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Background

In DIRC, a UK EPSRC funded project, we are looking at

dependable socio-technical systems.

In particular, we are interested in:

• the specification and design of large-scale distributed

dependable systems,

• how formal approaches can be used to analyse

dependability requirements and help designers

⇒ developing verification tools
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Context

• Dependability of a system reflects a property of that

system such that “reliance can justifiably be placed on

the service it delivers” (Laprie).

• Attributes of dependability are reliability, availability,

safety, integrity, security, and so on.

• One aspect we are particularly concerned with here is

data integrity in a distributed real-time application with

replicated data.
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Problem

• Distributed application where tasks on several

nodes/components require access to the same data.

• There are many alternatives to deal with this...

– Data replication

data is duplicated in several locations; local copies of

replicated data have to be updated (for consistency).

⇒ Clients have different temporal validity constraints on

the data (accuracy).
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Temporal Validity in Design

• At the design level we are not concerned with the

procedures that are implemented to make sure that the

data replications are kept consistent.

• We are concerned only with the constraints that we want

to impose (at the component or architectural level) and

that have to be satisfied by these procedures.
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Publish/Subscribe

• A client “subscribes” to the server to be notified about

the changes on the value of some data according to

some policy .

• A policy can be “when the value changes”, “at least

every so often”, “at most every so often”, and so on.

• These policies reflect an aspect of a component

contract, which we need to express at the design level.

They may reflect temporal validity constraints.
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Our Approach

• We consider UML as a modelling language for the

(system and detailed) design of distributed real-time

applications.

• In particular, we use OCL to capture the required

temporal validity constraints (we need an extension

of what is the standard ; time-enriched liveness

template).

• The OCL constraints are mapped onto a logic, in this

case a real-time temporal logic of knowledge.
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ParcelCall

• Explored the development of a low cost information

infrastructure that improves business processes in

transport and logistics by enabling the continuous

information of the exact geographic position of parcels

at any time (Parcel localisation system)

• Open distributed system which integrates with the

legacy systems of the transport and logistic companies

(carriers).

• Carriers can offer more services to customers.
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ParcelCall components

• Mobile Logistic Server (MLS): exchange points,

transport units (container, trailer, freight wagon, etc).

Units carry the parcels. MLS’s build hierarchies.

• Goods Tracing Server (GTS): databases containing MLS

hierarchies. Knows about registered parcels. It is

integrated with the legacy system of carriers.

• Goods Information Server (GIS): interacts with the

customers, and provides the authorised customer the

current location of her parcels, keeps her informed in

case of delivery delays, etc.
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Where is my parcel?

• A customer can query the location or status of her

parcel at any time.

• How accurate provided information can be depends on

the established delivery agreements at send time.
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ParcelCall Architecture

ILocalizeParcelGIS

IParcelManagement

ICarrier

IParcelStatus

GTS CarrierSystem

MLS

IParcel

Customer
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Assumptions

• MLS: there is a class Parcel with attributes id and

location, and an operation update() which updates

the value of location.

• GTS: Parcel is replicated with attributes id and

location, and an operation new(l) which updates

the value of location to l.

• GIS: Parcel is replicated with attributes id, location
and deliverymode, and an operation new(l) which

updates the value of location to l.
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An illustration

p:MLS::Parcel :GTS::IParcel x:GTS::Parcel

sd ex

GPS

update()

{i:=p.id, l:=p.location}

new(i,l)

{x:=Parcel−>select(id=i)}

new(l)
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Contracts in OCL

context MLS::Parcel
after: self.update()
eventually: GTS::IParcel::

new(self.id,self.location)

here MLS eventually publishes the changes on the parcel

location. This is not standard OCL.
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Temporal Validity in OCL

context GTS::Parcel
after: new(a)
eventually: new(b)
within: t

context GIS::Parcel
after: new(a)
eventually: new(b)
within: deliverymode × 10

in these cases a time constraint has been added.
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Logics of Knowledge

• Epistemic modal logics, or modal logics of knowledge,

originated in work by J. Hintikka in the 1960s to formally

capture some intuitions about the nature of knowledge.

• Knowledge can change throughout time (through local

observations, communication, etc).

⇒ Temporal logics of Knowledge.

• Numerous applications in AI and distributed computing.
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Knowledge and Real Time

• What about real time? No known work here.

• Certain observations have a limited temporal validity.

Take an observation ⇒ gain some knowledge

⇒ but it will elapse at some point.
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Real-time Temporal Logic of Knowledge

ϕ := false | p | ϕ ⇒ ϕ | Kjϕ | 〈a〉ϕ | ϕ Uθc ϕ

• p is an atomic proposition, a is an action, j is a system

component, c is a rational number, and θ ∈ {<,≤,=
,≥, >}

• the K operator gives us a notion of locality.

SVERTS@UML 2003, 20 October, San Francisco, California



Example Formulae

context MLS::Parcel
after: self.update()
eventually: IParcel::

new(self.id,self.location)

KMLS::Parcel(〈self.update()〉

F>0 (〈IParcel :: new(self.id, self.location)〉 true))
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Example Formulae(2)

context GTS::Parcel
after: new(a)
eventually: new(b)
within: t

KGTS::Parcel(〈p.new(a)〉F<t 〈p.new(b)〉 true)
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Conclusions

• Timing constraints in general, and temporal validity

constraints in particular, should be captured earlier as

precise component contracts or local timing constraints.

• The constraints may reflect choices already: push versus

pull or a combination of these.
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Conclusions (2)

• We do not need (or want) a very expressive temporal

OCL: a timed liveness template is enough!

⇒ Let other diagrams do the rest:

tlt + Seq.Diag. UML2.0 ; Time-enriched LSCs

• Mapping extended OCL into our logic is straightforward

(both are locality -based).

• Verification is possible: data integrity constraints can

be verified. Failures can be detected at an early stage.
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