
SVERTS workshop at UML 2003
San Francisco, October 20, 2003 1

Extending UML with time: a
concrete framework

Susanne Graf
Ileana Ober, Iulian Ober

VERIMAG, Grenoble
http://www-verimag.imag.fr

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 2

Motivation: analysis of the constraint

Time constraint:
Between
the moment an Engine initiates a show on its screen
and
the moment the same Engine updates the information
(calls updateInfo) on its screen
less than 10 time units pass
if i+k has not changed.

Recurrent time related elements:
« moment » (instant = event)
« duration » (time elapsed between instants)

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 3

Extending UML with time

Untimed UML model (with state machines):
n A set of behaviors, restricting the possible orders of

occurrences of events
(events = interactions between objects)

Time extended UML model:
n A set of timed behaviors, restricting the possible order and

occurrence times of occurrences of events
(events = identifiable with an instant in time)
1. Define constraints on occurrence times of events
2. Define constraints on durations between occurrence times of events

è How to express time constraints ?

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 4

Extending UML with time

Proposal 1: extend state machines with clocks (measuring
durations) which can be started at certain points and
tested later

è convenient for the operational specification of time
dependent behaviors

Problems:
§ allows to define the time at which events can occur, not

when they must occur
§ not all relevant events are accessible in state machines,

due to implicit events and objects
§ what if there are objects without state machines ?

è use this kind of time extension, but not alone

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 5

Extending UML with time

Proposal 2: real-time characteristics orthogonal to the
functional behavior

n provide a syntax allowing to identify all state changes in
the underlying semantic model (events)

n express timing by constraints on durations between
such events, representing invariants of the system

n define patterns for certain event pairs, frequently under
some time constraint (execution time of actions,
response time to requests, transmission delays of
channels, …)

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 6

Time profile

n Basics
l A notion of global time, external to the system
l Time primitive types: Time, Duration with operations
l Events: history of occurrence times of identified state changes

n operational time access: time dependent behaviour
l Expression now for accessing global time
l Guards on durations
l Mechanisms for measuring durations: timers, clocks

n Time constraints: orthogonal to functional aspects
l Constraints on durations

t Assumptions (taken as given)
t Requirements (to be verified)

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 7

Display
- x : Integer

+ show(p1:Integer):Integer
+ updateInfo() : Integer

Engine
- i : Integer

+ start(a:Integer):Integer
+ displayInfo() : Integer

1 +screen

+owner

1

1

Motivation: model + constraint

Time constraint:
Between the moment an Engine initiates a show on its screen and the
moment the same Engine updates the information (calls updateInfo)
on its screen less than 10 time units pass, if the sum i+k has not
changed.

-k: Integer

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 8

1. Timed events (example)

ET1

- m: Integer
- a : Engine
- d : Display

<<TimedEvent>> match invoke Display::show(l) by a on d
when a.screen=d

do m:= a.i+a.k

the moment an
Engine initiates a
show on its screen

Display
- x : Integer

+show(p1:Integer):Integer
+ updateInfo() : Integer

Engine
-i : Integer

+start(a:Integer):Integer
+ displayInfo() : Integer

1 +screen

+owner

1

1-k:Integer

ET2
- a : Engine
- d : Display
- l : Integer

<<TimedEvent>>

the moment an Engine
calls updateInfo on its

screen

match invoke Display::updateInfo() by a on d

when a.screen=d
do m:= a.i+a.k

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 9

Event type, event, event occurrence

We distinguish between:
l Event type: pattern of event

t says how it is identified
– event kinds
– matching conditions

t has local memory

l Event type instance (object attributes): history of event
occurrences

l Event occurrence: the actual run-time occurrence of
some event

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 10

2. Durations

Duration: time elapsed between instants of two event occurrences
(particular case: time elapsed since some event)

e1

e2
?

Define a syntactic expression: duration(e1, e2)
l Which occurrences to identify?
l The causally related ones ?
l Causal relationship needs to be specified explicitly

Problem: find a mechanism to identify
matching event occurrence pairs

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 11

Matching event occurrences

Solution 1: use index of event occurrences to identify matching
pairs

e1

e2

e11 e12 e13 e14 e15 e16

e21 e21 e23 e24 e25 e26

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 12

Matching event occurrences

Solution 1: use index of event occurrences to identify matching
pairs

e1

e2

Solution 2: match the most recent occurrences looking backward
from e2 (use filter conditions to identify the right occurrences)

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 13

Matching event occurrences

Solution 1: use index of event occurrences to identify matching
pairs

e1

e2

Solution 2: match the most recent occurrences looking backward
from e2 (use filter conditions to identify the right occurrences)

Solution 3: define useful patterns

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 14

3. Constraints

1. OCL allows to express constraints in the form of
invariants
l Constraint = requirement to be checked: any invariant on

durations
l Constraint = assumption: each constraint must constrain

the occurrence of a well identified event (executable
model)

duration(e1,e2) ≤ 10 when cond(attr(e1),attr(e2))

2. General history dependent time constraints
l Increase the expressive power of OCL with event histories
l Use state machines triggered by “timed events” to define

history dependent constraints

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 15

3. Constraints (an example)

ET1

- m: Integer
- a : Engine

- d : Dispaly

<<TimedEvent>> match invoke Display::show(l) by a on d
when a.screen=d

do m := a.i+a.k

match invoke Display::updateinfo(l) by a on d
when a.b=be

do m := a.i+a.k

ET2
- a : Engine
- d : Display

- m : Integer

<<TimedEvent>>

Timeconstraints {
C1: assume

duration(e1,e2)<=10
when e1.m = e2.m }

Display
- x : Integer

+show(p1:Integer):Integer
+ updateInfo() : Integer

Engine
- i,k : Integer

+ start(a:Integer):Integer
+ displayInfo() : Integer

1 +screen

+owner

1

1- <<event>> e1: ET1
- <<event>> e2 : ET2

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 16

Duration patterns

n Define patterns associated with syntactic features,
identifying particular pairs of occurrences between
particular events
l ResponseTime (caller / callee)
l TransmissionDelay (channel)
l ExecutionTIme (action)
l InterarrivalTime (signal /call)
l TimeInState (state machine state)
l ReactionTime ….

è More useful patterns have to be identified

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 17

Resources and Scheduling

What is needed?
n A notion of «resource» with an attribute defining its

«preemptibility»
n Distinction of execution time and duration
n A means to identify «tasks» which might be atomic or

not and need resources:
1. Use methods to identify tasks and associate with them used

resources, atomicity, execution time and deadline
2. Define tasks and their properties dynamically in state machines by

scheduling related method calls, such as «needs(resource)»,
«startatomic», …

n A means to define scheduling policies: priority rules
1. Priorities attached to methods or objects
2. Dynamic priorities

SVERTS workshop at UML 2003
San Francisco, October 20, 2003 18

Summary
n Time profile integrated in UML syntax

l Basics
t A notion of global external time
t Time primitive types: Time, Duration with operations
t Events: history of occurrence times of identified state changes

l Imperative time access: time dependent behavior
t Expression now for accessing global time
t Guards on durations
t Mechanisms for measuring durations: timers, clocks ??

l Time constraints: orthogonal to functional aspects
t Constraints on durations

– Assumptions (taken as given)
– Requirements (to be verified)

n Well-defined semantics in terms of timed automata
n (Partially) implemented in a tool

