Round-Optimal Privacy-Preserving Protocols with Smooth Projective Hash Functions

David Pointcheval

Joint work with Olivier Blazy and Damien Vergnaud

Ecole Normale Supérieure

Grenoble - January 13th, 2012

Introduction • • • • • • • • • • • • • • • • • • •	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption
Motivation			

Conditional Actions

- An authority, or a server, may accept to process a request under some conditions only:
 - Certification of public key: if the associated secret key is known
 - Transmission of private information: if the receiver owns a credential

Blind signature on a message:

if the user knows the message (for the security proof)

In the registered key setting, a user can ask for the certification of a public key *pk*, but if he knows the associated secret key *sk* only:

With an Interactive Zero-Knowledge Proof of Knowledge

- the user *U* sends his public key *pk*;
- U and the authority A run a ZK proof of knowledge of sk
- if convinced, A generates and sends the certificate Cert for *pk*

For extracting *sk* (required in some security proofs), the reduction has to make a rewind (that is not always allowed: *e.g.*, in the UC Framework)

Cryptographic Tools

Blind Signatures

Oblivious Signature-Based Encryption

Outline

ntroduction

Introduction

- Motivation
- Smooth Projective Hash Functions
- Applications
- Cryptographic Tools
 - Computational Assumptions
 - Signature & Encryption
 - Groth-Sahai Methodology
- 3 Blind Signatures
 - Introduction
 - Randomizable Commutative Signature/Encryption

Oblivious Signature-Based Encryption

- Definitions
- Examples
- Our Scheme

École Normale Supéri	eure	David Pointche	eval 2/34
Introduction ••••••	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption
All a Marcallana			

Certification of Public Keys: ZKPoK

Motivation	Motivation		
Certification of Public Keys: ZK and NIZK Proofs	Certification of Public Keys: SPHF		
	[Abdalla, Chevalier, Pointcheval, 2009]		
In the registered key setting, a user can ask for the certification of a public key <i>pk</i> , but if he knows the associated secret key <i>sk</i> only:	In the registered key setting, a user can ask for the certification of a public key <i>pk</i> , but if he knows the associated secret key <i>sk</i> only:		
 With an Interactive Zero-Knowledge Proof of Membership the user U sends his public key pk, and an encryption C of sk; U and the authority A run a ZK proof that C contains the secret key sk associated to pk if convinced, A generates and sends the certificate Cert for pk With a Non-Interactive Zero-Knowledge Proof of Membership the user U sends his public key pk, and an encryption C of sk together with a NIZK proof that C contains the secret key sk associated to pk 	 With a Smooth Projective Hash Function The user U and the authority A use a smooth projective hash system for L: pk and C = ε_{pk'} (sk; r) are associated to the same sk the user U sends his public key pk, and an encryption C of sk; A generates the certificate Cert for pk, and sends it, masked by Hash = Hash(hk; (pk, C)); U computes Hash = ProjHash(hp; (pk, C), r)), and gets Cert. 		
 if convinced, A generates and sends the certificate Cert for pk 	Implicit proof of knowledge of sk		
Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption	AÉcole Normale Supérieure David Pointcheval 6/3 Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption 00000000 0000000 00000000 000000000		
○○○○●○○○ ○○○○○○○ ○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	O00000000 O0000000 O000000000000000000000000000000000000		
Smooth Projective Hash Functions [Cramer, Shoup, 2002]	Properties		
Definition[Cramer, Shoup, 2002][Gennaro, Lindell, 2003]Let $\{H\}$ be a family of functions:• X, domain of these functions• L, subset (a language) of this domainsuch that, for any point x in L, $H(x)$ can be computed by using• either a secret hashing key hk: $H(x) = \text{Hash}_L(\text{hk}; x)$;• or a public projected key hp: $H(x) = \text{ProjHash}_L(\text{hp}; x, w)$	For any $x \in X$, $H(x) = \text{Hash}_L(\text{hk}; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(\text{hp}; x, w)$ w witness that $x \in L$ Smoothness For any $x \notin L$, $H(x)$ and hp are independent Pseudo-Randomness For any $x \in L$, $H(x)$ is pseudo-random, without a witness w		
While the former works for all points in the domain <i>X</i> , the latter works for $x \in L$ only, and requires a witness <i>w</i> to this fact. Public mapping hk \mapsto hp = ProjKG _L (hk, x)	The latter property requires <i>L</i> to be a hard-partitioned subset of <i>X</i> : Hard-Partitioned Subset <i>L</i> is a hard-partitioned subset of <i>X</i> if it is computationally hard to distinguish a random element in <i>L</i> from a random element in $X \setminus L$		

Introduction

Cryptographic Tools

Blind Signatures

Oblivious Signature-Based Encryption

Oblivious Signature-Based Encryption

Introduction

Cryptographic Tools

Blind Signatures

8/34

Introduction ○○○○○●○	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption	Introduction ○○○○○○●	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption
Applications				Applications			
Examples			Examples (Con'd)				
DH Langua	age		[Cramer, Shoup, 2002]	Commitme	ent/Encryption		[Gennaro, Lindell, 2003]

 $L_{a,h} = \{(u, v)\}$ such that (g, h, u, v) is DH tuple: there exists *r* such that $u = q^r$ and $v = h^r$

Public-key Encryption with IND-CCA Security

Algorithms

- HashKG() = hk = $(\gamma_1, \gamma_3) \xleftarrow{\hspace{1.5mm}} \mathbb{Z}_a \times \mathbb{Z}_a$
- ProjKG(hk) = hp = $g^{\gamma_1} h^{\gamma_3}$

$$\mathsf{Hash}(\mathsf{hk},(u,v)) = u^{\gamma_1}v^{\gamma_3} = \mathsf{hp}^r = \mathsf{ProjHash}(\mathsf{hp},(u,v);r)$$

there exists *r* such that $c = \mathcal{E}_{rk}(m; r)$ \rightarrow Password-Authenticated Key Exchange in the Standard Model

Labeled Encryption	[Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]
$L_{pk,(\ell,m)} = \{c\}$ such that <i>c</i> is an en	cryption of <i>m</i> under <i>pk</i> , with label ℓ

 \rightarrow PAKE in the UC Framework (passive corruptions)

 $L_{pk,m} = \{c\}$ such that *c* is an encryption of *m* under *pk*:

Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009] $L_{pk,m} = \{c\}$ such that c is a equivocable/extractable commitment of m

 \rightarrow PAKE in the UC Framework secure against Active Corruptions

École Normale Supérieure		David Pointcheva	I 9/34	9/34École Normale Supérieure		David Pointche	eval 10/34
Introduction	Cryptographic Tools ●○○○○○	Blind Signatures	Oblivious Signature-Based Encryption	Introduction	Cryptographic Tools ○●○○○○	Blind Signatures	Oblivious Signature-Based Encryption
Computational As	sumptions			Signature & Enci	yption		
Assum	otions: CDH a	nd DLin		Genera	I Tools: Signa	ture	

Assumptions: CDH and DLin

 \mathbb{G} a cyclic group of prime order *p* (with or without bilinear map).

Definition (The Computational Diffie-Hellman problem (CDH))

For any generator $g \stackrel{\$}{\leftarrow} \mathbb{G}$, and any scalars $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}^{*}$, given (q, q^a, q^b) , compute q^{ab} .

Decisional variant easy if a bilinear map is available.

Definition (Decision Linear Problem (DLin))

For any generator $g \stackrel{\$}{\leftarrow} \mathbb{G}$, and any scalars $a, b, x, y, c \stackrel{\$}{\leftarrow} \mathbb{Z}_n^*$, given $(g, g^x, g^y, g^{xa}, g^{yb}, g^c)$, decide whether c = a + b or not.

Equivalently, given a reference triple ($u = g^x, v = g^y, g$) and a new triple ($U = u^a = g^{xa}$, $V = v^b = g^{yb}$, $T = g^c$), decide whether $T = q^{a+b}$ or not (that is c = a + b).

Definition (Signature Scheme)

- S = (Setup, SKeyGen, Sign, Verif):
 - Setup(1^k) \rightarrow global parameters param;
 - SKeyGen(param) \rightarrow pair of keys (sk, vk);
 - Sign(sk, m; s) \rightarrow signature σ , using the random coins s;
 - Verif(vk, m, σ) \rightarrow validity of σ

Definition (Security: EF-CMA)

An adversary should not be able to generate a new valid message-signature pair (Existential Forgery) even when having access to any signature of its choice (Chosen-Message Attack).

IntroductionCryptographic ToolsBlind SignaturesOblivious Signature-Based Encryption00	Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption 00000000 000000 0000000 00000000 00000000				
Signature & Encryption	Signature & Encryption				
Signature: Waters	General Tools: Encryption				
$\mathbb{G} = \langle g \rangle = \langle h \rangle \text{ group of order } p, \text{ and a bilinear map } e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ $\underbrace{\text{Waters Signature}}_{\text{For a } k-\text{bit message } M = (M_i), \text{ we define } \mathcal{F}(M) = u_0 \prod_{i=1}^k u_i^{M_i}.$ $\bullet \text{ Keys: } vk = Y = g^x, sk = X = h^x, \text{ for } x \stackrel{\$}{\leftarrow} \mathbb{Z}_p;$ $\bullet \text{ Sign}(sk = X, M; s), \text{ for } M \in \{0, 1\}^k \text{ and } s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ $\to \sigma = (\sigma_1 = X \cdot \mathcal{F}(M)^s, \sigma_2 = g^{-s});$ $\bullet \text{ Verif}(vk = X, M, \sigma = (\sigma_1, \sigma_2)) \text{ checks whether}$ $e(g, \sigma_1) \cdot e(\mathcal{F}(M), \sigma_2) = e(Y, h).$ $\underbrace{\text{Security}}_{Waters signature reaches EF-CMA under the CDH assumption}$	Definition (Encryption Scheme) $\mathcal{E} = (Setup, EKeyGen, Encrypt, Decrypt):$ • Setup(1 ^k) \rightarrow global parameters param;• EKeyGen(param) \rightarrow pair of keys (pk, dk);• Encrypt(pk, m; r) \rightarrow ciphertext c, using the random coins r;• Decrypt(dk, c) \rightarrow plaintext, or \perp if the ciphertext is invalid.Definition (Security: IND-CPA)An adversary should not be able to distinguish the encrytion of m_0 from the encryption of m_1 (Indistinguishability) whereas it can encrypt any message of its choice (Chosen-Plaintext Attack).				
	34École Normale Supérieure David Pointcheval 14/34				
Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption 0000000 000000 0000000 00000000 00000000	Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption 00000000 000000 0000000 00000000				
Signature & Encryption	Groth-Sahai Methodology				
Encryption: Linear	Groth-Sahai Proofs [Groth, Sahai, 2008]				
$\mathbb{G}=\langle g angle$ group of order p	For any pairing product equation of the form:				
Linear Encryption [Boneh, Boyen, Shacham, 2004]	$\prod e(A_i,X_i)^{lpha_i} \prod e(X_i,X_j)^{\gamma_{i,j}} = t,$				
• Keys: $dk = (x_1, x_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, $pk = (X_1 = g^{x_1}, X_2 = g^{x_2})$; • <i>Encrypt</i> ($pk = (X_1, X_2), m; (r_1, r_2)$), for $m \in \mathbb{G}$ and $(r_1, r_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$ $\rightarrow c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot m)$;	where the $A_i \in \mathbb{G}$, and $t \in \mathbb{G}_T$ are constant group elements, $\alpha_i \in \mathbb{Z}_p$, and $\gamma_{i,j} \in \mathbb{Z}_p$ are constant scalars, and X_i are unknowns • either group elements in \mathbb{G} ,				

• Decrypt($dk = (x_1, x_2), c = (c_1, c_2, c_3)$) $\rightarrow m = c_3/c_1^{1/x_1}c_2^{1/x_2}$.

Security

Linear encryption reaches IND-CPA under the DLin assumption

- or of the form g^{X_i} ,

one can make a proof of knowledge of values for the X_i 's or x_i 's so that the equation is satisfied:

- one first commits these secret values using random coins,
- and then provides proofs, that are group elements, using the above random coins,
- Under the DLin assumption: Efficient NIZK \rightarrow

David Pointcheval

15/34École Normale Supérieure

David Pointcheval

Introduction	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption	Introduction	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption
Introduction				Introduction			
Electronic Cash			Blind R	SA		[Chaum, 1981]	

Electronic Coins

Expected properties:

- coins are signed by the bank, for unforgeability
- coins must be distinct to detect/avoid double-spending
- the bank should not know to whom it gave a coin, for anonymity

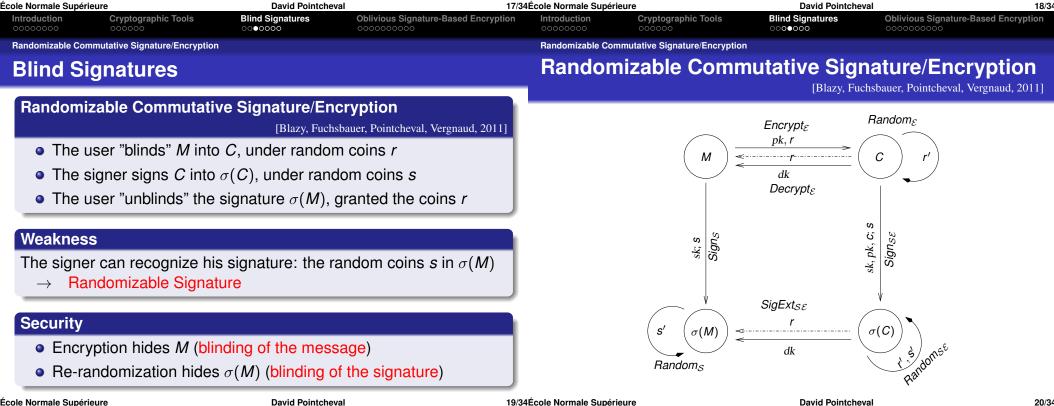
Electronic Cash

The process is the following one:

- Withdrawal: the user gets a signed coin *c* from the bank
- Spending: the user spends a coin *c* in a shop
- Deposit: the shop gives back the money to the bank

The coin is blindly signed by the bank

[Chaum, 1981]


The easiest way for blind signatures, is to blind the message: To get an RSA signature on *m* under public key (n, e),

- The user computes a blind version of the hash value: M = H(m) and $M' = M \cdot r^e \mod n$
- The signer signs M' into $\sigma' = {M'}^d \mod n$
- The user unblinds the signature: $\sigma = \sigma'/r \mod n$ Indeed,

$$\sigma = \sigma'/r = M'^d/r = (M \cdot r^e)^d/r = M^d \cdot r/r = M^d \mod n$$

Proven under the One-More RSA

[Bellare, Namprempre, Pointcheval, Semanko, 2001]

20/34

Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption				
Randomizable Commutative Signature/Encryption				
Blind Signature [Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]				
 In order to get the ℓ-bit message M = {M_i} blindly signed: With Groth-Sahai NIZKP the user U encrypts M into C₁, and F(M) into C₂; U produces a Groth-Sahai NIZK that C₁ and C₂ contain the same M (bit-by-bit proof) if convinced, A generates a signature on C₂ granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes the signature 				
$9\ell + 24$ group elements have to be sent: \rightarrow It was the most efficient blind signature up to 2011 Why NIZK, since there are already two flows?				
École Normale Supérieure David Pointcheval 22/34				
IntroductionCryptographic ToolsBlind SignaturesOblivious Signature-Based Encryption000				
Definitions				
Oblivious Transfers				
Oblivious Transfer[Rabin, 1981]A sender S wants to send a message M to U such that• U gets M with probability 1/2, or nothing				

- for L: $C_1 = \mathcal{E}_{pk_1}(M; r)$ and $C_2 = \mathcal{E}_{pk_2}(\mathcal{F}(M); s)$ contain the same M
 - *U* sends encryptions of *M*, into C_1 , and $\mathcal{F}(M)$, into C_2 ;
 - A generates
 - a signature σ on C_2 ,
 - masks it using $Hash = Hash(hk; (C_1, C_2))$
 - U computes Hash = ProjHash(hp; (C₁, C₂), (r, s)), and gets σ. Granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes it

Such a protocol requires $8\ell+12$ group elements in total only!

1-2 Oblivious Transfer

• S does not learn whereas U gets the message M or not

A sender S owns two messages m_0 and m_1 , and U owns a bit b

• U gets m_b but nothing on the other message

• S does not learn anything about b

[Even, Goldreich, Lempel, 1985]

Introduction Oblivious Signature-Based Encryption **Oblivious Signature-Based Encryption** Cryptographic Tools Blind Signatures Introduction Cryptographic Tools **Blind Signatures** 000000000 Definitions Examples **Oblivious Signature-Based Encryption RSA-Based OSBE** [Li, Du, Boneh, 2003] [Li, Du, Boneh, 2003] A sender S wants to send a message M to U such that The authority generates a FDH-RSA system (vk = (n, e), sk = d), and signs *m* into σ for *U*: $\sigma = h^d \mod n$, where h = H(m). • U gets M if and only if it owns a signature σ S wants to send a message M to U, if U owns a valid signature: on a message *m* valid under *vk* • U chooses a random scalar x, and sends $u = (\sigma h^x) \mod n$; • S does not learn whereas U gets the message M or not • S chooses a random scalar y, and computes $r = u^{ey}h^{-y} \mod n$. Correctness: if U owns a valid signature, he learns M It sends $v = h^{ey} \mod n$, and a encryption of the message M **Security Notions** under the symmetric key k = H'(r); • Oblivious: S does not know whether U owns a valid signature • U computes $r' = v^x \mod n$, and k' = H'(r'). (and thus gets the message); • Semantic Security: U does not learn any information about M Correctness: if he does not own a valid signature. $r = \mu^{ey} h^{-y} = \sigma^{ey} h^{xey} h^{-y} = h^{dey} h^{xey} h^{-y} = h^{exy} = v^x = r' \mod n$

École Normale Supérieure		David Pointcheval 25/34		34École Normale Supérieure		David Pointch	eval 26/34
Introduction	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption	Introduction	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption
Examples				Examples			
RSA-Ba	ased OSBE: S	ecurity		One-Ro	ound OSBE fro	om IBE	[Li, Du, Boneh, 2003]

- Oblivious: u = (σh^x) mod n is uniformly distributed in Z^{*}_n (for an appropriate range of x);
- Semantic Security: upon reception of *u*,
 - S sends $v = h^{1+ez} \mod n$ for a random z.
 - Then $v = h^{e(d+z)}$: formally, $v = h^{ye}$ for y = d + z.
 - If *U* is able to compute $r = u^{ey}h^{-y}$ (extracted from H'-calls): $r = u^{1+ez}h^{-d}h^{-z}$. and thus

$$\sigma = h^d = u^{1 + ez} / (rh^z) \bmod n.$$

 $\rightarrow~$ the knowledge of a valid signature is required to decrypt

But security in the Random Oracle Model

The authority owns the master key of an IBE scheme,

and provides the decryption key (signature) associated to m to U. S wants to send a message M to U, if U owns a valid signature.

• S encrypts M under the identity m.

Security properties:

- Correct: trivial
- Oblivious: no message sent!
- Semantic Security: IND-CPA of the IBE

But the authority can decrypt everything!

Introduction Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption Cryptographic Tools Blind Signatures Oblivious Signature-Based Encryption Our Scheme Our Scheme</td

S wants to send a message M to U, if U owns/uses a valid signature.

Security Notions

- Escrow-free (Oblivious w.r.t. the authority): the authority does not know whether U uses a valid signature (and thus gets the message);
- Semantic Security: U cannot distinguish multiple interactions with S sending M₀ from multiple interactions with S sending M₁ if he does not own/use a valid signature;
- Semantic Security w.r.t. the Authority: after the interaction, the authority does not learn any information about *M*.

S wants to send a message *M* to *U*, if *U* owns a valid signature σ on *m* under *vk*:

With a Smooth Projective Hash Function

The user *U* and the sender *S* use a smooth projective hash system for *L*: $C = \mathcal{E}_{ok}(\sigma; r)$ contains a valid signature σ of *m* under *vk*

- the user U sends an encryption C of σ ;
- A generates a hk and the associated hp, computes Hash = Hash(hk; C), and sends hp together with c = M ⊕ Hash;
- U computes Hash = ProjHash(hp; C, r), and gets M.

École Normale Supérieure		David Pointcheval	29/34	29/34École Normale Supérieure			eval 30/34
Introduction	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption	Introduction	Cryptographic Tools	Blind Signatures	Oblivious Signature-Based Encryption ○○○○○○○●○
Our Scheme				Our Scheme			
Security	Properties			Lin-con	npatible SPHF	=	

- Oblivious/Escrow-free: IND-CPA of the encryption scheme (Hard-partitioned Subset of the SPHF);
- Semantic Security: Smoothness of the SPHF
- Semantic Security w.r.t. the Authority: Pseudo-randomness of the SPHF
- Semantic Security w.r.t. the Authority requires one interaction
 - \rightarrow round-optimal
- Standard model with Waters Signature + Linear Encryption
 - $\rightarrow~$ CDH and DLin assumptions

• encryption key $pk = (Y_1 = g^{y_1}, Y_2 = g^{y_2})$

• ciphertext $C = (c_1 = Y_1^{r_1}, c_2 = Y_2^{r_2}, c_3 = g^{r_1 + r_2} \times M)$

Lin(pk, M): language of the ciphertexts of MAn SPHF for Lin(pk, M) can be:

$$HashKG(Lin(pk, M)) = hk = (x_1, x_2, x_3) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^3$$

ProjKG(hk; Lin(pk, M), C) = hp = (Y_1^{x_1}g^{x_3}, Y_2^{x_2}g^{x_3})

$$c_1^{x_1}c_2^{x_2}(c_3/M)^{x_3} = hp_1^{r_1}hp_2^{r_2}$$

This basically shows that

 $(c_1, c_2, c_3/M)$ is a linear tuple in basis (Y_1, Y_2, g)

Our Scheme

Cryptographic Tools

Tools Blind Signatures

Oblivious Signature-Based Encryption

SPHF for Linear Encryptions of Waters Signatures Conclusion

- verification key $vk = Y = g^x$ ($sk = X = h^x$)
- signature $\sigma = (\sigma_1 = X \times \mathcal{F}(M)^s, \sigma_2 = g^s)$
- encryption key $pk = (Y_1 = g^{y_1}, Y_2 = g^{y_2})$
- ciphertext $C = (c_1 = Y_1^{r_1}, c_2 = Y_2^{r_2}, c_3 = g^{r_1+r_2} \times \sigma_1, \sigma_2)$

WLin(pk, vk, M): language of the ciphertexts of signatures of M

$$C_1 = e(c_1, g), C_2 = e(c_2, g), C_3 = e(c_3, g)/(e(h, vk) \cdot e(\mathcal{F}(M), \sigma_2))$$

is a linear tuple in basis $(e(Y_1, g), e(Y_2, g), e(g, g))$ in \mathbb{G}_T . An SPHF for WLin(pk, vk, M) can be:

$$HashKG(WLin(pk, vk, M)) = hk = (x_1, x_2, x_3) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^3$$

$$ProjKG(hk; WLin(pk, vk, M), C) = hp = (Y_1^{x_1}g^{x_3}, Y_2^{x_2}g^{x_3})$$

$$e(c_1,g)^{x_1}e(c_2,g)^{x_2}(e(c_3,g)/(e(h,Y)e(\mathcal{F}(M),\sigma_2)))^{x_3}=e(hp_1^{r_1}hp_2^{r_2},g)^{r_3}$$

Smooth Projective Hash Functions

can be used as implicit proofs of knowledge or membership

Various Applications

- IND-CCA [Cramer, Shoup, 2002]
- PAKE
- Certification of Public Keys

Privacy-preserving protocols

- Blind signatures
- Oblivious Signature-Based Envelope
- $\rightarrow \quad \text{Round optimal!} \quad$

Work in progress: many more applications...

École Normale Supérieure

David Pointcheval

33/34École Normale Supérieure

David Pointcheval

34/34

[Gennaro, Lindell, 2003]

[Abdalla, Chevalier, Pointcheval, 2009]