
SVERTS – San Francisco 2003 – Charles ANDRE

Towards a “Synchronous
Reactive” UML Profile?

Robert de Simone
Charles André

SVERTS – San Francisco 2003 – Charles ANDRE

Synchronous hypotheses
S/R stands for Synchronous Reactive

• Logical division of time into instants
• At each instant: execute a synchronous

cycle (a reaction)
– Acquisition
– Compute (a global run-to-completion)
– Actuate

• Signals are the unique support for
communication

SVERTS – San Francisco 2003 – Charles ANDRE

Where S/R should be used
• Applications:

– Embedded controller, HMI, HW/SW, …
• Formalisms:

– Strictly synchronous
• SCADE, Esterel Studio, Block Diagrams

– Almost synchronous
• Statecharts, VHDL/Verilog, Simulink, Scicos

Circuits CAD
DSP, autom. Control

simulators

SVERTS – San Francisco 2003 – Charles ANDRE

Control-flow / Data-flow

State
(hierarchical, register,
counter, …)

Control Flow

Memory,
Processing units

Data Flow
(pipeline, …)

Clk

Activations

Conditions
(events)

IN
P

U
T

S

O
U

T
P

U
TS

S/R capsules

Esterel/SyncCharts:

state-oriented

Lustre/Scade:

activity-oriented ?

SVERTS – San Francisco 2003 – Charles ANDRE

S/R semantic domain

+react()

SRModel

+testPresence()
+fixStatus()
+noMoreEmit()

+setPresence()
+getValue()

+setValue()

SRSignal

presenceStatus
value

+actuate()

SROutput

+react()

SRUnit

+sample()

SRInput

Clock
0..*

+inp0..*

0..1 +output

1

0..1 +top

1

0..1 +input

1

0..* +outp0..*+parent

0..1

+child0..*

0..1

+local

*

0..1 *

0..1
*

Not a metamodel – Only to represent main concepts

SVERTS – San Francisco 2003 – Charles ANDRE

Dynamic semantics

{ctr_sync2}

SREvent

{ctr_sync1}

SRReaction

presenceStatus
value

SRClockedSignal

Clock

SRInput

SROutput

SRSignal

SRInputEvent

SROutputEvent

SRModel

SRInstant

+sig

1

+outputHistory

{ordered}*

+sigOccs

*

1

read +inEvent

1

+instant

1 *

1

+reactionSequence

{ordered} *
+sig

1

+inputHistory

{ordered}*

1

+instantSequence

{ordered} *

+sig

1

+signalHistory

{ordered} *

write

+outEvent

1

+instant

*

1

+instant1

*

Reaction =
Behavior at
one instant

Signal
occurrence

Event =
Set of
signal

occurrences

SVERTS – San Francisco 2003 – Charles ANDRE

Example of an Arbiter

User 1 User N

UserCtrl UserCtrl

Arbiter

Critical resource

• Users: Rq and Rl
• Arbiter: G, D
• Exclusive access
• Static priority
• D valued with the nb

of candidates for
the resource with
higher priority

• Linear description
vs. the nb of users

SVERTS – San Francisco 2003 – Charles ANDRE

State-based synchronous
modeling

using blkd
not Fi

Fi

/ G / D

rscNeeded

Fi/Fo

auto

Rq # Rl

ArbUnit

input Fi, Rq, Rl
output Fo, G, D

syncCharts

Fi Fo

Rq

Rl

G

D

A1:ArbUnit

Rq

Rl

G

D

U1:UserCtrl

other inputs other outputs

Fi Fo

Rq

Rl

G

D

A2:ArbUnit

Rq

Rl

G

D

U2:UserCtrl

other inputs other outputs

Fi Fo

Rq

Rl

G

D

A3:ArbUnit

Rq

Rl

G

D

U3:UserCtrl

other inputs other outputs

F1 F2

Structure
diagram

SVERTS – San Francisco 2003 – Charles ANDRE

Limitations of the UML State
Machines

• Object-based variant of statecharts
• Semantics described in terms of

operations of a hypothetical machine
• Event queue + dispatcher
• Events are dispatched and processed

one at a time
• Run-to-completion assumption
• Poor support for concurrency

SVERTS – San Francisco 2003 – Charles ANDRE

What is missing
• Dealing with one event at a time is not

acceptable for S/R models: many is the
rule

• Combination of events (signals)
• Run-to-completion: to much restrictive.

S/R have high degree of concurrency
• A notion out of the scope of classical

asynchronous models: reaction to the
absence

• Needs: a clear notion of instant

SVERTS – San Francisco 2003 – Charles ANDRE

Activity-oriented approach
U

Fi.test()

G.setP() D.setP()

[present] [absent]

Rl.test()

state=auto state=rscNeeded

[present] [absent]

Fo.setA()

A U

[state==auto] [state==rscNeeded]

A

Rq.test()

[present][absent]

Fi.test()

Fo.setP() Fo.setA()

[present] [absent]

U

D.setA() G.setA()

Initially: state = auto

Initial
node

Final
node

Activities from initial to final
within one instant

Activity
diagram for a
reaction of the
ArbUnit

SVERTS – San Francisco 2003 – Charles ANDRE

Emergent behavior

Stable
configuration

U1:UserCtrl A1:ArbUnit

autonomous auto

autonomous.react()

Rq.setP()

Rq.test()

Fi.test()

G.setP()

Fo.setA()

Rl.test()

using

G.test()

usingRsc.react()

usingRsc

U2:UserCtrl A2:ArbUnit

usingRsc using

Fi.test()

D.setP() Fo.setA()

Rl.test()

using

D.test()

usingRsc

U3:UserCtrl A3:ArbUnit

autonomous using

Fi.test()

G.setA()

D.setP()

Fo.setA()

Rl.test()

using

G.test()

usingRsc

autonomous.react()

Rq.setP()

Rq.test()

D.setA()

G.setA()

Rl.setA() Rl.setA()

Rl.setA()

A
 reaction

Causality
relation

A signal may
be tested
only after
being set

Finite and
acyclic at
each instant

SVERTS – San Francisco 2003 – Charles ANDRE

Reference clock
(represents physical time)
Causality appears as
time precedence

Signal buffering, queues

Logical discrete time

abstract causality within
instant

Strict instant: possibility
to lose fleeting events

Time

Temporal analysis
Performance analysis
Real-time simulation

Relevance of timing
figures?

High-level design &
programming

Implementation
independent

Purpose
SPTSR

SVERTS – San Francisco 2003 – Charles ANDRE

Scheduling in S/R
• Temporal and/or spatial mapping

(SynDEx)
• Essential needs: respect causality
• Introduce chronometric time on

architectural platform resources
• Often: a uniform scheduling for the

whole application (i.e., a scheduling valid
for all reactions).

SVERTS – San Francisco 2003 – Charles ANDRE

Conclusion
• “Control system engineering” has specific

needs, not all addressed by the UML
• The S/R approach answers some of them
• UML + …
• SPT OK for real-time cooperation of

objects
• S/R well-suited for Control flow/Data

flow tight interactions. But it demands
relaxing some UML rules (especially for
UML SM semantics)

SVERTS – San Francisco 2003 – Charles ANDRE

S/R Mixed Architecture

Event

Activation

