimal

Standard model with Waters Signature + Linear Encryption
→ CDH and DLin assumptions
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Our Scheme

Lin-compatible SPHF

encryption key pk = (Y1 = gy1 ,Y2 = gy2)

ciphertext C = (c1 = Y r1
1 , c2 = Y r2

2 , c3 = gr1+r2 ×M)

Lin(pk,M): language of the ciphertexts of M
An SPHF for Lin(pk,M) can be:

HashKG(Lin(pk,M)) = hk = (x1, x2, x3)
$←Z3

p

ProjKG(hk ;Lin(pk,M),C) = hp = (Y x1
1 gx3 ,Y x2

2 gx3)

cx1
1 cx2

2 (c3/M)x3 = hpr1
1 hpr2

2

This basically shows that
(c1, c2, c3/M) is a linear tuple in basis (Y1,Y2,g)
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Our Scheme

SPHF for Linear Encryptions of Waters Signatures

verification key vk = Y = gx (sk = X = hx )
signature σ = (σ1 = X ×F(M)s, σ2 = gs)

encryption key pk = (Y1 = gy1 ,Y2 = gy2)

ciphertext C = (c1 = Y r1
1 , c2 = Y r2

2 , c3 = gr1+r2 × σ1, σ2)

WLin(pk, vk,M): language of the ciphertexts of signatures of M

C1 = e(c1,g),C2 = e(c2,g),C3 = e(c3,g)/(e(h, vk) · e(F(M), σ2))

is a linear tuple in basis (e(Y1,g),e(Y2,g),e(g,g)) in GT .
An SPHF for WLin(pk, vk,M) can be:

HashKG(WLin(pk, vk,M)) = hk = (x1, x2, x3)
$←Z3

p

ProjKG(hk ;WLin(pk, vk,M),C) = hp = (Y x1
1 gx3 ,Y x2

2 gx3)

e(c1,g)x1e(c2,g)x2(e(c3,g)/(e(h,Y )e(F(M), σ2)))
x3 = e(hpr1

1 hpr2
2 ,g)
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Conclusion

Smooth Projective Hash Functions
can be used as implicit proofs of knowledge or membership

Various Applications
IND-CCA [Cramer, Shoup, 2002]

PAKE [Gennaro, Lindell, 2003]

Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

Privacy-preserving protocols
Blind signatures
Oblivious Signature-Based Envelope
→ Round optimal!

Work in progress: many more applications. . .
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